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Abstract

We directly optimize the objectives of portfolio management via deep reinforcement
learning—an alternative to conventional supervised-learning paradigms that routinely
entail first-step estimations of return distributions or risk premia. We develop multi-
sequence, attention-based neural-network models tailored to the distinguishing features
of financial data such as non-linearity and high dimensionality, while allowing interac-
tions with the market states and training without labels. Our AlphaPortfolio yields
stellar out-of-sample performances (e.g., Sharpe ratio above two and over 13% risk-
adjusted alpha with monthly re-balancing) that are robust under various market condi-
tions economic restrictions (e.g., exclusion of small stocks and short-selling). Moreover,
we project AlphaPortfolio onto simpler modeling spaces (e.g., using polynomial-feature-
sensitivity) to uncover key drivers of investment performance, including their rotation
and nonlinearity. More generally, we highlight the utility of deep reinforcement learning
in finance and “economic distillation” for model interpretation.
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1 Introduction

Portfolio management traditionally entails first minimizing pricing errors or estimating

risk premia from historical samples and then combining assets to achieve investment objec-

tives.1 Such an approach has serious drawbacks due to large estimation errors in the first

step, not to mention that the goals in the two steps are not necessarily aligned. Extracting

signals that are directly relevant for maximizing the portfolio objective is intuitively appeal-

ing yet under-explored. Furthermore, financial or economic data tend to be high-dimensional,

noisy, and nonlinear, with complicated interaction effects and fast, non-stationary dynamics,

rendering traditional econometric tools ineffective in capturing path dependence and cross-

asset linkages. Recent studies have adopted machine learning (ML) or neural networks to

tackle these challenges, but still under the conventional two-step approach. While some make

significant progresses (e.g., Freyberger, Neuhierl, and Weber, 2020; Feng, He, and Polson,

2018), how to best extract information about historical path dependence and from multiple

sequences across assets remains understudied, not to mention that many existing models are

not robust under plausible economic restrictions, as discussed in, e.g., Avramov, Cheng, and

Metzker (2019).

To overcome these challenges, we take a novel data-driven approach to directly opti-

mize portfolios, utilizing the strength of deep reinforcement learning (RL)—a class of AI

models proven to be effective in applications such as computer vision, interactive games,

and self-driving (e.g., Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Ried-

miller, Fidjeland, and Ostrovski, 2015; Silver, Schrittwieser, Simonyan, Antonoglou, Huang,

Guez, Hubert, Baker, Lai, and Bolton, 2017). Our key insight is that given the complex-

ity of financial markets and asset price dynamics, searching using trial-and-error through

a flexible modeling space to directly maximize a portfolio management objective (and let-

ting data dictate which SDF moments or which assets to emphasize) can be more effective

than attempting to estimate exogenously specified moments of the return distributions or to

price all assets accurately regardless of their relevance for constructing the desirable portfo-

lio. Attention-based multi-sequence modeling tailored for financial markets can also improve

portfolio performance through capturing the long-range memory, nonlinearity, etc., of assets.

RL is derived from multi-arm bandit problems and approximate solutions for large-scale

Markov Decision Processes because historical optimal portfolios are not labeled and trading

may interact with the market states. RL either entails online interaction with the environ-

ment to generate additional data or exploits stochastic gradient descent for complex model

search (e.g., Friedman, 2002) on historical data. Training an RL model mimics how prac-

1Mean-variance optimization based on the investor’s preference is one example (Markowitz, 1952). Prac-
titioners and researchers also routinely construct portfolios by sorting based on asset characteristics and
simple weight adjustments to manage the portfolio risk. Risk-parity is an attempt to shift focus away from
the first moment.
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titioners actually develop strategies by trying tentative strategies out of a vast strategy

space and optimize them gradually based on performance feedback de Prado (2018). We are

the first to highlight RL’s potential advantages over the widely applied supervised learning

framework, especially for applications in portfolio management, adding to the fast-emerging

literature in computer science and AI on offline deep RL. In addition, within the calss of

neural network models, we are the first to develop multi-sequence attention-based deep learn-

ing and combine it with RL in order to effectively extract rich time-series and cross-section

information for investment management and advising.

Despite the efficacy and applicability of AI models, the black-box nature of advanced AI

tools may hinder their wide use in finance and economics where interpretation is integral.

Like many other models, our deep RL approach is subject to critiques on the complex nature

of the algorithm and the lack of transparency. Meanwhile, in a world divided by discrim-

ination and injustice, it is insufficient to attribute all biases in AI to training data either;

understanding models as a starting point for improving algorithmic fairness also constitutes

a pressing issue.2 Our second objective is then to understand how various innovations in

our model contribute to the performance and to introduce “economic distillation” that lends

greater interpretability and transparency to complex AI models by projecting them onto

linear modeling or natural language spaces. The polynomial-sensitivity and textual-factor

analyses we devise not only provide initial insights into our AI model, but also can be used

in other applications in social sciences.

Specifically, we adopt the latest sequence representation extraction models (SREM), such

as Transformer Encoder (TE) and Long Short-Term Memory (LSTM), in order to flexibly

and effectively represent and extract information from the time series of high-dimensional

input features such as firms’ fundamentals and market signals, i.e., the states of the en-

vironment that may have fast dynamics. We develop a deep-neural-network-based panel

data analytics by adding our novel cross-asset attention networks (CAANs) that capture

attribute interactions across assets, something factor models have extensively studied but

has not been implemented for neural network models. We then generate a “winner score” to

rank assets and trade (the policy and action), and subsequently evaluate how the portfolio

performs, i.e., examining the rewards. Our emphasis is not on any specific functional form

or tuning parameter of the model, but on the data-driven approach that takes the joint

distribution of asset returns as unknown, observes the outcomes of the trading action and

its interaction with the environment (e.g., realized Sharpe ratio with or without having the

trades impact the market state), tests a range of actions in each state (e.g., various portfolio

weights), and then dynamically explores a high-dimensional parameter space to maximize

2Society increasingly demands transparency and interpretability of algorithmic decisions (Goodman and
Flaxman, 2017; Barocas, Hardt, and Narayanan, 2017, and articles 13-15 of European Union’s General Data
Protection Regulation (GDPR)).
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the objective without noisy or potentially misspecified intermediate steps. We show that

the combination of SREM and CAAN (to capture the nonlinearity, cross-sectional linkages,

and path-dependence in asset returns), and the direct construction through RL both con-

tribute to the performance. We also discuss how AlphaPortfolio allows general management

objectives as well as market interactions entailing transaction costs, dynamic budgets, and

experience-dependent preferences.

Our deep-RL-based “direct construction” works well with noisy data, improves portfolio

performance out-of-sample (OOS) drastically, and the results remain robust after impos-

ing various trading and economic constraints. In an illustrative study of U.S. equities, we

use hundreds of firm characteristics and market signals in a 12-month historical window as

predictor variables, similar to Freyberger, Neuhierl, and Weber (2020). In the baseline spec-

ification, we focus on the subsequent 12-month average OOS Sharpe ratio as the investors’

objective, and train a portfolio model (henceforth referred to as “AlphaPortfolio” or “AP”)

with monthly rebalancing which generates a Sharpe ratio consistently above two on both

the full test sample (1990-2016) and the subsamples excluding microcaps (10% or 20% based

on market cap). The annualized excess alpha after controlling for various factors (CAPM,

Fama-French-Carhart factors, Fama-French-Carhart plus liquidity factors, Fama-French five

factors, Fama-French six factors, Stambaugh and Yuan factors, Q4 factors) also consistently

exceeds 13.5%. AP’s general performance metrics (e.g., turnover and maximum drawdown)

are significantly better than those of most known anomalies and machine-learning strategies.3

In terms of the specified portfolio management objective, RL-based AP consistently

achieves a high OOS Sharpe ratio (reaching 4.7 in the early years of the test sample and above

1.4 throughout the entire test sample), more than doubling the performance of TE-CAAN

under the two-step conventional construction. Deep learning (e.g., TE, a cutting-edge AI

tool typically used for supervised machine translation to solve the vanishing and exploding

gradient problems in Recurrent Neural Networks), obviously contributes to the performance

by better handling the high-dimensionality, nonlinearity, path-dependence, etc., of the finan-

cial data and asset return dynamics, but CAAN improves OOS performance by a significant

margin relative to a plain-vanilla TE model (e.g., a 0.4 improvement in Sharpe ratio) as

well. The findings are robust in that they are not driven by short positions alone, ad hoc

weighing, high-frequency trading, or particular industry sectors; the outperformance persists

under alternative turnover measures, exclusion of unrated and downgraded firms as well as

restricted testing samples in recent years or during episodes of different market sentiment,

volatility, and liquidity. AP is therefore robust to imposing various economic restrictions

3For example, among successful ML models, Gu, Kelly, and Xiu (2020) achieves an OOS Sharpe ratio
of 1.35 with value-weighted long-short portfolios constructed from neural network models and Freyberger,
Neuhierl, and Weber (2020) achieves an OOS Sharpe ratio of 1.6 using group Lasso and excluding the bottom
10% small stocks; the maximum drawdowns of common factors such as Fama-French-Carhart four factors
over the same time period lie between 40% -60% whereas those of AP lie between 2%-10%.
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that Avramov, Cheng, and Metzker (2019) identify to significantly hamper performances by

other machine learning strategies.

Our deep RL approach is fundamentally different from earlier studies and common in-

dustry practices in that it combines the power of flexible deep learning models and direct

portfolio optimization.4 RL entails learning how to map situations to actions to maximize a

numerical reward. Unlike supervised learning in which the learner is told what the correct

actions are in the training, RL discovers the best actions for some delayed rewards through

trial-and-error search and utilizing feedback from the environment (Sutton and Barto, 2018,

p.1). In the context of average OOS monthly Sharpe ratio, the reward is “delayed” in that

it is computed over a multi-month window: A portfolio construction in one month could

affect the future market environments and thus future portfolio construction once we take

into consideration elements such as a manager’s portfolio size and transaction costs.5

To see how our approach is a more “direct” construction than traditional approaches, let

us write down a generic problem researchers tackle using supervised learning: minθH(θ) =

(y − f(x, θ))2, where f(x, θ) is the model we train and θ, x, and y represent the model

parameters, input variables, and labeled outputs, respectively. For example, y could be an

asset’s return, and we are then simply minimizing pricing errors. With known functional

form of ∂H(x,θ)
∂θ

to minimize H using gradient descents, the two-step paradigm for portfolio

construction then takes the estimated function f ∗ as given to optimize the best portfolio

strategy, z, to maximize a reward function R, i.e., maxz R(x, z(f ∗(x, θ))). For example, if

f ∗ provides the estimates of expected returns and variance-covariance matrix for the assets,

and R is investors’ next period mean-variance utility, then the optimal construction strategy

z is the solution in Markowitz (1952).

Many machine learning models make significant progresses in overcoming the difficulty of

estimating f(x, θ) with scarce yet high-dimensional data, but there is no guarantee that the

H(θ)-minimizing f ∗ also maximizes R in general. A simple case in point is the construction

of long-only portfolio. If some assets generate extremely negative returns and would not

4The idea of directly draw inferences about the optimal portfolio weights from the data was explored in
a number of brilliant articles as early as Brandt (1999). The studies all rely on supervised learning (either
regression-based or non-parametric) and Brandt (2010) aptly summarizes their procedures and limitations
due to model misspecification and the high-dimensionality and nonlinearity of inputs. In particular, Brandt,
Santa-Clara, and Valkanov (2009) employs a linear specification where as the neural-network-based structure
here helps capture non-linear and interacting effects more effectively.

5Unlike applications in science and engineering (e.g., gaming) for which creating the large training sets
needed for RL (e.g., through experimentation) is cost-effective, trying various portfolio constructions in
practice entails significant costs and high stakes. We therefore often need either simulations or a model of
how our actions impact the market environment. In our baseline empirical tests, we follow the computer
science literature to take the impact going forward of trading a particular portfolio to be negligible. It is
worth noting that even without the actions’ impacting the environment, RL could be useful (e.g., Delarue,
Anderson, and Tjandraatmadja, 2020). We later analyze several interesting and complex extensions to
illustrate how our RL framework can incorporate rich interactions with the environment and alternative
objectives, as well as how AP performance remains robust.
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be included in the portfolio in any case, using historical data to train a model to minimize

estimation errors in these assets’ higher moments is not necessarily helping improving the

portfolio’s performance.

A direct portfolio construction formulates the optimization as maxθ R(x, z(x, θ)), where

z(x, θ) is a direct investment strategy model of which the output is a portfolio, and the

reward R(·), which could be the average Sharpe ratio, average returns after transaction

costs, cumulative returns over an investment period, etc., is a general function of the dynamic

portfolio strategy z and market environment x. Unlike the values of y in supervised learning

that are typically explicit or observed, we often do not observe z (and R) directly, not to

mention that in reality, z could alter x as well. Therefore, we use RL to “explore” different

investment strategies (different θ) under different market environments (different x) to see

what rewards we get. This process is data-driven without requiring analytical models of z and

is equivalent to a Monte Carlo sampling of the investment path and the reward function R(·).
RL uses gradient-based solutions to guide the sampling with the objective of maximizing R

and has been found empirically to be more effective than supervised learning in complex

environments, as seen in various AI applications, such as AlphaGo and self-driving.

A supervised learning approach to portfolio construction necessarily introduces a sepa-

ration: maxz R(x, z) and minθH(θ) = (z∗ − z(x, θ))2, i.e., we maximize the reward function

with respect to portfolio construction strategy z, which in turn is estimated in a minimiza-

tion problem requiring historical values of the optimal z∗. But z∗ typically cannot be directly

observed or accurately approximated or easily computed from the training data. Hence, a

supervised learning approach for maximizing R also has to resort to Monte Carlo sampling

in some sense. Traditional two-step constructions do not aim to maximize R when they gen-

erate the sampling of y. Even when the sampling is guided by maximizing R, a supervised

learning formulation can still have a prediction loss gap between z∗ and z(x, θ). Take OOS

Sharpe ratio for example. Even if one directly optimizes portfolio weights using supervised

learning, one has to supply the “correct” maximal Sharpe ratio in the training, which re-

quires either exhaustively computing possible portfolio constructions to get the historical

maximal Sharpe ratios or introducing an intermediate proxy for it that is subject to model

misspecification and approximation errors.

In contrast, deep RL can handle unlabeled data and is computationally feasible, making

it well-suited for the direct construction task.6 Moreover, it easily accommodates more gen-

eral performance metrics as well as dynamic interactions between investment actions and the

market environment, allowing portfolio constructions to incorporate price impacts, transac-

tion costs, dynamic budget constraints, clients’ long-range goals, etc. (Fischer, 2018). In

Section 4.4, we provide multiple illustrations that correspond to real life applications such

6We are not claiming that there cannot be an effective supervised-learning-based approach for direct
construction. On the contrary, we believe it is an interesting topic for future research.
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as fund survival subject to withdrawals and investment manager compensation. As seen

through these examples, Deep RL frequently involves models of the environment (so it is

not an exact counterfactual) and offline learning using historical data (instead of online

interactions with the environment to obtain new data). It also goes beyond portfolio con-

struction using SDF recovery since the portfolio objective is not restricted to Sharpe-ratio

maximization only.

We note that deep RL applications do not have to involve online interactions and offline

RL can be particularly useful in social sciences. Unlike in science labs, social scientists

typically cannot generate data through online interactions, either because data collection is

expensive (e.g., in robotics, trading, educational agents, or healthcare) or dangerous (e.g., in

autonomous driving, or healthcare). Moreover, even in domains where online interaction is

feasible, we still want to utilize previously collected data instead, for example, if the domain

is complex and effective generalization requires large datasets. AlphaPortfolio’s training is

offline RL, but it interacts with the environment to generate new data through the rolling

updates in the test sample. In that sense, our RL model is a hybrid of online and offline

learning and the AP framework can be conveniently deployable by practitioners and robo-

advisors for trading and investment advising.

Beyond articulating this theoretical advantage of Deep RL for direct portfolio construc-

tion, we also aim to better interpret AP. We use gradient-based methods and Lasso to distill

the model into a linear model with a small number of input features, while allowing higher-

order terms and feature interactions. This novel polynomial sensitivity analysis essentially

“projects” a complex model onto a space of linear models. It adds to the advances of explain-

able AI by combining the strength of surrogate modeling and feature importance analysis.

The distilled model informs us of features driving AP’s performance. Besides some usual

suspects such as Tobin’s Q, inventory changes (ivc), changes in shares outstanding (delta so),

etc., also play dominant roles. In addition, we find higher-order terms (e.g, ivcˆ2) affect AP’s

behavior but not interaction effects (which could still be important for estimating assets’ re-

turns or a pricing kernel). Finally, we observe short-term reversals and identify important

features dominant throughout and others rotating in and out. In particular, market trading

signals and firms’ fundamentals and financials take turns to dominate (correlation of −0.33).

As another illustration of economic distillation through projection, we apply the textual-

factor analysis, an analytic combining the strengths of neural network language processing

and generative statistical modeling (Cong, Liang, and Zhang, 2018), to understand the be-

havior of AP based on texts from firms’ filings. By projecting it onto a natural language

space, we find that AP buys stocks of firms whose 10-K and 10-Q talk about sales, prof-

itability, loss-cutting, etc., whereas it short-sells stocks of firms that prominently mention

real estates, mistakes, and corporate events, among others. Economic distillations not only

provide initial interpretations of complex models so that we can avoid pitfalls of AI applica-
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tions when the market environment or policy changes, but also provides a sanity check on

coding errors and model fragility. Both the polynomial sensitivity analysis and the textual-

factor analysis are new and complement attempts in computer science concerning explainable

AI and in economics concerning interpreting ML models.

We organize the remainder of the article as follows. Section 2 provides the background

and clarifies our contributions as an interdisciplinary study; Section 3 describes our model

and methodology; Section 4 applies the AlphaPortfolio model to U.S. equities; Section 5

introduces economic distillations to interpret the model; Section 6 concludes with a discus-

sion on the general utility of reinforcement learning and implications of interpretable AI in

social sciences; the appendices contain foundations of reinforcement learning, a description

of variable construction, implementation details of AP using both Transformer and LSTM

modules, and economic distillation using textual factors.

