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Abstract

This paper quantifies and decomposes recent trends in U.S. PM2.5 disparities from

the electricity sector using a high-resolution pollution transport model. Between 2000-

2018, PM2.5 concentrations from electricity fell by 87% for the average individual, more

than double the decline rate in overall U.S. ambient PM2.5 concentrations. Across

racial/ethnic groups, we detect a dramatic convergence: since 2000, the Black-White

PM2.5 disparity from electricity has narrowed by 94% and the Hispanic-White PM2.5

disparity has narrowed by 92%, though these disparities still exist in 2018. A de-

composition exercise reveals nearly all of these disparity trends can be attributed to

spatially-varying improvements in emissions intensities, with small contributions from

scale, compositional, and residential location changes. This suggests local air pollution

policies have played a larger role in reducing U.S. racial/ethnic pollution disparities

from electricity than recent coal-to-natural gas fuel switching. While we detect simi-

larly large PM2.5 improvements for the average low and high income individual, PM2.5

differences by income are relatively small and have changed little over time.
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1 Introduction

Over the last two decades, the U.S. electricity sector has undergone two dramatic transfor-

mations. Between 2000-2018, the emissions intensity for air pollution, defined as emissions

per output, has decreased, most notably for coal-fired electricity. As Figure 1a shows, emis-

sions intensity from coal in 2018 fell to one-half of its 2000 value for nitrogen oxides (NOx)

and one-quarter of its 2000 value for sulfur dioxide (SO2).
1 During this same period, the

share of fossil-fuel electricity produced from coal has fallen while the share from natural gas

has risen, with shares of the two fuels crossing in 2017, as shown in Figure 1b.

Figure 1: U.S. electricity air pollution emissions intensities and fuel shares over time

(a) Emissions intensities (b) Fuel shares

Notes: Panel (a) shows 2000-2018 annual emissions intensity (in lbs per mwh) averaged across fossil fuel-
fired electricity generating units by coal, natural gas, and oil for NOx (dashed lines) and SO2 (solid lines).
Panel (b) shows share of U.S. electricity generation from fossil fuels by coal, natural gas, and oil.

These two developments have potentially important consequences for local air pollution

concentrations and its distribution across the country. The U.S. electricity sector is a major

1Similar declining emissions intensity trends have been detected from U.S. manufacturing (Levinson,
2009; Shapiro and Walker, 2018).
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source of criteria air pollution:2 in 2000, electricity contributed 16% of overall U.S. ambient

PM2.5 concentrations. Its pollution is also unevenly distributed across demographic groups

(EPA, 2018; Thind et al., 2019), a pattern that is broadly consistent with an extensive

environmental justice literature documenting higher air pollution concentrations in locations

where individuals from minority groups, and/or with low income reside.3

A question of growing concern is whether such pollution disparities from U.S. electricity

have changed over time and if so, along which demographic dimensions and why. Pollution

disparities depend on where power plants are located, where households from each demo-

graphic group reside, and the pollution transport patterns that disperse pollution from plants

onto households. Trends in pollution disparities therefore depend on how the spatial distri-

butions of each of these component evolve over time. In particular, the aggregate emissions

intensity improvements and fuel switching shown in Figure 1 are unlikely to be evenly dis-

tributed across the country. For example, nonattainment counties regulated under the US

Clean Air Act, which has been attributed with emissions intensity improvements in man-

ufacturing (Shapiro and Walker, 2018), tend to be spatially concentrated in certain parts

of the country. Likewise, local variation in coal and natural gas prices should induce more

coal-to-natural gas switching in some places than others.

An understanding of these drivers can inform future policies. For example, reduced air

pollution disparities due to improvements in emissions intensities would suggest a reliance on

local air pollution policies, such as the U.S. Clean Air Act, for reducing future air pollution

disparities. On the other hand, if recent coal-to-natural gas fuel switching did more to im-

proved air pollution disparities, future climate policies that similarly make carbon-intensive

fuels more expensive may jointly reduce GHG emissions and local air pollution disparities,

as GHGs and local pollutants are often co-emitted. Indeed, both types policies have been

shown to reduce air pollution disparities in other settings. Currie, Voorheis and Walker

(2021) demonstrate that 60% of the recent convergence in ambient air pollution disparity

between Black and White households can be attributed to the U.S. Clean Air Act. In Cali-

fornia, Hernandez-Cortes and Meng (2022) find that the state’s GHG cap-and-trade program

reduced local air pollution disparities from industrial sources.

This paper quantifies U.S. PM2.5 concentration trends from electricity during 2000-2018

by demographic group. Specifically, we convert annual air pollution emissions from the near-

universe of U.S. fossil fuel electricity generating units into resulting PM2.5 concentrations for

2The US EPA considers the following as criteria pollutants: ground-level ozone, particulate matter, carbon
monoxide, lead, sulfur dioxide, and nitrogen dioxide.

3Disparities across various air pollutants in the U.S. have been documented through case studies (Bullard,
2000; Bowen, 2002; Ringquist, 2005; Mohai, Pellow and Roberts, 2009; Banzhaf, Ma and Timmins, 2019)
and population-level studies (Colmer et al., 2020; Currie, Voorheis and Walker, 2021).
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the average individual in each demographic group using a high spatial resolution pollution

transport model.4 We then decompose pollution disparity trends into changes in the overall

scale of fossil fuel electricity generation, emissions intensities, the composition of generat-

ing units - which incorporates fuel switching within generators and the entry and exit of

generators - and where individuals of different demographic groups reside.

