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Abstract

How should an investor value financial data? The answer is complicated as it

not only depends on the investor himself, but also on the characteristics of all other

investors. Portfolio size, risk aversions, trading horizon, and investment style affect

an investor’s willingness to pay for data and the equilibrium value of data. Directly

measuring all these characteristics of all investors is hopeless. Thus, we outline a simple

model that gives rise to sufficient statistics that make an investor’s private value of data

measurable. Our approach can value data that is public or private, about one or many

assets, relevant for dividends or for sentiment. We find that investor characteristics

always matter. What tempers the heterogeneity in how investors value data is market

illiquidity. When investors’ trades move prices, the value of data falls, especially for

the investors who value data most. The high sensitivity of the value of data to market

liquidity, for high-data investors, suggests that modest fluctuations in market liquidity

can eviscerate the value of financial firms whose main asset is financial data.
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Investment management firms are gradually transforming themselves from users of small

data and simple asset pricing models to users of big data and computer-generated statistical

models. Amidst this transformation, investors’ strategic focus is shifting from the choice of

pricing model to the choice of data they acquire. A key question for modern financial firms

is: How much should they be willing to pay for a stream of financial data? This project

devises and puts to use a methodology to estimate this dollar value, based the investor’s own

characteristics, but without needing to know the characteristics of others.

From information-based theories, we know many qualitative features of firms that make

data valuable – large firms, growth stocks, firms with risky payoffs, assets that are sensitive

to news, assets that others are uninformed about. After all, data is simply a stream of

digitized information. But for an investor who is considering purchasing a data set, knowing

the representative investor’s theoretical value for the data is not very useful. An investor

with a large portfolio values data more, while an investor who invests in a restricted set of

assets values data less. An investor with lots of other data is less willing to pay for additional

data, while an investor who trades more frequently might value data more or less. All these

effects depend on the asset market equilibrium, which in turn depends on the characteristics

of every other investor. Data value also depends on which other investors buy that same

data. To make matters more complex, we also know that illiquidity or price impact of a

trade make information less valuable Kacperczyk, Nosal, and Sundaresan (2021), but how

this interacts with investor heterogeneity, quantitatively, is less understood.

Our simple procedure to estimate the value of any data series, to an investor with specific

characteristics, reveals enormous dispersion in how different investors value the same data.

Unlike financial assets, data assets are not equally valuable to all. The dispersion in private

valuations for data matters for our understanding of data markets because it suggest a low

price elasticity of aggregate data demand.

It is important to point out that our procedure leads to an estimate of private value to an

investor, which could be different from a transaction price that one might observe when data
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is sold. Knowing the private values of market participants allows one to trace out a demand

curve for data. Some investors would have values greater than the equilibrium price, some

less. This is like a shopper determining how much they value a sweater. Knowing that the

sweater’s market price is $50 does not make that the shopper’s value – it might be the wrong

color or size. Alternatively, the shopper might be willing to pay $100 for the sweater and

still not buy it because they find a similar sweater for less. Understanding how customers

(investors) value a product (a data set) is different from calculating a market clearing or

equilibrium price. Valuations are important because they allow us to evaluate consumer

surplus and welfare, teach us about demand elasticity, markups and market competition,

and allow one to ask if observed transactions prices are efficient.

Our measurement approach relies on sufficient statistics which are easily computable.

While our measure is based on a model, we do not need to estimate most model parameters

to arrive at a data value. In Section 2, we set up a noisy rational expectations model with

rich heterogeneity in investors, assets and data types and derive the expected utility of data

in dollar amounts. We show that a few sufficient statistics – average returns, variances and

forecast errors – are all that is needed to price a piece or a stream of data. This is true

regardless of whether the data is public, private, or known by some. Our sufficient statistics

are also a valid measure regardless of how heterogeneous other investors’ preferences, data

or investment styles are. They can be used to value data about asset fundamentals or about

sentiment. Finally, with a small adjustment, they can be used in imperfectly competitive

markets as well.

One could apply this tool to any finance-relevant data series, or any bundle of data series.

As long as an investor knows their own characteristics and has access to a history of market

prices and data realizations, they can attach a dollar value to any data. We present a small

number of examples that highlight the importance of accounting for investor heterogeneity

is so important for data valuation. Specifically, we compute the value of median analyst

forecasts for earnings growth for investors of various types.
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Our first exercise explores the role of investor wealth and risk preferences. We consider

an investor who has a relative risk aversion of 2 and with an initial wealth of either a $1

million or a $100 million. The latter case is equivalent to considering an investor with lower

absolute risk aversion. Of course, such an investor values information more, but the extent

depends greatly on market structure, i.e. on whether their trades have price impact or not.

When markets are competitive and a trade has no impact on the market price, data values

increase almost linearly with wealth – an investor with 100 times more wealth values data

by almost 100 times more. But when trades do move the market price, in line with empirical

estimates of price impact, the value of data falls by an order or magnitude. A trader with

100 times larger wealth values data less than 10 times more. This illustrates the general

pattern we see of enormous heterogeneity in willingness to pay for data, that is substantially

tempered by a modest degree of market illiquidity.

The high sensitivity of data to changes market liquidity is interesting in its own right.

It suggests that market liquidity is crucial for the value of financial data. Small changes

in market liquidity can lead to large variation in data value. For firms whose main asset

is financial data, these small market liquidity changes could represent high volatility in the

value of such firms. This suggests a new avenue of liquidity effects in asset markets. As data

becomes a more important asset for financial firms, the prices of financial firms may become

increasingly sensitive to market liquidity.

Our second exercise considers investors with different investment styles. Specifically, we

analyze data value for investors who trade the market (the S&P 500) portfolio, only small

firms, only large firms, only growth stocks or only value stocks. The final type of investor

trades all five of the previous portfolios. Because each of these types uses a piece of data

differently, they value the same piece of information differently. Unsurprisingly, the investor

who actively trades all the portfolios values data most. We also find that investors in large

firms and growth stocks also value data substantially more than a value or small-firm investor.

Our third exercise quantifies how much the value of analyst forecast data depends on what
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other data is in an investor’s database. We find considerable variation in data values when

we vary the other data variables used. In general, the more series we add to the investor’s

information set, the lower is the value ascribed to additional data. The extent of this change

in value is sizable. This intuitive result illustrates the importance of accounting for many

facets of investor heterogeneity. It also suggests that this dimension of heterogeneity can

induce sizable heterogeneity in data valuations, and in turn, a low price elasticity of data

demand.

Our fourth exercise considers investors with a shorter trading horizon. Such differences

are easy to accommodate with higher frequency observations on the data series and asset

returns. We illustrate this by computing the value of data to an investor who trades over

a quarterly horizon. We find that a shorter horizon makes data slightly less valuable. In-

tuitively, our data are less useful in forecasting returns over a shorter horizon. Of course,

it is possible that an investor who trades or rebalances his portfolio more frequently might

ascribe a higher value to the data. We do not investigate this conjecture in this paper, in

part due to data limitations, but our procedure can be extended for this purpose as well

In exploring these examples, we also gain new insights about financial asset markets. We

learn that the value of data assets is very sensitive to market liquidity. We typically think of

market liquidity as something that affects only the value of financial assets, not the real value

of a firm. But if illiquidity makes it harder or more expensive to execute profitable trades,

the real value of financial data that informs such trades declines. The value of firms whose

main asset is such data declines as well. As the importance of data asset grows, this channel

through which market liquidity can affect the real value of firm assets grows in importance.

Why do we need to estimate the value of data? Why not look at prices for data directly?

One reason is that not all data prices are observed, either because the data is not traded,

or it is traded privately. In other words, the data is an asset, and if it is owned by a firm

but never traded, it does affect the value of the firm while its price is unknown. But even

if all prices were observed, just like assets can be mispriced, data can be mispriced. Finally,
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a firm’s willingness to pay for data depends on what data they already own. A market or

transaction price for data does not necessarily reflect how any one firm values the data.

Relationship to the literature. Data is information. Therefore, our approach to valuing

financial data draws primarily on the literature exploring information in financial markets.

A few papers have examined the value of information or skill, for a representative agent

or in an economy with one aggregate risk (Kadan and Manela, 2019; Savov, 2014; Dow,

Goldstein, and Guembel, 2017; Morris and Shin, 2002). Kacperczyk, Nosal, and Sundaresan

(2021), Kyle and Lee (2017), and Kyle (1989) add imperfect competition. What we add is a

richer asset structure, a richer information structure, but most importantly, heterogeneous

investors who value information differently. The investor heterogeneity is essential for an

aggregate data demand function.

Enriching the information structure to allow for public, private or correlated signals is

also important for real-world measurement. Such rich information structures are commonly

studied in settings with quadratic payoffs (Ozdenoren and Yuan, 2008; Albagli, Hellwig,

and Tsyvinski, 2014; Amador and Weill, 2010). But they have substantially complicated

previous asset market models to the point that most authors assume fully private (Barlevy

and Veronesi, 2000; Zhiguo, 2009; Kondor, 2012) or fully common (Grossman and Stiglitz,

1980) information.1 In addition, investors may choose between asset valuation-relevant data

or data about other investors’ order flow (Farboodi and Veldkamp, 2017). The idea that all

these types of information can be valued with one set of sufficient conditions is a new idea

that substantially broadens the empirical applicability of these tools.