2 Related Literature and Contributions

As one of the earliest studies to apply recent breakthroughs in AI to portfolio manage-

ment, our paper makes three main contributions. (i) We develop an RL-based framework

to optimize investors’ objectives which can accommodate unlabeled financial data and in-

teractions with state variables including the ones from complex environments. Such a direct

construction overcomes the challenges in the conventional two-step approach. (ii) AP is

designed to handle the distinguishing features of financial big data (high dimensionality,

non-linearity, fast dynamics and path dependence, etc.) and outperforms most existing

strategies (traditional or machine-learning-based), especially after imposing reasonable eco-

nomic constraints and restrictions. We demonstrate that cutting-edge AI tools typically used

for machine translation can be effective and immediately deployable in practice once prop-

erly tailored to economic and financial applications. (iii) We provide general, expandable,

and intuitive procedures for economically interpretable AI in social sciences that complement

endeavors from computer science and machine learning fields.

2.1 Portfolio Theory and Investment Advising

Our paper foremost adds to portfolio theory. The trading strategy aids both institutional

investors and retail investors (potentially as a second-generation robo-advisor) and more

broadly provides insights on portfolio theory and applications of RL in finance.

Conventional paradigms. Following Markowitz (1952), the typical portfolio construction

consists of two steps: (i) estimate population moments using available samples and (ii)

optimize over possible combinations of assets, or simply sort and assign ad hoc weights.
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Estimating returns accurately is extremely difficult due to the lack of long time series

of data (e.g., Merton, 1980), while estimates of variance-covariance are rarely well-behaved

(e.g., Green and Hollifield, 1992). This leads to unstable and extremely positive and neg-

ative weights in the second-step portfolio construction, resulting in poor OOS performance

and implementability in practice. This “error-maximizing” problem of the mean-variance

portfolio (e.g., Best and Grauer, 1991) essentially derives from the fact that the second-stage

optimization exploits too many small differences in the first-stage estimates without properly

considering their estimation errors.

Models explicitly designed to mitigate the estimation errors include the Bayesian ap-

proach to estimation errors with diffuse-priors (Barry, 1974; Bawa, Brown, and Klein, 1979),

“shrinkage estimators” (e.g., Jobson, 1979; Jorion, 1986), model-based priors (Pástor, 2000;

Pástor and Stambaugh, 2000), robust portfolio allocation (Goldfarb and Iyengar, 2003; Gar-

lappi, Uppal, and Wang, 2006), estimation risk, and optimal diversification (e.g., Klein and

Bawa, 1976; Kan and Zhou, 2007).7 But the estimation errors are so problematic that most

attempts achieve very moderate success (DeMiguel, Garlappi, and Uppal, 2007).8 Though

ad hoc sorting strategies based on asset characteristics avoid the estimation errors altogether,

they are limited in handling high-dimensional features or capturing nonlinear effects.

Instead, we directly optimize the portfolio’s performance metric using RL. Our approach

is motivated by the possibility that: (i) The relationship between the portfolio weights (as

complicated functions of the return distribution) and the predictors could be less noisy

than the relationship between the individual moments and the predictors. (ii) Intermediate

estimation of the return distribution may introduce additional noise and potential misspec-

ifications. (iii) Given the end goal, a global optimization, albeit imperfect, may work better

than two sequential optimizations. A holistic approach such as ours goes beyond linear

shrinkage and shares the spirit of Ledoit and Wolf (2012); instead of explicitly applying

differential shrinkage just for the variance-covariance matrices (e.g., Ledoit and Wolf, 2017),

AP differentially weigh (in addition to SDF moments and assets) inputs in the entire feature

space based on their relevance for the objective.

Direct derivation of optimal portfolio weights. Brandt (1999) is among the earliest

7Popular among practitioners are Black-Litterman models combining model-based priors with investors’
subjective beliefs (Black and Litterman, 1990, 1992) and the “risk parity” approach (e.g., Jurczenko, 2015),
which nevertheless suffers from instability and that the variance-covariance matrices are not always positive-
definite for easy inversion (e.g., Bailey and de Prado, 2012; de Prado, 2016).

8The authors show that various models explicitly developed to deal with the estimation errors fail to beat
the naive benchmark (each of the N assets available for investment gets a fraction 1/N of the total wealth
at rebalancing) in terms of Sharpe ratio, certainty-equivalent return, and turnover, because in practice one
has either very short estimation windows or small true Sharpe ratios of the efficient portfolio to start with or
small portfolio sizes. Investors typically demand diversified portfolios and even for portfolios with no more
than 50 assets, extant models are often estimated using five to ten years of data (instead of the decades of
data the authors found necessary for reducing estimation errors sufficiently).
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studies that focus directly on the dependence of the portfolio weights on the predictors rather

than model the conditional return distribution. The simplest approach entails parametrized

portfolio weights as functions of observables (e.g., Brandt and Santa-Clara, 2006; Brandt,

Santa-Clara, and Valkanov, 2009), but suffers from potential mispecification of the portfolio

weight function which is not necessarily linear in reality. While nonparametric or locally

parametric estimators from sample analogues of the FOCs or Euler equations can guard

against mispecification (Brandt, 1999), the curse of dimensionality when directly deriving

optimal weights using kernel methods or polynomial expansions limits reliable implemen-

tation with more than two predictors (e.g., Brandt, 2010) unless one specifies additional

structures for dimension reduction, such as variants of index regressions (Powell, Stock, and

Stoker, 1989; Aı̈t-Sahali and Brandt, 2001). For all these reasons, direct construction of

portfolios still remains underexplored.

Our deep learning approach recognizes that high-dimensional and noisy financial data

often limit the estimation of asset return distributions and model specification. For example,

regularized linear models or PCA rotations in recent studies only partially take care of non-

linearities by including, at the discretion of researchers, some transformations of linear input

signals (e.g. Kozak, Nagel, and Santosh, 2020; Bryzgalova, Pelger, and Zhu, 2020; Lettau

and Pelger, 2020). Our model picks up nonlinear effects (with activation functions in the

neural networks) that Aı̈t-Sahali and Brandt (2001) do not identify. But deep learning’s

flexible model structure implies a much larger parameter space for us to train the model

from unlabeled data, necessitating the need for RL rather than supervised learning used in

the literature, as we explained in the introduction.

While recent studies such as Kozak, Nagel, and Santosh (2020) and Bryzgalova, Pelger,

and Zhu (2020) complement our paper in demonstrating how ML techniques can extract

signals relevant for portfolio design in addition to return prediction, they base penalties

on the maximum squared Sharpe ratio implied by the SDF and portfolio construction is

a means to an end (recovering robust pricing kernels or maximizing cross-sectional OOS

R2). In our paper, optimizing a portfolio’s performance metric (e.g., OOS Sharpe ratio and

beyond) directly is the end itself. The general applicability to other investor objectives is not

something estimations of pricing kernel automatically achieve. Our paper therefore offers

the first ML model for directly optimizing general portfolio management objectives, not to

mention that RL allows us to handle unlabeled data and potential market interactions.

RL, investment planning, and robo-advising 2.0. Despite an outburst of media ar-

ticles and industry reports discussing trends in robo-advising and investment planning, cur-

rent applications are limited in scope and functionality, and do little on active strategies, etc.

(e.g., D’Acunto and Rossi, 2020). Relative to the first-generation robo-advisors which mostly

help clients avoid behavioral biases and manage asset allocation and factor exposure through

9



trading ETFs and smart-beta products (Cong, Huang, and Xu, 2020), future robo-advisors

likely automate more active strategies and customize the service according to individual

investors’ preference, tax situation, risk aversion, portfolio constraints, investment horizon,

and transaction costs (e.g., Detemple and Murthy, 1997; Liu and Loewenstein, 2002).

These considerations are exactly what the “delayed rewards” feature of RL can easily

address. RL can incorporate agents’ impacts on the environment, the investors’ evolving

preference and liquidity needs as well as trading costs and dynamic budget constraints,

not to mention the possibility of learning investors’ preferences from their investment ac-

tions (Alsabah, Capponi, Ruiz Lacedelli, and Stern, 2019). For example, if the delayed

reward is set to be the stable benefits payout for retirees, RL can allow pension investment

to better allocate investment across asset classes and even go beyond government securi-

ties, investment-grade bonds, and blue-chip stocks, etc., to maximize the fund’s objectives.

Moreover, economic interpretability offers greater transparency, meeting the demand of in-

vestment advisors or robo-advisors to adjust models and convey investment principles to

clients.9 Our AP is therefore useful for goal-based wealth management (Dasa, Ostrova,

Radhakrishnanb, and Srivastavb, 2018).

2.2 Machine Learning and AI Applications in Finance

Our paper contributes to an emerging literature that applies machine learning in eco-

nomics for forecasting macroeconomic outcomes, asset returns, corporate defaults, risk ex-

posures, etc., and for analyzing unstructured data, such as texts.10 Data in social sciences

could differ drastically from data in science and engineering fields. Besides high dimen-

sionality and nonlinearity (e.g., Cochrane, 2011; Harvey, Liu, and Zhu, 2016; Karolyi and

Van Nieuwerburgh, 2020) that ML packages from science and engineering help address, finan-

cial data are often characterized by low signal-to-noise ratio, significant interaction effects,

and non-stationary/fast dynamics.11

Existing studies typically focus on supervised learning with several non-mutually ex-

clusive lines of work (de Prado, 2018). Dimension reduction involves either regularization

methods, such as Lasso, Ridge, or Elastic Net (e.g., Rapach and Zhou, 2019; Feng, Giglio,

9Big data analytics and AI are deemed important components of the next-generation robo-advisors. (EY
“The Evolution of Robo-advisors and Advisor 2.0 model” 2018, Scott Becchi, Ugur Hamaloglu, Taroon
Aggarwal, Samit Panchal.) For example, Numerai, an AI-based hedge fund with native token Numerarie,
already plans for an app Daneel that combines robo-advising and personal assistant. Sharpe Capital is
another app that uses ML. Users typically expect to understand what robo-advisors do at a high level.

10Cochrane (2011) specifically called for methods beyond cross-sectional regressions and portfolio sorts.
Rapach, Strauss, and Zhou (2013); Gu, Kelly, and Xiu (2020) are also among the early contributions in
finance.

11The non-stationary dynamics relates to the Lucas critique in finance settings. While hotdogs do not
change their shape in response to image classification, investors alter their behaviors after others’ using ML
tools. The low signal-to-noise also necessitates the use of OOS performance instead of in-sample predictability
(Martin and Nagel, 2019).
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and Xiu, 2020), or rotation and clustering techniques, such as PCAs (e.g., Kelly, Pruitt, and

Su, 2019; Kozak, Nagel, and Santosh, 2020; Kim, Korajczyk, and Neuhierl, 2019; Chinco,

Neuhierl, and Weber, 2019). A second line aims at capturing interactions and nonlinear ef-

fects through semi-parametric, distribution-free, or flexible but complex model architectures,

such as group Lasso, splines, and ensemble learning (e.g., Freyberger, Neuhierl, and Weber,

2020; Light, Maslov, and Rytchkov, 2017; Rossi, 2018; Moritz and Zimmermann, 2016; He,

Cong, Feng, and He, 2021). While these machine learning models generate superior perfor-

mance, Avramov, Cheng, and Metzker (2019) caution that the performance could be driven

by microcaps and value weighing as are traditional anomalies (Hou, Xue, and Zhang, 2020).

Modern machine learning mostly concerns neural-network-based deep learning that only

gained prominence over the past decade. Because deep learning handles high-dimensionality

and non-linearity well (Fan, Ke, Liao, and Neuhierl, 2021), it is quickly adopted by asset

pricers for studying pricing kernels and reducing pricing errors (e.g., Feng, Polson, and Xu,

2018; Chen, Pelger, and Zhu, 2020), Recent finance applications of deep learning (with

Feng, He, and Polson, 2018; Cong, Tang, Wang, and Zhang, 2020, etc. as exceptions) do

not use multi-sequence modeling to capture both long-range and cross-asset dependency in

asset features. Our paper attempts to fill in the gap, in addition to emphasizing hitherto

understudied interpretations of complex ML models.12

More importantly, a fundamental difference between our approach and much of the liter-

ature lies in the objective. Most factor and machine learning models focus on asset pricing

issues such as estimating risk premia or characterizing the SDF (Kelly and Xiu, 2021), our

paper directly maximizes performance metrics for portfolio construction.

A recent literature in AI has been actively studying data-driven reinforcement learning

that utilizes only previously collected offline data, without any additional online interac-

tion (e.g., Fu, Kumar, Nachum, Tucker, and Levine, 2020). A number of papers have

illustrated the power of such an approach in enabling data-driven learning of policies for

dialogue (Jaques, Ghandeharioun, Shen, Ferguson, Lapedriza, Jones, Gu, and Picard, 2019),

robotic manipulation behaviors (Ebert, Finn, Dasari, Xie, Lee, and Levine, 2018; Kalash-

nikov, Irpan, Pastor, Ibarz, Herzog, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, et al.,

2018), and robotic navigation skills (Kahn, Abbeel, and Levine, 2021). We contribute to

this literature involving offline deep RL, also known as batch RL (e.g., Fujimoto, Meger,

and Precup, 2019; Kidambi, Rajeswaran, Netrapalli, and Joachims, 2020), by building the

first multi-sequence offline RL for portfolio management and demonstrate its advantages

12ARIMA models require stationarity; while ARCH and GARCH models touches on memory and point
out that “recent past gives information about the one-period forecast variance,” they require higher-order
stationarity with respect to the unconditional distribution and moments (Engle, 1982; Bollerslev, 1986), not
to mention the specifications are not data-driven and restrictive relative to sequence models using neural
networks. Among notable exceptions concerning interpreting complex ML models, Sak, Huang, and Chng
(2019) uses characteristic sorts and Stambaugh and Yuan (2017)’s mispricing factors to identify monthly
dominant characteristics and ascertain the ex-post source of alpha.
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over traditional approaches. Overall, our application of deep RL is motivated economically

by the challenges observed in portfolio theory and practice as well as the pressing need for

greater interpretability (Karolyi and Van Nieuwerburgh, 2020).13

2.3 Interpretable AI and Data Science

Economists have recently started to discuss the socioeconomic implications of AI and data

science, such as discrimination, data privacy, and macroeconomic outcomes (e.g., Bartlett,

Morse, Stanton, and Wallace, 2019; Liu, Sockin, and Xiong, 2020; Farboodi and Veldkamp,

2019). Underlying these issues is that data have massively expanded in volume, velocity, and

variety, and tools for analyzing them have become too complex to inspect or understand. As

such, economic interpretability has become critical when applying machine learning or big

data analytics in social sciences. Our study is among the earliest to emphasize interpreting

deep reinforcement learning models in finance and economics.

Our paper contributes to an emerging literature in computer science and machine learn-

ing on model compression or distillation (e.g., Bucilu, Caruana, and Niculescu-Mizil, 2006;

Hinton, Vinyals, and Dean, 2015). Unlike their distillations that typically still have a large

set of features and are aimed at deployment and computational efficiency, our “economic dis-

tillation” advocates using the original complex model for prediction and using the distilled

model to identify key drivers. Our objective completely differs and focuses on taking a first

step to understand the underlying mechanism from an opaque model.

Our approach also falls into the area of explainable AI (XAI, e.g., Guidotti, Monreale,

Ruggieri, Turini, Giannotti, and Pedreschi, 2018; Horel and Giesecke, 2019a). From the func-

tional perspective, local XAI tries to understand why the model makes a specific decision for

a certain input, whereas global XAI tries to elucidate the model logic and rules. From the

methodological perspective, XAI entails either surrogate modeling or feature importance ex-

traction. Surrogate models use decision trees, rule sets, linear or generalized additive models,

etc., to proxy the neural network to be interpreted (e.g., Wu, Hughes, Parbhoo, Zazzi, Roth,

and Doshi-Velez, 2018; Ribeiro, Singh, and Guestrin, 2016). Feature importance extraction

focuses on analyzing contributions of feature inputs to model outcomes, including gradient-

based sensitivity analysis (e.g., Sundararajan, Taly, and Yan, 2017; Wang, Zhang, Tang, Wu,

and Xiong, 2019), Partial Dependence Plots (PDPs, e.g., Krause, Perer, and Ng, 2016), and

significance tests for single-layer neural networks (Horel and Giesecke, 2019b). Financial

economists have also started to exploit the easy interpretability of tree-based models (e.g.,

13Koray Kavukcuoglu, the director of research at Deepmind, is quoted for saying: “Reinforcement Learning
is a very general framework for learning sequential decision making tasks. And Deep Learning, on the other
hand, is of course the best set of algorithms we have to learn representations. And combinations of these
two different models is the best answer so far we have in terms of learning very good state representations of
very challenging tasks that are not just for solving toy domains but actually to solve challenging real world
problems” (Garychl, 2018).
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He, Cong, Feng, and He, 2021).

We contribute conceptually by introducing projections of AI models onto relatively trans-

parent and interpretable modeling spaces. Methodology-wise, we are the first to expand

feature sensitivity analysis and combine it with surrogate modeling to achieve global inter-

pretability. Our polynomial sensitivity analysis thus improves upon conventional gradient-

based methods and captures higher-order and interaction effects in economic data.14 More-

over, we complement our polynomial sensitivity analysis with textual-factor analysis to en-

hance economic interpretability, which is integral to research in social sciences (Athey, 2018).

To our knowledge, we are the first to use texts to improve economic interpretability of big

data and AI models.

3 Model and Methodology

In this section, we focus on the design of AlphaPortfolio. Figure 1 illustrates the overall

architecture, which consists of three components. The first component entails using SREMs

to extract a representation for each asset from its state history. Next, we introduce a Cross-

Asset Attention Network (CAAN) which takes the representations of all assets as inputs to

extract representations that capture interrelationships among the assets. The third compo-

nent is a portfolio generator, which takes the scalar winner score for every asset from CAAN

and derives the optimal portfolio weights. Importantly, we embed this AlphaPortfolio strat-

egy into a reinforcement learning framework to train the model parameters to maximize an

evaluation criterion, such as the OOS Sharpe ratio. We describe the development of deep

sequence modeling in Cong, Tang, Wang, and Zhang (2020) and the basics of reinforcement

deep learning in Appendix A.

Why one-step portfolio optimization using RL? As we described in the introduction

and Section 2, one-step likely works better than the combination of two-step indirect op-

timizations. Moreover, RL can better handle complex objectives and interactions with the

environment, which allow the incorporation of budget constraints, long-term goals, etc.

