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ABSTRACT 
 
 
 
 
 
 
This paper examines inter-industry patterns of the employment of older workers over the last 
20 years to gain insight into characteristics of firms that are most likely to employ such workers, 
as well as how labor market shocks impact workers of different age groups within an industry.  
The underlying premise is that firms strategically align the age mix of their workforce 
depending on production function and labor cost parameters, including human capital 
investments.  The key findings are that the industries that had the largest increases in the 
percentage of older workers were the industries that had the broadest pension coverage and 
the industries that made the greatest use of high-tech capital.  There also is evidence in 2001-
07 that the percentage of older workers increased more in the industries most exposed to 
increased Chinese imports (albeit this really means that younger workers suffered larger job 
losses in those industries than older workers).  We do not find evidence of (1) any shift in 
demand toward older workers in certain industries (as indicated by relative wages and 
employment moving in the same direction) or (2) any decline in employment shares of younger 
workers in the industries that showed the largest increases in the shares of older workers.   
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Older workers have become increasingly likely to delay retirement and remain employed.   

The employment-population ratio for men 55 and over increased from 35.9 percent in 1993 to 

45.1 percent in 2019.  Over the same period, the ratio for women rose from 22.0 percent to 

34.0 percent.1  These upward trends stand in contrast to the downward trajectory of 

employment odds for younger and middle-aged persons.2  Longer careers, combined with the 

large birth cohorts after World War II, have resulted in an aging labor force.   

Workforce aging has several important implications.  On the surface, longer careers would 

mean more output and more labor income, thereby leading to higher GDP.  Yet questions have 

been raised about the productivity of older workers and whether it impacts aggregate 

productivity, especially as technology mastery becomes a more critical skill.3   

Delayed retirements alter human resource decisions by organizations.  Now that they have 

more older workers, should companies invest more in their training?  Are older workers 

blocking promotion opportunities for others?  How committed are older workers to their jobs in 

the years ahead?  The uncertainty associated with their future retirement date complicates 

planning for the future.  What happens if they stay “forever” and what happens if they leave all 

at once?  A better understanding of these decisions will better inform decisions about the best 

employment opportunities for older workers as well as government decisions about education 

and training.   

Government budgets are being impacted as well.  Longer careers translate into more 

earnings leading to greater tax revenue (although this would be partially offset by delays in 

 
1 Economic Report of the President 2020 
2 Abraham and Kearney (2020) 
3 See, for instance, studies by Maestas et al (2016) of the US and Aiyar et al (2016) of the EU.   
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tapping 401k accounts).   Depending on how many older workers maintain primary medical 

insurance with a private sector employer, there also could be reduced spending on Medicare.   

There have been numerous studies examining why more older individuals are delaying 

retirement and working longer.  Social Security, private pensions, and retiree health insurance 

create incentives for individuals to retire at specific ages.  Personal health and accumulated 

savings also are critical factors, along with the availability of satisfying and rewarding work.  The 

consensus to date is that people are working longer because of the shift from defined benefit to 

defined contribution pensions, cutbacks in retiree health insurance, Social Security reforms, and 

increased education.4 

While we have clear indications of how labor supply factors have led to more employment 

of older workers, little is known about what has happened on the employer side of the 

equation.  Within an establishment, increased willingness to work longer is unlikely to be 

matched equally by employer demand.  In which sectors of the economy have older workers 

been able to successfully continue their careers or start new ones?  What common 

characteristics do these sectors have?  These are the central questions addressed in this 

research.   

From an employer perspective an increased supply of older workers is a mixed blessing.  

Older workers create value when they have critical experience, knowledge and skills related to 

customers, internal operations, market behavior, and suppliers.  There also is a tie-in between 

 
4 Coile (2019). 
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equipment and software installed 20 or more years ago and the skills that older workers 

provide to operate and maintain such essential capital.  When few younger workers choose to 

invest in those skills, older workers retain more value.  Longer careers mean reduced turnover, 

leading to savings in search and hiring costs and stronger incentives for training investments.  

Failure to retain critical older workers results in the loss of experience, skills, and company-

specific knowledge.   

At the same time firms face higher wages and benefit expenses for older workers, along 

with potential cognitive and physical declines in productivity associated with aging.  Ameriks et 

al (2020) find that older workers prefer more flexible work schedules.  This workplace amenity 

can be provided at low cost in some workplaces, but not so easily in others.  In some cases, 

there is the question of whether older workers can adapt to rapidly changing technology.   

Faced with a growing supply of older workers, firms must rethink decisions regarding hiring 

and developing younger and middle-aged workers.  One issue is whether promotion 

opportunities become blocked and lead to dissatisfaction among younger workers.  Another is 

how well a firm can combine older individuals with younger age groups.  Do they have 

complementary skills that bring out the best in each other or do they basically do the same 

jobs?  How up to date are the skills possessed by older workers compared to those of younger 

workers?  Do older workers have a stronger work ethic that offsets any deficiency in terms of 

technical knowhow?  The results of this study will document which industries are retaining and 

hiring older workers. Explaining why certain industries have a higher or rising proportion of 

older workers will guide our understanding of how future job opportunities will develop for this 

group in the next decade.   
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This study starts with the basic premise of labor demand: firms select optimal combinations 

of different types of labor and capital based on their relative productivity and cost, while also 

considering which combinations work best and the adjustment costs associated with changing 

the mix of inputs.  The focus will be on the age distribution of employees by industry.  This 

distribution can change over time depending on the hiring, separation and retention decisions 

made by firms and their employees.   

In the 1970s and 1980s a series of papers were written about labor demand for workers 

from different age groups using translog production (or cost) functions and share equations to 

estimate elasticities of complementarity (or substitution).  In his summary of these studies 

Hamermesh (1993) concluded that the weight of the evidence indicated that older and younger 

workers were substitutes.  Two more recent studies by Bovini and Paradisi (2019) and Mohnen 

(2021) reach a similar conclusion.  Bovini and Paradisi examine the impact of a pension reform 

in Italy and found that new hires fell the most in firms with the most delayed retirements.  

Mohnen examined patterns across U.S. commuting zones and found that there was no tradeoff 

in employment levels in areas with the largest increases in employment of older workers.  

However, in those areas younger workers were less likely to be in full-time jobs and less likely 

to be in high-skill jobs.   

This paper focuses on economy-wide data for 60 industries so that data on different types 

of capital can be matched with data on employment patterns and other variables. There will 

not be any attempt to estimate structural parameters; instead, the focus will be on developing 

measures of key observable variables that will provide some insights into the varying degrees of 

growth in the percentage of older workers across different sectors of the economy.   
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A key focus of this paper is how employment shares for older workers relate to the use of 

different types of capital.   Regarding the adaptability of older workers to changes in 

technology, there are two recent studies of note.  Hudomiet and Willis (2021) examined the 

labor market impact of computers on older workers from 1984 to 2017.  They found that older 

workers initially lagged their younger counterparts in terms of computer knowledge but 

eventually caught up in most arenas.  The gaps were largest in the 1980s and 1990s but were 

still present among workers 65 and over after 2000.  They find lower wages and earlier 

retirements for older workers with sizable gaps in computer knowledge.  Barth, Davis, Freeman, 

and McElheran (2020) focus on software capital intensity and find that middle-aged workers 

gain more than young and older workers from software investments in terms of wages and 

employment.   

This paper is also related to recent studies by Acemoglu and Restrepo (2020, 2021) in that it 

uses industry data to examine the interaction of technology and labor market outcomes.  

Acemoglu and Restrepo (2020) focus on robots and find negative effects on wages and 

employment.  They do not examine the possibility of differential impacts on workers of 

different age groups.  In most of the literature on technological change and labor markets, the 

presumption is that technological change happens exogenously.  Acemoglu and Restrepo 

(2021) argue that in some instances demographic challenges induce investments in automation.  

Using data on manufacturing industries for different countries, they show that workforce aging 

is associated with increased use of robots.   

This paper begins in Section 1 with evidence on how the employment of older workers 

(defined here as those age 55 and over) has changed since 2000 with a particular focus on their 
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distribution across industries.  Simple demographic arithmetic dictates that, if more people 

delay retirement, there will be more older workers employed across virtually every industry.  

The results show that there is considerable variation in the degree to which different industries 

have increased their utilization of older workers.   

To understand what is driving these changes, Section 2 develops some simple frameworks 

to explain (1) the determinants of an industry’s optimal age structure and (2) the factors driving 

changes in the age structure over time.  The key underlying questions concern why some 

industries make more intensive use of older workers than others and, given rising labor force 

participation rates among the elderly, why have some industries hired or retained more older 

workers than others?  The empirical model, a reduced-form employment share equation, is 

explained in Section 3, with particular attention paid to the choice of independent variables and 

to potential sources of misspecification.  The data sources and variable definitions are 

summarized in Section 4.  The empirical results are reported in Section 5, while Section 6 

concludes.   

The key findings are that the industries that had the largest increases in the percentage of 

older workers were the industries that had the broadest pension coverage and the industries 

that made the greatest use of high-tech capital.  There also is evidence in 2001-07 that the 

percentage of older workers increased more in the industries most exposed to increased 

Chinese imports (albeit this really means that younger workers suffered larger job losses in 

those industries than older workers).  We do not find evidence of (1) any shift in demand 

toward older workers in certain industries (as indicated by relative wages and employment 
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moving in the same direction) and (2) any decline in employment shares of younger workers in 

the industries that showed the largest increases in the shares of older workers.   

 
1. Descriptive background 

 
 Older workers, defined as those who are age 55 or above, represent a rapidly growing 

segment of the workforce.  In 2000 older workers accounted for 12 percent of all employees; by 

2019 their share had increased to 22 percent, as shown in Figure 1.  Over the same period, the 

share of younger workers (16 to 29) held roughly constant in the 26 to 27 percent range 

whereas the share of middle-aged workers (30 to 54) fell from 60 to 52 percent.  The drop in 

the share of middle-aged workers largely reflects the aging of the baby boomer population.   

Before turning to the distribution of older workers by industry, it is instructive to take a 

quick look at worker and job characteristics have changed over the last 20 years for this age 

group.  Table 1 reports data on older workers from the American Community Survey public use 

files for 2001 and 2019.  As the older cohorts exit from the labor market and are replaced by 

younger cohorts, older employees in 2019 have more years of schooling than their counterparts 

in 2001.  In 2001 46.1 percent of older workers had some post-secondary education, whereas 

by 2019, 57.9 percent of them did.  The increase was more pronounced for women (43 to 59 

percent) than men (49 to 57 percent).  The occupational mix adjusted as well, with more 

managerial and professional jobs and fewer positions in sales, support, and production 

occupations.  Again, the shift was greater for women who by 2019 were more likely to be in 

professional or managerial jobs than men.  The share of women in professional jobs increased 

from 33 to 43 percent, whereas the share for men rose from 33 to 38 percent.   
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 The overwhelming majority of older employees work 35 or more hours per week.  In 

2001 75.6 percent of older workers were full-time; this increased to 77.6 percent in 2019.  The 

upward trend was a bit stronger for women than men.   

 Men account for a slight majority of older workers.  Percentage male dropped from 51.5 

to 50.7 percent between 2001 and 2019.  At first glance these numbers seem out of sync with 

the well-known data on employment-population ratios by gender (45 percent for men and 34 

percent for women) for this age bracket.  This is offset by the longer life spans of women and 

the exclusion of the armed forces and the self-employed in Table 1.   