The main point of the paper is that heterogeneity in investor characteristics matters.

Some version of all these characteristics exist in some noisy rational expectations model

(Kacperczyk, Nosal, and Sundaresan, 2021; Peress, 2004; Mondria, 2010), most of which

look daunting to estimate.2 This project shows that, despite all these degrees of heterogneity

1Exceptions include Goldstein, Ozdenoren, and Yuan (2013) and Sockin (2015).
2Heterogeneity also arises in micro models like (Bergemann, Bonatti, and Smolin, 2016), who value

information in a bilateral trade, where sellers do not know buyers’ willingness to pay, but without the
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among investors, data types and equilibrium effects, there is a simple procedure to compute

a value for data.

Measures of the information content of prices, like those in Bai, Philippon, and Savov

(2016) and Davila and Parlatore (2021) are used to infer how much the average investor in

an asset knows. Such measures are related, in that they arise from a similar noisy rational

expectations framework. But they answer a question about the quantity of information, not

its value. Farboodi, Matray, Veldkamp, and Venkateswaran (2019)’s “initial value” of a unit

of precision is not the value a firm would pay, is only valid for private signals about orthogonal

assets, and does not account for any particular firm’s preferences, portfolio, existing data set

or price impact. Our sufficient statistics approach is more relevant for demand estimation,

much simpler to estimate and more robust to heterogeneity.

1 A Framework for Valuing Data

Since data is information, we build on the standard workhorse model of information in

financial markets, the noisy rational expectations framework. To the framework, we add long-

lived assets, imperfect competition, heterogeneity of preferences, wealth effects, investment

styles, public, private or partly public signals and arbitrary correlation between assets and

between various signals. We include these features because each one affects the value of

information. Model extensions consider data about sentiment or order flow.

Our contribution is not the modeling. Our contribution lies in showing how to estimate

data valuations in such a rich and flexible model. The goal of the model is to show how,

despite all the heterogeneity, the value of data can be reduced to a few sufficient statistics

that are easy to compute. Later, we justify this rich modeling structure by showing that

heterogeneity matters for data valuations.

equilibrium considerations about what others know.
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Assets We have N distinct risky assets in the economy indexed by j, with net supply given

by x̄. Each of these assets are claims to stream of dividends {djt}∞t=0, where the vector dt is

assumed to follow the auto-regressive process

dt+1 = µ+G(dt − µ) + yt+1.

Here, the exogenous dividend innovation shock yt+1 ∼ N (0,Σd) is assumed to be i.i.d. across

time. We use subscript t for variables that are known before the end of period t. Thus, the

dividend dt+1 and its innovation shock yt+1 both pertain to assets that are purchased in

period t; both these shocks are observed at the end of period t.

Investors and investment styles In each period t, n overlapping generations investors,

i ∈ [0, 1], are born, observe data, and make portfolio choices. The number of investors may

be finite, which implies that markets are imperfectly competitive. We will also consider

the limiting economy as n becomes infinite. In the following period t + 1, investors sell

their assets, consume the dividends and the proceeds of their asset sale and exit the model.

Each investor i born at date t has initial endowment w̄it and utility over total, end-of-life

consumption cit+1. At date t, investors choose their portfolio of risky assets, which is a vector

qit of the number of shares held or each asset. They also choose holdings of one riskless asset

with return r, subject to budget constraint

cit+1 = r (wit − q′itpt) + q′it (pt+1 + dt+1) . (1)

An investor i may also be subject to an investment style constraint, which limits the

set of risky assets they purchase. We denote this set of investable assets as Qi. Following,

Koijen and Yogo (2019), we do not model the source of the constraint. However, many

investors do describe their strategy as small-firm investing or value investing, which limits

the assets they hold. We consider sets Qi that either set the holdings of some assets to
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zero, or allow the entire real line. For example, long-only portfolios would restrict Qi to the

non-negative realm of Ren. Of course, it is possible that an investor is unrestricted, in which

case Qi = Ren.

Data Each investor has access to H distinct data sources. Signals from each of these data

sources (indexed by h) provides information about dividend innovations yt+1, possibly from

a linear combination ψh of assets:

ηiht = ψhyt+1 + Γheit

Here, eit ∼ N (0, I) is iid across time, but not necessarily independent across investors or

across assets. In other words, data can have public and private signal noise. Public signal

noise captures the idea that many data sources are available to, observed and used by many

investors. In addition, all investors know the variance and covariance of prices, dividends

and the data they observe.

External Demand Some source of noise in prices is necessary to explain why some in-

vestors know information that others do not. We assume the economy is populated by a

unit measure of noise traders. Their demand could come from hedging demands, estimation

error, cognition errors or sentiment.3 Each noise trader sells xt+1 shares of the asset, where

xt+1 ∼ N(0,Σx) is independent of other shocks in the model and independent over time.

The noise can be arbitrarily small, as long as Σx > 0. Similar to the dividend dt+1 and its

innovation shock yt+1, the shock xt+1 is observed at the end of period t.

Equilibrium An equilibrium is a sequence of prices {pt}∞t=0 and portfolio choices {qit}∞t=0,

such that

3In other words, xt+1 includes whatever is unrelated to payoffs. If it is persistent, and therefore payoff
relevant, the persistent component should be included in the payoff structure. In previous work, micro-
founded heterogeneous investor hedging demand has been shown to rationalize this trading behavior. See
Kurlat and Veldkamp (2015).
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1. At the beginning of each period t, all investors have information set I−t = {It−1, yt, dt, xt, zt},

where It−1 is the information set of the average investor at time t − 1 (averaged over

private signal realizations).

2. Investors use Bayes’ Law to combine prior information I−t with data ηiht, and pt to

update beliefs. The information set at the time of portfolio choice is Iit = {I−t , ηit, pt}.

3. Investors choose their risky asset investment qit to maximize E[U(cit+1)|Iit], taking

the actions of other investors as given, subject to the budget constraint (1) and the

investment style constraint qit ∈ Qi.

4. At each date t, the risky asset price vector p equates demand plus noise xt+1 to a vector

x̄ units of supply: ∫
i

qitdi+ xt+1 = x̄ ∀t. (2)

Equilibrium Solution To solve the model and derive the value of data, we first apply

Bayes’ law to investors’ prior beliefs and data to form posterior beliefs about asset payoffs.

Appendix A shows that investor i can aggregate her data. Getting this combination of

private, public and price information is equivalent to getting an unbiased signal sit about

the dividend innovation yt+1, with private signal noise ξit and public signal noise zt+1.

sit = yt+1 + ζitzt+1 + ξit

The term zt+1 ∼ N (0,Σz) comes from the noise in public component of the any data. It is

iid across time, with precision Σ−1z . This public signal noise zt+1 pertains to assets that are

purchased in period t and is observed at the end of period t. If investor i learned nothing

from any public sources of information at date t, then ζit = 0 and this becomes a standard

private signal. Similarly, ξit ∼ N (0, K−1it ) is the noise in the private component of the signal

(iid across individuals and time), which has the precision Kit, orthogonal to the noise of the

public component.
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Next, we take a second-order approximation to the utility function. This allows us to

write the unconditional and conditional expected utility at time t as

E [U(cit+1)] = ρiE [cit+1]−
ρ2i
2
V [cit+1] (3)

E [U(cit+1) | Iit] = ρiE [cit+1 | Iit]−
ρ2i
2
V [cit+1 | Iit] . (4)

Here, ρi denotes the coefficient of absolute risk aversion for investor i, which can be an

arbitrary function of their endowment wit.

Finally, we show in the appendix that the exists an equilibrium price schedule that is

linear in current dividend dt, future dividend innovations yt+1 that investors learn about

through data, demand shocks xt+1 and the noise in public data zt+1.

pt = At +B(dt − µ) + Ctyt+1 +Dtxt+1 + Ftzt+1 (5)

Mapping Data Utility to Sufficient Statistics Our first result uses the law of iterated

expectations to compute unconditional expectation (3) in terms of means and variances of

the vector of asset return Rt, defined below. Since we have substituted out the optimal

consumption, we replace the direct utility function which takes consumption as its argu-

ment, with an indirect expected utility function Ũ which takes an information set Iit as its

argument.

In order to state the main result we need to define Rt, the vector of returns from buying

each asset in investor i’s feasible investment set, at time t,

Rit := ζi ((pt+1 + dt+1)./p̄t − r) . (6)

where ./ represents the element-by-element division of two vectors and p̄t is a reference price

for computing returns that has already been realized. The matrix ζi is an mi × N matrix

of zeros and ones, where mi is the number of investable assets for investor i. Each row of ζi
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has a single 1 entry, with all other entries zero. If asset j is in investor i’s style class, then

that asset is investable and there will be one row of ζi with ith column entry equal to 1.

Lemma 1. In a competitive market (n→∞), investor unconditional expected utility can be

expressed as

Ũ(Iit) =
1

2
E [Rit]

′V [Rit | Iit]−1 E [Rit] +
1

2
Tr
[
V [Rit]V [Rit | Iit]−1 − I

]
+ rρiw̄it (7)

where Tr is the matrix trace and w̄it is investor i’s exogenous endowment.

Proof is in Appendix A.

Equation (7) illustrates the basis for our measurement strategy. The value of data is

this expected utility with the piece of data, minus this expected utility without that piece

of data.