3.1 Sequence Representations Extraction

The return distribution of an asset has close relationships with its historical states. The

historical states of assets are naturally formed as sequence observations. We use vector

x̃
(i)
t to denote the state history of asset i at time t, which consists of asset features/firm

14As two exceptions, Datta and Sen (2018) build on the concept of Shapley value to develop a Quantitative
Input Influence method, and demonstrate input influences can be summarized using clustering approaches,
and Horel and Giesecke (2019a) develop computationally efficient feature significance test that can not only
identify feature interactions of any order but also generate model-free feature importance measures. However,
these approaches are not designed for RL-based applications.
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Figure 1: Overall Architecture of AP.

characteristics, for example, as given in Section 4.1. We name the last K historical holding

periods at time t, i.e., the period from time t−K to time t, as a look-back window of t. One

example is features from the previous 12 months when we construct a portfolio for the 13th

month. The historical states of an asset in the look-back window are denoted as a sequence

X(i) =
{
x

(i)
1 , · · · ,x

(i)
k , · · · ,x

(i)
K

}
, where x

(i)
k = x̃

(i)
t−K+k.

For each asset i, SREM learns representation r(i) from its state history X(i) (we omit

time t without loss of generality). It is notable that SREM can be any kind of deep sequence

models, such as RNN, LSTM, etc. In this paper, we focus on one of the two most cutting-edge

deep sequence model (Cong, Tang, Wang, and Zhang, 2020), Transformer Encoder (TE). We

discuss the other, LSTM with Historical Attention (LSTM-HA), in Section 5 and Appendix

C. Both TE and LSTM-HA are specifically designed to handle sequential information and

excel in representing complex information in non-linear time-series modules.

Both variants of recurrent neural networks (RNNs) and the TE-based (or LSTM-based)

SREM we propose have been recently used in neural machine translation. Unlike RNNs, TE

makes long-range dependencies in sequences easier to learn by reducing network path length

and allows for more parallelization by reducing the reliance on the prohibitive sequential

nature of inputs.

X
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C
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Figure 2: The Architecture of Transformer Encoder.
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Figure 2 illustrates the architecture of a plain-vanilla TE. Here the encoder is composed

of a stack of several identical layers. Each layer has two sublayers. The first is a multi-head

self-attention mechanism, which we adopt and modify for AlphaPortfolio, and the second is a

simple position-wise fully connected feed-forward network. In addition, residual connection

and layer normalization are employed for each sublayer. We elaborate on implementation

details in Appendix C. Overall, TE encodes the sequence input X(i) into vector space as

Z(i) = TE
(
X(i)

)
, (1)

where Z(i) =
{
z

(i)
1 , · · · , z(i)

k , · · · , z
(i)
K

}
. The z

(i)
k is the hidden state encoded at step k,

which takes all other steps into consideration. We concatenate all the steps in Z(i) as a

representation of the asset: r(i) = Concat
(
z

(i)
1 , . . . ,z

(i)
k , . . . ,z

(i)
K

)
, which contains the global

dependence among all elements in X(i). In our model, the representation vector for all assets

are extracted by the same TE, which means the parameters are shared by all assets. In this

manner, the representations extracted by TE are relatively stable and generally applicable

for all assets available rather than for a particular one.

As mentioned earlier, learning long-range dependencies is a key challenge when using

vanilla recurrent-based sequence models, i.e., RNN and LSTM. In our design of sequence

representation extraction module, LSTM-HA addresses this issue by introducing historical

attention mechanism, and the Transformer architecture connects all positions in the se-

quence, which can effectively extract both short-term and long-term dependencies. We next

use LSTM-HA and TE as the first-step SREM respectively and compare their performances.

For the i-th stock at time t, the representation extracted by SREM is denoted as r
(i)
t . It

contains both the sequential and global dependences of stock i’s historical states from time

t−K + 1 to time t.

3.2 Cross-Asset Attention Network & Winner Score Estimation

Prior attempts applying RL-based models from computer science typically stop at asset

representations with a softmax normalization (Jin and El-Saawy, 2016; Deng, Bao, Kong,

Ren, and Dai, 2017; Ding, Liu, Bian, Zhang, and Liu, 2018). We propose a CAAN to describe

the interrelationships among assets. Note that our design of the CAAN module is inspired

in part by the self-attention mechanism in machine translation (Vaswani, Shazeer, Parmar,

Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin, 2017).

Figure 3 illustrates the architecture of CAAN. Specifically, given the asset representation

r(i) (we omit time t without loss of generality), we calculate a query vector q(i), a key vector

k(i) and a value vector v(i) for asset i as

q(i) = W (Q)r(i), k(i) = W (K)r(i), v(i) = W (V )r(i), (2)
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where W (Q), W (K), and W (V ) are the matrices of parameters to learn that are asset-

independent. The interrelationship of asset j to asset i is modeled as using the q(i) of asset

i to query the key k(j) of asset j, i.e., the rescaled inner product between q(i) and k(j):

βij =
q(i)> · k(j)

√
dk

, (3)

where dk is a rescale parameter to avoid the dot product from becoming too large.15 Then,

we use the normalized interrelationships {βij} as weights to sum the values {v(j)} of other

assets into an attenuation score:

a(i) =
I∑
j=1

SATT
(
q(i),k(j)

)
· v(j), (4)

where the self-attention function SATT (·, ·) is a softmax normalized interrelationships of

βij, i.e.,

SATT
(
q(i),k(j)

)
=

exp (βij)∑I
j′=1 exp

(
βij′
) . (5)

Note that the winner score s(i) is calculated according to the attention of all other assets.

This way, CAAN accounts for the interrelationships among all assets.
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Figure 3: Architecture of Cross-Asset Attention Network (CAAN).

We use a fully connected layer to transform the attention vector a(i) into a winner score

as s(i) = tanh
(
w(s)> · a(i) + e(s)

)
, where w(s) and e(s) are the connection weights and the

bias to learn. The winner score s
(i)
t indicates the likelihood of asset i being selected into

long positions in the t-th holding period. So far, the model embeds little economic meaning

because an asset with a higher winner score may not necessarily contribute positively to

portfolio performance. It is just a flexible structure (with high-dimensional parameters) for

generating portfolios to be trained using RL later.

15Assume that the components of q and k are independent random variables with mean 0 and variance 1.
Then their dot product, q · k =

∑dk

i=1 qiki, has mean 0 and variance dk.
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3.3 Portfolio Generation

Given the winner scores
{
s(1), · · · , s(i), · · · , s(I)

}
of a total of I assets, AP next constructs

a long-short portfolio with long positions in assets with high winner scores and short positions

in those with low winner scores. Specifically, we first sort the assets in descending order by

their winner scores and obtain the sequence number o(i) for each asset i. Let G denote the

preset size of the long and short parts of the portfolio b+ and b−. If o(i) ∈ [1, G], asset i then

enters the portfolio b+(i), with the investment proportion given by b+(i) =
exp(s(i))∑

o(i
′)∈[1,G]

exp(s(i′))
;

if o(i) ∈ (I −G, I], b−(i) =
exp(−s(i))∑

o(i
′)∈(I−G,I]

exp(−s(i′))
is the short proportion of asset i.16

The remainder assets do not have clear buy/sell signals and are thus not included in the

portfolio. For simplicity, we use one vector to record all the information of the two portfolios.

That is, we form the vector bc of length I with bc(i) = b+(i) if o(i) ∈ [1, G], bc(i) = b−(i) if

o(i) ∈ (I − G, I], or 0 otherwise, i = 1, . . . , I. In what follows, we use bc and {b+, b−}
interchangeably.

Note that before we fully train the model, because the parameters for TE and CAAN are

all randomly initiated, the AlphaPortfolio could perform miserably at the beginning. Before

proper training, a high winner score does not mean it is a better asset to invest in. After

training, constructing the portfolio based on winner scores can generate portfolios that lead

to high performance metrics. We next describe the training process.

3.4 Optimization via Reinforcement Learning

We embed AP into an RL game with continuum agent actions to train the model, where

an episode — one complete round of the agent’s interacting with the environment in RL

(a T -period investment in our context)—is modeled as a state-action-reward trajectory π of

an RL agent, i.e., π = {state1, action1, reward1, . . . , statet, actiont, rewardt, . . . , stateT ,

actionT , rewardT}. The statet is the historical market state at t, which is expressed as a

tensor Xt = {X(i)
t , i = 1, · · · , I}. The actiont is portfolio vector bct given by AP, of which the

element action
(i)
t indicates the portfolio weight the agent invests asset i at t, then rewardt

is the reward of actiont.

Let Hπ denote the objective of the portfolio manager, with the trajectory of reward

{reward1, . . . , rewardT} as inputs. For example, actiont could be the construction and

trading of a portfolio, rewardt is then the return of holding that portfolio, and Hπ can

be the Sharpe ratio computed using the returns in a 12-month window. The objective for

portfolio construction can be very general, incorporating transaction costs (defining rewardt

as return minus transaction cost) or budget constraints (having budget as a variable of the

16For example, if G = 50, then the 50 highest ranked assets would be traded, with a weight given by b+(i).
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state) or failures of portfolio managers (e.g., Hπ being zero if a particular return in the

trajectory is too negative). We explore various versions of Hπ in our empirical analyses.

For all episodes, the average reward is J(θ) = E [Hπθ ]. Recall that θ corresponds to

the parameters of the proposed AP. The first part comes from the SREM (Sequence Rep-

resentation Extraction Module). For TE-based SREM, parameters consist of multi-head

transformation matrices, attention transformation matrices and weight matrices in feed for-

ward networks. The second part comes from the CAAN module, for which we have a query

transformation matrix, a key transformation matrix, and a value transformation matrix.

The entries in these matrices are all parameters to be estimated. In addition, Theta also

includes the weight matrix and bias that are adopted to transform the attention vector into

the winner score.

The objective of the RL model optimization is to find the optimal parameters θ∗ =

arg maxθ J(θ). We use the gradient ascent approach to iteratively optimize θ at round τ as

θτ = θτ−1 + η∇J(θ)|θ=θτ−1
, where η is a learning rate. When we empirically train the model,

an episode is defined as one year of investment which contains 12 trading periods, and ∇J(θ)

is automatically calculated using the deep learning framework we employ.

4 Empirical Performance: A Study of U.S. Equities

4.1 Data Description

We now apply the AlphaPortfolio model to public equities in the United States. Our

baseline sample period is July 1965 to June 2016 with 1.76 million month-asset observations.

Monthly stock return data are from the Center for Research in Security Prices (CRSP). We

follow the literature standard to focus on common stocks of firms incorporated in the United

States and trading on Amex, Nasdaq, or NYSE. Firms’ balance-sheet data come from the

Standard and Poor’s Compustat database. To mitigate survivorship bias due to backfilling,

we also require that a firm appears in the dataset for at least two years for training the

model. For OOS test, we only require a firm to be in the dataset for one year.

Similar to Freyberger, Neuhierl, and Weber (2020), we construct firm characteristics and

market signals as raw input features that fall into six categories: price-based signals such as

monthly returns, investment-related characteristics such as the change in inventory over total

assets, profitability-related characteristics such as return on operating assets, intangibles

such as operating accruals, value-related characteristics such as the book-to-market ratio,

and trading frictions such as the average daily bid-ask spread. We consider lagged features up

to 12 months prior to the month of portfolio construction. Each input variable is treated as

available only in the month after it becomes public, a date that lags behind the reporting date

to start with. If a variable is not reported at the monthly frequency, we treat it as unchanged
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from the previous month. Overall, we have 51 times 12 input features for each asset at any

time. Appendix B describes the construction of input features.17 The AP framework allows

the inclusion of macroeconomic variables and other alternative data, which likely improves

its performance and we leave it for future studies.

4.2 Empirical Tests and Results

The baseline objective we specify for AP is the OOS Sharpe ratio, which is natural and

widely used by academics and practitioners. To train the model, we use data from July

1965 till the end of 1989 and follow the construction of the portfolio outlined in Section

3, with G chosen such that the long and short positions each take 10% of all the stocks

available. Although RL is known to allow interactions of actions (trading in our setting)

and the environment (e.g., market state variables, price impact, etc.), in the baseline we

shut the interaction and focus on the trial-and-error search benefit the RL brings about.

Alternative objectives with interactions with the market environment can be accommodated

easily, as we illustrate in Section 4.4. Note that RL does not distinguish between training

and validation sets. We use historical data to proxy for the environment and the rewards

to judge the quality of training and adjust hyper-parameters of AP. In that sense, model

selection is embedded in the exploration steps during training. The OOS tests ensure against

overfitting and model selection biases in evaluating the AP performance.

To start, we randomly initialize the parameters (over a wide range within the parameter

space), randomly draw a month from the training set without replacement, and use inputs

from the preceding 12 months (the drawn month included) and then evaluate performance

on the subsequent 12 months (e.g., Sharpe ratio computed based on 12 monthly return

observations) as the reward to update the parameters. We are not assuming the months are

i.i.d. but are essentially drawing a 24-month window without using any window repeatedly.

We repeat the step with the remaining months in the training set until we exhaust all the

months in the training set. We call this multi-step process an epoch. In our implementation,

we use 30 epochs, which is sufficient for the parameters to converge.18

After training, we test AP on the sample starting from 1990 with monthly rebalancing.

All our results are obtained out-of-sample rather than relying on in-sample predictability

adopted in traditional statistical tests. This is crucial to prevent overfitting with low signal-

17Tables 1 and 2 in Freyberger, Neuhierl, and Weber (2020) provide an overview of their input features
and their summary statistics while their Section A.1 describes the construction of characteristics and related
references. We incorporate time-variation of firm characteristics over the past month for variables beyond
past-return-based predictors, and therefore have more input features.

18As is typical in the training of AI models, we gradually decrease the learning rate η as we go through
more epochs. For example, we use a learning rate of 1e-4 in the first 5 epochs, then 5e-5 in the next 10
epochs, and 1e-5 after that. Such a tuning prevents the parameters from oscillating around optimum points
or settling on local optima. By monitoring the flattening of a loss curve (loss as in the negative of reward),
one can decide whether the parameters have converged.
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to-noise financial data. Note that the AP model is fine-tuned annually in our test samples

(rolling updates), which renders our model a hybrid of offline and online RL once deployed

as a live strategy. In other words, after seeing one year’s performance, we use the additional

data to update the model parameters. Here we use 6 epochs each containing 12 steps.

Learning rate is similarly set to 1e-4, then 5e-5 after 2 epochs and 1e-5 after 4 epochs. Even

though one could have fine-tuned the model at higher frequencies such as monthly, we use

annual frequency to avoid overfitting to monthly variations and high computation costs for

updating deep learning models at high frequency — a point also discussed in Gu, Kelly, and

Xiu (2020). Updating at a lower frequency tends to reduce the OOS performance because

of stale information, which works against getting a superior performance.

Table 1 reports the main results. Columns (1)-(3) display the various moments of the

returns of AP as well as metrics such as turnover. AP achieves an OOS Sharpe ratio of

2.0 in the full test data set and even higher when we restrict the training and testing to

large and liquid stocks (in Columns (2) and (3) we require the stocks to be in the top 90

or 80 percentiles based on market cap). Apparently, the AP performance is not driven by

microcaps and can be implemented without liquidity concerns.19 If we restrict our attention

to the top 90 percentile of stocks in terms of market cap, one thousand dollars invested by

AP at the start of the 1990 would become 91,140 dollars by the end of 2016.

Both high returns and low volatility contribute to the high Sharpe ratio of our algorithm.

Moreover, AP uses a much lower frequency of rebalancing (monthly), turnover, and maxi-

mum drawdown relative to other (high-frequency) machine learning strategies or traditional,

anomaly-based trading. The performance would be reduced by half if after ranking the assets

using winner scores, we value-weight the stocks instead of using the weights AP prescribe.

The average holding period is four months, which is easy to implement.

As is standard in the literature, we also control for benchmark factor models in Columns

(4)-(9), which include the CAPM, the Fama-French-Carhart 4-factor model (FFC, Carhart

1997), the Fama-French-Carhart 4-factor model plus the Pastor-Stambaugh liquidity fac-

tor model (FFC+PS, Pástor and Stambaugh 2003), the Fama-French 5-factor model (FF5,

Fama and French 2015), the Fama-French 6-factor model (FF6, Fama and French 2018), the

Stambaugh-Yuan 4-factor model (SY, Stambaugh and Yuan 2017), and the Hou-Xue-Zhang

4-factor model (Q4, Hou, Xue, and Zhang 2015). AP has a significant and large annualized

α after controlling for various factors. This holds even for recently published latent factor

models. For example, controlling for IPCA factors constructed using the 36 characteristics

19As Hou, Xue, and Zhang (2020) point out, 65 percent of known anomalies cannot clear the single test
hurdle of |t| ≥ 1.96 because the original studies overweight microcaps via equal-weighted returns and often
with NYSE-Amex-NASDAQ breakpoints in portfolio sorts and cross-sectional regressions, especially those
with ordinary least squares, are highly sensitive to microcap outliers. The authors also point out how
illiquidity and trading frictions render many anomalies in academic studies infeasible for trading.
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Table 1: Out-of-Sample Performance of AlphaPortfolio

In each month, AlphaPortfolio constructs a long-short portfolio of stocks in highest/lowest decile
of winner scores. The detailed investment strategy is described in Section 3.3. Parameters are
initially obtained from the training periods, then fine-tuned once a year in the OOS periods (rolling
update). qn symbolizes the nth NYSE size percentile. Columns (1)-(3) display portfolio performance
metrics, with Return, Std.Dev., and Sharpe ratio all annualized. Columns (4)-(9) further adjust
portolio returns by the CAPM, Fama-French-Carhart 4-factor model (FFC), Fama-French-Carhart
4-factor and Pastor-Stambaugh liquidity factor model (FFC+PS), Fama-French 5-factor model
(FF5), Fama-French 6-factor model (FF6), Stambaugh-Yuan 4-factor model (SY), and Hou-Xue-
Zhang 4-factor model (Q4). Again, (4)-(5) present the alphas for the overall sample whereas
(6)-(9) present alphas for subsamples excluding microcap firms in the smallest decile and quintile,
respectively. “*,” “**,” and “***” denote significance at the 10%, 5%, and 1% level, respectively.

AP Performance AP Excess Alpha
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Firms All > q10 > q20 Factor All > q10 > q20

Models α(%) R2 α(%) R2 α(%) R2

Return(%) 17.00 17.09 18.06 CAPM 13.9∗∗∗ 0.005 12.2∗∗∗ 0.088 14.0∗∗∗ 0.102
Std.Dev.(%) 8.48 7.39 8.19 FFC 14.2∗∗∗ 0.052 13.4∗∗∗ 0.381 14.7∗∗∗ 0.465
Sharpe 2.00 2.31 2.21 FFC+PS 13.7∗∗∗ 0.054 12.3∗∗∗ 0.392 13.3∗∗∗ 0.480
Skewness 1.42 1.73 1.91 FF5 15.3∗∗∗ 0.12 13.8∗∗∗ 0.426 14.7∗∗∗ 0.435
Kurtosis 6.35 5.70 5.97 FF6 15.6∗∗∗ 0.128 14.5∗∗∗ 0.459 15.8∗∗∗ 0.516
Turnover 0.26 0.24 0.26 SY 17.4∗∗∗ 0.037 15.8∗∗∗ 0.332 17.0∗∗∗ 0.394
MDD 0.08 0.02 0.02 Q4 16.0∗∗∗ 0.121 15.0∗∗∗ 0.495 16.2∗∗∗ 0.521

in Kelly, Pruitt, and Su (2019), AP generates 11.316%, 13.476%, and 13.776% α in the full,

> q10, and > q20 samples respectively, all significant at the 1% level.