 The shape of the age distribution of older employees changed between 2001 and 2019, 

with a shrinking percentage in the 55-59 bracket and a growing percentage in the 60 and over 

bracket.  This reflects both cohort aging and longer careers.    

 Average annual earnings of older workers increased by 69.2 percent (from $36812 to 

$62316) between 2001 and 2019 and average hourly earnings rose by 66.6 percent ($20.89 to 

$34.80).   As a benchmark the annual personal consumption expenditure deflator rose by 38.0 

percent over this period.  It should be kept in mind that the composition of the older workforce 

changed considerably over this period, with higher levels of education and a larger percentage 

of professional workers as noted above.  Average hourly earnings for older women grew more 

than for older men (78.1 versus 60.0 percent).  There also was an increase in wage inequality.  

The standard deviation of log average hourly earnings increased from 0.74 in 2001 to 0.80 in 

2019, with a somewhat larger increase for women than for men.   

 A natural question to ask at this point is how the earnings pattern for older workers 

compares to that of other age groups.  Over the same period, average hourly earnings 
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increased by 55.4 percent for 16- to 29-year-olds ($12.14 to $18.88) and by 58.7 percent for 30- 

to 54-year-olds ($20.00 to $31.76).  On the surface this might infer that demand for older 

workers increased over this period in that they gained in terms of both employment share and 

relative earnings.  It also is possible that educational attainment among older workers increased 

by more for older workers during this period than it did for middle-aged or younger workers.   

 Labor mobility, or lack thereof, is a critical driver of any changes to be observed in the 

age distribution of older workers across industries.  Figure 2 shows two notable trends over the 

last 20 years.  First, job tenure for older workers has increased for those 65 and over.  Among 

women the percentage who have been with their employer 20 or more years increased from 23 

to 26 percent between 2000 and 2020.  The same share for 65 and older men increased from 

28 to 34 percent between 2000 and 2008.  It then dropped to 30 percent in 2010 as a 

consequence of the Great Recession and essentially stayed at that level through 2020.  There 

are also slight increases in long-term job holding for men (30.6 to 31.4 years) and women (24.3 

to 24.6) in the 55 to 64 age bracket.   

 Second, the odds that an older worker is in a new job have decreased substantially.  

Among men, 11.2 percent of those age 55-64 and 14.4 percent of those 65 and over were in 

new jobs in 2000.  By 2020, these percentages dropped to 9.8 and 9.7 percent.  The percentage 

of women with a new employer declined as well, from 11.3 to 9.5 percent for the 55-64 age 

group and from 11.5 to 8.2 percent for the 65 and over group.  The key lesson from Figure 2 is 

that the main driver for any changes in the age distribution of workers in an industry will be 

workers staying in their jobs longer as opposed to a rising share of workers pursuing new work 

opportunities. 



 10 

 To get further insight into prolonged careers of older workers, the American Community 

Survey (ACS) public use files were used to approximate their annual retention rate.  The true 

retention rate requires information on employment flows, which is not available in this annual 

cross section survey.  The ACS is used to calculate the annual ratio from 2001 to 2019 of the 

number of workers aged 56 and older in a given year to the number of workers aged 55 and 

older in the previous year.  This ratio overstates the true retention rate because no accounting 

is made for those who were employed this year but were not employed the previous year, most 

of whom would be new hires.  Since the number of older workers who are new hires is so small, 

the magnitude of this overestimate should be relatively small.   

 The retention rate estimates displayed in Figure 3 show an upward trend along with a 

strong cyclical component.  The retention rate grew steadily from 90 percent in 2001 to 96 

percent in 2008.  It dipped to 89 percent the following year as the Great Recession hit.  Note, 

however, that this value is only slightly below the 2001 value.  The rate increased to 95 percent 

in 2019.  Overall, this is another indication of how older workers are extending their careers.   

 The percentage of workers aged 55 and above in an industry is an intuitive measure at a 

given point in time of how intensively older workers are employed in that industry.  A key 

question in this paper is how and why this percentage varies across industries and within 

industries over time.  Table 2 reports the 17 industries with the highest average percentage of 

older workers for 2001-2019 and the 14 industries with the lowest percentage.  It shows that 

there is a very wide range in the share of older workers across industries.  Over this 20-year 

period, urban transit had the highest percentage of older workers at 31 percent, followed by 
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real estate at 26 percent.  Food services and motion pictures had the lowest percentage at six 

and nine percent.  Appendix Table A1 displays the values for all industries.   

The top employers of older workers include seven manufacturing industries, four service 

industries, four transportation industries, mining, and utilities.  Older workers are least likely to 

be found on the payroll in five service industries, two information industries, two financial 

industries, and one manufacturing industry, along with construction, mining support, retail 

trade, and warehousing.   

 Table 2 shows that there is considerable dispersion in the change in the share of older 

workers.  As a benchmark, the average industry had 13 percent older workers in 2001 and 23 

percent in 2019, a 10-point increase.  It increased at a slightly higher rate in the 17 industries 

with the highest average share of older workers (11.0 points) as opposed to the 14 with the 

lowest (8.2 points).  Among the industries that have the highest share of older workers, the 

increase in their share ranges from as low as two percentage points (railroads) to as much as 15 

points (paper, utilities).  Looking at the industries that have the lowest share of older workers, 

the change ranges from a low three points in motion pictures and restaurants to a high of 13 

points in rental and leasing services.   

A simple shift-share analysis shows that changes in the distribution of all workers across 

industries has had no impact on the overall change in the percentage of workers who are 55 or 

older.  Using 2001 employment weights, the mean percentage of older workers in ACS is 12.6 

percent.  Continuing to use the 2001 values of the percentage of older workers but shifting to 

2019 employment weights, the mean percentage of older workers is 12.5 percent.  This 

indicates that we need to focus on within industry changes, not shifts in the mix of industries.   
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 There is a strong positive correlation between the percentage of older workers in an 

industry in 2001 and the same percentage in 2019, as shown in Figure 4.  In a simple regression, 

nearly 40 percent of the variation in the 2019 values can be explained by the 2001 values.  At 

the same time, this means that most of the variation in the 2019 values cannot be explained by 

the situation 18 years ago.  In 16 industries the residual is four points or larger.  Looking at 

some of the extreme values, the shares of older workers in printing and pipeline transportation 

in 2019 are 9 points higher than predicted by their 2001 values, whereas the share for railroad 

transportation is eight points lower.  The change in the age mix of employees is far from a 

uniform process across industries.   

 With the percentage of older workers growing in every industry, the percentage of 

workers younger than 55 must fall correspondingly.  One issue of concern is whether the rising 

share of older workers has made it more difficult for younger workers to get hired.  Such 

displacement could take place in organizations if older workers delay retirement and the 

establishment’s headcount remains constant.  This is a modern twist on the lump of labor 

argument and does not consider (1) overall economic growth and (2) births and deaths of 

establishments.  Alternatively, the rising share of older workers could merely reflect the aging 

of baby boomers.   

 Figures 5a and 5b display the raw data for the changes in the percentages of younger 

(16-29), middle-aged (30-54), and older workers by industry.  There is no correlation between 

the growth in the percentage of older workers and the change in the percentage of younger 

workers.  This casts initial doubt concerning the issue of potential displacement of younger 

cohorts by older generations.  By necessity, this leaves us with an inverse relationship between 
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the growth in the percentage of older workers and the change in the percentage of middle-

aged workers in an industry, as displayed in Figure 5b.  This most likely reflects the aging 

patterns within each industry; most middle-aged workers in 2001 fall into the 55-plus category 

by 2019.   

 A likely determinant of the age mix in an industry is the growth rate of employment.  

Industry growth patterns vary considerably.  Between 2001 and 2019 the textile industry 

employment dropped from 595,000 to 258,000 whereas employment in computer systems 

design increased from 41,000 to 417,000.  Figures 6a through 6c show how the employment 

shares of younger, middle-aged, and older workers changed in response to employment growth 

(or lack thereof) by industry.  Faster industry growth is associated with a larger percentage of 

younger workers, reflecting the tendency in many organizations to hire younger workers, 

especially for entry level positions.  Correspondingly the percentage of older workers decreases 

in rapidly growing industries.  The percentage of middle-aged workers is unrelated to overall 

employment growth in an industry.   

 

2. What determines an industry’s age mix?  
 

The age-mix of any company or establishment hinges upon a wide range of 

considerations, including decisions about organizational boundaries, job design, hiring, training, 

and compensation.5  The focus in this paper is on the age mix of an industry.  The age structure 

of an industry reflects at an aggregated level the hierarchies and organizational structures of 

 
5 Clark and Ghent (2009) and Grund and Westergård-Nielsen (2008) are early studies that examined age structures 
of firms.   
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the establishments in that industry.  Keep in mind that the mix of firms within each industry 

changes over time.  Facebook and Tesla are not part of the data sets in the early 2000s whereas 

Enron and Lehman Brothers are not there in the 2010s.   

Here we will consider younger, middle-aged, and older workers as separate inputs into a 

production function.  This function also includes multiple types of capital, including specific 

types of equipment, structures, and intellectual property as inputs.   The age-mix of the 

workforce reflects these considerations: 

The productivity and cost of different types of labor: In the simplest production function 

framework, firms adjust the mix of age groups just as they would any set of inputs so that the 

ratio of marginal product to the cost of each input is equalized.  Suppose initially that workers 

in age group are all doing the same jobs.  Theory and evidence both indicate an upward sloping 

age-earnings profile, albeit with some flattening around age 62.  Nonwage labor costs 

associated with defined benefit pensions, health insurance and paid time off also increase with 

age.  If there are not corresponding increases in productivity, a firm will use relatively more 

younger workers.  In practice young and old workers often do different tasks and these task 

assignments reflect the productivity advantages of each group.  Younger workers will be more 

productive than older workers in some situations, such as jobs requiring the latest educational 

knowledge or those requiring physical labor.  Older workers will be more productive in other 

situations, such as those where accumulated knowledge is necessary for decision making.  The 

evidence on age and productivity from studies in the economics literature, summarized in Allen 

(2019), does not indicate that there is a corresponding upward sloping age-productivity profile.   
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Hiring costs and human capital: There are fixed costs associated with bringing a new worker 

into an organization and training that person.  These costs vary across and within organizations.  

In cases where it is easy to find new workers and there are negligible training costs, then we 

would expect firms to be indifferent about their age mix as long as wage rates are being held 

constant.  Firms faced with sizable up-front investments in new hires have a retention incentive 

that should result in more older workers on the payroll.  The mix of general and specific human 

capital also will be critical.  Firms that make significant investments in firm-specific human 

capital will be more interested in hiring young workers and retaining older workers.    

Complements or substitutes:  In most organizations there is a hierarchy of jobs, and within that 

hierarchy there is a sorting by age group into the various positions.  If the hierarchy has multiple 

levels and the knowledge and skills needed vary across these levels, then older and younger 

workers would serve complementary roles.  For instance, younger workers might have a 

relative advantage in production tasks whereas older workers might have an advantage in 

managing customer or supplier relationships.  Even within a job category, Bersin and Chamorro-

Premuzic (2019) argue that a mix of older and younger workers leads to increased cognitive 

diversity and improved performance.  However, there are situations where jobs are 

homogeneous, in which case younger and older workers would be substitutes.   