Our analysis reveals several new facts. First, PM2.5 concentrations from U.S. electricity

generation fell by 87% for the average U.S. individual during 2000-2018, more than double

the rate of decline in overall U.S. ambient PM2.5 concentrations (from all pollution sources)

during the same period. To put this in context, in 2000 PM2.5 concentrations from electricity

was 16% of U.S. ambient PM2.5 concentrations; in 2018, that percentage was 3.5%. This

large pollution decline was shared across racial/ethnic groups: PM2.5 concentrations from

electricity fell by 89%, 84%, and 87%, for the average Black, Hispanic, White individual,

respectively. Second, the dispersion in PM2.5 concentrations across racial/ethnic groups

has converged dramatically. While the average Black individual consistently experienced

higher PM2.5 concentrations than the average White individual, this PM2.5 gap fell from

0.71 to 0.04 µ/m3/person during 2000-2018, a drop of 94%. The average Hispanic individual

consistently experienced lower PM2.5 concentrations than the average White individual, and

this gap has narrowed by 92% from -0.96 to -0.08 µ/m3/person during this period. These

disparities, however, still exist in 2018. Third, in a decomposition exercise, nearly all of the

trends in Black-White and Hispanic-White PM2.5 disparities can be attributed to changes

in local pollution emissions intensities. Neither scale changes, compositional changes across

generators, nor changes in where people live account for much of the overall trends in PM2.5

disparities. Fourth, PM2.5 concentrations for the average bottom and top decile individual

fell by 87% and 89%, respectively, during this period. However, in contrast to racial/ethnic

disparities, PM2.5 differences by income are relatively small and have changed little since

2000.

Our analysis combines two methodological approaches. Any attribution of the origins

of pollution concentrations must account for how pollution from emitting facilities (sources)

alters concentrations in exposed locations (receptors). The conventional approach is for

researchers to assume simple spatial patterns, such as allowing pollution to only affect areas

within a facility’s geographic unit or within a surrounding distance-based circle. Actual

pollution dispersal patterns, however, are far more spatially complex, which, when overlooked

may lead to biased pollution disparity results (Deschenes and Meng, 2018; Hernandez-Cortes

4Power plants emit local pollutants such as NOx, SO2, and particulate matter directly. Our data only
covers NOx and SO2 emissions. Our pollution transport model uses atmospheric chemical relationships to
convert these primary NOx and SO2 emissions into resulting secondary particulate matter of 2.5 micrometers
and smaller (PM2.5). The majority of ambient PM2.5 concentration is due to secondary pollution.
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and Meng, 2022).

Pollution dispersal models can be used to address this issue (Ash and Fetter, 2004;

Morello-Frosch and Jesdale, 2006; Muller and Mendelsohn, 2007; Sullivan, 2017; Cummiskey

et al., 2019; Henneman et al., 2019). In recent years, a new generation of such models has

emerged that not only account for atmospheric transport and chemical reactions - important

for secondary pollution formation - but are also available at fine spatial scales with relative

computational tractability. In particular, one such product, InMAP, has enabled source-

attribution analyses of pollution disparities at resolutions down to 1 km-by-1 km (Tessum,

Hill and Marshall, 2017; Goodkind et al., 2019; Tessum et al., 2019, 2021). Like Thind et al.

(2019), our analysis uses InMAP to understand the air pollution disparity consequences of

the U.S. electricity sector. However, in contrast to Thind et al. (2019)’s static analysis, we

use panel emissions and demographic data to explore trends in these pollution disparities

and then decompose these trends into their various drivers.

Our decomposition of pollution disparity trends builds on a long tradition in environ-

mental and energy economics (Leontief, 1970; Selden, Forrest and Lockhart, 1999; Metcalf,

2008). Such techniques have been applied to understanding the determinants of pollution

using data at various sectoral levels, with recent analyses conducted at the 4-digit Standard

Industrial Classifications and product levels (Levinson, 2009; Shapiro and Walker, 2018).

Our decomposition exercise extends this literature in three ways. First, we conduct a de-

composition at the facility level, that is at the locations where pollution is emitted. This is

critical since quantifying changes in pollution disparities requires knowing how the spatial

distribution of emissions has evolved over time. Second, our decomposition examines com-

position changes in inputs and not just of outputs. A focus on input shares helps to explore

the role played by recent coal-to-natural gas fuel switching in U.S. electricity generation.

Third, our use of a pollution dispersal model together with data on the changing spatial

pattern of demographic characteristics allows us to further characterize the role played by

residential sorting in altering pollution disparities.

The remainder of the paper is organized as follows. Section 2 discusses our data. Section

3 details our methods. Section 4 presents our results. Section 5 concludes.