The first term is the expected profit on individual i’s portfolio. The role of more or

better data is to reduce conditional variance V [Rt | Iit]. In other words, an investor’s utility

rises with data if she can use the data to make forecasts with smaller squared forecast errors.

Smaller forecast errors are valuable because they allow the investor to buy more of assets that

will ultimately have higher returns — the first term captures utility gain through expected

profit. The second term captures the benefit of data lowering the risk of the portfolio, which

increases utility for a risk-averse investor — the second term represents utility gain through

variance reduction.

One might object that data should also enter in the expected payoff. Data will affect

the conditional beliefs about asset returns E [Rt | Iit], but not the unconditional, ex-ante,

expected returns E [Rt]. The reason data cannot affect our ex-ante expected profit is the

following: If before seeing some great data, I firmly believe that such data will make me

more optimistic about an asset’s return, then I should raise my expectation of that return

right now. In other words, data does not affect E [Rt] because beliefs are martingales.

In a imperfectly competitive market, the result takes a similar form, but with price-
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impact-adjusted variances.

Lemma 2. Unconditional expected utility, for an investor with price impact dp/dqi is

Ũ(Iit) = E [Rt]
′ V̂ −1i E [Rt] + Tr

[
(V (Rt)− V (Rt | Iit)) V̂ −1i

]
+ rρiw̄it. (8)

where V̂ −1i := Ṽ −1i

(
1− 1

2
V (Rt | Iit) Ṽ −1i

)
and Ṽi := V (Rt | Iit) + 1

ρi

dp
dqi

(p̄tp̄
′
t)
−2.

Notice that if dp/dqi = 0, then V̂i
2

= Ṽi = V (Rt | Iit). The result becomes the same as

proposition 1.

This formula explains another important features of our results. Multiplying dp/dqi is an

investor’s risk tolerance 1/ρi. Since this is absolute risk aversion and we know that absolute

risk aversion declines in wealth, one can interpret this as a proxy for investor wealth. A

wealthier/larger investor has more price impact. An investor with a portfolio that is ten

times larger faces ten times the price impact, per share of an asset sold.

The price impact of all investors’ trades would seem to matter for the value of data. It

does. But once again, it is captured by the variances. Other investors’ price impact enters

this expression through the equilibrium price coefficient C. This, in turn, shows up in the

mean and variance of Rt. Since we measure then mean and variance of R directly, we do

not need to know what other firms market power is or work out its effect. That effect is

already incorporated in our sufficient statistics.4 As long as we can measure these sufficient

statistics, and we know investor i’s market power, we can accurately compute the value of

investor i’s data.

As before, we value data as the difference between expected utility with and without

the data. When we make this calculation, we are calculating the value of a firm doing a

one-time, surprise deviation to a marginally higher level of data. What we are not doing is

asking: If all the other firms know that this one firm will acquire slightly more data, how will

their own data choices react? We are taking as given the best responses of all other firms.

4Market power does change the interpretation of C as a measure of price informativeness. But how one
interprets the price coefficient C, in this case, does not affects its use in assessing data value.
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The two key assumptions behind both the competitive and market power results are

that price can be approximated as a linear function of innovations as in equation (5), and

that individual i maximizes risk-adjusted return. In other words, this calculation is accurate

as long as investors use linear factor models and maximize risk-adjusted return, even with

potentially heterogeneous prices of risk.

Private, Public and Correlated Information At first pass, this result is unsurprising.

This type of expected utility expression shows up in many noisy rational expectations models,

dating back to Grossman and Stiglitz (1980). But what is surprising are all the heterogeneous

model features that did not complicate this answer.

In particular, this answer suggests that there is no real difference between the value of

public and private information. Regardless of who else knows the data, it is valuable only

for its ability to change the conditional forecast errors. But that conclusion flies in the face

of what we know about information value (Glode, Green, and Lowery, 2012). The reason

both can be correct is that the publicity of the data matters for the conditional variance.

Private information is typically more valuable. That is picked up by our measure because

private information is less likely to be impounded into price. In other words, information

that everyone knows is less correlated with ((pt+1 + dt+1./p̄t)). Public information about

(pt+1 + dt+1) is already impounded in p̄t. In their ratio, it cancels out. Therefore, public

information will be less correlated and less predictive of returns Rt.

In short, who else knows a piece of data matters. But knowing the forecast errors captures

the way in which this public knowledge matters. This is an incredibly helpful property

because it relieves the econometrician of having to figure out who knows what. Conditional

variances, or in other words, the size of forecast errors, are sufficient statistics.

Similarly, the risk preferences of all market participants matter. However, the expected

payoff E[Rt] captures the way in which risk preferences and investment mandates matter.
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Mapping Utility to a Dollar Value The dollar value of data is the amount of risk-free

return an investor would require to be indifferent between having the data, or not having

the data but getting the additional riskless wealth. Our utility function takes the form of

risk aversion times expected wealth, minus a risk-adjustment. Thus, dividing the difference

in utility by the coefficient of absolute risk aversion delivers a certainty equivalent amount:

$Value of Datai =
1

ρi

(
Ũ(Iit ∪ data)− Ũ(Iit)

)
(9)

Of course, that leaves open the question of what an investor’s absolute risk aversion is.

One way to impute such a value is to assume the investor has constant relative risk aversion

(CRRA), with a risk aversion coefficient of σ. Then, we can compute the level of absolute

risk aversion that corresponds to relative risk aversion of σ. We will use σ = 2, a conservative

level of risk aversion. In order to do so we equate a standard power utility function (CRRA)

to a standard exponential utility function (CARA), and then solve for the absolute risk

aversion ρ that equates the two functions at relative risk aversion of σ = 2 and a wealth level

of c, which we later calibrate to the wealth of an investor or modest size fund.

Thus, absolute risk aversion is the value of ρ that equates

c1−σ

1− σ
= − exp−ρc .

For a relative risk aversion σ = 2, the absolute risk aversion is

ρ =
1

c
ln(c).

For an investor with c = $1 million, ρ = 13.82 × 10−6, while for an investor with c = $100

million, ρ = 18.42× 10−8.

An alternative approach to estimating ρ could be to use the market price of risk. Using

the formulas for the equilibrium price coefficients, one could map the value of ρ to an equity
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premium and choose the value that matches a preferred estimate of the equity premium.

We do not follow that approach for two main reasons. First, this would reveal how the

market values data, not how an individual investor, with particular characteristics should

value data. It is the answer to a different question. Our question is about the individual’s

value of data and how investor heterogeneity matters for data valuation. Second, it requires

estimating most of the structural parameters of the model. As such, the estimates becomes

much more sensitive to the exact model structure and choices of how to estimate each object,

and counteracts the advantage of our simple sufficient statistics approach.

Data About Order Flow or Sentiment Many new data sources teach us about how

others investors feel about an asset. For example, analyzing a twitter feed is unlikely to turn

up new dividend information. But it might well correlate with the current price because it

detects sentiment. Sentiment is something unrelated to the fundamental asset value, that

affects current demand. In our model, the variable that moves current price in a way that

is orthogonal to value is xt+1. So, we interpret sentiment as something that shows up in x,

thus sentiment data are time-t signals about price noise xt+1.

Put differently, our base model is set up to value data which are signals about future

cash flows of a firm. But this tool can also be used to value data series about sentiment,

order flow, or aspects of demand that are orthgonal to future cash flows but may affect the

current price. In fact, Appendix C shows that such data can be valued using (7) and (9),

just as if this were cash flow data.

Of course, many structural aspects of this model with sentiment data change. If we were

to estimate the underlying parameters from order flow data, many adjustments would be

necessary. But the essence of Farboodi and Veldkamp (2020) is to show that such data can be

used to remove the noise from the price signal and thus better forecast earnings. Doing this is

functionally equivalent to trading against dumb money, a common practice for sophisticated

traders with access to retail order flow. The fact that such trading activity can be formally

represented as if sentiment/order flow data were being used in a linear combination with
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current prices to forecast cash flows, means that estimating cashflows conditional on prices

and sentiment data yields a valid estimate of data value.

2 Data and Estimation Procedure

First, we describe the estimation procedure. Then, we describe the data series used in the

procedure and how exactly we arrive at data valuations.

Estimation Procedure The first step is to compute asset j’s returns, Rjt. The Rjt for

each asset at each date t is an element of the vector Rt. To get the unconditional expected

return E [Rt], we then average this time series E [Rt] = 1/T
∑T

t=1Rt. Next, compute the

variance of returns V [Rt].

Next, we regress the sequence of returns Rt’s on any already-owned data and the data

being valued. Implementing this in practice would require an investor to be able to access the

historical series of the data-set they are considering buying. Then, perform a simple, linear,

ordinary least squares regression of returns Rt on all the variables, already owned and new,

in the data set. The variance of the OLS residual represents V [Rt | Iit]. Finally, combining

these elements, compute E [U(cit+1)]. We then repeat this procedure, excluding the data

series of interest. In our empirical implementation, we use a set of observable controls as a

proxy for existing data. The difference between the expected utility with and without this

data is the value of that data source.