Customer demand: Although they must be mindful of age discrimination issues, some 

employers consider customer preferences when making staffing decisions about customer-

facing jobs, especially in youth-oriented industries such as entertainment and hospitality.  

There is a flip side.  Customer preferences help explain why shoe repair, retail florists, religious 
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organizations and funeral homes are among the industries with the highest percentages of 

older workers.6 

Technology: Whether based on perceptions or reality, the adaptability of workers to changes in 

technology influences employer decisions about age-mix.  Younger persons have more recent 

training, as well as a longer time horizon to benefit from investments in new knowledge and 

skills, than older workers.  In contrast, older workers have more perspective from their 

experience and will accurately realize in some cases that the latest new way of doing things 

need not be the most appropriate.  Lazear (1998) argues that the two age groups will be 

complements in production under these circumstances.  

In light of these considerations, what would we expect age distributions to actually look 

like?  The age distribution would be flat in situations where the firm stays the same size, hires 

at the entry level, emphasizes training and promotion from within, and sets new hires equal to 

retirements.  In firms that hire at multiple levels of the age distribution, there would still be a 

flat distribution if hires equal separations within each cohort.  The age structure should tilt 

heavily toward young workers if human capital investments are modest or if there is an 

pyramid-shaped hierarchy with few opportunities to advance.  Such a tilt also would be 

observed in growing firms if most new hires come from the lower tail of the age distribution.  A 

tilt toward older workers would take place in situations where wage differentials by age are less 

than the productivity differentials, or where customer preferences dictate a tilt toward older 

workers.   

 
6 The age distribution of employees by industry for each year since 2011 is available at 
https://www.bls.gov/cps/demographics.htm#age 
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Changes in the age structure 

From a strategic perspective, the discussion so far has demonstrated how employer 

decisions about capital, employment and compensation determine the age structure of an 

organization.  The age structure of an enterprise changes over time as the firm executes on that 

strategy through hiring and separation decisions.  In any given period, there will be persons in 

different age brackets who leave by quitting, being terminated or retiring.  At the same time 

there will be others who arrive as either new hires or rehires.  The age structure will tilt toward 

older workers if many young workers leave or more older workers get hired, whereas it will tilt 

toward younger workers if many older workers exit, or more younger workers get hired.  

Demographics accentuate these forces.  Many organizations hired lots of baby boomers in the 

1960s and 1970s, creating a bulge in the left tail of the age-distribution at that time, followed 

by a bulge in the middle twenty years later and a bulge on the right in the 2010s.    

From a simple accounting perspective, changes in the age structure of an industry 

reflect hiring and separation decisions within existing establishments as well as the entry and 

exit of establishments.  The underlying economic forces behind these adjustments can best be 

categorized into a set of supply and demand considerations.   

It is entirely possible that changes in an industry’s age structure can be accounted for by 

decisions by individual workers to delay retirement (along, of course, with decisions by their 

employers to hire or retain them).  The Social Security reforms of 1983 created incentives to 

delay retirement across all industries.  In addition, many firms switched from defined benefit to 

defined contribution pensions in the 1980s and 1990s and very few new firms that have opened 

in the last 40 years have set up defined benefit plans.  Defined benefit plans typically have 
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strong incentives for retirement before age 65, whereas the benefit stream from a defined 

contribution plans is age neutral.  As a result, we would expect to see more delayed retirement 

in industries where the shift from defined benefit to defined contribution plans has been the 

greatest.  Employee health and longevity also could be a factor leading to changes in the age 

distribution at different rates across industries.  Delayed retirement is more likely to happen 

among workers who are healthier and expect to live longer.   

On the demand side, there are several forces that could have differential impacts for 

employment by age group.  One possibility is a simple shift-share argument.  We know that 

some industries employ older workers more intensively than others and that the older 

population is a growing share of the overall population.  As a result, product demand shifts 

could end up impacting the age distribution of employees.  For instance, older households 

spend more on health care and financial and legal services and less on apparel and furniture.   

Aggregate this pattern across an aging population and there will be increased demand for older 

workers in some sectors and reduced demand in others.  The net impact is an empirical matter.   

Relative wages play a central role in labor demand theory.  In a textbook world, an 

increase (decrease) in the wages of older workers relative to that of younger or middle-aged 

workers leads to a decrease (increase) in demand for older workers.  The wages we observe in 

the data reflect a complex selection process.  A rising percentage of workers within a cohort 

leaves the labor market as that cohort ages.  It is quite unlikely that labor market exits are 

pulled evenly throughout the wage distribution.  Those with the highest earnings potential may 

tend to retire early to purchase more leisure.  Alternatively, they may delay retirement more 

than others because their work is more financially rewarding.  Similar arguments apply to those 
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with the lowest earnings potential.  Wages by age group also hinge on demographic 

considerations, especially the impact of the aging of the baby boom generation.   

Wages reflect employer decisions as well.  Some firms pay higher than average wages as 

part of a conscious strategy to attract and retain the best workers.  Firms that become 

concerned about retaining key senior employees may choose to increase their wages, whereas 

those that wish to encourage exits may flatten the wage profile.  We also should be aware that 

the observed wage rate of workers in each age category in an industry reflects their educational 

and occupational composition.    

The question of how well older workers interact with changing technology is one of the 

oldest questions in the social sciences.  New technologies such as robotics reduce the physical 

demands of work and thereby should allow older workers to have longer careers.  Often new 

technologies, especially those related to data and information, require new human capital 

investments.  It could be argued that firms are reluctant to invest in training older workers 

because they are closer to retirement.  However, turnover rates among young workers are 

considerably higher than those of older workers, so it is unclear ex ante which group has the 

longer expected job duration.  Bartel and Sicherman (1993) note that technological change 

tends to be persistent in many industries, which can result in a sorting of workers in all age 

categories in terms of their ability to adjust to change.  If the change is rapid enough then the 

shorter time horizon for investment in older workers matters less.   

A final potential source of disruption on the labor demand side is import competition 

and outsourcing.  Since 2000 we have seen realignment of supply chains as well as increased 

imports, especially from China.  In some cases, entire establishments closed and there was a 
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reduction in industry employment across all ranges of the age distribution.  In others, there 

were vastly fewer production positions, but managerial and professional jobs survived to some 

extent, resulting in a larger percentage of older workers.   

 
3. Empirical framework 

 The central question to be examined in this research is what factors have determined 

why the share of older workers has risen significantly in some industries between 2001 and 

2019 and relatively little in others.  A natural choice for a dependent variable is the change in 

the percentage of older workers in an industry.  The appeal of this measure is that it provides 

information about which sectors are adding or retaining more older workers relative to younger 

workers.  A challenge is that it is difficult to interpret directly as an index of labor demand.  An 

industry could have a rising percentage of older workers simply by having markedly fewer 

younger or middle-aged workers.  This can happen if there are employment reductions and 

seniority is the key element in retention decisions.  It also can happen if an industry stops 

growing and stops hiring.   

 Another way to examine the determinants of the changing age mix of employment by 

industry is to examine reduced form models of changes in employment by age group.  To be 

specific, suppose that the change in employment for each age group a (where y=young, 

m=middle-aged and o=old) in industry j can be expressed as 

dLaj = θaXj + γaKj + δawaj + εaj, 

where dL indicates change in log employment for age group a in industry j, X is a vector of 

control variables reflecting industry characteristics, K is the capital-labor ratio, and w is log 

wage rate.  All right-hand variables are measured at the start of the sample period.  Taking first 
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differences between the demand for older workers and the demand for young and middle-aged 

workers respectively, we have the estimating equations 

  dLoj – dLyj = (θo – θy)Xj  + (γo –  γy)Kj + (δowoj - δywyj) + (εoj - εaj)  

dLoj – dLmj = (θo – θm)Xj  + (γo –  γm)Kj + (δowoj - δmwmj) + (εoj - εmj) 

An underlying assumption in this framework is that the wage coefficient varies for each age 

group.  If instead δo = δm = δy, then we have a simpler framework  

  dLoj – dLyj = (θo – θy)Xj  + (γo –  γy)Kj + δo(woj - wyj) + (εoj - εaj)  

dLoj – dLmj = (θo – θm)Xj  + (γo –  γm)Kj + δo(woj - wmj) + (εoj - εmj) 

 A key aspect of this approach is that the change in employment is posited as a function 

of initial values of the right-hand variables.  These models are designed to answer the question 

of what is likely to happen to the employment of older workers in the future based on what we 

know at a given point in time.  These are by no means to be interpreted as structural models of 

labor demand.  However, they should be informative about certain matters.  For instance, did 

the employment of older workers relative to other groups increase, not change, or decrease in 

industries with high-capital labor ratios or those making intensive use of information 

technology?  Similarly, how does the relative employment of different age group vary by 

employer characteristics such as firm size, occupational mix, or pension coverage? 

 One challenge in this framework is the issue of whether K can truly be considered 

exogenous.  Reverse causality is not a direct concern; relative employment growth by age group 

in the 2000s and 2010s would not be impacting K in 2001.  There is a question of whether the 

future values of K are correlated with the initial values.  The use of information technology in 

most workplaces changed radically in the 1990s as personal computers became widely 
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adopted.  Many of the workers aged 55 and above in 2001 were hired in the 1970s and the 

1980s.  Half were hired ten or more years before 2002.7  It would be very hard to argue that, at 

the point in time when they were hired, their employers would have been able to anticipate the 

capital mix that would be in place at the turn of the century.   

 It is hard to imagine how one could disentangle any causal impact of relative wages on 

employment of older workers with an industry data set observed over two decades.  Two things 

can be established by examining the impact of including the wage rate variable.  First, the raw 

data show that older workers became a growing share of the labor force over the last 20 years.  

If the inter-industry correlations show a corresponding increase (decrease) in relative wages 

over that period it would provide a signal as to whether a demand (supply) increase was an 

important factor.   Second, it would be worthwhile to determine whether the results for other 

variables are robust to inclusion of w.   

There are a host of considerations that must be considered in the selection of 

independent variables, some reflecting the supply side of the market (especially delayed 

retirement and worker characteristics), others reflecting employer decisions, and still others 

reflecting labor market institutions.  Industries with larger shares of college graduates should 

have a larger percentage of older workers as college graduates enter the labor market later 

than those with less schooling.  There also should be a higher percentage of older workers in 

industries with large shares of professional and managerial workers.  Those who work in offices 

should be healthier and less likely to retire because of exposure to occupational hazards.  

 
7 https://www.bls.gov/news.release/history/tenure_09192002.txt 
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Women tend to retire earlier than men, so we also would expect industries with large 

percentages of women to have fewer older workers.   

How does the age mix of workers differ between capital- and labor-intensive industries?  

In particular, how does the age mix vary across sectors that vary in terms of how intensively 

they use information technology or invest in research?  To examine these issues, the empirical 

model will include the overall capital-labor ratio for each industry along with interaction terms 

that allow the capital-labor coefficient to vary for types of capital associated with information 

technology, instrumentation, and intellectual property.   