2 Data

Our analysis involves three main datasets: 1) emissions from electricity generating units

(EGUs) in the continental United States, 2) smoke stack characteristics for EGUs, and 3)

socioeconomic characteristics at the census-tract level.
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2.1 Electricity generating units data

Electricity production and emissions data come from the U.S. Environmental Protection

Agency’s Clean Air Markets Division (EPA CAMD), which maintains data collected from

the Continuous Emissions Monitoring Systems (CEMS) installed on EGUs over 25MW in

capacity size (EPA, 2022a). The data includes hourly production quantities, fuel inputs,

and hourly CO2, NOx and SO2 emissions at the EGU level. We sum hourly observations to

obtain total annual emissions for each EGU over 2000-2018 period.5 A second EPA CAMD

dataset provides facility-level latitude, longitude, and fuel type (EPA, 2022b), which we link

at the EGU level to the CEMs data using power plant (ORISPL code) and EGU identifiers.6

Our sample includes 4328 EGUs, corresponding to 1744 unique power plants.7

We merge CEMS data with smoke stack characteristics, obtained from the EIA Form

860. These data include stack height, temperature, velocity, and diameter, all of which are

important for determining how far pollution travels upon leaving the smoke stack. Stack

characteristics are available for 2007, 2008, 2009, and 2011; we match these characteristics to

the generating units for the closest year available. As EIA data are at the smoke stack and

not EGU level, a single EGU might be associated with multiple stacks, while a single stack

might be shared among multiple EGUs. When an EGU is associated with multiple stacks, we

divide emissions evenly across the stacks. When a stack is associated with multiple EGUs,

we aggregate EGUs emissions to the associated stack.8

Table A1 presents descriptive statistics for our EGU sample by input fuel in 2018. As

expected, coal-fired EGUs have larger capacity and higher SO2 and NOx emissions than

EGUs using natural gas and oil. They also have smoke stacks that are higher and wider,

which may cause pollution to be transported farther than shorter and narrower stacks.

5An EGU is a component of power plant, and one power plant may have multiple EGUs. Our unit of
analysis is at the EGU-level, not power plant-level, as EGUs within a powerplant may have different fuel and
pollution smokestack characteristics, and thus unique emissions intensities and pollution transport patterns.

6The National Emissions Inventory is another database that EGU-level emissions and characteristics.
However, it is only available for the years 2008, 2011, 2014, and 2017. For those years, the number of EGUs
available from CEMs exceeds that from the NEI, which is why we use the CEMS data instead of the NEI
data for our analysis.

7In the data analysis, we index units over time at the ORISPL-EGU-fuel level. By defining units by fuel,
our decomposition analysis considers fuel switching of existing EGUs as part of compositional changes.

8On average per year, there are 109 EGUs with more than one stack associated and 1201 EGUs that
share a stack.
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2.2 Census-tract data

We use data on total population, Black share of population, Hispanic share of population,

non-Hispanic White share of population, minority share of population,9 and median income

at the census-tract level. The 2000 data come from the Decennial Census while 2009-2018

data come from the American Community Survey (ACS, 5-year estimates).10 Both were

obtained from IPUMS NHGIS (Manson et al., 2021). The panels of Figure A1 shows each

census tract’s population share of individuals that identifies as Black, Hispanic, White and

median income in 2018. Individuals from different racial/ethnic groups are not similarly dis-

tributed across the country: Black individuals tend to live in the southeastern and eastern

states while Hispanic individuals are concentrated in the southwestern and western states.

By contrast, income is relatively more evenly distributed across the country. This suggests

that changes in electricity sector pollution concentrations could heterogeneously affect indi-

viduals from different racial/ethnic groups insofar as electricity generation is also spatially

concentrated in certain regions.

2.3 Source-receptor matrix

To convert EGU-level primary NOx and SO2 primary emissions to census-tract level sec-

ondary PM2.5 concentrations across the continental U.S., we use the InMAP input-source

receptor matrix (SRM) developed by Goodkind et al. (2019). InMAP is a reduced-complexity

chemical transport model that simulates PM2.5 concentrations from its precursor primary

pollutants (Tessum, Hill and Marshall, 2017). We use the location and stack characteristics

of our sample EGUs and InMAP’s SRM to calculate total annual PM2.5 pollution concen-

trations in µg/m3 at the InMAP grid level.11 We spatially aggregate the InMAP grid to the

census tract level using census tract boundaries.12 We do not use ambient PM2.5 measures

(i.e. obtained from pollution monitors or satellite products) since such measures capture

pollution from all sources whereas we are only interested in PM2.5 concentrations due to

electricity generation.

9The minority share of population is the population share in a census tract who identify as Black or
African American, Hispanic, Asian, American Indian and Alaska Native, or Native Hawaiian and Other
Pacific Islander.

10This implies that we are missing census tract variables for the 2001-2008 period. Further, we do not use
data from the 2010 Decennial Census to ensure consistency in our 2009-2018 measures, all obtained from
the ACS.

11The InMAP grid level varies from 1 km up to 48 km depending on population density and uses year-
invariant meteorological conditions from 2005.

12We use year-specific census tract shape files as census tract definitions change over time.
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3 Methods

This section details our methods. Section 3.1 describes how we construct time trends in

pollution concentrations from the U.S. electricity sector by demographic group. Section 3.2

discusses our decomposition of these trends.