Note that AP does not pick small and illiquid stocks as many other models do based on

back-testing — a somewhat surprising result. We attribute this to the fact that even though

small and illiquid stocks tend to commend high expected returns, they also significantly

contribute to the volatility of a portfolio. The direct optimization of the Sharpe ratio rather

than characteristic sorting effectively avoids small and illiquid stocks in the construction.

Table 2 further demonstrates the efficacy of RL and AI for investment. Panel A compares

AP with the “nonparametric” (NP) model and portfolio strategy in Freyberger, Neuhierl,

and Weber (2020). AP outperforms most other machine-learning-based strategies in the

literature. We pick NP as a benchmark because in addition to the fact that we use similar

firm characteristics as in their paper for inputs, NP is likely among the 3-5 best-performing

machine learning models in asset pricing. NP achieves a higher Sharpe ratio on its test

sample in 1991-2014. Once we exclude illiquid and small stocks, AP outperforms NP signifi-

cantly, consistent with Avramov, Cheng, and Metzker (2019)’s findings that recent machine

learning strategies often derive their performances from microcap and illiquid stocks. The
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superior performance here does not invalidate other models such as NP, as their focus is

on minimizing pricing errors or estimating pricing kernels rather than directly optimizing

portfolio performance.

Table 2: Comparison with Alternative Models Using Out-of-Sample Performance

Panel A compares AP’s performance with one benchmark model proposed in Freyberger, Neuhierl,
and Weber (2020) in 1991-2014 (their test sample period). NP and AP denote the nonparametric
model in Freyberger, Neuhierl, and Weber (2020) and the AlphaPortfolio, respectively. Panel B
presents the results using the full test sample period (1990-2016) when we follow the traditional
two-step approach to first use transformer encoder to predict stock returns and then form expected-
return-sorted portfolios. Panel C compares the results using the full test-sample period (1990-2016)
without (TE) and with CAAN (TE-CAAN) in the AlphaPortfolio. Again, qn symbolizes the nth

NYSE size percentile. Return, Std.Dev., and Sharpe ratio all annualized.

Firms All > q10 > q20

(1) (2) (3) (4) (5) (6)

Panel A: Comparison with NP Model (1991-2014)
Model NP AP NP AP NP AP

Return(%) 45.84 15.60 21.12 17.70 15.48 17.90
Std.Dev.(%) 16.66 8.20 13.27 7.60 14.90 8.60
Sharpe 2.75 1.90 1.60 2.33 1.04 2.08
Skewness 3.53 1.20 0.30 1.77 -0.50 1.88
Kurtosis 19.56 6.54 7.80 5.57 13.06 5.46
Turnover 0.69 0.26 0.74 0.24 0.74 0.26
MDD 0.10 0.08 0.27 0.02 0.36 0.08

Panel B: TE-Based Return-Sorted Portfolio
Weight Equal Value Equal Value Equal Value

Return(%) 8.80 3.20 19.30 5.90 18.10 6.30
Std.Dev.(%) 9.40 8.80 11.70 8.60 9.80 7.90
Sharpe 0.94 0.36 1.65 0.69 1.85 0.80
Skewness 2.46 -1.78 6.02 1.48 4.07 1.00
Kurtosis 19.84 27.55 67.00 10.89 33.21 15.63
Turnover 0.17 0.29 0.18 0.31 0.18 0.28
MDD 0.08 0.15 0.30 0.10 0.02 0.07

Panel C: Ablation Study for CAAN
Model TE TE-CAAN TE TE-CAAN TE TE-CAAN

Return(%) 13.70 17.00 12.92 17.09 13.65 18.06
Std.Dev.(%) 8.84 8.48 6.66 7.39 6.73 8.19
Sharpe 1.55 2.00 1.94 2.31 2.03 2.21
Skewness 1.84 1.42 3.06 1.73 1.80 1.91
Kurtosis 15.42 6.35 19.69 5.70 6.06 5.97
Turnover 0.38 0.26 0.45 0.24 0.43 0.26
MDD 0.07 0.08 0.03 0.02 0.02 0.02
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It is worth mentioning that the winner score is not just another estimator of expected

returns. RL takes into consideration both the expected returns and other moments of avail-

able assets. To see how RL adds to AP’s performance, Panel B in Table 2 presents the OOS

performance when we follow the traditional two-step approach to first use TE under super-

vised learning to predict stock returns and then form expected-return-sorted portfolios.20

We note that OOS Sharpe ratio can reach 0.8 with market-cap-adjusted weights and close to

2 with equal weights. On the one hand, this demonstrates the TE under the traditional two-

step portfolio construction still outperforms many other strategies (machine-learning-based

or anomaly/sorting-based, because TE as a flexible deep neural network better captures the

nonlinearity and path-dependence information).21 On the other hand, the performance is

dwarfed by the RL-based AP model, highlighting the utility of our one-step RL. For example,

the value-weighted portfolio on the full sample, which is more feasible than equal weighting

in practice, has an OOS Sharpe ratio of 0.36 as compared to AP’s Sharpe ratio of 2. In

other words, had we used winner scores as an estimator of expected returns and either equal

weights or value weights, the portfolio would significantly underperform AP.

Finally, Panel C in Table 2 demonstrates how our innovation of CAAN further contributes

to AP performance. Using TE alone, RL still achieves higher OOS return and Sharpe ratio

and lower turnover and maximum drawdown than other ML models (which often perform

less well than NP in Panel A to start with) and the two-step approach (as seen in Panel B).

Nevertheless, CAAN improves the OOS performance significantly on top of RL, on average

increasing Sharpe ratio by an additional 0.33 and annualized returns by almost 4% in the

three test samples while lowering the turnover by 40%. Though unreported here, CAAN’s

impact on performance is even greater when we implement AP using LSTM (Appendix C2).

4.3 Economic Restrictions and Model Robustness

Performance of traditional anomalies and machine learning strategies is often suspected

to be primarily driven by microcap stocks, illiquid stocks, extreme market conditions, equal-

weighting of the portfolio, etc. We now dispel such concerns and demonstrate AP’s robust-

ness. Note that the results reported below after imposing various economic restrictions are

only lower bounds on AP’s performance, as we do not retrain AP on the subsamples exclud-

ing certain stocks or under specific restrictions. Instead, we simply set the portfolio weights

of the excluded stocks or non-admissible stocks under the specific restrictions to zero.

20Because the links among various assets are typically not explicitly modeled in simple characteristic-based
sorting, Table 2 does not involve CAAN when modeling asset returns.

21Although not our focus, the AlphaPortfolio with high Sharpe ratio can be used as a single-factor model.
For example, we find the cross-sectional R2 when explaining the Fama-French 25 portfolios and Industry 49
portfolios to be 94.0% and 92.5% respectively.
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Microcaps. Given that microcaps have the highest equal-weighted returns and the largest

cross-sectional dispersions in returns and in anomaly variables, anomalies in cross-sectional

asset returns could be driven by microcap stocks and costly-to-trade stocks (Novy-Marx and

Velikov, 2016; Hou, Xue, and Zhang, 2020). Avramov, Cheng, and Metzker (2019) find that

machine techniques face similar issues: Return predictability and the anomalous patterns

are concentrated in difficult-to-arbitrage stocks and in times of high limits to arbitrage.

Table 1 reveals that AP’s performance is not driven by the bottom 10% and 20% of

stocks based on market capitalization. If anything, the performance improves after excluding

them, which outperforms almost all other machine learning models in terms of Sharpe ratio,

maximum drawdown, and turnover. This observation implies that AP is more effective in

uncovering patterns in large and liquid stocks than in a mixture of large and small cap stocks.

Turnovers, shorting, and transaction costs. Following Koijen, Moskowitz, Pedersen,

and Vrugt (2018); Freyberger, Neuhierl, and Weber (2020), we calculate turnover using

Turnovert = 1
4

∑
i

∣∣wit−1(1 + rit)− wit
∣∣, where the coefficient 1

4
avoids double counting (a fac-

tor of 2) and adjusts for that the long/short strategies have $2 exposure (another factor of 2).

Gu, Kelly, and Xiu (2020) point out that many strategies have turnovers well above 100%

monthly, using the alternative turnover measure, TurnoverGKX =
∣∣∣wi,t+1 − wi,t(1+ri,t+1)

1+
∑
j wj,trj,t+1

∣∣∣.22

With this definition, AP still has very low turnovers relative to other traditional anomalies

or machine learning strategies, whether we calculate the long/short-leg turnover respectively

and sum it up, or we directly calculate the turnover of long-short portfolio using this alter-

native measure.

With low turnovers, AP’s performance stands out even after incorporating transaction

costs (but without retraining the model). For example, setting a cost at 0.1%, AP still yields

OOS Sharpe ratios of 2.01, 2.27, and 2.16 for the full sample and the size > q10 and size

> q20 subsamples, respectively. The turnover and maximum drawdown do not differ much

from the baseline model.

While many existing strategies (whether anomaly-based or machine-learning-based) for

long-short portfolio construction heavily depend on the short positions, AP’s long and short

positions both contribute significantly to the performance. If anything, the long positions

play a more dominant role. For the long-short AlphaPortfolio, they generate returns of 37.7%,

40.3%, and 41.1% for the full sample, size> q10 sample, and size> q20 sample respectively,

as compared to the 4.8%, 6.1%, and 5% from short positions.

For robustness, we also train a long-only AlphaPortfolio, and the results are reported in

Table 3. The OOS Sharpe ratio and excess alphas are lower than the long-short AlphaPort-

folio but higher than most other long-only strategies and anomalies.

22Note that to have the proper normalization for long-short portfolios in our setting, we have added 1 in
the denominator.
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Table 3: Out-of-Sample Performance of Long-Only AP

This table presents the OOS performance of a long-only AlphaPortfolio taking positions only in the highest
decile of winner scores, with Return, Std.Dev., and Sharpe ratio all annualized. Portfolio returns are further
adjusted by the CAPM, Fama-French-Carhart 4-factor model (FFC), Fama-French-Carhart 4-factor and
Pastor-Stambaugh liquidity factor model (FFC+PS), Fama-French 5-factor model (FF5), Fama-French 6-
factor model (FF6), Stambaugh-Yuan 4-factor model (SY), and Hou-Xue-Zhang 4-factor model (Q4). The
first columns present the alphas for the overall sample. The remaining four columns present alphas for
subsamples excluding microcap firms in the smallest decile and quintile, respectively. qn symbolizes the nth

NYSE size percentile. “*,” “**,” and “***” denote significance at the 10%, 5%, and 1% level, respectively.

AP Performance AP Excess Alpha
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Firms All > q10 > q20 Factor All > q10 > q20
Models α(%) R2 α(%) R2 α(%) R2

Return(%) 22.41 37.60 44.27 CAPM 12.88∗∗∗ 0.477 25.80∗∗∗ 0.508 31.79∗∗∗ 0.485
Std.Dev.(%) 19.28 25.08 27.63 FFC 12.54∗∗∗ 0.791 25.79∗∗∗ 0.798 30.97∗∗∗ 0.733
Sharpe 1.16 1.50 1.60 FFC+PS 11.02∗∗∗ 0.795 22.20∗∗∗ 0.806 28.20∗∗∗ 0.738
Skewness 0.67 1.03 1.55 FF5 9.91∗∗∗ 0.731 21.62∗∗∗ 0.755 27.84∗∗∗ 0.696
Kurtosis 5.64 4.72 7.55 FF6 12.10∗∗∗ 0.791 24.12∗∗∗ 0.802 30.31∗∗∗ 0.734
Turnover 0.38 0.44 0.48 SY 15.38∗∗∗ 0.720 26.29∗∗∗ 0.739 31.68∗∗∗ 0.681
MDD 0.24 0.27 0.25 Q4 14.51∗∗∗ 0.698 26.83∗∗∗ 0.714 33.01∗∗∗ 0.656

Performance attenuation over time. Given our high-dimensional inputs involving known

anomalies, there is a natural concern of data mining. Moreover, many anomalies have at-

tenuated since the early 2000s (e.g., Chordia, Subrahmanyam, and Tong, 2014; McLean and

Pontiff, 2016; Linnainmaa and Roberts, 2018; Han, He, Rapach, and Zhou, 2018) because

the U.S. equity market witnessed several structural changes since the 2000s, such as the

introduction of decimalization. Could AP be trading on anomalies that were known only ex

post or have been traded away in recent years or on seeming anomalies from data snooping?

To answer this, we restrict the test to a subsample of more recent years (2001-2016). As

we report in Table 11 Columns (4)-(6), AP’s performance remains robust. Controlling for

IPCA factors, AP also generates 12.372%, 14.808%, and 14.076% α in the full, > q10, and

> q20 samples from 2001 to 2016, all significant at the 1% level.

We also plot AP’s Sharpe ratio and excess α relative to seven benchmark factor models

over time. We look at non-overlapping 3-year windows and the trends are depicted in Figure

4. Overall, the Sharpe ratio is particularly high at the start of the test sample but does not

exhibit particular trends post 2000s. Excess alphas fluctuate but show no sign of attenuation.

Industry attribution and weights. We perform industry/style attribution tests and

report the results in Table 5. After regressing AP’s monthly OOS returns (1990-2016) on

the 12 industries according to Fama and French, the intercept is both economically and
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Table 4: Out-of-Sample Performance in Recent Years

This table reports alphas for portfolios of long/short stocks in the highest/lowest decile of winner scores
from 2001 to 2016. Return, Std.Dev., and Sharpe ratio are all annualized. Portfolio returns are further
adjusted by the CAPM, Fama-French-Carhart 4-factor model (FFC), Fama-French-Carhart 4-factor and
Pastor-Stambaugh liquidity factor model (FFCPS), Fama-French 5-factor model (FF5), Fama-French 6-
factor model (FF6), Stambaugh-Yuan 4-factor model (SY), and Hou-Xue-Zhang 4-factor model (Q4). The
first columns present the alphas for the overall sample. The remaining four columns present alphas for
subsamples excluding microcap firms in the smallest decile and quintile, respectively. qn symbolizes the nth

NYSE size percentile. “*,” “**,” and “***” denote significance at the 10%, 5% and 1% level, respectively.

AP Performance AP Excess Alpha
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Firms All > q10 > q20 Factor All > q10 > q20
Models α(%) R2 α(%) R2 α(%) R2

Return(%) 18.10 16.10 16.60 CAPM 16.5∗∗∗ 0.007 13.6∗∗∗ 0.136 13.8∗∗∗ 0.176
Std.Dev.(%) 9.20 7.90 8.90 FFC 16.3∗∗∗ 0.078 12.9∗∗∗ 0.497 13.3∗∗∗ 0.594
Sharpe 1.97 2.04 1.87 FFC+PS 15.7∗∗∗ 0.080 11.7∗∗∗ 0.506 11.7∗∗∗ 0.606
Skewness 1.67 1.53 1.61 FF5 18.0∗∗∗ 0.151 13.8∗∗∗ 0.426 14.6∗∗∗ 0.432
Kurtosis 5.95 4.23 3.59 FF6 17.8∗∗∗ 0.174 13.3∗∗∗ 0.560 14.0∗∗∗ 0.620
Turnover 0.25 0.23 0.25 SY 18.9∗∗∗ 0.065 15.3∗∗∗ 0.428 16.5∗∗∗ 0.502
MDD 0.05 0.03 0.04 Q4 16.9∗∗∗ 0.121 13.7∗∗∗ 0.532 14.6∗∗∗ 0.551

Figure 4: Trends of AlphaPortfolio Performance.
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statistically significant.23 We also do not see significant loadings on most industry portfolios

except for durables (positive), energy (negative), and retails (negative). Overall, AP picks

up patterns beyond those associated with industries or styles and does not heavily weigh

particular industries.

Table 5: Industry Attribution Test for AlphaPortfolio

This table presents the results from regressing the AlphaPortfolio return on various industry portfolio re-
turns. The 12 industries are Fama-French industries based on four-digit SIC codes: 1 NoDur (Consumer
Nondurables) – Food, Tobacco, Textiles, Apparel, Leather, Toys; 2 Durbl (Consumer Durables) – Cars, TVs,
Furniture, Household Appliances; 3 Manuf (Manufacturing) – Machinery, Trucks, Planes, Off Furn, Paper,
Com Printing; 4 Enrgy – Oil, Gas, and Coal Extraction and Products; 5 Chems – Chemicals and Allied
Products; 6 BusEq (Business Equipment) – Computers, Software, and Electronic Equipment; 7 Telcm –
Telephone and Television Transmission; 8 Utils – Utilities; 9 Shops – Wholesale, Retail, and Some Services,
Laundries, Repair Shops; 10 Hlth – Healthcare, Medical Equipment, and Drugs; 11 Money – Finance; 12
Other – Mines, Constr, BldMt, Trans, Hotels, Bus Serv, Entertainment. qn symbolizes the nth NYSE size
percentile. “*,” “**,” and “***” denote significance at the 10%, 5%, and 1% level, respectively.

Industry

Intercept NoDur Durbl Manuf Enrgy Chems BusEq Telcm Utils Shops Hlth Money Other R2

All
Coefficient 1.438∗∗∗ 0.096 0.035 0.169∗∗ -0.133∗∗∗ -0.059 0.055 0.019 -0.026 -0.125∗∗ -0.074∗ -0.033 -0.004 0.119
Std.Err. 0.141 0.071 0.039 0.084 0.037 0.067 0.034 0.043 0.045 0.061 0.043 0.048 0.078

> q10

Coefficient 1.494∗∗∗ 0.058 0.073∗∗ 0.027 -0.060∗ -0.107∗ 0.047 0.020 -0.082∗∗ -0.119∗∗ -0.012 0.043 0.048 0.135
Std.Err. 0.125 0.064 0.035 0.075 0.033 0.060 0.030 0.039 0.040 0.054 0.039 0.043 0.070

> q20

Coefficient 1.584∗∗∗ 0.078 0.076∗∗ 0.041 -0.082∗∗ -0.134∗∗ 0.080∗∗ 0.006 -0.078∗ -0.167∗∗∗ -0.034 0.049 0.104 0.190
Std.Err. 0.133 0.068 0.037 0.080 0.035 0.063 0.032 0.041 0.042 0.057 0.041 0.046 0.074

It is also worth noting that our findings are not driven by the issue of equal weighing

versus value weighing. The Pearson coefficient of assets’ investment proportion, and its

market capitalization shows that under 15% of the time, the two factors are significantly

negatively correlated. In other words, our portfolio is close to value-weighted, which is more

feasible to construct in practice than many extant anomalies relying on equal weights.