Previous studies have shown that the shift from defined benefit to defined contribution 

pensions has contributed to the rising employment-population ratio for older workers.  In the 

context of this study, this calls not just for the inclusion of a measure of pension coverage, but 

also for consideration of how many workers are covered by which type of plan.  There should 

be relatively few older workers in industries where defined benefit plans dominate because of 

the incentives for early retirement often found in such plans.  In contrast, defined contribution 

plans rarely have provisions that spike pension wealth at specific ages or seniority dates, so we 

should expect a higher percentage of older workers in industries where most workers are 

covered by defined contribution plans.      

Firms have fewer degrees of freedom to manage the age mix of employees when they 

are unionized.  In times of downsizing, unionized firms lay off their youngest employees 

because of seniority provisions in union contracts.  The most unionized industries should have a 

higher percentage of older workers.  Depending on how output changes in unionized relative to 
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nonunionized industries, there could be a corresponding relationship in the change in the 

percentage of older workers.   

Output growth varies considerably across industries during the periods examined here.  

Between 2001 and 2019, the log change in real value added ranged between 2.047 in data 

processing, internet publishing, and other information services and -0.8 in apparel and leather 

and allied products.  During growth periods firms typically add proportionally more young and 

middle-age employees than older employees, whereas during periods of industry decline most 

separations occur among younger workers.  As a result, the percentage of older workers should 

be smaller (larger) in industries that have experienced recent growth (declines) in employment.   

The variation in output growth has an independent effect on the age structure.  Imagine 

two industries with the same average growth over a given period, one on a steady path and the 

other with repeated ups and downs.  The latter industry will end up with a sizable contingent of 

older workers sheltered from the ups and downs, accompanied by fewer younger and middle-

aged workers.  Industries with more employment instability will have higher shares of older 

workers.   

Two variables are included as controls to account for how industry characteristics could 

drive the age structure: firm size and employee tenure.  Large firms are likely to provide more 

career opportunities and paths, so we might expect them to have a higher percentage of older 

workers.  Some firms commit to long-lasting careers for their workers and there would be a 

higher percentage of older workers in such firms.    

 It would be hard to have a discussion about the determinants of the demand for older 

workers without consideration of their relative cost.  In the results reported below, the log ratio 
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of average weekly earnings of older workers compared to younger workers (age 16-29) will be 

used as a control.  The values used in the model are those that prevail at the beginning of the 

sample period, so there will not be a direct relationship between the subsequent shifts in 

relative labor demand and relative wages.  However, the current log wage ratio is correlated 

with future values, raising possible endogeneity concerns.  Results will be reported with and 

without a compensation variable.    

 

4. Data sources  
 

Because the concern here is labor market trends rather than year-to-year fluctuations, the 

focus will be on three intervals: 2001-2007, 2007-2019 and 2001-2019.  The choice of intervals 

controls for the business cycle; the initial and final year in each period is a business cycle peak.   

The main data source for this study is the ACS for 2001 through 2019.  ACS data are available 

for 2000 but the sample size is considerably smaller that year, resulting in noisy measures for 

smaller industries that become noisier still when first differenced over 19 years.  Employees are 

defined as wage and salary workers; the self-employed and military are not included.  The ACS 

was used to calculate total employment in each industry, along with its age breakdown into 

three groups (16-29, 30-54, and 55 and over).  Average hourly earnings are estimated for each 

age group for 2001, 2007 and 2019 using continuous measures of wage and salary income, 

usual weekly hours and weeks worked.  Measures of percentage college graduates, percentage 

female and percentage in managerial or professional occupations also were pulled from the 

ACS.  These percentages are calculated across employees from all age groups combined. 
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Capital data comes from the Bureau of Economic Analysis (BEA) of the US Census, which 

publishes Current-Cost Net Capital Stock of Private Nonresidential Fixed Assets data for 62 

industries and 96 categories of capital.8  In the empirical analysis total capital is defined as the 

sum of equipment, structures, and intellectual property projects (IPP).  To determine whether 

the employment of older workers is impacted by advanced technology, the capital coefficient is 

allowed to vary with different types of capital associated with information technology, 

instrumentation, and intellectual property.  The measure used in the first set of results reported 

here includes 14 types of computing, instruments, and office equipment along with five types 

of IPP.  The robustness of the results to alternate definitions is examined below.   

Real value added by industry as calculated by BEA was used to construct two control 

variables: output growth over the 10 years preceding the sample period and the variance of 

output growth over the same interval.9 

Industry measures of percentage covered by union contracts, percentage working in 

large firms, percentage covered by pensions, and percentage of employees with 20 or more 

year of service were pulled from the Current Population Survey.  Lagged values from the 1990s 

were used to minimize issues related to reverse causation with the dependent variable.  The 

union variable comes from the outgoing rotation groups in the merged 1992-93 CPS public use 

files.  The firm size measure comes from the Annual Social and Economic Supplement (ASEC) for 

the same years.   The years of service data come from the 1996 and 1998 Job Tenure and 

Occupational Mobility Supplements.  The pension coverage data comes from the 1999 CPS 

 
8 Downloads available at https://apps.bea.gov/national/FA2004/Details/Index.htm 
9 https://apps.bea.gov/iTable/index_industry_gdpIndy.cfm 
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ASEC so that estimates of the percentage in defined benefit and defined contribution plans 

could be obtained from the public use files of IRS Form 5500, using data on plan participants 

and plan characteristics.  Public use files for Form 5500 are not available for download for years 

before 1999.   

Industry definitions were established by matching NAICS codes in the ACS with those 

used in Bureau of Economic Analysis data sets on output and capital.  Governments were not 

included as separate industries because the capital data pertain solely to the private sector.  

The empirical analysis is based on 60 industry categories which are listed in the data 

appendix.10  The limiting factor for industry definitions was the 62 industry categories in the 

BEA capital data set.  Two pairs of industries had to be combined.  Securities, commodity 

contracts and investments (NAICS code 523) and funds, trusts and other financial vehicles 

(NAICS code 525) have the same detailed industry code in the ACS.  Hospitals (NAICS code 622) 

and nursing and residential care facilities (NAICS code 623) are combined in the pre-1997 SIC-

based data used for lagged GDP values.  

 

5. Empirical results 
 
 Although the focus of this research concerns changes in age distributions, it is 

worthwhile to begin with a quick examination of which variables are associated with the age 

structure of industries at a given point in time.  Table 3 reports cross section regressions of the 

 
10 A concordance between the 1990 Census industry codes in the CPS and the NAICS codes in the ACS was 
developed to allow the CPS data to be merged with the ACS data.  In two cases a 1990 Census industry was split 
into two NAICS industries: (1) oil and gas extraction and mining and (2) banking and credit intermediation and 
securities, commodities, funds, trusts, and other financial instruments.  The same lagged values were used for each 
pair of industries.     
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percentage of workers in each age category for 2001 and 2019.  The independent variables 

include industry characteristics (percentage covered by pension plans, percentage covered by 

union contracts, percentage working in firms with more than 1000 workers, and percentage of 

workers in the 1980s who had been with the firm 20 years or more), worker characteristics 

(percentage college graduates, percentage female, and percentage employed in professional 

and managerial occupations), the capital-labor ratio, the ratio of high tech capital to labor, the 

growth of GDP over the last 10 years, and the variance in GDP growth over the last 10 years.  

  Pension coverage is the variable that best accounts for the sorting of workers in 

different age groups by industry.  Compare two industries, one with 35 percent pension 

coverage and one with 65 percent coverage.  The industry with higher coverage would have 16 

to 20 percent fewer young workers.  In 2001 this was equally offset with a larger number of 

middle-aged workers, whereas in 2019 it was offset by both more older and middle-aged 

workers.  This is consistent with a job matching process where young workers place a lower 

premium on having a job with retirement benefits.   

 Not surprisingly, the correlates of age structure vary by age bracket.  For instance, in 

2001 percentage female and the overall capital-labor ratio are related to the percentage of 

older workers in an industry, but neither variable is related to the percentage of middle-aged or 

young workers.   

There is not a stable correlation between the percentage of workers in any given age 

group and the likely determinants of that percentage.  Industries with high percentages of 

women and large capital-labor ratios have higher percentages of older workers in 2001, but 

these relationships are no longer present in 2019.  Similarly pension coverage is related to a 
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large share of older workers in an industry in 2019 but not in 2001.  The percentage of middle-

aged workers in an industry is related to the percentage of workers in large firms and the 

lagged percentage of workers with long tenure in one year but not both.  Firm size is a strong 

predictor of the percentage of young workers in 2001 but not in 2019.   

 The next step is to examine which variables best predict the change in the percentage of 

older workers in an industry.  As a first pass, Table 4 reports simple regressions of the first 

difference in the percentage of older workers for three different time periods: 2001-2007, 

2007-2019 and 2001-2019.  Two models are reported for each period: one excluding and one 

including the ratio of log wages of older workers to younger workers.  The key results are as 

follows:   

1) Pension coverage is the strongest predictor of which industries had the largest growth in 

the share of older workers.  The growth in the percentage of older workers in an 

industry is largest in those industries where most workers are covered by a pension 

plan.  Compare two industries one where no workers are covered by a pension and one 

where all are covered by a pension.  Growth in the percentage of older workers was 6.1 

percentage points higher between 2001 and 2007 and 12.8 points higher between 2007 

and 2019 in an industry where all workers were covered by a pension as compared to an 

industry where none were covered.   

2) The share of older workers grew most between 2007 and 2019 in the industries with the 

highest ratios of high-tech capital to labor.  The capital-labor ratio itself was weakly and 

inversely related to the growth in the share of older workers in an industry.  To examine 

the practical magnitude of this relationship, consider the following industry comparison.  
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The mean high-tech capital labor ratio across all industries in 2007 was 19.5; the 

standard deviation was 28.5.  Compare two industries one with the mean high-tech 

capital labor ratio and one where the ratio was twice as high.  Considering that a 

doubling of the high-tech capital-labor ratio also leads to an increase in the overall 

capital-labor ratio, the growth in the percentage of older workers between 2007 and 

2019 is 0.85 percentage points higher in the industry with the higher high-tech capital 

ratio.  Admittedly this is not a huge difference, especially over a 12-year period.   The 

key takeaway is that the employment share of older workers was growing fastest in 

high-tech industries, not shrinking.   

3) The percentage of older workers in an industry decreased in those industries with the 

most rapid output growth.  This no doubt reflects expanding firms hiring mostly young 

workers.  The magnitude of the coefficient is small; a 10 percent increase in output 

growth is associated with a 0.1 percentage point decline in the percentage of older 

workers.   

4) The growth in the share of older workers in an industry is unrelated to the relative wage 

differential between the old and the young.  The coefficient of the wage variable is both 

small and measured with little precision.  Further, the coefficients of the other variables 

are not sensitive to the addition of the wage variable.  This implies that demand for 

older workers has not increased.   

5) The growth in the share of older workers was lowest in industries with the largest share 

of college graduates.  To the extent college graduates retire at later dates than workers 

with less schooling, this result is not what was anticipated.  Neither is the finding that 
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the percentage of older workers grew less in industries that had relatively large 

numbers of workers with 20 or more years of tenure in the 1990s.  This variable was 

included to serve as a proxy for sectors of the economy where job durations and careers 

were longer.   

6) There is not a stable relationship between the change in the share of older workers and 

the independent variables examined here.  The coefficients for 2001-2007 and 2007-

2019 are often quite different, sometimes with opposite signs.   