3.1 Trends in pollution concentrations by demographic groups

One common approach to understanding the forces driving pollution emissions is to repre-

sent facility-level emissions as a product of the overall (or national) scale of emissions, the

composition of emissions across emitting facilities, and the emissions intensity (“technique”)

of each facility.13

Let j index fossil-fuel electricity generating units (EGU). Our decomposition implies the

following representation for year t emissions of pollutant p ∈ {NOx, SO2} from facility j

Ep
jt = ϕp

jtδjtQt (1)

where Qt is national electricity output (in MWh), or the overall scale of US electricity pro-

duction; δjt is facility j’s annual share of total electricity output, capturing the composition

of emissions across facilities; and ϕp
jt is each facility j’s emissions intensity (in lbs per MWh).

Note that since EGUs are defined by the fuel consumed, eq. (1) accommodates fuel switch-

ing within an EGU over time: an EGU that has switched fuels has δjt = 0 after the switch

and is effectively treated as a new EGU with δjt = 0 before the switch. Entry of new EGUs

and exit of existing EGUs are treated similarly: an EGU that exits production or has yet to

enter into production has δjt = 0.

We are interested in converting primary pollution emissions across facilities, Ep
jt, into

secondary concentrations of PM2.5 across locations. Let i index census tracts. For primary

pollutant p, Wp is the InMAP source-receptor matrix (SRM), where element wp
ji indicates

the amount of secondary PM2.5 pollution (in kg) received by census tract i from a 1 kg

emission of primary pollutant p from facility j. Total secondary PM2.5 concentration (in

13This decomposition is also widely used in the environmental sciences literature. It is referred to as
“I=PAT” when quantifying environmental impacts generally and as the Kaya Identity when applied to
GHG emissions. The strength of this approach comes from decomposing pollution emissions into intuitive
constituents that capture the overall scale of emissions in an economy, the composition of where emissions
are coming from, and the technology behind these emissions. The main weakness of this approach is that it
implicitly assumes these three drivers vary independently, which is unlikely. For example, a change in the
pollution intensity of coal-fired electricity generation could alter the coal share of electricity, and possibly
the overall pollution from electricity. Our decomposition approach, detailed in Section 3.2 allows for partial
covariances between each incrementally added component. However, because we do not have exogenous
variation in any of these components, causal interpretations are not possible.
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µ/m3) in location i and year t is then the product of a facility’s p emissions and its to

conversion PM2.5 concentrations in location i, summed over all facilities and pollutants

Cit =
∑
p

∑
j

Ep
jtw

p
ji (2)

Figure 2 maps the PM2.5 concentrations from all fossil fuel electricity production in 2018, Cit,

as well as the location of each fossil fuel EGU. Figure A2 replicates Figure 2 but separately

examining coal-, natural gas-, and oil-fired EGUs.

Figure 2: PM2.5 concentrations from electricity generation

Notes: Map shows census-tract level PM2.5 pollution exposure from 2018 electricity production across all
fossil fuel EGUs and the location of each fossil fuel EGU.

We next construct PM2.5 concentrations from the electricity sector experienced by the

average (continental) U.S. individual in demographic group g, where g may be a racial/ethnic

group or income category. To do this, we must account for the uneven spatial distribution

of individuals in group g, as shown in Figure A1. For example, because a greater share of

the population in southeastern states comprise of Black individuals (see Figure A1b), one

needs to weight PM2.5 concentrations in that part of the country more so (using the local

Black population) than in other regions when constructing a PM2.5 concentration measure

for the average Black individual. Specifically, we construct the following population-weighted

pollution concentration for each demographic group g in year t

Cgt =

∑
iCitSgitNit∑
i SgitNit

(3)

where Nit is total population in census tract i during year t and Sgit is the share of that
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population in demographic group g. This is a population-weighted concentration measure

because the product SgitNit is the number of individuals in group g that live in census tract

i in year t.14 Combining these expressions, we have

Cgt =

∑
i

(∑
p

∑
j(ϕ

p
jtδjtQt)w

p
ji

)
SgitNit∑

i SgitNit

(4)

We examine trends in several pollution disparity measures, defined as differences in Cgt

across groups. In particular, we explore the Black-White, Hispanic-White, and 1st-10th

income decile pollution gaps.

3.2 Decomposing pollution concentration trends

Trends pollution disparities can be decomposed into various determinants. A standard ex-

ercise is to decompose changes in pollution emissions into changes due to the overall scale of

electricity production, the pollution intensity of each EGU, and to the composition of elec-

tricity generation across EGUs, which includes fuel switching within EGUs and the entry and

exit of EGUs. Our decomposition adds another component: changes in where individuals

reside. Our decomposition exercise constructs variants of eq. (4), holding certain variables

fixed to initial 2000 values.15 Specifically, we consider the following set of scenarios:

D1 Scale effect: Fix ϕp
j,2000, δj,2000, Sg,i,2000, Ni,2000. Vary Qt.

This scenario fixes emissions intensities, shares, and population distributions to their

2000 levels, while allowing the total quantity of electricity from total fossil fuels to

change according to observed data. It isolates the change in pollution concentrations

driven only by changes in the scale, or total quantity of fossil fuel electricity generation.

D2 Scale + emissions intensity effects: Fix δj,2000, Sg,i,2000, Ni,2000. Vary Qt and ϕp
jt.

