Decomposing Trends in Air Pollution Disparities from U.S. Electricity

Danae Hernandez-Cortes (ASU) Kyle C. Meng (UCSB & NBER) Paige Weber (UNC)

May 19, 2022

NBER EEPE

U.S. electricity: two key developments

Air pollution disparity implications

Uneven spatial distribution of:

- power plants and technologies
- demographics of downwind individuals

Emerging environmental justice concern:

Pollution disparity implications of local air pollution vs. climate policies?

Potential policy implications: If pollution disparities decrease due to spatially-differentiated changes in...

- 1. emissions intensities \rightarrow local air pollution policies
- 2. coal-to-natural gas switching \rightarrow climate policies

This paper

Questions:

- 1. What happened to U.S. $PM_{2.5}$ concentrations from electricity during 2000-2018?
 - Overall
 - By racial/ethnic groups
 - By income
- 2. What drove trends in $\mathsf{PM}_{2.5}$ concentration disparities? Contributions from changes in
 - total fossil fuel generation ("scale")
 - emissions intensities ("technique")
 - fossil market shares ("composition")
 - residential locations ("sorting")

Finding #1: Falling $PM_{2.5}$ concentrations

 $\rm PM_{2.5}$ concentrations from electricity have fallen by 87% overall, double the decline rate of ambient U.S. $\rm PM_{2.5}$

Finding #2: Convergence in disparities

Convergence in $\mathsf{PM}_{2.5}$ concentration gaps; 94% in Black-White gap; 92% in Hispanic-White gap .

Finding #3: Emissions intensity improvements play key role

Nearly all driven by spatially-varying emissions intensity improvements

Finding #4: Smaller disparities by income

Relatively small gap and trend by income differences

Contributions to the literature

Presence of pollution disparities

- Case studies (Bullard, 2000; Bowen, 2002; Ringquist, 2005; Mohai, Pellow and Roberts, 2009; Banzhaf, Ma and Timmins, 2019)
- Population studies (Colmer et al., 2020; Currie et al., 2021)

Role of policy in altering pollution disparities

- Local air pollution policy (Fowlie et al., 2012; Grainger and Ruangmas; Currie et al, 2021)
- Climate policy (Hernandez-Cortes and Meng, 2022; Weber, 2021)

Using a fine-resolution pollution transport model

• Addressing bias (Muller and Mendelsohn, 2007; Sullivan, 2017, Deschenes and Meng, 2018, Tessum et al., 2017)

Extending emissions decomposition approach

• Metcalf (2008), Levinson (2009), Shapiro and Walker (2018)

Data and Methods

Data

Electricity generating units

U.S. EPA Clean Air Markets Division:

- Continuous Emissions Monitoring Systems
- Electricity Generating Units (EGUs) over 25MW
- Hourly generation, fuel inputs, NO_x , and SO_2
- 2000-2018

EIA-860:

- Stack height, temperature, velocity, and diameter
- 2007, 2008, 2009, and 2011

Census tract demographics:

- 2000: Decennial Census
- 2009-2018: ACS

Demographic data (2018)

InMAP Source-receptor matrix (Tessum et al. 2017, Goodkind et al., 2019)

• Models total PM₂.5 (primary and secondary)

Pollution emissions from facility i in year t of pollutant p

$$E_{jt} = \underbrace{\phi_{jt}^{p}}_{t} \underbrace{\delta_{jt}}_{charge} \underbrace{Q_{t}}_{charge}$$

tput em. int. share LOTA

Pollution concentrations for census tract *i* in year *t*:

$$C_{it} = \sum_{p} \sum_{j} E_{jt}^{p} \underbrace{w_{ji}^{p}}_{SRM}$$

$PM_{2.5}$ concentrations from electricity (2018)

Current (2018) spatial pattern (% minority)

Total PM2.5 \rightarrow

Current (2018) spatial pattern (median income)

Pollution concentrations for demographic group g:

$$C_{gt} = \frac{\sum_{i} C_{it} S_{git} N_{it}}{\sum_{i} \underbrace{S_{git} N_{it}}_{\text{pop.}}}$$

Pollution disparities: $C_{gt} - C_{g't}$

PM_{2.5} concentrations by race/ethnicity and income (2018)

Average Black individual resides in a location with 64% more ${\rm PM}_{2.5}$ concentration than average Hispanic

Actual exposure

Geographic grids layered on Census Tract demographics

Scale effect

Allow only electricity production to vary over time

Census Tract demographics

Scale + emissions intensity effects

Allow electricity production and emissions intensities to vary over time

Census Tract demographics

Scale + emissions intensity + composition effects

Allow electricity production, emissions intensities, and fossil market share to vary over time

Total effect

Allow electricity production, emissions intensities, fossil market shares, and demographics to vary over time

Results

$PM_{2.5}$ trend for avg. individual

 $\rm PM_{2.5}$ concentrations from electricity have fallen by 87% overall, while national average has fallen by 39%

PM_{2.5} trend by race/ethnicity

Convergence in $\mathsf{PM}_{2.5}$ concentration gaps; 94% in Black-White gap; 92% in Hispanic-White gap

$\mathsf{PM}_{2.5}$ trend by income

Relatively small gap in concentrations by income groups over the study period

Decomposition: emissions

Emissions fell by 88% (NO_x) and 78% (SO₂). NO_x: Scale effect: 4%. Emissions intensity: \approx 86%. Compositional changes: \approx 10%.

Decomposition: Black-White PM_{2.5} disparity trend

Black-White disparity falling, driven mostly by emissions intensity improvements.

Decompostion: Hispanic-White $PM_{2.5}$ disparity trend

Hispanic-White disparity falling, driven mostly by emissions intensity improvements.

Determinants of impact:

- 1. Location of emission intensity improvements
- 2. Rate of emission intensity improvements

Determinants of impact:

- 1. Location of emission intensity improvements
- 2. Rate of emission intensity improvements

Relationship between **where** emissions intensity **improvements occur**, the **size** of improvement, and the **demographic groups** that are **downwind** from these improvements

Positive relationship between counties with coal EGUs that improve $NO_x \& SO_2$ emissions intensity and $PM_{2.5}$ contribution to Black population

Summary

- This paper quantifies recent trends and determinants of U.S. **PM**_{2.5} concentrations and their disparities from electricity
- Differences in the **residential locations** create distinct trends for each racial/ethnic group
- PM_{2.5} concentrations across racial/ethnic groups have **converged** over the last two decades but **disparities still exist**
- Much of the convergence can be explained by **changing emissions intensities**
- **Compositional effects** including fuel-switching and **residential sorting** play smaller roles

- **Concentration** versus **exposure**: role of occupational exposure, access to health care, and other defensive investments
- Impact of increasing renewable energy penetration across space
- No causal interpretation for decomposition results
- Characterize **equity-efficiency tradeoffs** between air pollution disparity improvements and electricity prices across various climate and local air pollution policies.

Questions?