These results are based on first difference analysis of employment levels by age group in 60 

industries.  Employment levels vary considerably across industries.  The average industry in the 

sample had 1.9 million workers in 2001, with a range from 33,000 (pipeline transportation) to 

14 million (retail trade).  If some very large industries ended up being statistical outliers, the 

results could change considerably if the regression were weighted by industry size.  Also, hours 

per person vary across industries, with some making intensive use of part-time workers and 

others relying heavily on overtime.  To address these considerations, the models in Table 4 

were re-examined by (1) weighting each observation by the sum of employment at the 

beginning and end of the sample period and (2) recalculating the dependent variable so that it 

is measured in labor hours instead of employees.  The results, reported in Table A2 in the 

appendix, show that neither weighting the regression nor changing the dependent variable 

made any meaningful difference in the findings.   

The pension coverage variable does not distinguish between defined benefit and defined 

contribution plans.  Estimates of the percentage covered by each type of plan were derived 

from Internal Revenue Service Form 5500 data for 1999 by counting the number of active 
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participants in DB and DC plans for each of the 60 industry groups.  The models in Table 4 were 

then re-estimated using separate variables for the percentage of workers covered by DB and DC 

plans; the results are reported in Table A3 in the appendix.  In 2001-2007 and 2007-2019 the 

coefficient for DC plans is roughly the same as the coefficients for all plans in Table 4, whereas 

the coefficient for DB plans is not measured precisely.  For the 2001-2019 period, the 

coefficient for DB coverage is 50 percent larger than the coefficient for DC coverage but the 

hypothesis that the two coefficients are equal cannot be rejected.  Although the impact of DB 

and DC plans on retirement and retention might be expected to be different, this does not 

show up in the data.   

One might question the robustness of the results for high tech capital in Table 4 to potential 

changes in the classification of which types of capital are considered high tech.  The measure 

used in the regression models includes 14 types of equipment and five types of intellectual 

property products.   The BEA provides data on 20 additional categories of intellectual property 

products (IPP).  To examine the sensitivity of the results to the inclusion of IPP, three additional 

high-tech capital-labor ratio variables were examined.  One of the variables included high-tech 

equipment but no IPP.  One added software related IPP, namely prepackaged software, custom 

software, and own account software, while omitting software publishing and computer systems 

design.  The third added all 25 IPP categories to the high-tech equipment, including IPP in 

aerospace, motor vehicles and pharmaceuticals.  As shown in Table A4, the coefficients of the 

first two alternate variables in 2007-2019 are similar to that of the one in Table 4.  In contrast, 

the coefficient for the most inclusive measure is consistently smaller than its standard error.  

Overall, it is clear that as long as high-tech capital is defined as the usage of information 
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technology then the results for this variable are quite robust.  On the other hand, the presence 

of other types of IPP in an industry does not seem to have any relationship to its increased 

usage of older workers.   

Another possible issue is that both the initial level and the change in the percentage of 

older workers in an industry vary by skill.  It is entirely possible that managerial and professional 

workers have delayed retirement but those in other jobs have not.  To explore this issue, the 

industry cells in ACS were split by education level, with one set of data points corresponding to 

those with 12 years or less of completed schooling and another set consisting of those with 

more than 12 years of schooling.  Industries with a high percentage of older workers in one 

schooling group also tend to have a high percentage of older workers in the other group; the 

correlation coefficients for the 60-industry sample are 0.57 in 2001 and 0.70 in 2019.  Also, 

industries with the biggest increases in the percentage of older workers who have higher 

education levels between 2001 and 2019 tend to be the industries with the largest increases in 

that percentage for workers less education; the correlation coefficient is 0.58.  The message to 

draw from this exercise is that the aging patterns within an industry tend to be similar across 

education levels.   

Although aging patterns within industries tend to be similar across different education 

levels, there is still the question of whether the coefficients for key variables such as pension 

coverage and high-tech capital vary by schooling levels.  The model in Table 4 was re-estimated 

over two different samples: one where the variables from the ACS all pertained to those with 

12 years of schooling or less and another where the ACS variables all pertain to those with more 

than 12 years of schooling.  This framework allows for complete interactions between all the 
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independent variables and the two schooling categories.  The results for the pension and high-

tech capital-labor ratio variables are reported in Table A5.   

Pension coverage continues to be strongly associated with a rising percentage of older 

workers in an industry for both groups over the entire sample period and for those with 12 

years or less of schooling in 2007-2019.  The association between pension coverage and aging is 

weaker for both schooling groups in 2001-2007 and for the group with higher schooling in 

2007-2019.  One possible explanation for this pattern is that pensions for those with no post-

secondary schooling shifted from defined benefit to defined contribution plans over the sample 

period whereas pensions for those with postsecondary schooling were defined contribution 

throughout.  Industries with high levels of pension coverage in 1999 might then see a larger 

surge in delayed retirement among those with no postsecondary schooling than those with 

secondary schooling.   

The high-tech capital-labor ratio results from Table 4 continue to hold for workers with 

post-secondary schooling, but not for their counterparts with less schooling.  The coefficients in 

Table A5 of this variable for 2007-2019 for the two groups are quite close to each other; they 

are also quite close to the coefficient in Table 4.  However, the standard errors for the group 

with no postsecondary schooling are considerably larger.  The argument that older workers are 

complements to high-tech capital appears to hold much more strongly for those with 

postsecondary schooling, perhaps because more schooling is needed to be an effective 

complement to such capital.   

The results reported so far reflect changes in the share of older workers compared to the 

share of younger and middle-aged workers.  The last logical step is to compare the growth in 
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employment of older workers to that of each of the other two groups.  To do this, the focus 

now turns to an examination of how the log change in employment of older workers compares 

to that of younger and middle-aged workers respectively in Tables 5 and 6, using the same 

independent variables as before.  

Overall, the main results from the analysis of inter-industry differences in the percentage of 

older workers hold when we separately examine young-old and middle-aged-old differences.  

Employment growth of older workers was more rapid than employment growth of younger 

workers between 2001 and 2007 in industries with higher levels of pension coverage.  This was 

the case for the employment growth differential between older and middle-aged workers for 

the entire sample period.  Industries with the highest ratios of high-tech capital to labor saw the 

largest growth in the employment of older workers relative to employment of the other age 

groups (although the relationship for middle-aged workers is somewhat weak in 2001-2007).  

Output growth narrowed the spread in employment growth between older workers and their 

middle-aged and younger counterparts.  The anomalous results for industries with high 

percentages of college graduates and industries with a tradition of having long employment 

relationships continue to appear.   

Three new patterns do appear in Tables 5 and 6.  First, the growth of employment for older 

workers was much slower than that for younger workers in industries with high percentages of 

unionized workers.  These industries tend to still have defined benefit pensions in place for 

production workers, potentially limiting the growth of employment of older workers.  Union 

density has a mean of 19 percent and a standard deviation of 16 percent.  Compare two 

industries, one with 20 percent union members and one with 40 percent union members.  The 
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industry with more union members would have 0.12 higher log employment growth among 

younger workers than older workers between 2007 and 2019.  Second, the growth in 

employment of older workers compared to middle-aged and younger workers was lower in 

industries with high percentages of women.  This could reflect higher percentages of women in 

the two younger age groups.  Third, the change in employment of older workers relative to 

young or middle-aged workers was lowest in industries with the highest overall capital-labor 

ratios.  This relationship was particularly strong for the old versus young results in Table 5 for 

2001-2007.  Perhaps older workers are substitutes for traditional capital equipment and 

complements for high-tech capital.   

In summary, two major themes arise from this analysis.  First, pension coverage and 

pension characteristics are strongly related to changes in the age structure of industries over 

time.  One possible interpretation of the results is that as the first generation of workers 

covered largely by defined contribution plans hit the later stages of their working career, they 

decided to stay on the job longer.  At the same time the union results in Table 5 suggest that 

defined benefit plans work in the opposite direction, generating earlier exits for older workers 

and more opportunities for younger workers.  Second, there does not seem to be a 

technological backlash toward the employment of older workers, especially those with 

postsecondary schooling.  To the contrary, there was actually more growth in the percentage of 

older workers in those industries that use the most high-tech capital.   

 

 

 



 37 

Are younger workers being squeezed out? 

 As more older workers delay retirement, some have speculated that this had resulted in 

fewer opportunities for younger workers.  The simple scatterplot in Figure 5 indicated that 

there did not seem to be a relationship between the change in the share of older workers in an 

industry and the share of younger workers.  Now that we know variables such as pension 

coverage and the capital-labor ratio have an impact on changes in the deployment of older 

workers in an industry, it would be logical to revisit that issue in a regression framework.   

 The challenge is that the shares of older, middle-aged, and younger workers in an 

industry are not independent variables.  Further, there is no genuine source of exogenous 

variation in the ability of firms to hire or retain workers in different age brackets across 

different industries.  What can be done here is to see what the data tell us about any possible 

tradeoff between jobs for older and younger workers within a given industry.  This is done in 

three ways in Table 7.  First, to capture the raw data pattern we report a simple regression of 

the change in the share of younger workers on the change in the share of older workers.  

Second, the percentage of older workers will be used as an independent variable in an OLS 

model of changes in the percentage of younger workers over time.  This will tell us whether 

covariates have any impact on the relationship.  Third, even though there are no a priori 

reasons to exclude some of the independent variables in the model for older workers from the 

model for younger workers, there are correlation patterns suggesting that they could be 

excluded because of their explanatory power for one age group and lack of explanatory power 

for the other.  The control variables are the same as those used in the previous models; results 

with and without the relative wage of older to younger workers are reported.   
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 The key finding across all the results reported in Table 7 is that there is no evidence of 

any declines in the share of younger workers being related to increases in the share of older 

workers.  The coefficients for 2007-2019 are quite small, ranging between 0.1 and -0.1.  The 

coefficients for 2001-2007 and 2001-2019 are larger, running from 0 to -0.5.   The null 

hypothesis cannot be rejected in any of the models.  The conclusion that can best be drawn 

from this exercise is that, despite the best efforts being made to find a relationship between 

the shares of older and younger workers across industries, there is no such relationship to be 

found in this data set.    

 

Imports and older workers 

 China joined the World Trade Association in 2001 and the resulting reduction in trade 

barriers led to a surge of imports into the US.  In 2001, the US imported $8.5 billion worth of 

goods from China, increasing to $26.8 billion by 2007.  Chinese imports peaked at $44.9 billion 

in 2018 and subsequently dropped to $37.6 billion in 2019 after both China and the US took 

retaliatory trade measures.   

Studies such as Autor et al (2013) have established that the surge of imports from China 

resulted in a decline in manufacturing jobs in the US.  The question examined here is how older 

workers were impacted relative to younger workers.  The 2001-2007 sample period used in our 

data set coincides with the period of the most rapid increase in Chinese imports, so this is likely 

to be the period where the impact of expanded trade with China has the largest impact.  The 

2007-2019 sample contains both the Great Recession and the ramping up of tariffs and other 



 39 

trade barriers after the 2016 US Presidential Election, so the results for that period may be less 

clear-cut.   

One challenge that arises when examining this question concerns how to handle the 37 

industries in the data set outside of primary goods and manufacturing.  Here two approaches 

are considered.  The first is to restrict the sample to the 23 industries for which trade data are 

tabulated.  This requires a reduction in the number of independent variables to allow enough 

degrees of freedom to obtain precise estimates of the import penetration variables.   