14For racial/ethnic groups, U.S. Census data provides annual data on the population share of a census
tract belonging to each group, enabling the construction in eq. (3). For income, the U.S. Census provides
median income at the census tract. Assuming that median income is uniformly distributed within a census
tract, we define an indicator variable Idit which equals one when census tract i has median income that falls
in the dth decile of the year-t income distribution across all U.S. census tracts. We then replace Sgit with
Idit in eq. (3) to construct the PM2.5 concentration experienced by the average individual in income decile
d in year t.

15Alternatively, one could write eq. (4) in vector notation and apply a total derivative. The sum of
each component could then recover the total change in pollution. The total derivative is a local linear
approximation, which may not be appropriate for large changes. Our approach, which incrementally adds
each component allows us to capture any potential covariances between components.
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This scenario adds to D1 by further allowing emissions intensities to vary according to

observed data. It captures the change in pollution concentrations driven by scale and

emissions intensity (or technique) effects.

D3 Scale + emissions intensity + composition effects: Fix Sg,i,2000, Ni,2000. Vary

Qt, ϕ
p
jt, and δjt.

This scenario adds to D2 by further allowing emissions shares to vary according to

observed data. It captures the change in pollution concentrations driven by scale,

emissions intensity, and compositional effects.

D4 Total effect: Vary Qt, ϕ
p
jt, δjt, Sgit, and Nit.

This scenario adds to D3 by further allowing population distributions to vary according

to observe data. It captures the change in pollution concentrations driven by scale,

emissions intensity, compositional, and residential sorting effects.16

4 Results

Section 4.1 details recent 2018 spatial patterns of PM2.5 concentration from electricity across

demographic groups. Section 4.2 presents 2000-2018 trends in PM2.5 concentrations for each

demographic group. Section 4.3 shows trends in PM2.5 disparities and decomposes these

trends. Section 4.4 offers additional evidence of a potential underlying mechanism.

4.1 Current spatial patterns of pollution concentrations

We begin by presenting spatial patterns of PM2.5 from electricity in relation to where indi-

viduals of different demographic groups reside for 2018, the most recent year of our data.

Figure 3a overlays PM2.5 concentrations (in µg/m3) and minority share of population for

each census tract in 2018. Because PM2.5 from electricity is unevenly distributed across the

country and because Black, Hispanic, and White individuals tend to reside in different re-

gions, PM2.5 concentrations differ for the average Black, Hispanic, and White individual, as

shown in Figure 3b. PM2.5 concentrations are highest for the average Black individual, fol-

lowed by White, and Hispanic. This gap is large: the average Black individual is exposed to

64% more PM2.5 from electricity than the average Hispanic individual. This ordering reflects

16We are unable to construct PM2.5 concentrations for this scenario for the years 2001-2008 because census
tract-level demographic variables Sgit and Nit are not available from the ACS until 2009.
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the joint spatial distribution of PM2.5 concentrations and where individuals live. PM2.5 con-

centrations from electricity are strongest across southern states where relatively more Black

individuals live (Fig. A1a), followed by states in the midwest where relatively more White

individuals live (Fig. A1c). There is far less PM2.5 concentration in southwestern and west-

ern states where relatively more Hispanic individuals reside (Fig. A1b). By contrast, the

income gradient is much smaller, as shown in Figure 3c-d. The average individual in the 1st

income decile is exposed to 10% more PM2.5 than the average individual in the 10th income

decile. This is because in contrast to racial/ethnic dimensions, individual income is more

evenly distributed across census tracts (Fig. A1d). Figures A3 and A4 break these patterns

down for each fossil fuel.

Figure 3: PM2.5 concentrations by demographic groups

(a) Distribution of PM2.5 and minority share (b) PM2.5 by race/ethnicity

(c) Distribution of PM2.5 and income (d) PM2.5 by income

Notes: Panel (a) overlays PM2.5 concentrations from electricity generation and minority share of pop-
ulation for each census tract in 2018. Shading color-coded by terciles. Panel (b) shows the 2018 PM2.5

concentrations for the average Black, Hispanic, and White individual, in µ/m3/person. Panel (c) overlays
PM2.5 concentrations from electricity generation and median income for each census tract in 2018. Panel
(d) shows the 2018 PM2.5 concentrations for the average individual in each income decile, in µ/m3/person.
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4.2 Pollution concentration trends

Using time-varying data on EGU emissions and census-tract demographic characteristics, we

calculate how PM2.5 concentrations from electricity generation has evolved over 2000-2018

for each demographic group, or Cgt.

Figure 4a shows PM2.5 concentrations for the average individual. Between 2000-2018,

PM2.5 concentrations fell by 87% or 1.9 µ/m3/person.17 To contextualize the magnitude of

this fall in PM2.5 concentrations from the electricity sector, the national average ambient

PM2.5 concentration from all pollution sources was 13.5 µ/m3 in 2000 and 8.2 µ/m3 in 2018,

a drop of 39%.18 The decline in PM2.5 concentrations from electricity is more than double

this rate. Or put another way, in 2000 PM2.5 from the U.S. electricity sector was 16% of

U.S. ambient PM2.5 concentrations. In 2018, that percentage fell to 3.5%.