Formally, given data, denoted Xt, and existing data, denoted Zt, we can estimate the

data added precision V (Rt | Xt, Zt)
−1 and V (Rt | Zt)−1 by estimating the following two

regressions:

Rt = β1Xt + β2Zt + εXZt (10)

Rt = γ2Zt + εZt (11)
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From these two vector regressions, an estimate for V [Rt | Iit] would be Ĉov(εXZt ). For a

data set with observations 1, . . . , T , this estimate is 1
T−|X|−|Z|

∑T
t=1 ε

XZ
t εXZ ′t . Similarly, the

estimate for V [Rt] would be Ĉov(εZt ). With a finite sample, the approximate variance-

covariance matrix of residuals is 1
T−|Z|

∑T
t=1 ε

Z
t ε

Z ′
t , where |X| and |Z| are the number of data

series that comprise Xt and Zt, including the constant in Zt. For most of the calculations

that follow, |X| = |Z| = 2. Substituting in the mean return and the estimated variance-

covariance matrices in Equation 7 yields the estimated value of data, in utils.

One might question how a Bayesian theory corresponds to a procedure that uses OLS.

When variables are normal and relationships are linear, Bayesian estimates are the efficient,

unbiased estimates. Since OLS estimates are the unique efficient, unbiased linear estimates,

they must coincide with the Bayesian ones, in the specific case of normal variables in a linear

relationship. Thus, in this case, OLS estimators are Bayesian weights on information. In

cases where variables are not normal or the expected relationship between the data and Rt

is not linear, there are a few possible solutions: 1) Transform the data to make it normal or

linear; 2) use OLS or non-linear least squares as an approximation to the Bayesian forecast,

or 3) perform Bayesian estimation.

Data on Asset Prices and Cashflows All data are for the U.S. equity market, over the

period 1985–2015. Stock prices come from CRSP (Center for Research in Security Prices).

All accounting variables are from Compustat. For our annual calculations, we measure prices

at the end of the calendar year and dividends per share paid throughout the calendar year.

In line with common practice, we exclude firms in the finance industry (SIC code 6).

The equity valuation measure, i.e. the empirical counterpart for the price pjt in the model,

is market capitalization over total assets for the calendar year. Our cash-flow variable, djt,

is proxied using total dividends paid over assets.

We make a couple of adjustments to the raw data. The first is to deal with inflation,

which can create predictability in nominal dividends and prices. We adjust all cash-flow

variables with a GDP deflator, deflating all nominal values to 2010 USD values. The second
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pertains to exiting firms. Our preferred solution is to only consider periods during which a

firm has non-missing information. Next, we winsorize the deflated values for assets, market

capitalization and total dividends at 0.01% level.

Henceforth, we refer to the market capitalization at the end of year for stock j divided

by the assets in that year for stock j as the price pjt, and the total dividends normalized by

assets in that year as djt. We calculate the excess returns as Rjt =
pjt+1+djt+1−pjt

pjt
− rft , where

we use the yield on Treasury bills (constant maturity rate, hereafter CMT) with one year

maturity as the risk-free rate.

Forming Asset Portfolios The procedure described above can be used for any number

and type of assets, including individual stocks. However, for expositional purposes, and

to show more clearly the patterns in data value, we group assets into a small number of

commonly-used portfolios, rather than work with a large number of individual stocks/assets.

We then consider information portfolio choice between these portfolios and data about the

payoff of each portfolio. As a result, we will have a smaller number of data values to consider.

We group firms into Large and Small, based on whether they are above or below the me-

dian value of market capitalization for all firms in our sample, in that year. Next, we classify

firms into Growth and Value based on their book-to-market ratio (defined as the difference

between total assets and long-term debt, divided by the firm’s market capitalization). Firms

above the median value of book-to-market in a year are value firms, while those below the

median are our growth firms. This gives us four portfolios – Small, Large, Growth and Value.

The fifth portfolio is a market index (S&P500). We use value-weighted averages for excess

returns for each portfolio as the return measure, where we weigh each firm’s return by its

market capitalization.

Measuring Price Impact If an investor uses our data valuation tool to measure their

own value of data, then presumably, that investor knows how much the price moves when

they trade, on average. But for the purpose of illustrating the use of our tool, we need a
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reasonable price impact estimate.

Appendix B explores estimates of price impact from the literature. Hasbrouck (1991)

finds that a $20000 trade moved prices by 0.3% on average. Since the reference price of one

share of an asset is normalized to one in the model, a 0.3% price increase corresponds to

a price that is 0.003 units higher. Therefore, we explore imperfectly competitive markets

where dp/dqi = 0.003/20000. While this is a small number, it is large enough to illustrate a

substantial effect.

Publicly Available Information When we value a stream of data, we need to take a

stand on what else an investor already knows. Obviously, we as econometricians have no way

of knowing that. But this is a tool designed from the investor’s perspective, for the investor

to value a stream of data. That investor should know what other data they themselves

regularly use.

For the purposes of illustrating the use of the tool, we endow our hypothetical investor

with some commonly-used and publicly-available data series. Specifically, we assume that

they already observe the dividend yield (D/P ratio) for S&P5005.

In additional results, we also consider and investor who also has access to one or more of

the following pieces of data: the yield on a 1-year Treasury bill (constant maturity rate)6,

the consumption-wealth ratio (CAY) from Lettau and Ludvigson (2001) and a sentiment

index from Baker and Wurgler (2006).

The Data Stream We Value: IBES forecasts One could use this tool to value any

finance-relevant data stream or bundle of data streams. To explore how variable investors’

valuations can be for a very standard data series, we consider the value of the earnings

forecasts provided by the Institutional Brokers Estimate System (IBES).7. Our data contains

5Obtained from NASDAQ Quandl https://data.nasdaq.com/data/MULTPL/SP500_DIV_YIELD_

MONTH-sp-500-dividend-yield-by-month
6Obtained from FRED series DGS1
7We use the Summary Statistics series from IBES, accessed through WRDS, https://wrds-

www.wharton.upenn.edu/pages/get-data/ibes-thomson-reuters/ibes-academic/summary-history/summary-
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earnings forecasts for 5506 unique firms from 1985–2015, with 1018 firm observations per

year on average.

We use annual forecasts. In our baseline model, investors have a horizon of a year and

use the latest available one-year-ahead earnings forecast at each date. Later, we explore how

different trading horizons affect the data value.

For each firm, we use the median consensus analyst forecast for earnings per share (here-

after EPS). We discard all forecast values which have been calculated during or after the

calendar year for which the forecast is being made. For example, any forecast we use for

earnings in 2015 has to be issued before the year 2015 starts. We then drop all but the latest

consensus forecasts for each firm-year observation, which gives us a single consensus forecast

for EPS over the next year. Using this consensus forecast, we calculate a forecasted growth

rate: the forecasted EPS for the coming year, divided by the realized value of EPS from the

last year.

Our goal is to explore a small number of data values, to gain intuition for how large this

amount is and what makes it vary. Therefore, we collapse the large number of assets into a

few portfolios and explore forecasts about those. We consider five portfolios: small, large,

growth, and value firms, as well as the S&P500 index. We find that most of the value of

data comes from signals about growth firms and about the S&P500 index.

Therefore, when we value IBES data, we are valuing two signals, one about the earnings

per share of all firms in the growth firms bin and one signal about the earnings per share

of all firms in the S&P500 index. Specifically, these are the portfolio value-weighted average

values of median forecasted growth rates for earnings per share – for the Growth and S&P500

portfolios. Note that we are valuing a forecast of a payoff of a particular portfolio of assets.

8

statistics/.
8We could have performed this calculation under many alternative assumptions. For example, one could

value growth firms’ data from the perspective of an investor who invests only in growth firms. In that
case, one would regress the growth firm asset payoffs on the relevant data and use means variances and
forecast errors of growth asset payoffs. We did not take that approach because if we vary the investment
set and the data together, we would not know whether data was more/less valuable because of the data or
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Data Timing As discussed above, our return measure for year t for an asset j is the

cum-dividend excess return on that asset over the year t – using prices at the end of year t

and at the end of year t − 1, along with dividends paid out over year t. We are interested

in understanding the value of data available to an investor before year t, in predicting the

value of this profit measure for year t.

The value of any control variable used – e.g. S&P500 D/P ratio – for the purpose of this

calculation is obtained for year t− 1, since these values will be in the investor’s information

set while predicting the profits for year t. Similarly, the IBES data signal we are valuing

needs to be in the information set of the investor before year t. We use the IBES forecasted

earnings growth rate as our data signals. To predict profits over year t, we use the data

signals which are produced before year t starts, which give information about growth in

earnings of firms between year t− 1 and year t. We already ensured this while constructing

data signals from IBES, as we discarded all forecasts for year t which are made after year t

has started.

3 Valuing Financial Data

The results that follow report the additional utility that investors would assign to IBES

forecasts, given what they already know. We also convert this into a dollar amount, which is

a willingness to pay. In most cases, these private valuations look nothing like a price that any

investor actually pays for an IBES subscription. Some valuations are orders of magnitude

higher, others much lower. Recall that these are not predicted transactions prices. They

are private valuations that trace out a demand curve. The qualitative results are mostly

intutive, which is a good thing. Our contribution is a measurement tool, not a shocking

finding. Our tool is a good one if it mostly returns sensible or intuitive results.

the investment restriction. But, it is certainly another dimension of investor heterogeneity that might be
interesting to explore.
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Table 1: Risk Tolerance. Annual data between 1985–2015. Dependent variables in (10)
and (11) are returns, in excess of a 1-year treasury (CMT), for five portfolios – {Small, Large,
Growth, Value, S&P500}. All specifications include a constant and a control variable (the
S&P500 D/P ratio). Data variables being valued are the IBES median forecasts for annual
value-weighted earnings for Growth and S&P500 portfolios, normalized by assets and growth
over last year’s realized earnings for each ticker. The case with price impact assumes Kyle’s
Lambda λ = dp

dq
= 1.5× 10−7. Dollar values are reported in thousands of 2010 USD.