The second is to assign values of zero to the import penetration variables for nontraded goods 

as well as services.  This is a reasonable approach for personal services such as haircuts and spa 

treatments.  On the surface this approach would seem less reasonable for services such as 

travel; American tourists in Shanghai are in effect importing Chinese services.  However, there 

is no evidence of any surge in Chinese service “imports” that is in any way comparable to what 

has happened in manufacturing.  Further, the service industries with zero imports are not total 

outliers in the distribution.  Manufacturing industries with little to no change in Chinese import 

penetration during this period include food products, petroleum and coal products, chemicals, 

and primary metals.   

 Separate measures for Chinese and all other imports were created from USA Trade 

Online to estimate the impact of increased import competition on the age structure of 

employees by industry.  One variable is the change in Chinese imports in a given industry over 

the sample period divided by gross output in that industry in the initial year of the sample 
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period.11  The second variable is the change in imports from all other countries divided by initial 

gross output.  Both variables are included to allow the impact of Chinese imports on 

employment to vary from that of the impact of the imports from other countries.   

 The empirical models have so far included as many as 12 independent variables, a 

strategy that is not likely to be successful when adding two more variables to a data set with 23 

observations.  The set of independent variables in Table 8 for the 23-industry sample is 

restricted to those that have proven to be of critical importance to the model: GDP growth, 

overall capital-labor ratio, high-tech capital-labor ratio, pension coverage, and the relative wage 

of older to younger workers.  The full set of independent variables is used for the 60-industry 

sample.   

 The results for both samples show that the percentage of older workers increased more 

in those industries with the largest surges in Chinese imports in 2001-2007.  Compare two 

industries one with a 20 percent change in import penetration and one with no change in 

import penetration.  The growth in the percentage of older workers is 0.8 to 1.0 percentage 

points higher between 2001 and 2007 in the industry with the higher degree of new import 

competition.  In the 23-industry sample there is no correlation between Chinese import 

penetration and the share of older workers between 2007 and 2019.  The coefficient for 

Chinese import penetration for the 60-industry sample is actually more than twice as large in 

2007-2019 but the standard error increases to an even greater degree, making it unwise to 

draw any conclusions for that sample in that period.   

 
11 The import measure is the value of goods imported for consumption including cost, insurance and freight and 
excluding duties.   
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 Focusing further on the 2001-2007 period, equations estimating the change in the 

percentage of younger workers was estimated with the same independent variables for the two 

samples.  In the 23-industry sample, the China imports coefficient (S.E.) was -0.038 (0.053), but 

it was -0.085 (0.031) in the 60-industry sample.  This indicates the surge in Chinese imports led 

to employment reductions among younger workers, thereby decreasing their share and 

increasing that of older workers.       

 As for import penetration from countries other than China, the results are mixed.  In the 

23-industry sample, the percentage of older workers grew more slowly in 2007-2019 in 

industries with the fastest growth in imports from other countries.  However, there was no 

relationship in any period between import growth from these countries and the change in the 

share of older workers in the 60-industry sample.   

 The takeaway from this analysis is that Chinese import growth had a sizable impact on 

the age structure of industries between 2001 and 2007, mainly by reducing the employment of 

younger workers relative to older workers.  This impact appears to have dissipated in 2007-

2019, perhaps because the rate of import growth slowed down.   

 

6. Conclusion 

More older people are working than ever before.  This study has demonstrated that there is 

considerable inter-industry variation in the percentage of older workers at a given point in time, 

as well as in the rate at which those percentages change over time.  The empirical analysis has 

attempted to determine the characteristics of those industries where they have found the 

greatest opportunities.   
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Pension coverage is the single strongest predictor of whether an industry will have a 

growing percentage of older workers during the first two decades of this century.  Now that 

defined contribution plans dominate in the private sector, workers in industries with high 

pension coverage can make their organizational exit and retirement decisions without having to 

consider spikes in pension wealth at certain ages that take place under defined benefit plans.  

Improved health and longer longevity appear to be translating into longer careers for these 

workers.   

Older workers now comprise a larger share of the employees in industries that make the 

most intensive use of high-tech capital.  Even if they may not be proficient in Python or R, they 

likely are making contributions in managerial and professional roles.  There also is evidence that 

older workers had less employment growth than other age groups in industries that make 

intensive use of traditional types of capital, namely equipment and structures.   

Employment patterns by age react to changes in output and trade patterns.  Older workers 

became a smaller percentage of the workforce in industries with the fastest growth of output, 

reflecting firm’s decisions to hire younger or middle-aged workers with a longer potential 

training horizon.  In the industries that were most impacted by Chinese imports in the 2001-

2007 period, the employment of all age groups declined but older workers had smaller 

proportional job losses than the other two age groups.   

In closing, we also should note some things we did not find.  There is no evidence the 

percentage of older workers is rising more in industries where the wage gap between older and 

younger workers was greatest.  In other words, there does not seem to be a demand shift 

toward older workers.  Also, there is no evidence that an increase in the percentage of older 
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workers in an industry leads to a decrease in the percentage of younger workers.  Further work 

needs to be done to examine more detailed data on hiring patterns by age and how it relates to 

the growth of the employment of older workers by industry.   

The focus here has been to reveal basic patterns in the data.  To establish causality more 

rigorously, Acemoglu and Restrepo (2020) and Autor, Dorn and Hanson (2013) used values from 

other countries as instruments for technology and trade variables.  Matching industry codes 

over multiple data sets over this period (pre and post NAICS industry codes) for the US was no 

small challenge for this study.  One option would be to examine the EU KLEMS data set.  It 

provides capital variables for dozens of other countries but with a more highly aggregated set 

of industry definitions.   

This study intentionally ended with annual data for 2019.  A logical next step will be to 

examine what happened to the employment of older workers by industry month-by-month in 

the subsequent years.  The aggregate data show that there was a sharp downward spike in 

labor force participation starting in April 2020.  It remains to be seen whether many of those 

who left the labor force during the pandemic will return.  Some important clues may very well 

be found in their inter-industry employment patterns.   
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Table 1.  Demographic and job characteristics of older wage and salary workers, 2001 and 2019 
American Community Survey 
 

 Men and 
women 
2001 

Men and 
women 
2019 

Men 2001 Men 2019 Women 
2001 

Women 
2019 

Occupation       

  Managerial, 
Professional 

32.9 40.6 33.0 38.0 32.8 43.3 

  Service  14.9 14.7 12.5 12.0 17.4 17.5 

  Sales 11.1 9.0 11.0 8.8 11.3 9.1 
  Support 18.3 14.2 7.9 6.3 29.2 22.4 

  Production 22.8 21.5 35.5 34.9 9.3 7.7 

       

Years of 
schooling 

      

  Below 12 12.5 6.7 13.5 7.7 11.4 5.6 

  12 41.3 35.4 37.2 35.5 45.7 35.3 

  13 to 15 19.1 23.4 18.6 21.6 19.8 25.3 

  16 or above 27.0 34.5 30.7 35.2 23.2 33.8 
       

Percentage full-
time 

75.6 77.6 82.6 83.9 68.2 71.0 

       

Percentage 
male 

51.5 50.7     

       

Age distribution       
  55-59 51.7 42.4 51.3 42.1 52.2 42.8 

  60-64 27.6 32.7 27.9 32.4 27.2 33.0 
  65-69 11.5 14.9 11.5 15.1 11.5 14.7 

  70+ 9.2 10.0 9.3 10.4 9.1 9.5 

       
Income       

 Weekly 
earnings 

36812 62316 46703 76044 26305 48221 

 Hourly 
earnings 

20.89 34.80 24.99 39.99 16.54 29.46 

Standard 
deviation of log 
hourly earnings 

0.740 0.797 0.768 0.818 0.668 0.752 
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Table 2.  Industries with lowest and highest percentage of older workers, American Community 
Survey, 2001-2019  
 

 
2001-2019 

average 

 
2001 

 
2019 

Change 
2000-
2019 

Industries with highest percentage of older workers 
Urban transit  31 21 35 14 

Real estate  26 22 31 9 

Transportation equipment manufacturing other 
than motor vehicles 23 

 
17 

 
28 

 
11 

Educational services 23 17 24 7 

Water transportation 22 18 27 9 

Textile product manufacturing 22 15 27 12 

Other services, except public administration 22 17 26 9 

Paper product manufacturing 22 14 29 15 

Utilities 22 12 27 15 
Information and data processing services 22 12 21 9 

Railroad transportation 21 17 19 2 

Primary metal manufacturing 21 14 26 12 

Truck transportation 21 15 28 13 

Electrical equipment, appliances, and component 
manufacturing 

21 
 

14 28 14 

Machinery manufacturing 21 14 26 12 

Fabricated metal products 21 14 28 14 

Mining 21 13 24 11 

Industries with lowest percentage of older workers 
Rental and leasing services 16 10 23 13 

Retail trade 16 13 20 7 

Amusements, gambling, and recreation  16 13 19 6 
Food product manufacturing 16 11 21 10 

Securities, commodities, funds, trusts, and other 
financial investments 16 

 
10 

 
21 

 
11 

Administrative and support services 16 12 20 8 
Banking and credit intermediation 15 10 19 9 

Support activities for mining  14 8 19 11 

Broadcasting and telecommunications 13 7 19 12 

Warehousing and storage 13 11 15 4 

Construction 13 8 18 10 

Computer systems design and related services  11 6 14 8 

Motion picture and sound recording 9 7 10 3 
Food services and drinking places 6 5 8 3 

 

Unweighted mean for all industries 19 13 23 10 
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Table 3.  Cross section regressions 
 
Dependent 
variable 

Ratio of employment in given age group to total employment 

Age group 55 and above 55 and above 30 to 54 30 to 54 16 to 29 16 to 29 

Year 2001 2019 2001 2019 2001 2019 

       

Percent college -0.0112 -0.0962 -0.0572 0.00396 0.0684 0.0923 

graduates (0.0352) (0.0660) (0.0635) (0.0656) (0.0727) (0.0842) 

       

Percent female 0.0555* 0.0507 0.0113 -0.0499 -0.0669 -0.000825 

 (0.0255) (0.0473) (0.0447) (0.0502) (0.0517) (0.0535) 

       

Percent  -0.112 -0.132 -0.0167 0.181 0.129 -0.0491 

professional (0.167) (0.175) (0.203) (0.101) (0.317) (0.214) 

       

Ln(K/L) 0.0129* 0.00735 -0.00398 -0.0170 -0.00892 0.00969 

 (0.00588) (0.00898) (0.00969) (0.0125) (0.0124) (0.0146) 

       

Ln(HiTecK/L) -0.00289 0.00136 0.00693 0.0160 -0.00405 -0.0173 

 (0.00588) (0.00750) (0.0100) (0.0100) (0.0132) (0.0119) 

       

GDP growth 0.00246 -0.00803 0.000332 -0.00795 -0.00279 0.0160 

 (0.00314) (0.0107) (0.00319) (0.0108) (0.00492) (0.0142) 

       

GDP  -0.668 -0.142 0.940 0.110 -0.273 0.0321 

variance (0.523) (0.123) (1.048) (0.138) (1.236) (0.114) 

       