Figure 4b shows these PM2.5 changes by racial/ethnic group. During this period, PM2.5

concentrations decreased by 89%, 84%, and 87%, or 2.6, 1.1, and 1.9 µ/m3/person, for the

average Black, Hispanic, and White individual, respectively. Given initial PM2.5 concentra-

tion differences in 2000, these differential trends imply a dramatic convergence in pollution

disparities across these racial/ethnic groups. While disparities still exist in 2018, they are

much smaller than they were in 2000. Specifically, between 2000-2018, the observed Black-

White PM2.5 gap was consistently positive, with the average Black individual experiencing

more PM2.5 concentrations than the average White individual. But this gap fell from 0.71

to 0.04 µ/m3/person between 2000-2018, or by 94%. At the same time, the Hispanic-White

PM2.5 disparity was consistently negative throughout our sample, with the average Hispanic

individual experiencing less PM2.5 concentration than the average White individual. How-

ever, as with the Black-White disparity, the Hispanic-White disparity has narrowed from

-0.96 to -0.08 µ/m3/person during 2000-2018, or 92% during this period.

Figure 4c plots PM2.5 concentrations for the average individual in the bottom and top

income deciles, which falls by 87% and 89%, or 1.9 and 2.0 µ/m3/person, respectively.

However, because of the smaller 2000 gap in PM2.5 concentrations and the similarity of these

trends, the PM2.5 concentration gap between individuals in the bottom and top income

deciles has been relatively unchanged during the 2000-2018 period. Figure A5 shows a

similar pattern when comparing the average individual in the bottom and top quartiles.

17PM2.5 concentrations shown in Figure 4 hold demographic characteristics fixed to 2000 values (i.e., D3
in Section 3.2). This is because we are missing census tract-level demographics data for the years 2001-2008
prior to ACS availability, such that we are unable to construct actual PM2.5 concentrations (i.e., D4 in
Section 3.2) for those years. However, because residential locations have changed little between 2000-2018,
the change in PM2.5 concentration between 2000 and 2018 when applying 2000 demographic data to both
years is nearly identical to that when applying 2000 and 2018 demographic data, as shown in Figure 6.

18Data available here: https://www.epa.gov/air-trends/particulate-matter-pm25-trends
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Figure 4: Trends in pollution concentrations by demographics

(a) Overall

(b) By race/ethnicity

(c) By income

Notes: Panel (a) shows 2000-2018 PM2.5 concentrations for the average U.S. individual. Panel (b) shows
the average Black, Hispanic, and White individual. Panel (c) shows the average bottom and top income
decile individual. 14



Given the presence of racial/ethnic PM2.5 disparity trends and their absence along income

differences, our subsequent decomposion will focus on racial/ethnic PM2.5 disparities.

4.3 Decomposing pollution disparity trends

We conduct the decomposition scenarios described in Section 3.2 to explore the drivers behind

the recent convergence in PM2.5 disparities. Specifically, we decompose PM2.5 disparity

trends into changes in the scale of fossil fuel electricity generation, emissions intensities, the

composition of EGUs, and where households of different racial/ethnic groups reside.

Figure 5: Decomposition of NOx and SO2 emissions trends

(a) NOx (b) SOx

Notes: Panel (a) shows the decomposition of primary NOx emissions (in billion lbs). Panel (b) shows for
primary SO2 emissions (in billion lbs).

We begin with Figure 5, which, much like Levinson (2009) and Shapiro and Walker

(2018) shows how emissions changes can be decomposed into scale, emissions intensity, and

compositional changes. Panel (a) shows NOx emissions while panel (b) shows SO2 emissions.

Overall emissions have fallen dramatically: between 2000-2018, emissions fell by 78% and

88% for NOx and SOx, respectively (gray series). For both pollutants, the scale effect alone

contributes a modest 4% of overall emission changes (black series). Note that as renewables

are not included here, these scale effects can be thought of as the scale effects of fossil

generation, e.g. changes in output satisfying residual demand met by fossil generation,
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total demand less renewables. By contrast, 86% and 89% of emissions reductions can be

attributed to emissions intensity changes for NOx and SOx, respectively (green minus black

series). Compositional changes contribute the remaining 10% and 7% for NOx and SOx,

respectively (gray minus green series).

The decomposition of emissions serve as an input into our decomposition of PM2.5 dis-

parity trends. Figure 6a shows the Black-White PM2.5 concentrations difference decomposed

into scale, emissions intensity, compositional, and residential sorting components. Changes

in emission intensities is by far the largest driver, contributing 93% of the overall change in

the Black-White PM2.5 disparity (green minus black series). By contrast, scale (black series)

and compositional (gray minus green series) effects contributed only 2% and 6%, respectively.

Changes in residential location had a negligible effect (blue minus gray series). Similarly, an

overwhelming share of the Hispanic-White PM2.5 disparity can be explained by changes in

emissions intensities alone. Compositional changes, such as fuel switching, and residential

location changes explain much less.19

4.4 Mechanism

Why might changes in emissions intensities play such a large role in reducing PM2.5 dis-

parities? Recall that to alter pollution disparities, it matters where emissions intensity im-

provements are occurring. In particular, it depends on whether improvements are occurring

from EGUs that are upwind of disadvantaged individuals. This section provides additional

evidence on such patterns.