In fact, we use the softmax function to generate portfolio weights from winner scores

for two reasons. First, the optimization of deep neural networks relies on gradient-based

backpropagation algorithm (Rumelhart, Hinton, and Williams, 1986). Our softmax function

is differentiable. In contrast, value weights bear no gradient relationship to winner scores,

implying that constructing value-weighted portfolios blocks the backpropagation procedure

for model training. Second, our softmax-generated portfolio outperforms in OOS Sharpe

ratio, risk-adjusted returns, portfolio turnover, maximum drawdown, etc. One can alterna-

tively take long positions in the top 10% and short positions in the bottom 10% based on

the winner score using market capitalization instead of the softmax transformation to deter-

mine portfolio weights. But the resulting portfolio has an OOS Sharpe ratio below 1.5 and

23The definition and data are at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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risk-adjusted return below 5%, not to mention that the turnover and maximum drawdown

are all higher than those of AP.

Unrated or downgraded firms. To rule out the possibility that our results are driven by

unrated or downgraded firms that are hard to trade on, we next follow Avramov, Cheng, and

Metzker (2019) to test our model on a subsample including only rated firms, i.e., firms with

data on S&P’s long-term issuer credit rating. Such rated firms tend to be large and liquid,

with better disclosure, more analyst coverage, and smaller idiosyncratic volatility, which

makes trading them cheaper and more feasible. Within the rated firms, we further exclude

firms with credit rating downgrades which are typically associated with greater trading and

arbitrage frictions (e.g., Avramov, Chordia, Jostova, and Philipov, 2013). As in Avramov,

Cheng, and Metzker (2019), we exclude stock-month observations from 12 months before to

12 months after the downgrade events. The results are reported in Table C.1. As seen in

Panel A, even though the α values are smaller, they are still significant and greater than

most known anomalies. The Sharpe ratios shown in Panel B exhibit similar patterns.

The significant reductions in excess alpha and Sharpe ratio are natural and mostly an

artifact that AP is not reestimated after imposing the economic restrictions or re-trained on

samples excluding unrated and downgraded firms. We simply set the portfolio weights for

excluded stocks to zero when performing OOS tests. So the excess returns reported here are

all lower bounds on AP’s performance under the various economic restrictions.

Market conditions. Prior studies document that traditional anomalies are more salient

during high investor sentiment, high market volatility, and low market liquidity (e.g., Stam-

baugh, Yu, and Yuan, 2012; Nagel, 2012). Many machine learning strategies are also shown

to have insignificant α in times of low V IX or low sentiment (Avramov, Cheng, and Metzker,

2019). If the OOS tests of AP only perform well during high investor sentiment and high

market volatility, AP may not be implementable in practice due to limits to arbitrage.

To investigate this issue, we examine the AP performance in subperiods of different

states of investor sentiment, market volatility (implied and realized), and liquidity. Investor

sentiment (SENT ) is defined as the monthly Baker and Wurgler (2007) investor sentiment;

market volatility (V IX) is defined as the monthly VIX index of implied volatitity of S&P 500

index options; realized market volatility (MKTV OL) is defined as the standard deviation of

daily CRSP value-weighted index return in a month; and market illiquidity (MKTILLIQ) is

defined as the value-weighted average of stock-level Amihud illiquidity for all NYSE/AMEX

stocks in a month.24 We divide the full sample into two subperiods using the median break-

points of SENT , V IX, MKTV OL, and MKTILLIQ over the whole sample period. We

24Investor sentiment index is available at Jeffrey Wurgler’s website http://people.stern.nyu.edu/jwurgler/
while monthly VIX index is available at CBOE website http://www.cboe.com/products/vix-index-
volatility/vix-options-and-futures/vix-index/vix-historical-data.
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Table 6: Out-of-Sample Performance of Portfolios Excluding Unrated (and Downgraded)
Stocks

This table reports alphas for portfolios of long/short stocks in the highest/lowest decile of winner scores
from 1990 to 2016, where (1)-(3) exclude unrated stocks from the portfolio and (4)-(6) exclude both unrated
and recently downgraded stocks. In Panel A, portfolio returns are adjusted by the CAPM, Fama-French-
Carhart 4-factor model (FFC), Fama-French-Carhart 4-factor and Pastor-Stambaugh liquidity factor model
(FFC+PS), Fama-French 5-factor model (FF5), Fama-French 6-factor model (FF6), Stambaugh-Yuan 4-
factor model (SY), and Hou-Xue-Zhang 4-factor model (Q4). Within (1)-(3) and within (4)-(6), the first
columns present the alphas for the whole sample. The remaining four columns present alphas for subsamples
excluding microcap firms in the smallest decile and quintile, respectively. Panel B presents other performance
metrics in a similar fashion, with Return, Std.Dev., and Sharpe ratio all annualized. qn symbolizes the nth

NYSE size percentile. “*,” “**,” and “***” denote significance at the 10%, 5%, and 1% level, respectively.

Panel A: Out-of-Sample Alpha Under Various Factor Models
Excluding Unrated Firms Excluding Unrated & Downgraded

(1) (2) (3) (4) (5) (6)

Firms All Size > q10 Size > q20 All Size > q10 Size > q20
α(%) R2 α(%) R2 α(%) R2 α(%) R2 α(%) R2 α(%) R2

CAPM 3.4∗∗∗ 0.000 4.6∗∗ 0.051 5.3∗∗∗ 0.067 4.7∗∗∗ 0.000 3.8∗∗∗ 0.070 4.3∗∗∗ 0.076
FFC 3.1∗∗∗ 0.061 5.2∗∗∗ 0.380 5.5∗∗∗ 0.504 4.4∗∗∗ 0.047 4.2∗∗∗ 0.305 4.4∗∗∗ 0.437
FFC+PS 2.4∗ 0.070 4.6∗∗∗ 0.384 4.7∗∗∗ 0.511 3.4∗∗∗ 0.060 3.6∗∗∗ 0.309 3.4∗∗∗ 0.448
FF5 3.6∗∗ 0.146 4.3∗∗ 0.251 4.0∗∗∗ 0.375 5.0∗∗∗ 0.100 3.7∗∗∗ 0.219 2.9∗∗∗ 0.338
FF6 3.7∗∗∗ 0.147 5.6∗∗∗ 0.391 5.3∗∗∗ 0.517 5.0∗∗∗ 0.100 4.7∗∗∗ 0.308 4.0∗∗∗ 0.446
SY 5.3∗∗∗ 0.182 7.9∗∗∗ 0.393 7.4∗∗∗ 0.494 6.6∗∗∗ 0.149 6.9∗∗∗ 0.333 6.2∗∗∗ 0.444
Q4 3.5∗∗∗ 0.109 5.8∗∗∗ 0.294 5.6∗∗∗ 0.394 5.0∗∗∗ 0.082 5.1∗∗∗ 0.257 4.5∗∗∗ 0.350

Panel B: Other Portfolio Performance Metrics
Excluding Unrated Firms Excluding Unrated & Downgraded

(1) (2) (3) (4) (5) (6)

Firms All Size > q10 Size > q20 All Size > q10 Size > q20

Return(%) 6.18 8.30 8.99 7.45 7.54 8.06
Std.Dev.(%) 5.93 7.89 7.03 6.42 7.02 7.00
Sharpe 1.04 1.05 1.28 1.16 1.07 1.15
Skewness -0.24 2.23 1.69 -0.89 1.18 1.18
Kurtosis 4.52 11.83 10.16 7.96 7.92 8.68
MDD 0.06 0.08 0.08 0.05 0.08 0.08

29



Table 7: Out-of-Sample Performance of AP Under Various Market Conditions

This table reports annualized alphas (adjusted by Fama-French 6-factor model) and Sharpe ratios
of the AlphaPortfolio in high and low sentiment periods (Panel A), low and high VIX periods (Panel
B), low and high realized volatility periods (Panel C), and low and high illiquidity periods (Panel
D). Sentiment (SENT ) is measured from the raw version of monthly Baker and Wurgler (2007)
sentiment index that excludes the NYSE turnover variable; market volatility (V IX) is defined as
the monthly VIX index of implied volatility of S&P 500 index options; realized market volatility
(MKTV OL) is defined as the standard deviation of daily CRSP value-weighted index return in
a month; market illiquidity (MKTILLIQ) is defined as the value-weighted average of stock-level
Amihud illiquidity for all NYSE/AMEX stocks in a month. The panels report the results in the
full sample as well as subsamples that exclude the bottom 10% and 20% microcaps. qn symbolizes
the nth NYSE size percentile. Newey-West adjusted t-stats are shown in brackets with “*,” “**,”
and “***” denoting 10%, 5%, and 1% significance levels, respectively.

(1) (2) (3) (4) (5) (6)

Sample All Size > q10 Size > q20

Variable Low High Low High Low High

Panel A: AP Performance Under Various SENT Periods
FF-6 α 19.273∗∗∗ 13.351∗∗∗ 14.132∗∗∗ 13.746∗∗∗ 14.756∗∗∗ 16.072∗∗∗

t-stat (5.975) (7.914) (8.284) (9.441) (8.980) (9.751)
Sharpe 1.734 1.69 2.106 1.796 2.123 1.677

Panel B: AP Performance Under Various VIX Periods
FF-6 α 10.248∗∗∗ 19.776∗∗∗ 10.812∗∗∗ 18.660∗∗∗ 10.272∗∗∗ 21.084∗∗∗

t-stat (5.060) (7.421) (8.862) (10.201) (8.598) (11.107)
Sharpe 1.719 1.713 2.371 1.951 2.331 1.932

Panel C: AP Performance Under Various MKTVOL Periods
FF-6 α 10.385∗∗∗ 17.167∗∗∗ 10.687∗∗∗ 17.750∗∗∗ 11.038∗∗∗ 19.626∗∗∗

t-stat (30.636) (7.577) (6.686) (11.088) (6.765) (11.896)
Sharpe 1.654 1.668 2.429 1.855 2.461 1.806

Panel D: AP Performance Under Various MKTILLIQ Periods
FF-6 α 11.9635∗∗∗ 19.385∗∗∗ 14.107∗∗∗ 13.048∗∗∗ 16.096∗∗∗ 12.541∗∗∗

t-stat (5.616) (6.971) (9.084) (9.029) (10.209) (8.038)
Sharpe 1.447 1.874 1.971 1.885 1.880 1.877

report the analyses in Table 7. For brevity, we only present baseline samples and FF6-

adjusted α of the portfolios.

Overall, unlike most other machine learning strategies that yield no significant profits

during low volatility/sentiment or high liquidity or when unrated or downgraded firms are

excluded (Avramov, Cheng, and Metzker, 2019), AP continues exhibiting a high Sharpe

ratio and significant α even after controlling for various factors, regardless of the market

conditions. AP is particularly more profitable during high investor sentiment or market

volatility or liquidity, and the alpha is both economically and statistically significant under
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various market conditions. If anything, the Sharpe ratio seems better during low sentiment

and low market volatility. Our deep RL signals deliver meaningful risk-adjusted performance

over the entire test sample period as well as in various market states.

4.4 Market Interactions and Flexible Management Objectives

Thus far, AP involves a deterministic gradient and implicit in our baseline RL setup is

that our portfolio manager is a price-taker. This common assumption in many asset pric-

ing studies implies a limitation on the scale of AP. Depending on the size of the portfolio,

transaction costs and price impacts could differ significantly. More generally, an RL learner’s

action could alter the market state. While it is too complicated to model the interactions

between actions and market environments completely, RL is known for excelling at incorpo-

rating such interactions, and the AP framework is flexible enough to accommodate various

scenarios in portfolio management. We provide several illustrative examples, in which we

retrain the model allowing the investment actions to interact with the market environment

specified by us or in the literature.

In the first example, we consider the simple situation that AP’s portfolio size is kept

constant over time. To account for transaction fees and price impacts, we introduce a

transaction cost of 10-100 basis points of the transaction amount. Note that in training the

model, we allow the action (trading) to affect the state (return of assets after fees). The

results are reported in Table 8. The cost consideration brings down the strategies turnover,

but OOS Sharpe ratio and other performance metrics remain comparable with the baseline.

Table 8: Out-of-Sample Performance of AlphaPortfolio Considering Trading Costs

This table reports performance for portfolios of long/short stocks in the highest/lowest decile of winner
scores from 1990 to 2016, where (1)-(3) set transaction cost rate as 0.001 and (4)-(6) set transaction cost
rate as 0.01. Within (1)-(3) and within (4)-(6), the first columns present the performance for the whole
sample. The remaining four columns present performance for subsamples excluding microcap firms in the
smallest decile and quintile, respectively. qn symbolizes the nth NYSE size percentile. Return, Std.Dev, and
Sharpe are all annualized.

Transaction Cost Rate 0.001 Transaction Cost Rate 0.01
(1) (2) (3) (4) (5) (6)

Firms All Size > q10 Size > q20 All Size > q10 Size > q20

Return(%) 15.73 14.04 14.92 16.59 16.33 15.44
Std.Dev.(%) 7.77 5.90 7.66 9.85 6.96 7.82
Sharpe 2.02 2.38 1.95 1.68 2.35 1.97
Skewness 2.04 1.24 2.53 2.08 1.49 2.36
Kurtosis 11.26 4.54 11.83 10.73 4.33 10.28
Turnover 0.20 0.23 0.25 0.16 0.19 0.20
MDD 0.03 0.02 0.02 0.06 0.02 0.02
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Table 9: Out-of-Sample Performance of AP Considering Portfolio Scale and Price Impact

This table reports performance for portfolios of long stocks in the highest slice of winner-scores from 1990
to 2016 with a budget constraint. Portfolio returns are further adjusted by the CAPM, Fama-French-
Carhart 4-factor model (FFC), Fama-French-Carhart 4-factor and Pastor-Stambaugh liquidity factor model
(FFCPS), Fama-French 5-factor model (FF5), Fama-French 6-factor model (FF6), Stambaugh-Yuan 4-factor
model (SY), and Hou-Xue-Zhang 4-factor model (Q4). The first columns present the alphas for the overall
sample. The remaining four columns present alphas for subsamples excluding microcap firms in the smallest
decile and quintile, respectively. qn symbolizes the nth NYSE size percentile. “*,” “**,” and “***” denote
significance at the 10%, 5% and 1% level, respectively.

AP Performance AP Excess Alpha
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Firms All > q10 > q20 Factor All > q10 > q20
Models α(%) R2 α(%) R2 α(%) R2

Return(%) 36.70 43.57 38.36 CAPM 26.66∗∗∗ 0.347 32.17∗∗∗ 0.362 26.89∗∗∗ 0.401
Std.Dev.(%) 24.36 28.38 27.20 FFC 27.58∗∗∗ 0.626 30.97∗∗∗ 0.630 25.74∗∗∗ 0.655
Sharpe 1.51 1.54 1.41 FFC+PS 26.82∗∗∗ 0.626 28.64∗∗∗ 0.634 22.75∗∗∗ 0.661
Skewness 0.81 2.68 2.59 FF5 26.72∗∗∗ 0.570 27.81∗∗∗ 0.587 21.73∗∗∗ 0.217
Kurtosis 3.65 19.81 17.57 FF6 29.56∗∗∗ 0.633 30.48∗∗∗ 0.628 24.30∗∗∗ 0.658
Turnover 0.17 0.21 0.24 SY 33.72∗∗∗ 0.565 33.80∗∗∗ 0.557 27.09∗∗∗ 0.587
MDD 0.22 0.28 0.27 Q4 32.16∗∗∗ 0.600 32.77∗∗∗ 0.541 26.76∗∗∗ 0.556

In the second example, in addition to considering price impacts and transaction costs,

we incorporate dynamic budget consideration. All returns are reinvested which implies

that the AP strategy dynamically changes with the portfolio size, which affects the trading

costs and returns. This portfolio size limit is part of the market environment (it affects

investment opportunities in practice as well), and interacts with the trading actions. In

order to make the trading costs under varying scale of the portfolio realistic, we can adopt

the model and parameter estimates from comprehensive studies such as Frazzini, Israel, and

Moskowitz (2018). For illustration, we take their trading cost model with input variables,

“Beta*IndexRet*buysell,” “Time trend,” “Log of ME,” “Fraction of daily volume,” and

“sqrt(Fraction of daily volume).” We examine the long-only AP with an initial budget of

$10 million USD and retrain the model. The results are reported in Table 9. Compared

with Table 3, it still achieves an OOS Sharpe ratio over 1.5 and other performance metrics

comparable with the baseline AP. It is worth mentioning that the turnover is almost half of

the baseline AP once we take transaction cost and budget dynamics into consideration.

In the third example shown in Table 10, we adopt a portfolio performance metric bal-

ancing a fund’s return and survival when training the model. In other words, we set the

management objective to be the expected cumulative return over a year of a long-short

portfolio subject to a transaction cost rate is set as 10 basis points and a fund failure if the

portfolio ever incurs a 50% loss during the 12-month window. Given that whether a fund is

alive is part of the market state, trading actions obviously affect the long-run environment
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Table 10: Out-of-Sample Performance for an AP Fund

This table reports performance for a long-short portfolio taking long positions in assets with the highest
10% winner scores from 1990 to 2016, and short positions in assets with the lowest 10% winner scores. The
objective is set as the cumulative return over a 12-month window and transaction cost rate is set as 0.1%.
During training, AP will stop trading upon incurring a 50% loss in the 12-month window. Portfolio returns
are further adjusted by the CAPM, Fama-French-Carhart 4-factor model (FFC), Fama-French-Carhart 4-
factor and Pastor-Stambaugh liquidity factor model (FFCPS), Fama-French 5-factor model (FF5), Fama-
French 6-factor model (FF6), Stambaugh-Yuan 4-factor model (SY), and Hou-Xue-Zhang 4-factor model
(Q4). The first columns present the alphas for the overall sample. The remaining four columns present
alphas for subsamples excluding microcap firms in the smallest decile and quintile, respectively. Returns
and Sharpe ratios are annualized. qn symbolizes the nth NYSE size percentile. “*,” “**,” and “***” denote
significance at the 10%, 5% and 1% level, respectively.