Pension  0.0244 0.255** 0.445*** 0.163* -0.469*** -0.418*** 

coverage (0.0525) (0.0811) (0.0785) (0.0690) (0.116) (0.116) 

       

Union  0.0821 0.0453 0.0195 -0.0615 -0.102 0.0162 

coverage (0.0545) (0.0807) (0.0773) (0.0563) (0.114) (0.109) 

       

Percent in -0.0843 -0.115 -0.145* -0.0496 0.229* 0.165 

large firms (0.0551) (0.0649) (0.0678) (0.0601) (0.103) (0.0994) 

       

Percent long 0.000510 -0.236 0.0973 0.352* -0.0978 -0.115 

term workers (0.115) (0.185) (0.163) (0.136) (0.238) (0.219) 

       

Constant 0.0663* 0.150** 0.457*** 0.496*** 0.477*** 0.355*** 

 (0.0310) (0.0464) (0.0470) (0.0490) (0.0643) (0.0648) 

N 60 60 60 60 60 60 

R2 0.290 0.283 0.726 0.577 0.620 0.528 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 4. Regression results: first difference in percent older workers  
 
Dependent 
variable 

Change in percentage of workers 55 and above 

Years 2001-2007 2001-2007 2007-2019 2007-2019 2001-2019 2001-2019 

       

Percent college 0.019 0.0203 -0.108*** -0.122*** -0.108*** -0.110*** 

graduates (0.019) (0.0187) (0.0390) (0.0409) (0.0379) (0.0376) 

       

Percent female 0.021* 0.0187 -0.0367 -0.0309 -0.00854 -0.00521 

 (0.012) (0.0124) (0.0231) (0.0236) (0.0281) (0.0285) 

       

Percent  -0.079 -0.0688 -0.0791 -0.0812 -0.135 -0.149 

professional (0.053) (0.0547) (0.102) (0.106) (0.120) (0.124) 

       

GDP growth -0.014* -0.0181* -0.0161** -0.0143** -0.0126 -0.00760 

 (0.008) (0.00939) (0.00640) (0.00682) (0.0225) (0.0233) 

       

GDP  0.120 0.143 0.0386 0.0149 0.00495 -0.0267 

variance (0.109) (0.111) (0.108) (0.110) (0.318) (0.278) 

       

Ln(K/L) -0.0012 -0.000807 -0.00534 -0.00576 -0.00547 -0.00603 

 (0.0018) (0.00172) (0.00470) (0.00485) (0.00494) (0.00492) 

       

Ln(HiTecK/L) 0.0027 0.00340 0.0126*** 0.0117** 0.0120** 0.0110* 

 (0.0021) (0.00223) (0.00421) (0.00450) (0.00561) (0.00603) 

       

Pension  0.058*** 0.0591*** 0.128*** 0.125*** 0.200*** 0.199*** 

coverage (0.017) (0.0171) (0.0413) (0.0412) (0.0497) (0.0505) 

       

Percent in -0.015 -0.0156 -0.0139 -0.0124 -0.0350 -0.0337 

large firms (0.014) (0.0134) (0.0374) (0.0380) (0.0427) (0.0445) 

       

Percent long 0.005 -0.0116 -0.247** -0.240** -0.243** -0.220** 

term workers (0.040) (0.0401) (0.101) (0.0936) (0.102) (0.100) 

       

Union  0.011 0.0132 -0.0378 -0.0372 -0.0344 -0.0378 

coverage (0.018) (0.0166) (0.0336) (0.0360) (0.0407) (0.0425) 

       

Ln wage ratio  -0.0138  0.0307  0.0189 

55+ to 16-29  (0.00941)  (0.0493)  (0.0333) 

       

Constant 0.010 0.0144 0.0931*** 0.0819*** 0.0968*** 0.0905*** 

 (0.012) (0.0124) (0.0222) (0.0301) (0.0274) (0.0312) 

N 60 60 60 60 60 60 

R2 0.563 0.583 0.435 0.443 0.434 0.441 

 
Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 5.  Regression results: relative log employment growth of older and younger workers 
 
Dependent 
variable 

Log employment change of workers 55 and over – log employment change of workers 16-29 

Years 2001-2007 2001-2007 2007-2019 2007-2019 2001-2019 2001-2019 

       

Percent college -0.0495 -0.0285 -0.471 -0.623** -0.611 -0.615 

graduates (0.289) (0.275) (0.296) (0.293) (0.375) (0.377) 

       

Percent female -0.0321 -0.0643 -0.368* -0.305* -0.348 -0.341 

 (0.203) (0.193) (0.189) (0.174) (0.271) (0.277) 

       

Percent  0.340 0.469 -0.284 -0.307 -0.0648 -0.0921 

professional (0.588) (0.628) (0.729) (0.738) (1.082) (1.094) 

       

GDP growth 0.000295 -0.0484 -0.132*** -0.113** 0.00389 0.0142 

 (0.0953) (0.115) (0.0396) (0.0450) (0.120) (0.141) 

       

GDP  -1.422 -1.115 0.941* 0.680 -2.625 -2.690 

variance (1.348) (1.326) (0.519) (0.509) (1.613) (1.645) 

       

Ln(K/L) -0.121*** -0.116*** -0.0148 -0.0195 -0.124** -0.125** 

 (0.0348) (0.0351) (0.0298) (0.0304) (0.0473) (0.0501) 

       

Ln(HiTecK/L) 0.0772** 0.0870** 0.0921** 0.0823** 0.150** 0.148** 

 (0.0356) (0.0372) (0.0407) (0.0394) (0.0700) (0.0720) 

       

Pension  0.583** 0.595** -0.0389 -0.0659 0.666 0.663 

coverage (0.285) (0.278) (0.314) (0.325) (0.525) (0.535) 

       

Percent in 0.0456 0.0332 0.125 0.142 0.140 0.143 

large firms (0.270) (0.262) (0.252) (0.245) (0.441) (0.450) 

       

Percent long -0.353 -0.569 -1.037 -0.955 -1.464 -1.419 

term workers (0.655) (0.666) (0.631) (0.684) (0.981) (1.068) 

       

Union  -0.187 -0.154 -0.616*** -0.609*** -0.875*** -0.882*** 

coverage (0.255) (0.252) (0.221) (0.217) (0.297) (0.306) 

       

Ln wage ratio  -0.183  0.339  0.0386 

55+ to 16-29  (0.148)  (0.256)  (0.220) 

       

Constant 0.533*** 0.595*** 0.750*** 0.626*** 1.236*** 1.223*** 

 (0.179) (0.177) (0.185) (0.169) (0.220) (0.217) 

N 60 60 60 60 60 60 

R2 0.458 0.480 0.460 0.479 0.423 0.423 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 6.  Regression results: relative log employment growth of older and middle-aged workers 
 
Dependent 
variable 

Log employment change of workers 55 and over – log employment change of workers 30-54 

Years 2001-2007 2001-2007 2007-2019 2007-2019 2001-2019 2001-2019 

       

Percent college 0.268 0.267 -0.615*** -0.785*** -0.437* -0.466** 

graduates (0.192) (0.195) (0.223) (0.231) (0.230) (0.229) 

       

Percent female 0.0325 0.0341 -0.296** -0.225* -0.244* -0.200 

 (0.116) (0.120) (0.114) (0.114) (0.144) (0.142) 

       

Percent  -0.546 -0.552 -0.169 -0.195 -0.470 -0.648 

professional (0.446) (0.443) (0.591) (0.615) (0.709) (0.701) 

       

GDP growth -0.113* -0.111* -0.0797** -0.0578 -0.0877 -0.0206 

 (0.0581) (0.0596) (0.0387) (0.0408) (0.125) (0.109) 

       

GDP  1.225 1.210 0.779 0.486 0.869 0.447 

variance (0.893) (0.869) (0.730) (0.701) (2.271) (1.699) 

       

Ln(K/L) 0.00259 0.00232 -0.0600** -0.0652** -0.0521 -0.0597* 

 (0.0170) (0.0176) (0.0299) (0.0323) (0.0315) (0.0313) 

       

Ln(HiTecK/L) 0.0176 0.0171 0.0628** 0.0518* 0.0562* 0.0427 

 (0.0181) (0.0189) (0.0279) (0.0296) (0.0332) (0.0336) 

       

Pension  0.375** 0.374** 0.691** 0.661** 1.166*** 1.149*** 

coverage (0.164) (0.165) (0.268) (0.254) (0.295) (0.298) 

       

Percent in -0.0530 -0.0524 0.0492 0.0680 -0.0172 -0.000118 

large firms (0.131) (0.133) (0.222) (0.216) (0.249) (0.263) 

       

Percent long -0.0917 -0.0810 -1.355** -1.263** -1.421** -1.124* 

term workers (0.350) (0.380) (0.659) (0.579) (0.630) (0.646) 

       

Union  0.00741 0.00577 -0.247 -0.240 -0.294 -0.340 

coverage (0.134) (0.136) (0.199) (0.214) (0.223) (0.244) 

       

Ln wage ratio  0.00907  0.379  0.252 

55+ to 30-54  (0.0744)  (0.283)  (0.157) 

       

Constant 0.0952 0.0922 0.732*** 0.594*** 0.778*** 0.694*** 

 (0.104) (0.110) (0.146) (0.189) (0.164) (0.170) 

N 60 60 60 60 60 60 

R2 0.548 0.548 0.443 0.477 0.478 0.516 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 7.  Regression results: relationship between shares of older and younger workers 
 

Dependent variable Change in percentage of workers 16-29 

Time period 2001-07 2001-07 2007-19 2007-19 2001-19 2001-19 

Estimation method OLS 2SLS OLS 2SLS OLS 2SLS 

       
 Coefficient (S.E.) of percent 55 and above 

OLS simple regression -0.196 
(0.225) 

 -0.022 
(0.114) 

 -0.172 
(0.150) 

 

Multiple regression 
without wage variable 

-0.492 
(0.387) 

-0.018 
(0.475) 

0.091 
(0.140) 

-0.091 
(0.310) 

-0.251 
(0.152) 

-0.368 
(0.412) 

Multiple regression with 
wage variable 

-0.233 
(0.380) 

-0.364 
(0.406) 

-0.010 
(0.026) 

-0.103 
(0.315) 

-0.240 
(0.147) 

-0.475 
(0.393) 

 
All equations were estimated over the 60-industry sample.  Instrumental variables for 2001-07 
included percentage female, GDP growth and pension coverage.  Instrumental variables for 
2007-19 included percentage college graduates and percentage of employees with 20 or more 
years of tenure in 1980s.   
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Table 8.  Regression results: impact of Chinese and other imports 
 

Dependent variable Change in percentage of workers 55 and above 

Sample 23 industry sample 60 industry sample 

Years 2001-07 2007-19 2001-19 2001-07 2007-19 2001-19 

Ratio of Chinese import 
growth to initial output 

0.052** 
(0.016) 

0.004 
(0.068) 

-0.001 
(0.067) 

0.040* 
(0.019) 

0.168 
(0.140) 

0.114 
(0.069) 

Ratio of other import 
growth to initial output 

0.037 
(0.024) 

-0.103** 
(0.030) 

-0.075 
(0.083) 

-0.015 
(0.016) 

0.004 
(0.028) 

-0.062 
(0.048) 