To understand the spatial relationship between where emissions intensity improvements

are occurring for coal-fired EGUs and who is downwind of these improvements, we construct

county-average emissions intensities from coal-fired EGUs separately for NOx and SO2 in

each year of the study period. We measure improvement as the difference between county-

average emissions intensity in 2018 compared to 2000.20 We bin counties into vigintiles

(i.e., 20 bins) according to pollutant-specific emissions intensity improvements, where bin 20

indicates the largest emissions intensity improvements. Within each pollutant-bin, we feed a

common pulse of emission for all coal-fired EGUs into InMap, which enables us to examine

the differential downwind impacts separate from the scale of emissions from each EGU.21

Figure 7 shows these pollution intensity bins on the horizontal axis. The vertical axis

shows the resulting secondary PM2.5-weighted Black population affected from the uniform

19Figures A6-A8 replicate Figure 6 for each fossil fuel.
20We look at county-average improvements instead of EGU-specific improvements as we want to capture

both within EGU improvement and improvements generated by the entry and exit of EGUs.
21With 20 bins and 2 pollutants, this leads to 40 unique InMap runs. Within each run, we assign a 10,000

kg pulse of pollution for each coal-fired EGU.
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Figure 6: Decomposition of pollution disparity trends

(a) Black-White disparity

(b) Hispanic-White disparity

Notes: Panel (a) shows the Black-White PM2.5 disparity trend and its components over 2000-2018. Panel
(b) shows the Hispanic-White PM2.5 disparity trend and its component over 2000-2018. Dashed line shows
interpolated value during 2001-2008 in the absence of census tract-level demographic data.
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Figure 7: Correlation between emissions intensity improvements and affected Black popu-
lation

(a) NOx (b) SO2

Notes: Panel (a) shows the relationship between the emissions intensity improvement bins and the resulting
secondary PM2.5-weighted Black population affected by an unit increase in primary NOx emissions. Panel
(b) examines primary SOx emissions.

pulse of primary NOx in panel (a) and SOx in panel (b). The positive relationships in Figure

7 indicate that counties that experienced greater improvements in emissions intensities from

coal-fired EGUs are also upwind of more Black individuals.

5 Conclusion

Electricity generation is a major source of U.S. pollution, with resulting PM2.5 concentrations

that are unevenly distributed across demographic groups. To address this, attention has been

increasingly paid to understanding the pollution disparity consequences of various policies.

This paper quantifies 2000-2018 trends in PM2.5 disparities arising from the US electricity

sector through the use of a high spatial resolution pollution transport model. Our analysis

reveals several new findings with policy implications.

We find that between 2000-2018, PM2.5 concentrations have fallen by 87% for the average

individual, which is more than double the decline rate in overall U.S. ambient PM2.5 concen-

trations over the same period. Moreover, this decline is broadly shared across racial/ethnic

groups: we detect a 89%, 87%, and 84% PM2.5 decline for the average Black, Hispanic, White

individual, respectively. But because 2000 PM2.5 concentration levels are highest for Black,

followed by White and Hispanic individuals, these trends imply a dramatic convergence in

PM2.5 concentrations across these racial/ethnic groups. Specifically, the Black-White PM2.5

disparity, while consistently positive during this period has narrowed (or fallen) by 94%

since 2000. During this period, the Hispanic-White PM2.5 disparity, which is consistently

18



negative, has narrowed (or risen) by 92%. However, we note that despite this convergence,

racial-ethnic PM2.5 disparities from electricity still exist in 2018. Interestingly, while the

PM2.5 concentration for the average bottom and top income decile individual fell by 87%

and 89%, respectively, the gap between low and high income individuals has been relatively

small and largely unchanged during this period. These differential patterns indicate that

what happens to one demographic group need not apply to another, reflecting the need

for policies that acknowledge how pollution concentrations and their trends differ across

demographic groups.

Our decomposition exercise reveals that nearly all of these disparity trends can be at-

tributed to spatially-varying improvements in emissions intensities. By contrast, composi-

tional changes, which incorporates recent coal-to-natural gas fuel switching, and changes in

residential location contributed much less. Emissions intensity changes are often associated

with local air pollution policies, such as the Clean Air Act, suggesting that such policies

can play an important role in further reducing pollution disparities from the U.S. electricity

sector moving forward.

Our finding that compositional changes among fossil fuel generators contributed little to

changing pollution disparities need not imply similar impacts for future US climate policy.

A likely consequence of any climate policy is the expansion of renewable sources of electric-

ity, which does not emit air pollution. Future research should consider how expansion of

renewable energy differentially replaces coal, oil, and natural gas generation and where.

A more complete analysis would also consider the efficiency consequences of changing

electricity prices and any added distributional effects related to the incidence of such price

changes across demographic groups. This would enable an exploration of equity-efficiency

trade-offs across a variety of proposed environmental and climate policies. For example,

suppose policy makers face the joint objectives of achieving a GHG target in a cost-effective

manner and narrowing existing local air pollution disparities. This can be implemented by

combining a carbon price with a regulation targeting polluters that disproportionately af-

fect disadvantaged individuals. If cost-effective GHG abatement across facilities coincides

with declines in pollution disparities, there would be no trade-off. However, if cost-effective

abatement also increases pollution disparities, policy makers must now weight higher elec-

tricity prices (and its distributional impacts) against narrowing pollution disparities when

considering the ideal mix of policies. Characterizing where these trade-offs exists and how

they can be navigated through policy design can inform environmental and climate policies

that jointly advance environmental, cost-effectiveness, and equity goals.
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Appendix A: Additional Figures