AP Performance AP Excess Alpha
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Firms All > q10 > q20 Factor All > q10 > q20
Models α(%) R2 α(%) R2 α(%) R2

Return(%) 26.61 24.82 24.01 CAPM 22.12∗∗∗ 0.047 18.95∗∗∗ 0.150 18.20∗∗∗ 0.168
Std.Dev.(%) 15.35 15.68 14.59 FFC 23.80∗∗∗ 0.243 19.76∗∗∗ 0.433 18.92∗∗∗ 0.487
Sharpe 1.73 1.58 1.65 FFC+PS 24.35∗∗∗ 0.243 18.65∗∗∗ 0.436 17.27∗∗∗ 0.493
Skewness 2.26 3.71 3.01 FF5 26.56∗∗∗ 0.358 22.26∗∗∗ 0.489 21.53∗∗∗ 0.548
Kurtosis 11.98 28.57 17.14 FF6 27.64∗∗∗ 0.381 23.01∗∗∗ 0.500 22.08∗∗∗ 0.555
Turnover 0.19 0.22 0.23 SY 30.14∗∗∗ 0.227 24.26∗∗∗ 0.384 22.95∗∗∗ 0.429
MDD 0.09 0.06 0.06 Q4 28.54∗∗∗ 0.366 23.88∗∗∗ 0.480 22.99∗∗∗ 0.530

because a fund is closed down if the action results in a big loss. This portfolio management

objective captures that many funds are prone to redemption and discontinued funding once

the loss exceeds a certain threshold. In practice, the lock-in period could differ depending

on whether the fund is a hedge fund or mutual fund and whether it is open- or close-ended,

which can be adjusted in the AP framework. Quite intuitively, without lowering portfolio

volatility being explicit in the objective, AP generates higher risk-adjusted returns at the

expense of lower Sharpe ratios. Nevertheless, both the OOS excess alpha and Sharpe ratio

are still higher than most other known strategies rebalancing at a monthly frequency or

lower. The RL approach is also effective in the sense that in the OOS test, the fund never

incurs a loss of 50% or higher. In other words, even though in the training the fund fails

from time to time, a trained AP fund model survives throughout the entire test period.

In the fourth example, we adopt a portfolio performance metric incorporating the del-

egated nature of investment management. We set the management objective to be the

expected compensation over multiple years for managing a long-only portfolio. The com-

pensation is comprised of a management fee of 0.5% of the asset under management (AUM)

and a carried interest of 10% for excess return. The management fee and carry vary quite a

bit in practice but the compensation structure is realistic (e.g., Ma, Tang, and Gomez, 2019).

For a simple illustration, we set the career length of the manager to be four years and the
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return benchmark to be zero. For a fund with an initial AUM of $10 million USD with all

after-fee proceeds reinvested. A fund manager earns on average a cumulative compensation

of $2,094,850 USD over four years, with a standard deviation of $556,630 USD.25 Table 11

reports other metrics of the AP performance. The lack of concern for volatility means AP

focuses on high cumulative returns at the expense of Sharpe ratio. AP also seems to pick

small and illiquid stocks, the exclusion of which reduces the Sharpe ratio by around a quarter

in magnitude.

Table 11: Out-of-Sample Performance for Compensation-based Objective

This table reports performance for portfolios of long/short stocks in the highest/lowest decile of winner-scores
from 1990 to 2016. The objective is set as manager’s compensation. During each step at training, AP consid-
ers a 4-year trading period. Each year the compensation is calculated as AUM ∗0.5%+Positive return∗0.1.
Portfolio returns are further adjusted by the CAPM, Fama-French-Carhart 4-factor model (FFC), Fama-
French-Carhart 4-factor and Pastor-Stambaugh liquidity factor model (FFCPS), Fama-French 5-factor model
(FF5), Fama-French 6-factor model (FF6), Stambaugh-Yuan 4-factor model (SY), and Hou-Xue-Zhang 4-
factor model (Q4). The first columns present the alphas for the overall sample. The remaining four columns
present alphas for subsamples excluding microcap firms in the smallest decile and quintile, respectively. qn
symbolizes the nth NYSE size percentile. “*,” “**,” and “***” denote significance at the 10%, 5% and 1%
level, respectively.

AP Performance AP Excess Alpha
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Firms All > q10 > q20 Factor All > q10 > q20
Models α(%) R2 α(%) R2 α(%) R2

Return(%) 42.85 44.69 44.94 CAPM 38.96∗∗∗ 0.008 37.41∗∗∗ 0.089 37.11∗∗∗ 0.075
Std.Dev.(%) 23.92 29.76 36.48 FFC 40.98∗∗∗ 0.104 37.88∗∗∗ 0.205 37.37 ∗∗∗ 0.145
Sharpe 1.79 1.50 1.23 FFC+PS 40.89∗∗∗ 0.104 37.70∗∗∗ 0.205 36.58∗∗∗ 0.146
Skewness 3.24 8.67 11.0 FF5 43.70∗∗∗ 0.166 41.09 ∗∗∗ 0.240 40.91∗∗∗ 0.175
Kurtosis 19.01 112,25 157.99 FF6 44.95∗∗∗ 0.179 41.90∗∗∗ 0.244 41.48∗∗∗ 0.176
Turnover 0.18 0.19 0.20 SY 47.93∗∗∗ 0.091 43.73∗∗∗ 0.189 42.66∗∗∗ 0.139
MDD 0.07 0.04 0.06 Q4 46.04∗∗∗ 0.162 43.41∗∗∗ 0.229 43.19∗∗∗ 0.161

Our goal is not to provide an exhaustive list of AP objectives or market interactions.

Instead, our illustrations serve to demonstrate the flexibility and versatility of the AP frame-

work. Depending on the specific case in investment advising or trading, the objective and

market environment can be correspondingly specified and incorporated into the training

process. Note that to accommodate under supervised learning these market interactions

and flexible management objectives, one has to label the data using a theoretical model or

using proxies based on historical observations, which may be unavailable, computationally

expensive, or yield poor performance. Take the last example, without theoretical guidance

or gross approximation, it is unclear what the historically “correct” performance is when we

train the model using supervised learning. RL, in contrast, is a framework proven in the AI

field to perform well in solving such problems.

25We have 27 years in the test sample and we extrapolate the last three years into a four-year cycle.
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5 Economic Distillation of AlphaPortfolio

We have to recognize that unlike genetics and physical laws, business environments and

financial markets are evolving constantly. Policies and consumer preferences change all the

time. We cannot always take machine learning packages and big data analytics off the

shelf and apply them blindly to problems in economics and finance just because it seems

to predict well in backtesting. Moreover, the use of big data and AI may present prejudice

against groups of individuals.26 The perils are particularly worrisome because of the fast

and nonstationary dynamics in social sciences. A necessary step to address the concern is

to understand complex AI and machine learning models.

To this end, we introduce an “economic distillation” procedure. In this part, we describe

the polynomial feature sensitivity analysis. The main idea is to project AP onto a modeling

space that is simpler and more transparent. The distilled model “represents” or mimics the

complex AI model and therefore can reveal important properties of the original model and

help with its economic interpretation.

For illustration, we project AP onto a modeling space of linear regressions using Algo-

rithm 1. We first express the function of historical features of a stock to its score in the

TE-CAAN system. We then examine the marginal contribution of each feature and inspect

its comparative statics when other features change. The procedure allows us to identify

the variables (or their higher-order terms or interaction terms) that matter the most in the

model. Next, we use these variables and their higher-order and interaction terms as input

variables to estimate a Lasso regression model. We set penalty parameters such that 50-60

inputs are selected, which is comparable to the number of input time series in AP.

To complement the analysis, in Appendix D, we also regress AP’s winner scores onto each

firms’ corresponding textual loadings on various topics discussed in the firms’ filings. The

projection of the model onto the natural language space using textual factors (Cong, Liang,

and Zhang, 2018; Cong, Liang, Yang, and Zhang, 2019) helps enhance our understanding of

how AlphaPortfolio behaves.

26For example, COMPAS that guides criminal sentencing in the United States could introduce racial biases,
according to a report by ProPublica; Algorithm PredPol designed to predict crime locations leads police to
unfairly target certain neighborhoods; Joy Buolamwini points out that gender-recognition AIs from IBM,
Microsoft, and Chinese company Megvii increase the risk of false identification of women and minorities;
even Google searches could propagate biases against women CEOs and job seekers. Such phenomena have
consequential socioeconomic impacts on labor market dynamics, wealth inequality, etc. While people often
attribute these issues to training data, algorithms and models may also have embedded stories and ideology
due to designers’ negligence or cultural insensitivity. Algorithms thus may (unintentionally) perpetuate
initial random errors and induce undesirable behaviors by catering to users’ addiction and bigotry. In a
sense, it is equally important to understand a black-box model as it is to carefully process and sample data.
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5.1 Polynomial Sensitivity Analysis

For economic distillation, we adopt the gradient-based characteristic importance method

to determine which characteristics AP mostly depends on. We use s = F(X) to denote a

combined network of TE and CAAN, which maps asset’s state history X to its winner score

s. xq is used to denote an element of X, which is the value of feature q. Given the state

history X of an asset, the sensitivity of s to xq can be calculated as

δxq (X) = lim
∆xq→0

F (X)−F
(
xq + ∆xq,X¬xq

)
xq − (xq + ∆xq)

=
∂F (X)

∂xq
, (6)

where X¬xq denotes the element X except xq.

In our implementation of AP using PyTorch, the gradient follows from the autograd

module in the deep learning package. For all possible stock states in a market, the average

influence of the stock state feature xq to the winner score s is:

E
[
δxq
]

=

∫
DX

Pr(X)δxq(X) dσ, (7)

where Pr(X) is the probability density function of X, and
∫
DX
· dσ is an integral over all

possible values of X. According to the Law of Large Numbers, given a dataset that contains

historical states of I stocks in N holding periods, the E
[
δxq
]

is approximated as

E
[
δxq
]

=
1

I ×N

N∑
n=1

I∑
i=1

δxq

(
X(i)

n

∣∣∣X (¬i)
n

)
, (8)

where X
(i)
n is the historical state of the i-th stock at the n-th holding period, and X (¬i)

n

denotes the historical states of other stocks that are concurrent with the historical state of

the i-th stock.

We use E
[∣∣δxq ∣∣] to measure the overall influence of an asset feature xq on the winner

score. We then generate polynomial terms with the most important features. For each month

in the OOS periods, we can distill the AP model by regressing winner scores to selected terms

using Lasso. Results in Table 12 show that even the distilled linear model achieves signif-

icant performance in OOS tests. Here poly = 1 is essentially a linear regression. One can

include higher-degree polynomial terms in the distillation exercises, and we stop at degree-2

for parsimony. Note that the distillation utilizes knowledge from the trained AlphaPortfolio

model and underperforms the original model. Hence, it is not the case that we should or

can effectively deploy the distilled model for trading in place of AlphaPortfolio.
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Algorithm 1: pseudo-code for economic distillation approach one

Input: Model parameters θ of AlphaPortfolio trained on Dtrain; Test data set

Dtest = {X1, . . . ,XN} which consists of N trading periods; Hyperparameters {K,α, p};
Output: Evaluation metrics of the test period;

1: for n = 1 to N do

2: for each X(i) in Xn, generate winner score sn =
{
s(1), . . . , s(I)

}
from AP;

3: Calculate gradients of s(i) to each input raw characteristic q as δxq (X);

4: Select characteristics with top K% of E
[∣∣δxq ∣∣];

5: Generate p-degree polynomial terms with selected characteristics qselectedn ;

6: Select important terms with Lasso regression(Penalty factor = α);

7: Regress sn to selected terms, obtain corresponding coefficient;

8: Re-generate winner score s′n using selected terms and coefficients;

9: Using s′n to calculate rate of return rn of this trading period;

10: end for

11: Calculate evaluation metrics given R = {r1, . . . , rN};

Table 12: Out-of-Sample Performance of Distillation for Algorithm 1 with Polynomial of
Degree Two

In each month of the OOS periods, the AlphaPortfolio is distilled into a linear model, and winner
scores on the test sample are regenerated. Portfolios are formed according to the distilled winner
scores following the same strategy as in Table 1. qn symbolizes the nth NYSE size percentile.
Return, Std.Dev., and Sharpe ratio all annualized.

Algo1 Poly2 Performance Algo1 Poly2 Excess Alpha
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Firms All > q10 > q20 Factor All > q10 > q20

Models α(%) R2 α(%) R2 α(%) R2

Return(%) 16.80 22.20 19.20 CAPM 14.1∗∗∗ 0.000 17.9∗∗∗ 0.054 15.0∗∗∗ 0.095
Std.Dev.(%) 16.40 12.40 9.40 FFC 15.8∗∗∗ 0.024 18.2∗∗∗ 0.196 15.9∗∗∗ 0.411
Sharpe 1.02 1.79 2.04 FFC+PS 15.4∗∗∗ 0.024 17.5∗∗∗ 0.197 14.2∗∗∗ 0.428
Skewness 1.89 6.21 2.21 FF5 16.8∗∗∗ 0.044 19.5∗∗∗ 0.252 17.0∗∗∗ 0.447
Kurtosis 7.35 65.62 8.87 FF6 17.8∗∗∗ 0.062 20.3∗∗∗ 0.272 18.0∗∗∗ 0.503
Turnover 0.60 0.40 0.40 SY 21.7∗∗∗ 0.053 22.0∗∗∗ 0.188 19.1∗∗∗ 0.361
MDD 0.08 0.03 0.03 Q4 17.2∗∗∗ 0.042 20.6∗∗∗ 0.263 18.2∗∗∗ 0.505

5.2 Important Features and Dynamic Patterns

We then carry out both panel or Fama-Macbeth-type regressions to combine each monthly

distilled linear model. We can do this for polynomials of different degrees. For parsimony,

we report in Table 13 the top 50 dominant features as functions of firm characteristics and

37



market signals (e.g., price and daily volume), together with the corresponding t-values. The

sign and magnitudes of the t-values allow a glimpse into how each selected feature affects

the portfolio construction.

To investigate the time-varying effects of dominant characteristics, we plot heatmaps in

Figure 5 for the top 15 terms in degree-2 polynomial functions to highlight their rankings in

the OOS periods. We also outline basic statistics for both degree-2 and degree-1 polynomials

in Table 14. For distillation with degree-2 polynomials across Ranks 1, 2, and 3, the top

contributing variables are ivc (82.4%), ipmˆ2 (50.3%), Q (36.7%), ivcˆ2 (22.2%), delta so

(21.6%), and C (10.5%).27 For degree-1 polynomials across Rank 1, 2, and 3, at the top again

are ivc (97.8%), Idol vol (43.2%), and ipm (26.9%). The other five important characteristics

(free cf, Ret max, ret, delta so, and C) account for 13.9% to 19.1% each.

From Figure 5 and Tables 13 and 14, we find that a small set of stock features determines

the performance of our algorithm. For example, the inventory change (ivc) plays a key role in

our algorithm with a probability of more than 80% included in the top contributing factors

in both degree-1 and 2 polynomials. Thomas and Zhang (2002) first document that ivc can

negatively predict stocks’ future returns, which is consistent with earning management of

firms. Given that ivc still plays an important role post 2002, the anomaly has not been traded

away. Short-term previous return (ret 11 and ret 10) are strongly negatively significant,

especially for portfolios with large stocks, implying a short-term reversal, which is consistent

with Avramov, Cheng, and Metzker (2019). Note that the signs of certain firm characteristics

are different for different lags, which potentially reflect the path-dependent nature of AP.28

Other factors including Tobin’s Q, pretax profit margin (ipm), ratio of cash and short-

term investment to total asset (C), idiosyncratic volatility (Idol vol) etc. are also prominent.

Among them, idiosyncratic volatility (Idol vol), max per daily return in a month (Ret max),

etc., are arbitrage constraints and market signals related to trading; growth in external fi-

nancing (fcf), operating income before depreciation and tax (ipm), etc., are financial signals

related to firms’ fundamentals. Trading signals affect stock returns through mispricing chan-

nel while financial signals do so likely through risk channels (Livdan, Sapriza, and Zhang,

2009). The patterns not only imply that future studies could focus on time-varying relevance

of a small set of economic mechanisms and variables, but also tell researchers which of the

features’ nonlinear effects to consider.

To further analyze the rotation patterns of dominant features, we compute the Pearson

correlation coefficients both pair-wise and between trading (Idol vol, Idol volˆ2, Ret max,

ret) and financial (Q, C, Cˆ2, delta so, ivc, ipmˆ2, ivcˆ2, investment, free cf) signals. Table

15 reveals that inventory changes (ivc) and pretax profit margin to the second power (ipmˆ2)

27Percentages in brackets denote the fraction to be top contributing variables across all months.
28Although not reported here, we also perform the analysis in Table 8 focusing on the top 10 features with

12-month lags. While some variables still exhibit sign changes that indicate path dependence, the signs on
ivc, idol vol, Q, ret, Ret max consistently follow what theory would prescribe.
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Table 13: T-statistics of Selected Features for Algorithm One with Polynomial of Degree
Two: Fama-Macbetch Regressions

This table presents the results where Fama-Macbetch regressions are employed to interpret Algo-
rithm 1. Polynomial degree is set to two for all terms in the regression. The suffix ” n” denotes
the sequence number of features starting from 12 months ago, i.e., pe 7 denotes P/E ratio at the
time of five (12 − 7 = 5) months lag. For details of each characteristic, please refer to Appendix
B. qn symbolizes the nth NYSE size percentile. This table presents t-statistics in the top half in
magnitude.