Perfect Competition With Price Impact

Panel A: Investor with $1m Wealth.
Utility Gain 0.0919 0.0460
Expected Profit 0.0365 0.0114
Variance Reduction 0.0554 0.0346

Dollar Value (in $000) 6.65 3.33
Time Periods 31 31

Panel B: Investor with $100m Wealth.
Utility Gain 0.0919 0.0050
Expected Profit 0.0365 0.0003
Variance Reduction 0.0554 0.0047

Dollar Value (in $000) 499.05 27.37
Time Periods 31 31

3.1 Wealth and Risk Tolerances

One obvious dimension along which investors differ is the size of their portfolios. We consider

an investor with 1 million and 100 million dollars, each with the same relative risk aversion

of σ = 2. The resulting difference in absolute risk aversion give rise to different willingness

to pay for the same data.

To value data for a particular investor, we need to know what else they already know

and what they can invest in. The investor whose value we are calculating already knows

the previous year’s S&P500 dividend/price ratio. They can invest in any combination of the

following five portfolios: S&P500, small, large, growth, and value. However, we make no

assumption about what any other investors know or trade.

Table 1 reports the dollar value of the IBES forecasts for a poorer and a richer investor,
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with and without price impact. The results illustrate three patterns: 1) Wealthier investors

with larger portfolios value data more. In a competitive market, an investor with a portfolio

that is 100 times larger values data almost 100-fold more ($499 vs. $6). 2) A small price

impact considerably attenuates the value of data. Even for the small investor, the value of

data falls by half ($3 instead of $6). 3) The decline in value of data from price impact is

amplified for large investors. For large investors, the dollar value of data declines almost

20-fold (from $499 to $27), when trades have price impact.

To better understand the sources data value, Table 1 also reports the expected return

and the variance reduction on the investor’s portfolio. The expected profit is the ex-ante

expected return on the optimal, diversified portfolio of the five assets the investor can hold.

The variance reduction is the difference between the raw variance of this return and the

conditional variance, which is the average squared residual of the predicted return, after

conditioning on the data. This is a measure of how much one learns from data. Notice that

price impact makes data less valuable for two reasons: It reduces the expected return and it

reduces the variability of that return. Both make data less valuable.

3.2 Investment Styles

Another dimension along which investors differ is their investment style. In thsi exercise, we

value exactly the same data, the IBES median forecasts for annual value-weighted earnings

for Growth and S&P500 portfolios. But we value the data from the perspective of an investor

who invests only in a subset of assets. The small stock investor is one who simply buys and

sells the portfolio of small stocks that we constructed. Same for the large, growth, value

or S&P investor. They each use data to determine when to buy and how much of their

respective portfolios. We compare these data values to the value of the investor who can

buy or sell any or all of these 5 portfolios. That investor is the same as the one reported in

Table 1.

Table 2 shows that among the investors who invest in a single portfolio, data is most
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Table 2: Investment Styles. Annual data between 1985–2015. Dependent variables in (10)
and (11) are returns, in excess of a 1-year treasury (CMT), for five portfolios – {Small, Large,
Growth, Value, S&P500}. All specifications include a constant and a control variable (the
S&P500 D/P ratio). Data variables being valued are the IBES median forecasts for annual
value-weighted earnings for Growth and S&P500 portfolios, normalized by assets and growth
over last year’s realized earnings for each ticker. The case with price impact assumes Kyle’s
Lambda λ = dp

dq
= 1.5× 10−7. Dollar values are reported in thousands of 2010 USD.

Portfolio Type

Small Large Growth Value S&P500 All

Panel A: Perfect Competition
E [R] 0.2058 0.0802 0.1047 0.0273 0.0350 –
V [R] 0.1333 0.0223 0.0255 0.0269 0.0144 –
V [R] (controls) 0.1371 0.0231 0.0263 0.0270 0.0145 –
V [R] (controls+data) 0.1375 0.0215 0.0241 0.0264 0.0133 –
Utility Gain 0.0000 0.0438 0.0653 0.0127 0.0498 0.0919
Dollar Value (in $000) for Investor with:
$1m Wealth 0.00 3.17 4.73 0.92 3.60 6.65
$100m Wealth 0.00 237.84 354.43 69.16 270.25 499.05

Time Periods 31 31 31 31 31 31

Panel B: With Price Impact
Investor with $1m Wealth:
Utility Gain 0.0000 0.0377 0.0568 0.0116 0.0389 0.0460
Dollar Value (in $000) 0.00 2.73 4.11 0.84 2.82 3.33

Investor with $100m Wealth:
Utility Gain 0.0000 0.0018 0.0027 0.0008 0.0015 0.0050
Dollar Value (in $000) 0.00 9.81 14.77 4.18 7.97 27.37

Time Periods 31 31 31 31 31 31

valuable for investors in growth firms and large or S&P500 firms. While the investor’s wealth

and price impact raise and lower the dollar value of the data, respectively, the pattern of

growth and large or S&P500 investors valuing data by more emerges consistently. Small

firms have high expected returns. But this data teaches the investor almost nothing about

when to buy small firms. Value firms have low returns and low data relevance. Large and

growth firms have medium expected returns, but are well predicted by the IBES forecast

data. We can see that in the difference between V [R] with and without data, in rows 3

and 4. Therefore, this data is most valuable to those who invest in growth and large-firm

equities.
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As we saw in the previous set of results, price impact reduces the value of data, but also

reduces the valuation dispersion. The investors who value data most are the same investors

who would liek to trade aggressively on the data, but are prevented from doing so when

price impact is large.

3.3 Previously Purchased Data

A third dimension along which investors differ enormously is in the data they already own.

While large, institutional investors have access to enormous libraries of data, households

may know only a few summary statistics about each asset. We illustrate both how to

incorporate differences in existing data sets and their quantitative importance through a

simple exercise. So far, we have valued the IBES data assuming that investors already have

access to S&P500 dividend/price ratio. In this set of results, we ask: How valuable would the

same IBES forecasts be if, instead of the S&P500 dividend/price ratio, the investor had some

other variable in his or her existing data set? Of course, that does not nearly capture the

extent of the difference between the knowledge of investors. But even these minor differences

in which macro variable the investor already knows can significantly change the value of a

new data stream.

In Table 3, the first column reports the value of the IBES forecasts to $1 and $100 million

investors, who have no other sources of information. The next four columns report the value

of data when investors already have access to a single prior data series: Real CMT-1y, BW

Sentiment, cay, and S&P500 D/P ratio, respectively. In the last column, the investor already

has access to all five of these data series.

Unsurprisingly, access to prior data decreases the value of IBES data for investors. The

IBES forecasts are more than twice as valuable to the investor who knows nothing, relative to

the investor who already knows all five series. This is just an illustration of the diminishing

marginal returns to data. However, Table 3 shows that value of the IBES data is relatively

insensitive to knowledge of Real CMT-1y and BW Sentiment data. This insensitivity means
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Table 3: Previously Purchased Data. Annual data between 1985–2015. Dependent
variables in (10) and (11) are excess returns (over CMT-1yr) for five portfolios – {Small,
Large, Growth, Value, S&P500}. All specifications include a cosntant. Data variables being
valued are the IBES median forecasts for annual value-weighted earnings for Growth and
S&P500 portfolios, normalized by assets and growth over last year’s realized earnings for
each ticker. Values in each column represent the additional value of IBES data on top of
the control variable(s) listed in the header. Higher value for data indicates IBES data adds
more value over the control variable. Dollar values are reported in thousands of 2010 USD.

No
Controls

Real
CMT-1yr

BW
Sentiment

cay S&P500
D/P ratio

All
Controls

Utility Gain 0.163 0.147 0.145 0.104 0.092 0.073
Expected Profit 0.065 0.066 0.060 0.045 0.037 0.046
Variance Reduction 0.098 0.080 0.086 0.059 0.055 0.027

Time Periods 31 31 31 31 31 31
Dollar Value (in $000) for:

Investor with $1m Wealth 11.79 10.64 10.53 7.52 6.65 5.32
Investor with $100m Wealth 884.57 797.83 789.78 563.98 499.05 398.80

that IBES contains information that is not highly correlated with the information in either

series. On the other hand, data about cay and S&P500 D/P ratio attenuate the value of

IBES data more visibly. These series are closer subsitutes for IBES.

Among the alternative pieces of data that the investors can use, S&P500 D/P ratio is by

far the most informative one. The additional IBES data has the lowest value to investors

who already have access to S&P500 D/P ratio. Furthermore, for investors who have S&P500

D/P ratio prior data, access to the rest of the macroeconomic data series does not attenuate

the value of the IBES data much more.