Figure A1: Census tract racial/ethnic population shares and median income in 2018

(a) Black share (b) Hispanic share

(c) White share (d) Median income

Notes: Panel (a) shows the Black population share at the census tract level. Panel (b) shows the Hispanic
population share. Panel (c) shows the White population share. Panel (d) shows household median income.
Points denote the location of all fossil fuel EGUs.
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Figure A2: PM2.5 concentrations from electricity generation by fuel

(a) All fuels (b) Coal

(c) Natural Gas (d) Oil

Notes: Panel (a) shows PM2.5 pollution exposure from 2018 electricity generation from all fossil fuel EGUs
at the census tract level. Points denote the location of all fossil fuel EGUs. Panels (b), (c), and (d) shows
for coal-, natural gas-, and oil-fired EGUs only, respectively.
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Figure A3: PM2.5 concentrations by racial/ethnic groups and fuel

(a) All fuels

(b) Coal

(c) Natural Gas

(d) Oil

Notes: Left column overlays PM2.5 concentration from electricity production and minority share of pop-
ulation for each census tract in 2018. Shading color-coded by terciles. Right column shows the PM2.5

concentration for the average White, Black, and Hispanic individual, in µ/m3/person. Panel (a) uses all
fossil fuel-fired EGUs, while Panels (b), (c), and (d) uses coal-, natural gas-, and oil-fired EGUs only, re-
spectively.
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Figure A4: PM2.5 concentrations by income and fuel

(a) All fuels

(b) Coal

(c) Natural Gas

(d) Oil

Notes: Left column overlays PM2.5 concentration from electricity production and median income for each
census tract in 2018. Shading color-coded by terciles. Right column shows the PM2.5 concentration for the
average individual in each income decile, in µ/m3/person. Panel (a) uses all fossil fuel-fired EGUs, while
Panels (b), (c), and (d) uses coal-, natural gas-, and oil-fired EGUs only, respectively.
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Figure A5: Trends in pollution concentrations by income quartiles

Notes: 2000-2018 PM2.5 concentrations for the average bottom and top quartile individual.
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Figure A6: Decomposition of pollution disparity trends: coal

(a) Black-White disparity

(b) Hispanic-White disparity

Notes: Panel (a) shows the Black-White PM2.5 disparity trend and its components over 2000-2018 from
coal-fired EGUs. Panel (b) shows the Hispanic-White PM2.5 disparity trend. Dashed line shows interpolated
value during 2001-2008 in the absence of census tract-level demographic data.
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Figure A7: Decomposition of pollution disparity trends: natural gas

(a) Black-White disparity

(b) Hispanic-White disparity

Notes: Panel (a) shows the Black-White PM2.5 disparity trend and its components over 2000-2018 from
natural gas-fired EGUs. Panel (b) shows the Hispanic-White PM2.5 disparity trend. Dashed line shows
interpolated value during 2001-2008 in the absence of census tract-level demographic data.
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Figure A8: Decomposition of pollution disparity trends: oil

(a) Black-White disparity

(b) Hispanic-White disparity

Notes: Panel (a) shows the Black-White PM2.5 disparity trend and its components over 2000-2018 from
oil-fired EGUs. Panel (b) shows the Hispanic-White PM2.5 disparity trend. Dashed line shows interpolated
value during 2001-2008 in the absence of census tract-level demographic data.
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Appendix B: Additional Tables

Table A1: Electricity Generating Unit and Stack Characteristics

(1) (2) (3) (4)
All Coal Natural Gas Oil

Average Unit Size (MW) 196.49 454.36 159.78 79.36
(200.27) (287.39) (134.29) (145.22)

Heat Input (1,000 MMBtu) 5,437.68 17,651.12 3,444.51 249.29
(9629.32) (16818.49) (4811.94) (935.91)

Annual SO2 emissions (1,000 kgs) 275.58 1,597.87 1.33 9.83
(1236.95) (2613.61) (6.84) (54.89)

Annual NOx emissions (1,000 kgs) 223.49 1,111.68 49.12 15.14
(637.33) (1189.19) (123.74) (41.99)

Temperature at 100% load (K) 403.44 374.52 404.59 443.23
(25.72) (38.10) (12.10) (17.40)

Height (m) 85.74 166.88 64.69 111.39
(46.02) (51.84) (16.85) (12.03)

Velocity at 100% load (m/s) 20.85 23.76 19.82 23.90
(4.38) (6.46) (3.47) (2.15)

Diameter (m) 5.46 7.43 5.04 5.42
(1.46) (2.51) (0.66) (0.45)

Observations 4328 701 3210 417
Notes: Column (1) shows the average stack and emissions characteristics for all EGUs. Column (2),
(3), and (4) show the average stack and emissions characteristics for coal-, natural gas-, and oil-fired
EGUs, respectively.

31


	Introduction
	Data
	Electricity generating units data
	Census-tract data
	Source-receptor matrix

	Methods
	Trends in pollution concentrations by demographic groups
	Decomposing pollution concentration trends

	Results
	Current spatial patterns of pollution concentrations
	Pollution concentration trends
	Decomposing pollution disparity trends
	Mechanism

	Conclusion