All size > q10 size > q20

pe 7ˆ2 19.05 Q 9 -31.01 Q 9 -23.62
s2p 11ˆ2 17.8 Q 9ˆ2 17.03 Idol vol 1 14.29
Std turnover 7ˆ2 -9.4 investment 0 -11.74 Idol vol 0 13.42
Std turnover 2ˆ2 9.24 Std volume 1 -10.6 Q 9ˆ2 12.56
Std volume 11ˆ2 8.93 Idol vol 0 10.12 Std volume 1 -12.29
Std turnover 0ˆ2 8.02 free cf 6 -9.58 free cf 6 -10.13
ldp 0ˆ2 7.94 Idol vol 4ˆ2 8.44 investment 7 -9.96
Std volume 5ˆ2 7.89 Idol vol 1 8.4 investment 0 -8.71
roa 0 7.79 Idol vol 1ˆ2 8.01 delta so 1 -8.6
pe 1ˆ2 7.78 Std volume 1ˆ2 7.62 Idol vol 4 8.16
Std turnover 4ˆ2 7.71 ret 11ˆ2 7.47 lev 7 -7.91
roa 0ˆ2 7.63 free cf 9 -7.34 ret 10ˆ2 7.88
Std volume 0ˆ2 7.41 ret 5ˆ2 7.31 Std volume 10 -7.6
Std turnover 6ˆ2 7.4 delta so 1 -7.29 Idol vol 2 7.57
Std turnover 1ˆ2 7.3 Idol vol 0ˆ2 7.24 Std volume 1ˆ2 7.52
Std turnover 3ˆ2 -7.25 ret 10ˆ2 7.01 delta so 11 -7.41
Std turnover 5ˆ2 7.16 Ret max 7 6.96 Idol vol 4ˆ2 7.35
pe 7 6.29 delta so 11 -6.92 ret 9ˆ2 7.27
Beta daily 3ˆ2 6.16 ldp 6 -6.82 nop 8 -7.13
Std volume 4ˆ2 6.09 Ret max 10ˆ2 6.81 Idol vol 1ˆ2 7.08
Std turnover 9ˆ2 5.86 s2p 4ˆ2 6.58 beme 9 6.99
roa 11ˆ2 5.71 ret 10 -6.58 pe 7 6.86
Beta daily 8ˆ2 5.63 s2p 0ˆ2 6.52 ret 2ˆ2 6.85
roa 11 5.48 ret 5 -6.49 ret 10 -6.84
o2p 11ˆ2 -5.34 Ret max 3ˆ2 6.45 delta so 8ˆ2 6.79
roe 11ˆ2 5.2 ret 9ˆ2 6.37 Ret max 9ˆ2 6.78
roa 6ˆ2 5.18 C 2 6.28 ret 11ˆ2 6.75
s2p 10ˆ2 5 ret 2ˆ2 6.28 C 2ˆ2 6.65
ret 11ˆ2 4.97 pe 7 6.25 beme 8 6.65
nop 0ˆ2 4.85 investment 7 -6.16 free cf 9 -6.65
roa 6 4.74 ret 6ˆ2 6.1 ivc 0ˆ2 6.63
s2p 11 ivc 10 4.52 sat 6 6.08 ret 5ˆ2 6.48
roe 5ˆ2 4.51 ret 11 -6.06 free cf 8 -6.44
ldp 6ˆ2 4.5 ret 3 -5.95 Idol vol 0ˆ2 6.38
Turnover 11ˆ2 4.49 ivc 0ˆ2 5.91 Ret max 10ˆ2 6.38
lev 5ˆ2 4.48 ldp 6ˆ2 5.91 Ret max 3ˆ2 6.25
roa 3 4.4 sat 6ˆ2 5.78 sat 6ˆ2 6.19
std 4ˆ2 4.4 Ret max 9ˆ2 5.71 ret 3ˆ2 6.18
delta so 11ˆ2 4.37 Idol vol 2 5.69 me 2ˆ2 6.1
Std turnover 10ˆ2 4.29 ret 2 -5.66 ret 6ˆ2 6
Beta daily 11ˆ2 4.23 ret 3ˆ2 5.43 Idol vol 11 6
s2p 11 ivc 5 4.18 s2p 4 -5.36 ldp 6 -6
roc 8 4.01 ol 11 5.15 ret 11 -5.89
Std volume 9ˆ2 3.9 Turnover 9 -5.15 sga2s 9 5.73
s2p 11 noa 11 3.87 Idol vol 4 5.1 shrout 9ˆ2 5.72
ivc 11ˆ2 3.74 e2p 10 5.03 s2p 0 5.67
noa 11 roa 6 3.54 free cf 1 -5.02 rna 2ˆ2 5.58
delta shrout 11ˆ2 3.5 nop 8 -4.95 s2p 4ˆ2 5.55
Std turnover 11ˆ2 3.45 ivc 11ˆ2 4.94 delta so 5 -5.54
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Figure 5: The following three heatmaps illustrate how the ranking of dominant features change over time.
The most dominant features are inventory change (ivc), idiosyncratic volatility (Idol vol), change in shares
outstanding (delta so), Tobin’s Q (Q), cash and short-term investments to total assets (C), maximum daily
return in the month (Ret max), Pretax profit margin to the second power(ipmˆ2), ivc to the second power
(ivcˆ2), investment, cash flow to book value of equity (free cf), sale-to-price (s2p), C to the second power
(Cˆ2), standard deviation of daily turnover (Std volume), Idol vol to the second power (Idol volˆ2) and
monthly return (ret). Appendix B provides detailed description of the features.
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Table 14: Dominant Features after Economic Distillation

This table presents the probability of features ranked in top three across different months in the
distillation Algorithm 1. In each month of the OOS periods, the AlphaPortfolio is distilled into
a second degree polynomial function (Panel A) and a one degree polynomial function (Panel B).
The features are calculated by summing up the absolute value of historical 12 months’ regression
coefficients. Features are hence ranked by their importance in each month.

Panel A: Polynomial Degree Two
Rank 1 Rank 2 Rank 3

ipmˆ2 45.7% ivc 36.7% ivc 24.7 %
ivc 21.0 % Q 16.7 % Q 17.9 %
ivcˆ2 9.9 % ivcˆ2 8.3 % delta so 14.8%
sga2sˆ2 5.2% delta so 6.5 % C 8.3%
investmentˆ2 3.7% pmˆ2 6.2% Idol vol 5.6%
Q 2.2% investmentˆ2 3.7% ivcˆ2 4.0%

Panel B: Polynomial Degree One
Rank 1 Rank 2 Rank 3

ivc 63.3% ivc 25.3% Idol vol 18.8%
ipm 21.9% Idol vol 19.8% delta so 13.3%
Idol vol 4.6% free cf 8.3 % C 13.3%
investment 1.9% ret 7.7 % ret 9.3%
free cf 1.5% Ret max 5.2 % ivc 9.3%
sga2s 1.2% C 5.2 % Ret max 9.0%

take turns to play important roles in AlphaPortfolio construction and so do corporate liquid-

ity (C, Cˆ2) and changes in shares outstanding (delta so) among others. Moreover, features

related to trading and those related to financials also take turns to dominate. The rotation

patterns are highly significant based on the p-values.

5.3 Distillation on the Training Set

Algorithm 2 shown next describes an alternative distillation exercise. While Algorithm 1

mimics AlphaPortfolio concerning OOS tests, Algorithm 2 distills what AlphaPortfolio has

learned from the training set. The former gives information on how a model behaves on a

test set while the latter describes what the model learns from a training set. We find similar

results using Algorithm 1 and omit the details. Both algorithms can be extended to capture

persistent latent variables in future work.
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Table 15: Pearson Correlation Coefficients and Feature Rotations

This table presents the Pearson correlations among prominent features constructed from firm char-
acteristics and market signals. Panel A contains the pair of dominant features with the most
negative Pearson correlations. Panel B contains the correlation between two subsets of the most
dominant features: trading and financial. Trading subset contains {Idol vol, Idol volˆ2, Ret max,
ret}, and financial subset contains {Q, C, Cˆ2, delta so, ivc, ipmˆ2, ivcˆ2, investment, free cf}.

Term 1 Term 2 Correlation P-value

Panel A: Pairwise Correlation of Dominant Features
ivc ipmˆ2 -0.38 1.55× 10−12

delta so Cˆ2 -0.33 1.40× 10−12

C delta so -0.31 2.09× 10−8

Cˆ2 ret -0.26 1.47× 10−6

investment s2p -0.25 4.20× 10−6

Idol vol ipmˆ2 -0.24 1.22× 10−5

ipmˆ2 Cˆ2 -0.23 3.79× 10−5

Ret max Cˆ2 -0.22 8.43× 10−5

C ret -0.21 1.80× 10−4

delta so Idol volˆ2 -0.2 2.90× 10−4

Panel B: Trading Signals VS. Financial Signals
Trading related Financial related -0.33 8.00× 10−10

Algorithm 2: pseudo-code for economic distillation approach two

Input: Model parameters θ of AlphaPortfolio trained on Dtrain; Training set Dtrain; Test
data set Dtest = {X1, . . . ,XN}; Hyperparameters {K,α, p};

Output: Evaluation metrics of test period;
1: Generate winner score S of all trading periods in Dtrain using AP;
2: Calculate gradient-based sentivity for each raw feature q as E

[
δxq
]
;

3: Select characteristics with top K% of E
[∣∣δxq ∣∣];

4: Generate p-degree polynomial terms with selected characteristics qselected;
5: Select important terms with Lasso regression(Penalty factor = α);
6: Regress S to selected terms, obtain corresponding coefficients;
7: for n = 1 to N do
8: Use Xn to construct selected terms;
9: Regenerate winner score s′n using selected terms and coefficients;

10: Using s′n to calculate rate of return rn of this trading period;
11: end for
12: Calculate evaluation metrics given R = {r1, . . . , rN};

5.4 Economic Distillations: The Case of LSTM-HA

Overall, economic distillation provides us a basis to better understand and interpret our

machine learning model. It informs us of the key input features and the way they matter
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(interaction or higher-order, etc.) so that we can adjust the model accordingly when the

economic environment changes.29 It also serves as a sanity check of the complex machine

learning model in the sense that if something in the distilled model appears strange, such as

a stale price playing a dominant role when it should have been subsumed in other features,

it is likely that the complex model contains a misspecification or coding error.

Appendix C2 reports the performance of an AP model based on LSTM. On the positive

side, the Bi-LSTM-CAAN model achieves an OOS Sharpe ratio of around 3 after excluding

small-cap stocks. This confirms the superior performance of the AP framework and even

outperforms the TE-based AP. On the negative side, our economic distillation in Appendix

C2 reveals that LSTM-HA does not have stable utilization of input features and suffers from

exploding gradient issues, suggesting that the trained model goes to some extremes and

such RNN-like models may not be the most suitable. This is consistent with that computer

scientists deal with vanishing and exploding gradients only in the training sample, but such

issues may resurface in the test samples or actual deployment. Appendix C2 thus provides a

case in point of how economic distillation can help assess model stability and functionality,

especially on test sets, which computer science studies typically leave out.

6 Conclusion

We propose an alternative portfolio management framework that improves over the tra-

ditional indirect approaches to portfolio construction. Specifically, we develop a multi-

sequence, attention-based deep learning model building on the latest AI innovations in order

to effectively capture the high-dimensional, nonlinear, noisy, interacting, and path-dependent

nature of financial data and market environments. We then directly optimizing it using rein-

forcement learning (RL), which also allows us to incorporate the interactions between trading

and the market states. While our key contribution lies in the conceptual framework, the re-

sulting AlphaPortfolio yields superb OOS performances under various economic and trading

restrictions as well as management objectives, as seen in the U.S. equity market, making it

deployable by practitioners for trading and investment advising.

Our framework and empirical findings have broader implications on the utility of RL in

social sciences and the importance of economically interpretable AI. Unlike supervised learn-

ing that requires knowledge of the environment by way of examples of desirable behaviour,

RL represents a new approach for goal-directed learning in a complex environment or action

space. Deep RL is routinely used in and has seen great commercial success with applications

for speech recognition, natural language processing, computer vision, interactive games, etc.

29Interaction terms do not contribute to AP’s performance significantly. But this is not at odds with
studies that emphasize interaction effects because those studies focus on estimating SDF or minimizing
estimation errors in assets’ return moments whereas we focus on portfolio performance.
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(Amazon Alexa, Apple Siri, AlphaGo, and Google Android are leading examples). Moreover,

most models using regressions, SVM, and neural networks have RL-based implementations.

Portfolio management is just one of the potential applications of RL to tackle complex social

science problems with well-specified objectives, but limited pre-existing knowledge or labeled

data for deriving full solutions.

Moreover, our “economic distillation” not only reveals key firm characteristics (including

their rotation and nonlinearity) that drive AlphaPortfolio’s performance, but also provides

a concrete backbone for and an incremental step towards interpretations of machine learn-

ing and AI applications in business practice and social sciences. Our polynomial sensitiv-

ity analysis innovates on current practices in computer science and allows great flexibility.

For example, one can put in third-order and fourth-order terms of a feature if one deems

them important. Textual-factor analysis derives from topic modeling and word embedding

and constitutes one of the many possibilities of using natural languages to better explain

model behaviors. Both procedures are projections of complex models into transparent and

interpretable spaces. Other applications of our economic distillation approach constitute

interesting future research.
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Pástor, L’uboš, 2000, Portfolio selection and asset pricing models, The Journal of Finance 55,
179–223.

, and Robert F Stambaugh, 2000, Comparing asset pricing models: an investment perspec-
tive, Journal of Financial Economics 56, 335–381.

, 2003, Liquidity risk and expected stock returns, Journal of Political Economy 111, 642–
685.

Powell, James L, James H Stock, and Thomas M Stoker, 1989, Semiparametric estimation of index
coefficients, Econometrica: Journal of the Econometric Society pp. 1403–1430.

Rapach, David, and Guofu Zhou, 2019, Time-series and cross-sectional stock return forecasting:
New machine learning methods, Available at SSRN 3428095.

Rapach, David E, Jack K Strauss, and Guofu Zhou, 2013, International stock return predictability:
what is the role of the united states?, The Journal of Finance 68, 1633–1662.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin, 2016, Why should i trust you?: Ex-
plaining the predictions of any classifier, in Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining pp. 1135–1144. ACM.

Rossi, Alberto G, 2018, Predicting stock market returns with machine learning, Discussion paper,
Working paper.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams, 1986, Learning representations
by back-propagating errors, Nature 323, 533.

49



Sak, Halis, Tao Huang, and Michael T Chng, 2019, Exploring the factor zoo with a machine-learning
portfolio, Working Paper.

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, and Adrian Bolton, 2017, Mastering the game of
go without human knowledge, Nature 550, 354–359.

Stambaugh, Robert F, Jianfeng Yu, and Yu Yuan, 2012, The short of it: Investor sentiment and
anomalies, Journal of Financial Economics 104, 288–302.

Stambaugh, Robert F, and Yu Yuan, 2017, Mispricing factors, The Review of Financial Studies 30,
1270–1315.

Sundararajan, Mukund, Ankur Taly, and Qiqi Yan, 2017, Axiomatic attribution for deep networks,
in Proceedings of the 34th International Conference on Machine Learning-Volume 70 pp. 3319–
3328. JMLR. org.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le, 2014, Sequence to sequence learning with neural
networks, NIPS’14 pp. 3104–3112.

Sutton, Richard S, and Andrew G Barto, 2018, Reinforcement learning: An introduction (MIT
press).

Thomas, Jacob K, and Huai Zhang, 2002, Inventory changes and future returns, Review of Ac-
counting Studies 7, 163–187.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin, 2017, Attention is all you need, in Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, ed.: Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA pp.
5998–6008.

Wang, Jingyuan, Yang Zhang, Ke Tang, Junjie Wu, and Zhang Xiong, 2019, Alphastock: A buying-
winners-and-selling-losers investment strategy using interpretable deep reinforcement attention
networks, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining pp. 1900–1908.

Wu, Mike, Michael C Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, and Finale Doshi-Velez,
2018, Beyond sparsity: Tree regularization of deep models for interpretability, in Thirty-Second
AAAI Conference on Artificial Intelligence.

50



Appendix A. Basics of Reinforcement Learning

Articles and books on the basics of neural networks and their applications are widely

available. In this appendix, we briefly introduce the basics of reinforcement learning (as

opposed to supervised or unsupervised learning).

Reinforcement learning (RL) is “learning what to do — how to map situations to actions—

so as to maximize a numerical reward signal” and its defining features are “trial” (Sutton and

Barto, 2008). RL is one of the three basic machine learning paradigms, alongside supervised

learning and unsupervised learning. RL typically solves a reward maximization problem in

a Markov-decision-process (MDP) setting in which an agent makes the best decision given

its information set under a stochastically-evolving environment.

In RL, an agent must be able to learn about the state of its environment and take actions

that potentially affect the state going forward. Below we denote the set of possible states to

be S, and the set of possible actions to be A. Beyond the agent and the environment, the

other four main elements of a reinforcement learning system are: a policy, a reward signal, a

value function, and, optionally, a model of the environment.

1. Policy : A policy defines the agent’s way of behaving at a given time. It is similar

to the (behavioral) strategy concept in sequential games and determines behavior. In

general, a policy is a mapping from perceived states of the environment to (possibly

stochastic) actions to be taken when in those states.

2. Reward Signal : A reward signal R ∈ R defines the goal of a reinforcement learning

problem. In each time step, the environment sends the agent a reward (usually a

number) based on the current and subsequent states, and the actions taken.30 The

agent’s sole objective is to maximize the total discounted reward it receives over the

life time. The reward essentially drives the policy; if an action selected by the policy

results in low expected reward, then the policy is modified to select some other action

in that situation in future.

3. Value: Whereas the reward signal indicates the immediate payoff, a value function

specifies the maximal total rewards an agent expects to accumulate in the long run,

starting from the current state.31 Whereas rewards determine the immediate, intrinsic

desirability of environmental states, values reveal the long-term desirability of states

after taking into account the states that are likely to follow and the rewards available

in those states. For example, a state might always yield a low immediate reward but

still have a high value because it is regularly followed by other states that yield high

rewards.
30In a sense, this is similar to the state-dependent utility function in economics.
31This is similar to the multi-period utility function used in intertemporal choice models in economics,

where future utility is subject to a discount compared with contemporaneous one.
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4. Model : A model approximates an agent’s dynamic interaction with the environment.

Specifically, a model (discrete-time, just for illustration) specifies P ((si+1, Ri+i)|si, ai),
where subscripts denote time.

Formally, a policy can be described as π(a|s), which represents the probability of taking

action a ∈ A given state s ∈ S. The value function of a state s under a policy π, denoted

vπ(s), is the expected payoff when starting in s and following π thereafter. Denote γ as the

discount rate for rewards, At for the action in period t, and Rt ≡ Rt(st−1, st) for the reward

from period t− 1 to period t. For MDPs, we can write the value of state s under policy π,

vπ(s), by:

vπ(s) = Eπ[
∞∑
k=0

γtRt+k+1|St = s] = Eπ[Gt|St = s], for all s ∈ S. (9)

Uppercase St corresponds to a random variable, and lower case st indicates a realized value

of St. Here Gt =
∑∞

k=0 γ
tRt+k+1 is the total discounted reward after period t. The agent’s

problem is maxπ vπ(s)

By iterated law of expectations:

vπ(st) =Eπ[
∞∑
k=0

γkRt+k+1|St = st]

=Eπ[Rt+1 + Eπ[
∞∑
k=1

γkRt+k+1|St = st, St+1 = st+1]|St = st]

=Eπ[Rt+1 + γvπ(St+1)|St = st].