3.4 Trading Horizon

Finally, investors differ in their trading horizons. Our data valuation tool can be applied to

various trading horizons. However, for the data we are exploring, this dimension of investor

heterogeneity seems to matter less than the others.

Our calculations so far have assumed that investors trade over an annual horizon. Next,

we measure the value of the same data – the median IBES forecast – for an investor who
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Table 4: Trading Horizon. Data between 1985–2015. Dependent variables in (10) and
(11) are returns, in excess of a 1-year treasury (CMT), for five portfolios – {Small, Large,
Growth, Value, S&P500}. All specifications include a constant and the S&P500 D/P ratio.
Data variables (Xt in (10)) are the IBES median forecasts, in growth rates, for annual
value-weighted earnings for Growth and S&P500 portfolios, normalized by assets. Numbers
reported in each column represent the additional value of annual IBES data (9) on top of
the control variable (S&P500 D/P ratio) for an investor trading at the trading horizon listed
in the table header. Dollar values are reported in annualized thousands of 2010 USD.

Annual Quarterly

Utility Gain (ann.) 0.092 0.067
Dollar Value (in $000, ann.) for Investor with $1m Wealth 6.65 4.83
Dollar Value (in $000, ann.) for Investor with $100m Wealth 499.05 362.14
Time Periods 31 124

trades the same portfolio but with a quarterly horizon. This does not change the data

value formula; it does change how we implement it. The procedure is to compute residuals

from (10) and (11) where Rt is quarterly return, the prior information Zt is a constant and

quarterly dividend-price ratios, and where Xt is the median forecast of the earnings growth

for Growth and S&P500 portfolios over the year.9 The resulting regression residuals (εXZt

and εZt ) are then used to construct the variance matrices and substitute these variances,

along with expected quarterly returns, into the expected utility formula (7). We convert

expected utility to data value as before, using (9).

The expected asset payoff and its variance will typically be smaller for shorter horizons.

This just reflects the fact that there is less asset appreciation and smaller changes over a

shorter period of time. The utility of an equally precise forecast is smaller because that

information will be used only for a lower potential payoff. Therefore, in order to facilitate

comparison with our baseline annual horizon numbers, we annualize our estimated quarterly

horizon data values by multiplying them by four.

Table 4 reports the value of the IBES forecasts for both annual and quarterly investors.

9We also re-did the estimation using forecasts of quarterly earnings growth. It produced similar, but
somewhat smaller, data value estimates.
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The first column is the same values reported in Table 1. The second column shows that

investors who trade more frequently, on a quarterly basis, would be less willing to pay for

data each year. The reason for the lower quarterly valuation is that quarterly returns are

considerably more noisy. Earnings data is not very useful for quarterly portfolio adjustment.

Trading on this data only creates more noise.

The effect of trading horizon surely depends on the data source. For example, high-

frequency data is useful for high-frequency traders, but will likely be worthless after a year.

The more important take-away is that trading horizon can matter for how an investor values

their data. By adjusting the input data and the interpretation of the results, our data

valuation tool can be used to value data used by investors who trade at various frequencies.

3.5 Liquidity Affects the Real Value of Data

One consistent theme throughout our results was the importance of price impact. Our results

consider price impact as a single number. In reality, the price impact of a trade fluctuates

with market liquidity. These results teach us that such fluctuations will have a dramatic

impact of the value of data for large investors. Now consider a financial firm whose business

model revolves around the use or sale of data. That firm’s valuation is based largely on

the value of their data. Changes in market liquidity will greatly affect the real value of this

firm’s data assets.

As firms’ data stocks grow larger, the magnitude of liquidity shocks to data values should

grow. The reason is that price impact enters additively with conditional variance. This

additive form comes from first order condition for the optimal portfolio choice of investor i:

qi = 1/ρi [V[pt+1 + dt+1|Iit] + dp/dqi]
−1 [E[pt+1 + dt+1|Iit]− rpt]. If the conditional variance

V[pt+1 + dt+1|Iit] is large (high uncertainty), then small changes in price impact dp/dqi have

little effect. Those changes are swamped by the variance term and the inverse of this large

number is small. However, if conditional variance is small, meaning that asset payoff forecasts

are precise, then that first term, the inverse of a potentially small number, may be large. In
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this case, the effects of price impact can be substantial. Over time, if firms have more data

and thus smaller forecast errors, their data valuations become more and more susceptible to

changes in the price impact of a trade.

The high and growing sensitivity of data value to market liquidity suggests a new channel

through which market liquidity matters. Since the value of a financial firm depends on its

ability to trade profitably, the value of data is an input into the valuation of a financial

firm. As financial firms become more data-centric, the firm’s value becomes more sensitive

to the value of its data. At the same time, growing data abundance makes the value of

data more sensitive to market liquidity. These two margins of increasing sensitivity amplify

each other. This suggests that changes in market liquidity may affect the real value and

the equity value of financial firms through a new channel, through the value of their data.

In a world in which data is becoming increasingly abundant, this new liquidity-data effect

could grow much stronger. These findings suggest that, because of the rising abundance and

importance of data for financial firms, market liquidity may become more important than

ever before.

4 Conclusion

Data is one of the most valuable assets in the modern economy. Yet the tools we have to

quantify that value are scant. We offer a tool that a financial firm can use to value its existing

data, or a potential stream of data that it is considering to acquire. Given knowledge of the

distribution of investor characteristics, researchers can use this tool to trade out the demand

curve for data.

We uncover important investor wealth and trading style effects, the importance of an

investor’s existing data, and the role of trading horizon. Jointly, these effects point toward

enormous heterogeneity, spanning multiple orders of magnitude, in the value different in-

vestors assign to the same data. The dispersion in valuations suggests that marginal changes
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in the price of data will have little effect on demand. With such dispersed valuations, few

data customers would be on the margin. This low price elasticity of demand is significant

because it points to one reason why data markets might not evolve to be very competitive.

We further uncover a new channel through which market liquidity matters for the real

value of data, which is an important new class of assets. As firms accumulate more data

and data technologies improve, more and more of the value of a financial firm will depends

on the value of the data it possess. The sensitivity of the value of data to price impact of a

trade could introduce a new source of financial fragility, brought on by data accumulation,

and exacerbated by data technologies that improve financial forecasting.

The advantage of our measurement tool is its simplicity. While our measure of the value of

data is derived from a structural model, computing it does not require estimating structural

parameters. Instead, the relevant sufficient statistics are simple means and variances of

linear regression residuals. No matter whether the data is public, private, or known only

to a fraction of investors, these methods are valid. Even if the data is about sentiments or

order flows, as long as it is measured along with the market prices in the observable data

set, our data value measure offers a meaningful assessment of its value to an investor.
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Appendix

A Model Solution

Portfolio Choice Since we have a linear Gaussian system, we conjecture an equilibrium price

which is linear in the aggregate shocks,

pt = At +B(dt − µ) + Ctyt+1 +Dtxt+1 + Ftzt+1 (12)

In equilibrium, investor i selects the optimal portfolio qit given by the first order condition,

qit =
1

ρi
V (pt+1 + dt+1 | Iit)−1 {E [pt+1 + dt+1 | Iit]− rpt}

Assuming price of the form given in Equation 12, the investor derives an unbiased signal ηpt of yt+1

from the price as,

ηpt ≡ C−1t (pt −At −B(dt − µ)) = yt+1 + C−1t Dtxt+1 + C−1t Ftzt+1

This price signal has the conditional variance,

V (ηpt | Iit) ≡ Σpt = C−1t DtΣxD
′
tC
−1′
t + C−1t FtΣzF

′
tC
−1′
t

Note that the variance of this price signal is a fixed quantity (since the coefficients are artifacts

of the model, known ex ante to all investors). Given the information set Iit, the investors update

their beliefs of the dividend innovation yt+1 as per Bayesian updating to get,

V (yt+1 | Iit) ≡ Σit =
{

Σ−1d + Σ−1pt + (ζ2itΣz +K−1it )−1
}−1

E [yt+1 | Iit] ≡ µit = Σit

(
Σ−1d × 0 + Σ−1pt ηpt + (ζ2itΣz +K−1it )−1sit

)
= Σit

(
Σ−1pt ηpt +

(
ζ2itΣz +K−1it

)−1
sit

)
Further, we can express the gross payout at the end of period t+ 1 as,

pt+1 + dt+1 = At+1 +B(dt+1 − µ) + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2 + dt+1

= At+1 + µ+ (B + I) (dt+1 − µ) + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2

= At+1 + µ+ (B + I) [G(dt − µ) + yt+1] + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2
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Hence, the conditional moments of the gross payout can be expressed as,

E [pt+1 + dt+1 | Iit] = At+1 + µ+ (B + I)G(dt − µ) + (B + I)µit

V (pt+1 + dt+1 | Iit) = (B + I)Σit(B + I)′ + Ct+1ΣdC
′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

We first note that the shocks yt+2, xt+2 and zt+2 do not contribute towards the conditional expec-

tation, but are driving the conditional variance of the gross payout. On the other hand, investors

form imprecise estimate for the end-of-period shock yt+1, resulting in a contribution in both the

conditional moments.