 
Independent variables in 23 industry sample include GDP growth, log capital-labor ratio, log 
high tech capital labor ratio, pension coverage and log wage ratio of older to younger workers.  
Independent variables in 60 industry sample are same as in Tables 4, 5 and 6.    
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Figure 1.  Percentage of employees by age group, 2000 to 2019, American Community Survey 
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Figure 2.  Percentage of workers with 20 or more years of service and percentage hired in last 
12 months, by age group and sex, 2000-2020 
 

 
 
 

 
 
Source: US Bureau of Labor Statistics, biannual news releases on employee tenure 
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Figure 3.  Retention rate for older workers, 2000-01 to 2018-19, American Community Survey 
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Figure 4.  Percentage of older workers by industry, 2000-2001 to 2018-2019 American 
Community Survey 
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Figure 5a.  Growth in percentage of older workers by industry plotted against change in 
percentage of younger workers, 2001-2019 American Community Survey 
 

 
 
Figure 5b.  Growth in percentage of older workers by industry plotted against change in 
percentage of middle-aged workers, 2001-2019 American Community Survey 
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Figure 6. Change in percentage of workers in different age groups as related to log employment 
growth, 2001-2019 American Community Survey 
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Table A1.  Percentage of older workers by industry, by year 
 

Industry 2001 2019 Change 

Real estate  22% 31% 9% 

Transit and ground passenger transportation 21% 35% 14% 

Water transportation 18% 27% 9% 

Other services, except government 17% 26% 9% 

Educational Services 17% 24% 7% 

Other transportation equipment 17% 28% 11% 

Railroad transportation 16% 19% 3% 

Textile products 15% 27% 12% 

Farm 15% 22% 7% 

Truck transportation 15% 28% 13% 

Apparel and leather and allied products 15% 23% 8% 

Petroleum and coal products 14% 22% 8% 

Machinery 14% 26% 12% 

Oil and gas extraction  14% 21% 7% 

Primary metals 14% 26% 12% 

Hospitals, Nursing and residential care facilities 14% 24% 10% 

Paper products 14% 29% 16% 

Publishing (including software) 14% 25% 11% 

Electrical equipment, appliances, and components 14% 28% 14% 

Fabricated metal products 14% 28% 15% 

Social assistance   13% 24% 11% 

Amusements, gambling, and recreation industries 13% 19% 5% 

Performing arts, spectator sports, museums, and related activities 13% 21% 8% 

Mining 13% 24% 11% 

Ambulatory health care services 13% 22% 9% 

Wholesale trade 13% 25% 12% 

Other transportation and support activities  13% 24% 11% 

Miscellaneous manufacturing 13% 25% 12% 

Retail trade 13% 20% 8% 

Motor vehicles, bodies and trailers, and parts 13% 22% 10% 

Insurance carriers and related activities  13% 24% 11% 

Information and data processing services 12% 21% 8% 

Nonmetallic mineral products 12% 25% 13% 

Accommodation 12% 21% 9% 

Utilities 12% 27% 15% 

Administrative and support services 12% 20% 8% 

Computer and electronic products 12% 28% 16% 

Miscellaneous professional, scientific, and technical services 12% 20% 9% 

Furniture 11% 25% 14% 

food products 11% 21% 10% 
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Plastics and rubber products 11% 25% 13% 

Management of companies and enterprises  11% 23% 12% 

Wood products 11% 23% 12% 

Printing  11% 31% 20% 

Forestry, Fishing, and Hunting 11% 22% 11% 

Air transportation 11% 29% 18% 

Chemical products 11% 25% 14% 

Warehousing and storage 11% 15% 4% 

Waste management and remediation services 11% 26% 15% 

Legal services  11% 26% 15% 

Banking and credit intermediations 10% 19% 9% 

Rental and Leasing 10% 23% 13% 

Pipeline transportation 10% 30% 20% 
Securities, commodities, funds, trusts, and other financial 
investments 10% 21% 12% 

Construction 8% 18% 10% 

Support activities for mining  8% 19% 11% 

Broadcasting and telecommunications 8% 19% 11% 

Motion picture and sound recording 7% 10% 4% 

Computer systems design and related services  6% 14% 8% 

Food services and drinking places 5% 8% 3% 
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Table A2a.  Hours-weighted regressions 
 
Dependent variable Change in percentage of workers 55 and above 

Years 2001-2007 2007-2019 2001-2019 

    

Percent college 0.0250 -0.131*** -0.111*** 

graduates (0.0180) (0.0420) (0.0371) 

    

Percent female 0.0177 -0.0313 -0.00888 

 (0.0118) (0.0229) (0.0278) 

    

Percent  -0.0734 -0.0681 -0.145 

professional (0.0513) (0.105) (0.116) 

    

GDP growth -0.0224* -0.0144** -0.00977 

 (0.0112) (0.00625) (0.0243) 

    

GDP  0.0815 0.0133 -0.132 

variance (0.145) (0.117) (0.282) 

    

Ln(K/L) -0.00162 -0.00614 -0.00651 

 (0.00205) (0.00443) (0.00490) 

    

Ln(HiTecK/L) 0.00436* 0.0120*** 0.0119* 

 (0.00229) (0.00429) (0.00598) 

    

Pension  0.0440** 0.120*** 0.182*** 

coverage (0.0180) (0.0424) (0.0517) 

    

Percent in -0.00982 -0.00169 -0.0196 

Large firms (0.0152) (0.0383) (0.0436) 

    

Percent long 0.00191 -0.259*** -0.232** 

term workers (0.0450) (0.0961) (0.104) 

    

Union  0.00949 -0.0300 -0.0350 

coverage (0.0185) (0.0361) (0.0437) 

    

Ln wage ratio -0.0153 0.0311 0.0142 

55+ to 16-29 (0.0118) (0.0490) (0.0324) 

    

Constant 0.0251* 0.0834*** 0.102*** 

 (0.0130) (0.0286) (0.0317) 

N 60 60 60 

R2 0.531 0.448 0.415 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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Table A2b.  Employment weighted regressions 
 
Dependent variable Change in percentage of workers 55 and above 

Years 2001-2007 2007-2019 2001-2019 

    

Percent college 0.0133 -0.103** -0.106** 

graduates (0.0158) (0.0378) (0.0375) 

    

Percent female 0.0189 -0.0397 -0.00978 

 (0.0114) (0.0218) (0.0280) 

    

Percent  -0.0637 -0.0517 -0.129 

professional (0.0541) (0.0953) (0.119) 

    

GDP growth -0.0168 -0.0154* -0.0133 

 (0.00846) (0.00657) (0.0231) 

    

GDP  0.140 0.0471 0.0123 

variance (0.103) (0.0977) (0.329) 

    

Ln(K/L) 0.000229 -0.00456 -0.00477 

 (0.00180) (0.00461) (0.00487) 

    

Ln(HiTecK/L) 0.00313 0.0110** 0.0117* 

 (0.00188) (0.00397) (0.00560) 

    

Pension  0.0665*** 0.128** 0.203*** 

coverage (0.0150) (0.0394) (0.0508) 

    

Percent in -0.0147 -0.0219 -0.0366 

Large firms (0.0121) (0.0346) (0.0419) 

    

Percent long -0.0241 -0.234* -0.250* 

term workers (0.0371) (0.0960) (0.0960) 

    

Union  0.00766 -0.0317 -0.0327 

coverage (0.0149) (0.0317) (0.0390) 

    

Ln wage ratio -0.0251** 0.00621 -0.00737 

55+ to 16-29 (0.00859) (0.0367) (0.0302) 

    

Constant 0.0148 0.0852** 0.0967** 

 (0.0112) (0.0270) (0.0284) 

N 60 60 60 

R2 0.651 0.457 0.438 

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table A3.  Coefficients and standard errors of pension variables.   
 
Dependent 
variable 

Change in percentage of workers 55 and above 

Years 2001-2007 2001-2007 2007-2019 2007-2019 2001-2019 2001-2019 

       

Pension  0.0591***  0.125***  0.199***  

coverage (0.0171)  (0.0412)  (0.0505)  

       

DB plan  0.0580  0.181  0.289** 

coverage  (0.0615)  (0.114)  (0.138) 

       

DC plan   0.0608***  0.116**  0.191*** 

coverage  (0.0180)  (0.0431)  (0.0529) 

       

F-test DB=DC  0.00  0.029  0.050 

Prob>F  0.966  0.592  0.483 

       

N 60 60 60 60 60 60 

R2 0.583 0.587 0.443 0.451 0.441 0.452 

Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
 
The models contain the same control variables that appear in Table 4, columns 2, 4 and 6.   
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Table A4.  Coefficients and standard errors of selected measures of high-tech capital 
 

Dependent variable Change in percentage of workers 55 and above 

Years 2001-07 2007-2019 2001-2019 

    

Measure    

1) High tech equipment 0.0026 0.0117** 0.0104+ 

 (0.0021) (0.0043) (0.0061) 
    

2) Add software to 1 0.0035 0.0113* 0.0107+ 

 (0.0022) (0.0047) (0.0062) 

    

3) Add systems design  0.0034 0.0117* 0.0110+ 

& publishers to 2 (same  (0.0022) (0.0045) (0.0060) 
as Table 4)    

    

4) Include all IPP -0.0003 0.0015 -0.0024 

 (0.0019) (0.0048) (0.0051) 

 
+ p < 0.10, * p < 0.05, ** p < 0.01 
 
Row 1: High tech equipment consists of mainframes, PCs. DASDs, printers, terminals, tape drives, storage devices. 
System integrators, communications, nonelectrical medical instruments, electrical medical instruments, 
nonmedical instruments, photocopy and related equipment, and office and accounting equipment (codes EP1A 
through EP12 in BEA measures of current-cost net capital stock). 
 
Row 2: Software consists of prepackaged software, custom software, and own account software (codes ENS1 
through ENS3 in BEA measures of current-cost net capital stock) 
 
Row 3: Software publishers (RD40) and computer systems design and related services (RD60) are added to row 2.   
 
Row 4: Includes all high tech equipment from row 1 and all 25 categories of intellectual property products tracked 
by BEA.   
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Table A5.  Regression results: sample split by years of schooling 
 
 

Dependent 
variable 

Change in percentage of workers 55 and above 

Years 2001-07 2001-07 2007-2019 2007-2019 2001-2019 2001-2019 

       

Sample 1: 12 or less years of schooling (N=60) 
Pension 
coverage 

0.047 0.052 0.148* 0.167** 0.193* 0.202* 

(0.033) (0.032) (0.067) (0.059) (0.077) (0.076) 

       
Ln(HiTecK/L) -0.0014 0.0000 0.0069 0.0115 0.0053 0.0082 

(0.0028) (0.0032) (0.0097) (0.0099) (0.0103) (0.0109) 

       
Sample 2: More than 12 years of schooling (N=60) 

Pension 
coverage 

0.043+ 0.038 0.064 0.054 0.142** 0.149** 

(0.024) (0.025) (0.043) (0.043) (0.047) (0.048) 

       
Ln(HiTecK/L) 0.0014 0.0022 0.0129** 0.0111* 0.0096+ 0.0086 

(0.0024) (0.0023) (0.0048) (0.0051) (0.0054) (0.0054) 
 
Standard errors in parentheses 
+ p < 0.10, * p < 0.05, ** p < 0.01 
 
The models contain the same control variables that appear in Table 4.    
 
 