Hence, the optimal portfolio is given as,

qit =
1

ρi

{
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

}−1×
[At+1 + µ+ (B + I)G(dt − µ) + (B + I)µit−rpt] (13)

Market Clearing We now impose market clearing,
∫
i qitdi = x̄+xt+1. First, note that the terms

in red in Equation 13 are constants for the integration. Hence, we define the factor multiplying

these terms – the risk tolerance weighted average precision of the gross payout,

Ωt ≡
∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
di

We next simplify the remaining term in blue in the integration in Equation 13 as,∫
i
ρ−1i V (pt+1 + dt+1 | Iit)−1 (B + I)µitdi

=

∫
i
ρ−1i V (pt+1 + dt+1 | Iit)−1 (B + I)Σit

(
Σ−1pt ηpt +

(
ζ2itΣz +K−1it

)−1
sit

)
di

=

{∫
i
ρ−1i V (pt+1 + dt+1 | Iit)−1 (B + I)Σitdi

}
Σ−1pt ηpt

+

∫
i
ρ−1i V (pt+1 + dt+1 | Iit)−1 (B + I)Σit

(
ζ2itΣz +K−1it

)−1
(yt+1 + ζitzt+1 + ξit)di

= ΓtΣ
−1
pt ηpt + Φtyt+1 + Ψtzt+1
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Here, we used the fact that ξit is distributed independently of all other variables with mean zero,

and defined the additional covariance terms Γt, Φt and Ψt (with Ωt duplicated for reference) as,

Ωt ≡
∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
di

Γt ≡
∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
(B + I)Σitdi

Φt ≡
∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
× (B + I)Σit

(
ζ2itΣz +K−1it

)−1
di

Ψt ≡
∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
× (B + I)Σit

(
ζ2itΣz +K−1it

)−1
ζitdi

As noted before, Ωt is the risk tolerance weighted average precision of the gross payout. The terms

in red indicate the additional terms in the subsequent covariance terms. First, Γt is the covariance

of the gross payout precision with the posterior variance of the dividend shock yt+1. Similarly, Φt is

the covariance of the gross payout precision with the posterior variance of the dividend shock yt+1

and the signal precision
(
ζ2itΣz +K−1it

)−1
. Lastly, Ψt is the covariance of the gross payout precision

with the posterior variance of the dividend shock yt+1, the signal precision and the exposure to the

public signal ζit.

We can now subsitute the covariance terms Ωt, Γt, Φt, Ψt and the price signal ηpt = C−1t (pt −At −B(dt − µ))

in the market clearing equation to get,

x̄+ xt+1 = ΓtΣ
−1
pt C

−1
t (pt −At −B (dt − µ)) + Φtyt+1 + Ψtzt+1

+ Ωt [At+1 + µ+ (B + I)G(dt − µ)− rpt]

=⇒
(
ΓtΣ

−1
pt C

−1
t − rΩt

)
pt = ΓtΣ

−1
pt C

−1
t At + ΓtΣ

−1
pt C

−1
t B (dt − µ)

− ΩtAt+1 − Ωtµ− Ωt(B + I)G(dt − µ)

− Φtyt+1 −Ψtzt+1 + x̄+ xt+1

Let Mt = ΓtΣ
−1
pt C

−1
t − rΩt. Using the linear conjecture for the price pt, we match coefficients as

follows:

• At to all the constant terms: At = M−1t
[
ΓtΣ

−1
pt C

−1
t At − ΩtAt+1 − Ωtµ+ x̄

]
• B to all terms with dt − µ: B = M−1t

[
ΓtΣ

−1
pt C

−1
t B − Ωt(B + I)G

]
• Ct to all terms with yt+1: Ct = −M−1t Φt

• Dt to all terms with xt+1: Dt = M−1t

• Ft to all terms with zt+1: Ft = −M−1t Ψt
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Solving this yields, 

At = 1
r

{
At+1 + µ− Ω−1t x̄

}
B = (r −G)−1G

Ct = −M−1t Φt

Dt = M−1t

Ft = −M−1t Ψt

(14)

Special Cases We consider some special cases, where our expressions should reduce to more

familiar forms.

1. Kit = K: In case all investors share the same precision of the private component of signal,

none of the expressions change substantially.

Σit =
{

Σd + Σ−1pt +
(
ζ2itΣz +K−1

)−1}−1
, µit = Σit

(
Σ−1pt ηpt +

(
ζ2itΣz +K−1

)−1
sit

)
Ωt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
di

Γt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
(B + I)Σitdi

Φt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
× (B + I)Σit

(
ζ2itΣz +K−1

)−1
di

Ψt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
× (B + I)Σit

(
ζ2itΣz +K−1

)−1
ζitdi

2. ζit = 0: In case none of the investors read the public signal, some of our expressions change

to indicate that the public signal noise is no longer relevant to the problem.

Σit =
{

Σd + Σ−1pt +Kit

}−1
, µit = Σit

(
Σ−1pt ηpt +Kitsit

)
Ωt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1

)−1
di

Γt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1

)−1
(B + I)Σitdi

Φt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1

)−1
(B + I)ΣitKitdi

Ψt = 0

3. ζit = 1: In case all investors read the public signal, some of our expressions change to indicate

that the investors do not fully disentangle the public signal noise from the dividend innovation
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(since the private signal is essentially an unbiased signal for yt+1 + zt+1 in this case).

Σit =
{

Σd + Σ−1pt +
(
Σz +K−1it

)−1}−1
, µit = Σit

(
Σ−1pt ηpt +

(
Σz +K−1it

)−1
sit

)
Ωt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
di

Γt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
(B + I)Σitdi

Φt =

∫
i
ρ−1i

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
× (B + I)Σit

(
Σz +K−1it

)−1
di

Ψt = Φt

For the remaining exposition, we consider the special case where all investors have the same

exposure to the public signal ζit = ζ and the same precision of the orthogonal private component

of the signal Kit = K. The only source of individual level variation in the model solution remains

in the risk tolerance and the signal realization. Hence, the covariance expressions simplify to

reflect this, only aggregating across individuals using the average risk tolerance (since the signal

realizations don’t affect the covariances).

Σit = Σt =
{

Σd + Σ−1pt +
(
ζ2Σz +K−1

)−1}−1
, µit = Σt

(
Σ−1pt ηpt +

(
ζ2Σz +K−1

)−1
sit

)
Ωt = ρ̄−1

(
(B + I)Σt(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
Γt = ρ̄−1

(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
(B + I)Σt

Φt = ρ̄−1
(
(B + I)Σit(B + I)′ + Ct+1ΣdC

′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1

)−1
× (B + I)Σt

(
ζ2Σz +K−1

)−1
Ψt = Φtζ

Here, we use the average risk tolerance ρ̄ =
(∫
i ρ
−1di

)−1
, which is simply the harmonic mean of the

risk tolerance across individuals.

B Proofs

In order to prove our main result, we first state and prove an interim utility result. This lemma

states the expected conditional (interim) utility in terms of profits.

Lemma 3. Investor expected utility at date t, conditional on all date- t data is

E [U(cit+1) | Iit] = rwitρi +
1

2
E [Πt | Iit]′V [Πt | Iit]−1 E [Πt | Iit] (15)

Proof of Lemma 3.
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Using Πt, end-of-period consumption for an investor can be represented as

cit+1 = r(wit − q′itpt) + q′it(pt+1 + dt+1) = rwit + q′itΠt.

The ex ante utility of the investor is,

E
[
U(cit+1) | I−t

]
= E

[
E [U(cit+1) | Iit] | I−t

]
That is, we calculate the ex ante utility from the interim utility using the law of iterated expecta-

tions. Here, the interim utility is given as

E [U(cit+1) | Iit] = ρiE
[
rwit + q′itΠt | Iit

]
− ρ2i

2
V
(
rwit + q′itΠt | Iit

)
.

We will further use the fact that qit = ρ−1i V (pt+1 + dt+1 | Iit)−1E [Πt | Iit]. The first term of the

interim utility is,

ρiE [cit+1 | Iit] = ρirwit + E [Πt | Iit]′ V (pt+1 + dt+1 | Iit)−1 E [Πt | Iit]

= rwitρi + E [Πt | Iit]′ V (Πt | Iit)−1 E [Πt | Iit]

For the last equation, we used the fact that the only variable term in Πt is pt+1+dt+1 at the interim

stage.

The second term of the interim utility can be written as

ρ2i
2
V (cit+1 | Iit) =

1

2
E [Πt | Iit]′ V (pt+1 + dt+1 | Iit)−1 V (Πt | Iit)V (pt+1 + dt+1 | Iit)−1 E [Πt | Iit]

=
1

2
E [Πt | Iit]′ V (Πt | Iit)−1 E [Πt | Iit] .

Taking the difference of the first term and the second term yields the result in Lemma 3.

Proof of Lemma 1. We start from the expression of interim expected utility in Lemma 3. Expand

the expression for profit Πt as,

Πt = pt+1 + dt+1 − rpt
= At+1 +B(dt+1 − µ) + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2 + (dt+1 − µ) + µ− rpt
= At+1 + µ+ (B + I) [G(dt − µ) + yt+1] + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2 − rpt
= At+1 + µ+ (B + I)G(dt − µ) + (B + I)yt+1 + Ct+1yt+2 +Dt+1xt+2 + Ft+1zt+2 − rpt
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Similarly, the interim variance of the profit is given as,

V (Πt | Iit) = (B + I)Σt(B + I)′ + Ct+1ΣdC
′
t+1 +Dt+1ΣxD

′
t+1 + Ft+1ΣzF

′
t+1 (16)

Here, we use the posterior variance of the dividend innovation Σt = V (yt+1 | Iit). Further, it is

clear from Equation 16 that the interim variance of consumption V (Πt | Iit) is a known quantity

– it is only a function of ζit and Kit (in our case, ζ and K), and not a function of information

revealed at the interim stage pt or sit. That is, it is a function only of the model primitives and

the information set I0.
In order to do so, we decompose the conditional expected profit (4) into an expected E [Πt] and

a surprise component E [Πt | Iit]− E [Πt],

E [U(cit+1)] = E [E [U(cit+1 | Iit)]]

=
1

2
E
[(
E [Πt]

′ +
(
E [Πt | Iit]′ − E [Πt]

′))V [Πt | Iit]−1 (E [Πt] + (E [Πt | Iit]− E [Πt]))
]

+ rwitρi

=
1

2
E [Πt]

′V [Πt | Iit]−1 E [Πt] + E
[
E [Πt]

′V [Πt | Iit]−1 (E [Πt | Iit]− E [Πt])
]

︸ ︷︷ ︸
=0

+
1

2
E
[
(E [Πt | Iit]− E [Πt])

′V [Πt | Iit]−1 (E [Πt | Iit]− E [Πt])
]

+ rwitρi (17)

We are interested in the second term of the ex ante expected utility in Equation 17. We will use

the fact that the mean of a central chi-square is the trace of the covariance matrix of the underlying

normal variable,

E [U(cit+1)] =
1

2
E [Πt]

′V [Πt | Iit]−1 E [Πt] +
1

2
tr [V (Υt)] + rwitρi (18)

where, Υt = (E [Πt | Iit]− E [Πt])
′V [Πt | Iit]−

1
2 (19)

We can express V [Υt] as,

V (Υt) = V
(
{E [Πt | Iit]− E [Πt]}′ V (Πt | Iit)−

1
2

)
= V (E [Πt | Iit]− E [Πt])V (Πt | Iit)−1

Hence, the term of interest is the prior variance of the ex ante stochastic quantity E [Πt | Iit], since

the prior expectation of this quantity E [Πt] is a known variable ex ante. Hence, we can use the

law of total variance, which says that the prior variance of the posterior expectation E [Πt | Iit] is

equal to the prior variance minus the posterior variance for Πt,

V (Υt) = {V (Πt)− E [V (Πt | Iit)]}V (Πt | Iit)−1

= V (Πt)V (Πt | Iit)−1 − I
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Hence, we can express the ex ante expected utility as,

E [U(cit+1)] =
1

2
E [Πt]

′V [Πt | Iit]−1 E [Πt] +
1

2
tr
[
V [Πt]V [Πt | Iit]−1 − I

]
+ rwitρi

The posterior variance V (Πt | Iit) is given in Equation 16.

This result is stated in terms of asset payoff. To restate it in terms of returns, simply divide

each Π term by pt. The result remains unchanged.

Proof of Lemma 2. Differentiating expected utility, when price pt depends on investor i’s demand

yields a first order condition,

qit =

[
ρiV (pt+1 + dt+1 | Iit) +

dp

dqi

]−1
{E [pt+1 + dt+1 | Iit]− rpt} .

The term dp/dqi, often referred to as “Kyle’s lambda” is the measure of how much effect investor

i’s demand has on the market price of an asset.

Interim utility still takes the form

E [U(cit+1) | Iit] = ρiE
[
rwit + q′itΠt | Iit

]
− ρ2i

2
V
(
rwit + q′itΠt | Iit

)
.

However, substituting in the new expression for qit, the first term of the interim utility is now

ρiE [cit+1 | Iit] = ρirwit + E [Πt | Iit]′
[
V (pt+1 + dt+1 | Iit) +

1

ρi

dp

dqi

]−1
E [Πt | Iit]

= rwitρi + E [Πt | Iit]′
[
V (Πt | Iit) +

1

ρi

dp

dqi

]−1
E [Πt | Iit]

The second term of the interim utility can be written as

ρ2i
2
V (cit+1 | Iit) =

ρ2i
2
q′iV (Πt | Iit) qi

=
1

2
E [Πt | Iit]′

[
V (Πt | Iit) +

1

ρi

dp

dqi

]−1
V (Πt | Iit)

[
V (Πt | Iit) +

1

ρi

dp

dqi

]−1
E [Πt | Iit]

Let Ṽi := V (Πt | Iit) + 1
ρi

dp
dqi

.

Then taking the difference of the first term and the second term yields interim expected utility

E [U(cit+1) | Iit] = rwitρi + E [Πt | Iit]′ Ṽ −1i

(
1− 1

2
V (Πt | Iit) Ṽ −1i

)
E [Πt | Iit] (20)

To compute ex-ante utiilty, we follow the same steps as in Lemma 3. The answer is the same,

except that we replace V (Πt | Iit) with V̂i := Ṽi

(
1− 1/2 V (Πt | Iit) Ṽ −1i

)−1
in (18) and in (19).
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In this case,

V (Υt) = V

(
{E [Πt | Iit]− E [Πt]}′ V̂

− 1
2

i

)
= V (E [Πt | Iit]− E [Πt]) V̂

−1
i

Applying the same law of total variance,

V (Υt) = (V (Pit)− V (Πt | Iit)) V̂ −1i .

Substituting V̂i for (1/2)V (Πt | Iit) in (18) and using the new expression for V (Υt) yields the result

in terms of profits. To restate the result in terms of returns, as in Lemma 2, simply divide each Π

term by pt.

Quantifying Price Impact Hasbrouck (1991) measures the price impact of a trade, for an

average asset in his sample. When 1000 shares are purchased, such a purchse is on average $19,460

trade (i.e. $19 per share), on $1.087 billion of market capitalization. This average size trade raises

the price of the asset by 0.299%.

The question is how to map this finding in to dp/dx in our model. The variable x in the model

is in dollars of assets. Hasbrouck’s number is in terms of market value, so we need to turn it into

dollars of assets, by using the average price of a dollar’s worth of capital, denoted Pbar. A $20,000

trade in mkt value = $20, 000/Pbar trade in dollars of assets. And 0.3% price impact = (0.003)

Pbar in absolute terms.

This logic implies that (0.003)Pbar = dP/dx(20, 000/Pbar), which implies dP/dx = 0.003(Pbar)2∗
1/20000.

Pbar is approximately 3 for growth firms. It would be closer to 0.3, for value firms. If we plug

3 in, we get

dP/dx = 0.003 ∗ 9/20000 = 10−6,

which is even larger than the estimate we use in the main results. Thus, our results are conservative.

C Valuing Order Flow Data

Consider an extension of the model where investors can observe data on sentiment shocks from H

different data sources. Investors have the same preference and choose their risky asset investment

qit to maximize E[U(cit+1)|Iit], taking the asset price and the actions of other investors as given,

subject to the budget constraint (1). A given piece of data m from data source h is now a signal

about xt+1: ηmxiht = ψxhxt+1 + Γxhe
x
it, with exit

iid∼ N(0, I).

Information on sentiment shocks allows an investor i to extract a more precise signal about

dividends from prices spit = yt+1 + C−1t Dt (xt+1 − E[xt+1 | sxit]). While investors probably do not
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think about using order flow data to learn about fundamentals, they often trade against uniformed

order flow (sentiment). This is mathematically equivalent to using sentiment to extract clearer

fundamental information from price and then trading on that fundamental information.

The solution of this model is a straightforward n-asset extension of the model with order flow

information in Farboodi and Veldkamp (2017). Given an N × 1 unbiased signal syit about the

dividend innovations yt+1 with precision matrix kyit and an N × 1 unbiased signal sxit about the

sentiment shocks yt+1 with precision matrix kxit, investors apply Bayes’ law. They combine their

prior, information in the sentiment-adjusted market price, and information on dividend innovation

obtained from the data to form a posterior view about the (t + 1)-period dividend dt+1. The

posterior precision is V [dt+1 | Iit]−1 = Σ−10 + C−1t Dt

(
Σx + (kxit)

−1)−1D′tC−1′t + kyit.

At each date t, the risky asset price equates demand with noise trades plus one unit of supply,

as described by equation (2). The equilibrium price is still a linear combination of past dividends

dt, the t-period dividend innovation yt+1, and the sentiment shock xt+1, as in (2).

Ex-ante utility is still given by (3). The precision variables kyit and kxit enter through the

posterior variance V [dt+1 | Iit] and V [Πt | Iit]. In the second term, kyit and kxit enter only through

V [dt+1 | Iit]. Thus, V [dt+1 | Iit] is a sufficient statistic for expected utility. The fact that the

uncertainty about dividends is a sufficient statistic, and the formulation of Bayes’ law for posterior

precision (the inverse of uncertainty), implies that kyit and kxit affect utility in the same way, except

that kxit is multiplied by C−1t DtD
′
tC
−1′
t . This ratio of price coefficients represents the squared signal-

to-noise ratio in prices, where C is the price coefficient on the signal (future dividend) and D is the

coefficient on noise (sentiment). The bottom line is that the value of sentiment data is exactly the

same as the value of fundamental data, after adjusting for the signal-to-noise ratio in prices. That

signal-to-noise adjustment is exactly what an OLS procedure does.
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