Note St+1 is a random variable given St = st when the model is stochastic. Therefore, the

agent in RL simply solves a Bellman equation. More specifically, if the game is finite, i.e.,

there are some final states whose values are determined by the model, such as winning a Go

game or successfully getting out of a maze. We can use these final states in a “backward

induction” to get the value function in other states. In this sense, we have reduced the

solution of a more complex problem (the value function of an “earlier” state which is far

away from the end) to those of simpler problems (the value function of a “later” state which

is closer to the end) with similar structure, which is exactly the thought behind finite horizon

dynamic programming.

Similarly, we can define the value of choosing action a in state s under policy π, denoted

by qπ(s, a), by:

qπ(s, a) = Eπ[
∞∑
k=0

γtRt+k+1|St = s, At = a] = Eπ[Gt|St = s, At = a], for all s ∈ S, a ∈ A(s),

(10)
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where A(s) ∈ A denotes all the possible actions under state s. It is obvious that v(s) =

maxa qπ(s, a). And again,

qπ(st, at) =Eπ[Rt+1 + γvπ(St+1)|St = st, At = at]

=Eπ[Rt+1 + γmax
at+1

qπ(St+1, at+1)|St = st, At = at],

which is also in the form of Bellman equation. Solving this Bellman equation for q(s, a) is

the process called value-based learning, or Q-learning where we learn a value function that

maps each state-action pair to a value. Q-learning works well when you have a finite (and

small enough for computation) set of actions.

Another type of RL algorithm is policy-based learning, where we can deal with opti-

mization over a continuum of possible policies. For instance, with a self-driving car, at each

state you can have an infinite number of potential actions (turning the wheel at 15, 17.2,

19.4 degrees).32 Outputting a Q-value for each possible action for example under Q-learning

would be infeasible. In policy-based learning, we directly optimize the parameters in a policy

function.

Specifically, we define our policy that has a parameter vector θ ∈ Rd, i.e.,

πθ(a|s) = P [At = a|St = s, θ] .

Now our policy becomes parameterized. Similar to loss functions in machine learning, we can

define a scalar performance measure J(θ) of the policy with respect to the policy parameter

θ. These methods seek to maximize performance, so their updates approximate gradient

ascent in J :

θt+1 = θt + α∇Ĵ(θt).

Now the question becomes how we estimate the gradient of J over θ? First, we need to

introduce the concept of trajectory : τ = (s1, a1, s2, a2, . . . , sH , aH), in which the agent starts

at state s1, chooses action a1, and gets to state a2, and so on. The total discounted reward,

which is the natural target function of RL problem, is then

J(θ) = Eπθ

[
H∑
t=0

R(st, at)

]
=
∑
τ

Pπθ(τ)R(τ). (11)

Here R(st, at) indicates that the reward in a period is a function of its current state st

and action at. We then can randomly sample a number of trajectories based on current

parameters θ, get an estimation of gradient using the samples and implement gradient ascent

32Example adopted from https://www.freecodecamp.org/news/an-introduction-to-policy-gradients-with-
cartpole-and-doom-495b5ef2207f/

A-3

https://www.freecodecamp.org/news/an-introduction-to-policy-gradients-with-cartpole-and-doom-495b5ef2207f/
https://www.freecodecamp.org/news/an-introduction-to-policy-gradients-with-cartpole-and-doom-495b5ef2207f/


algorithms to maximize J .33

In our particular application of RL in portfolio construction, even though the high di-

mensionality can be handled by deep Q-learning, we have continuous action space and need

to take the policy-based approach.

It should be clear that reinforcement learning is similar in spirit to multi-armed bandit,

optimal experimentation, and dynamic programming. We next provide a simple application

for illustration.

An application to cart-pole balancing. In this task, an inverted pendulum is mounted

on a pivot point on a cart. The cart itself is restricted to linear movement, achieved by ap-

plying horizontal forces. Due to the system’s inherent instability, continuous cart movement

is needed to keep the pendulum upright. The observation consists of the cart position x, pole

angle ω, the cart velocity ẋ, and the pole velocity ω̇. Therefore, the state is the four-element

tuple, s = (x, ω, ẋ, ω̇). The 1D action space consists of the horizontal force applied to the

cart body. The reward function is given by

r(s, a) = 10− (1− cos(ω))− 10−5‖a‖2
2,

which states the angle deviated from upright should be close to 90◦ in order to get high

reward. In addition, the force a should not be too large in order to maintain the stability of

the system. The game terminates when |x| > 2.4 or |ω| > 0.2, i.e., the pole irreversibly falls

down. (This comes from the survey study of Duan et al., 2016, https://arxiv.org/pdf/

1604.06778.pdf, for complete physical/environmental parameters, see https://github.

com/rll/rllab.)

We can use (artificial) neural networks (NN) to generate the i-th action ai given state

variables, where the parameters θ are the weights in neural network.

πθ(ai|s) =

{
1 if ai = fθ(s),

0 else,

where fθ(·) is the artificial neural network with weights θ. In Figure A.1, we have input s =

(x1, x2, x3, x4). To transform the input x to a, the first step involves linear transformation:

u1 = θ10 + θ11s1 + θ12s2 + θ13s3 + θ14s4,

u2 = θ20 + θ21s1 + θ22s2 + θ23s3 + θ24s4,

with all θij as model parameters just like β in linear models. After that, we apply a nonlinear

33For the exact way to compute policy gradient, please refer to Sutton and Barto 2008, Ch 13. Or for a
simpler version, see this excellent blog post.
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function called activation function g(·) on (u1, u2).34 We get:

y1 = g(u1), y2 = g(u2).

And we get the output y = (y1, y2). Then, the final action of fθ(s) could be given as

a = g (θy0 + θy1y1 + θy2y2) .

Note that the parameters θij are the ones we use policy derivative algorithms to optimize in

order to generate the optimal horizontal force and get the max reward.

Figure A.1: A Single-Layer Artificial Neural Network

In general, after specifying the environment, reward, policy, and parameters, we can use

policy derivative to approximate the optimal policy. The agent seeks θ that maximizes the

reward function using gradient ascent on sampled state-action trajectories.

34Common activation functions include sigmoid, rectified linear unit (ReLU), hyperbolic tangent, etc.
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Appendix B. Input Feature Construction

This section details the construction of the 51 variables we use as input features. We

obtain the raw data from three WRDS databases: CRSP, CRSP Compustat Merged, and

Financial Ratio Firm Level. Characteristics with highlights can be obtained from Financial

Ratio Firm Level database.

A2ME: We define assets-to-market cap as total assets over market capitalization.

A2ME =
AT

(SHROUT ∗ PRC)
(12)

OA: We define operating accruals as change in non-cash working capital minus depreciation
scaled by lagged total asset.

OA =
∆ ((ACT + CHE − LCT −DLC − TXP )−DP )

ATt−1

(13)

AOA: We define AOA as absolute value of operation accruals.

AT: Total asset.

BEME : Ratio of book value of equity to market equity.

Beta daily: Beta daily is the sum of the regression coefficients of daily excess returns on
the market excess return and one lag of the market excess return.

C: Ratio of cash and short-term investments to total assets.

C = CHE/AT (14)

C2D: Cash flow to price is the ratio of income and extraordinary items and depreciation
and amortization to total liabilities.

C2D = (IB +DP )/LT (15)

CTO: We define capital turnover as ratio of net sales to lagged total assets.

CTO = SALE/ATt−1 (16)

Dept2P: Debt to price is the ratio of long-term debt and debt in current liability to the
market capitalization.

Dept2P =
(DLTT +DLC)

(SHROUT ∗ PRC)
(17)

∆ceq: The percentage change in the book value of equity.

∆ceq = (CEQt − CEQt−1)/CEQt−1 (18)

∆(∆Gm - ∆Sales:) The difference in the percentage change in gross margin and the
percentage change in sales.

∆(∆Gm−∆Sales) =
SALEt − COGSt

SALEt−1 − COGSt−1

− SALEt
SALEt−1

(19)
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∆So: Log change in the split adjusted shares outstanding.

∆So = log (CSHOt ∗ AJEXt)− log (CSHOt−1 ∗ AJEXt−1) (20)

∆shrout: Percentage change in shares outstanding.

∆shrout = (SHROUTt − SHROUTt−1) /SHROUTt−1 (21)

∆PI2A: The change in property, plants, and equipment over lagged total assets.

∆P12A =
∆ (PPENT + INV T )

ATt−1

(22)

E2P: We define earnings to price as the ratio of income before extraordinary items to the
market capitalization.

E2P = IB/ (SHROUT ∗ PRC) (23)

EPS: We define earnings per share as the ratio of income before extraordinary items to
shares outstanding.

EPS = IB/SHROUT (24)

Free CF: Cash flow to book value of equity.

FreeCF =
NI +DP +WCAPCH + CAPX

BE
(25)

Idol vol: Idiosyncratic volatility is the standard deviation of the residuals from a regress of
excess returns on the Fama and French three-factor model.

Investment: We define investment as the percentage year-on-year growth rate in total
assets.

Investment = (ATt − ATt−1) /ATt−1 (26)

IPM : Pretax profit margin, EBT/Revenue.

IVC: We define IVC as change in inventories over the average total assets of t and t− 1.

IV C =
2 ∗ (INV Tt − INV Tt−1)

ATt + ATt−1

(27)

Lev: Leverage is the ratio of long-term debt and debt in current liabilities to the sum of
long-term debt, debt in current liabilities, and stockholder’s equity.

Lev = (DLTT +DLC) /SEQ (28)

LDP: We define the dividend-price ratio as annual dividends over price.

LDP =

∑
(RET −RETX)

PRC
(29)

ME: Size is the market capitalization.
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Turnover: Turnover is volume over shares outstanding.

Turnover = V OL/SHROUT (30)

NOA: Net operating assets are the difference between operating assets minus operating
liabilities scaled by lagged total assets.

NOA =
left (AT − CHE − IV AO)− (AT −DLC −DLTT −MIB − PSTK − CEQ)

ATt−1

(31)

NOP: Net payout ratio is common dividends plus purchase of common and preferred stock
minus the sale of common and preferred stock over the market capitalization.

NOP =
(DV C + PRSTKC − SSTK)

ME
(32)

O2P: Payout ratio is common dividends plus purchase of common and preferred stock
minus the change in value of the net number of preferred stocks outstanding over the market
capitalization.

O2P =
DV C + PRSTKC − (PSTKRVt − PSTKRVt−1)

ME
(33)

OL: Operating leverage is the sum of cost of goods sold and selling, general, and adminis-
trative expenses over total assets.

OL = (COGS +XSGA)/AT (34)

PCM: The price-to-cost margin is the difference between net sales and costs of goods sold
divided by net sales.

PCM = (SALE − COGS)/SALE (35)

PM : The profit margin (operating income/sales).

Prof: We define profitability as gross profitability divided by the book value of equity.

Porf = GP/BE (36)

Q: Tobin’s Q is total assets plus the market value of equity minus cash and short-term
investments minus deferred taxes scaled by total assets.

Q =
(AT +ME/1000− CEQ− TXDB)

AT
(37)

Ret: Return in the month.

Ret max: Maximum daily return in the month.

RNA : The return on net operating assets.

ROA : Return-on-assets.

ROC: ROC is the ratio of market value of equity plus long-term debt minus total assets to
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cash and short-term investments.

ROC =
(DLTT +ME/1000− AT )

CHE
(38)

ROE: Return-on-equity.

ROIC : Return on invested capital.

S2C: Sales-to-cash is the ratio of net sales to cash and short-term investments.

S2C = SALE/CHE (39)

Sale g: Sales growth is the percentage growth annual rate in annual sales.

Saleg = SALEt/SALEt−1 − 1 (40)

SAT: We define asset turnover as the ratio of sales to total assets.

SAT = SALE/AT (41)

S2P : Sale-to-price is the ratio of net sales to the market capitalization.

SGA2S: SG&A to sales is the ratio of selling, general and administrative expenses to net
sales.

SGA2S = XGSA/SALE (42)

Spread: The bid-ask spread is the average daily bid-ask spread in the month.

Std turnover: Standard deviation of daily turnover in the month.

Std vol: Standard deviation of daily trading volume in the month.

Tan: Tangibility.

Tan =
0.715 ∗RECT + 0.547 ∗ INV T + 0.535 ∗ PPENT + CHE

AT
(43)

Total vol: Standard deviation of daily return in the month.
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Appendix C. TE-CAAN Implementation and a Bi-LSTM-
HA Edition of AlphaPortfolio

C1. Multihead Attention and Implementation Details of TE-CAAN

To better understand the model and connect that to empirical studies, we should explain

how AlphaPortfolio builds on existing Transformer models and details of our implementation.

Readers familiar with Transformer models can safely skip this subsection.

First, it is useful to discuss the use of multi-head attention in existing Transformer models,

which we inherit. Scaled dot-product attention in plain-vanilla Transformer models (shown

in FigureC.1) constitutes a basic unit of multi-head attention. It replaces recurrence with

self-attention. Unlike traditional attention methods, self-attention performs attention on a

single sequence. The value of each position is calculated by all the positions in the sequence.

Matmul

QKV

Scale & Softmax

Fully Connected Layer

Scaled Dot-Product Attention

V

W (V)

Scaled Dot-Product Attention

K

W (K)

Q

W (Q)

Concat & Linear

Multi-Head Attention

Figure C.1: Scaled Dot-Product Attention (left) and Multi-Head Attention (right).

The output is computed as a weighted sum of the values, where the weight assigned to

each value is computed by a compatibility function of the query with the corresponding key.

In practice, query, key and value matrices can be, respectively, packaged into Q, K and

V . So we can compute the attention function on a set of queries simultaneously. The scale

factor, 1√
dk

, is to avoid the dot-product getting too large.35

Attention(Q,K, V ) = softmax

(
QK>√
dk

)
V (44)

35Assume that the components of q and k are independent random variables with mean 0 and variance 1.
Then their dot prodcut, q · k =

∑dk

i=1 qiki, has mean 0 and variance dk.
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Multi-head attention (shown in Figure C.1) can be regarded as applying scaled dot-product

attention in an h different feature space and finally concatenate the results.

MultiHead(Q,K, V ) = Concat(head1, · · · , headh)WO (45)

headi = Attention(QWQ
i , KW

K
i , V W

V
i ) (46)

In addition to attention sublayers, each encoder contains a fully connected feed-forward

network which is applied to each position separately and identically. In fact, we can consider

this part as convolutions with kernel size 1. It consists of two linear transformations with a

ReLU activation in-between.

It should be clear that our TE-CAAN retains features of the original design to the extent

possible and utilizes residual connection and layer normalization. However, we isolate the

encoder and differ in implementation details. Our model is based on PyTorch version 1.0.1 on

four NVIDIA 1080Ti. To achieve better performance and take full advantage of computing

resources, we adopt PyTorch’s advanced API to automate data parallelism for the TE.

Because the amount of data in neural network translation tasks differ significantly from

that in our task, we do not follow the original parameter setting with a stack of six encoder

blocks. We instead find that one TE block achieves fast convergence and already produces

exceptional results. Also, we reduce the dimension of embedding from 512 to 256 and reduce

the dimension of feed forward from 2048 to 1024 for computational efficiency. The number

of heads in multi-head attention is set to four. Once again, our innovation lies in the deep

reinforcement learning approach for direct optimization, which drives the results, not these

fine specifications of the TE model. Importantly, we add CAAN as which in itself is an

innovation on top of TE.

Table C.1: Hyperparameters of TE-CAAN-Based AP

Hyper-parameter Choice Hyper-parameter Choice

Embedding dimension 256 Optimizer SGD
Feed-forward network 1021 Learning rate 0.0001
Number of multi-head 4 Dropout ratio 0.2
Number of TE layer 1 Training epochs 30
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Figure C.2: The Architecture of LSTM-HA.

C2. AP based on Bi-directional LSTM with Historical Attention

For SREM, instead of TE, we could alternatively use a Long Short-Term Memory with

Historical Attention (LSTM-HA) model to learn the representation from stock’s historical

features. As illustrated in Figure C.2, we start by utilizing an LSTM network to recursively

encode X(i) into a vector:

hk = LSTM
(
hk−1,x

(i)
k

)
, k ∈ [1,K], (47)

where hk is the hidden state encoded by LSTM at step k. The hK at the last step is usually

used as a representation of the sequence. It contains the sequential dependence among

elements in X(i).

While hK can fully exploit the sequential dependence of elements in X(i), the global

and long-range dependence are not effectively modeled. Therefore, we adopt a historical

state attention mechanism to enhance hK using all middle states hk. Specifically, following

the standard attention architecture (Sutskever, Vinyals, and Le, 2014), the historical state

attention enhanced representation denoted by r(i), is calculated as

r(i) =
K∑
k=1

ATT (hK ,hk)hk, (48)
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where ATT(·, ·) is an attention function defined as

ATT (hK ,hk) =
exp (αk)∑K
k′=1 exp (αk′)

, (49)

αk = w> · tanh
(
W (1)hk +W (2)hK

)
.

Here, w, W (1), and W (2) are the parameters to learn.

For an LSTM-implementation of our AP, we replace TE with Bi-directional LSTM with

attention mechanism. Table C.2 reports the results. In terms of OOS metrics such as the

Sharpe ratio, the Bi-LSTM-CAAN model even outperforms our original AP.

Table C.2: Out-of-Sample Performance of Bi-LSTM-CAAN-Based AP

This table presents the OOS performance for Bi-LSTM-CAAN-based AP. For each month in the
OOS periods (1990-2016), AP constructs a long-short portfolio, which goes long the 10% of stocks
with the highest winner scores and shorts the 10% of stocks with the lowest winner scores. The
investment proportions are calculated according to Section 3.3. Return, Std.Dev., and Sharpe ratio
are all annualized.

(1) (2) (3)

Firms All size > q10 size > q20

Return(%) 16.90 15.48 15.07
Std.Dev.(%) 7.70 5.06 5.08
Sharpe 2.19 3.06 2.97
Skewness 1.63 0.86 1.06
Kurtosis 6.85 2.43 4.88
Turnover 0.46 0.39 0.40
MDD 0.03 0.01 0.02

However, our economic distillation reveals that LSTM does not have stable utilization

of input features or economic interpretability using textual factors. This is consistent with

that LSTM-HA deals with vanishing and exploding gradients only in the training sample

and with that AI may face instability of performance (Heaven, 2019).

Specifically, from Table C.3, Bi-LSTM-CAAN-based AP tend to select characteristics

of the first/last position (“ 0” and “ 11”) in the input sequence, a pattern robust when

we change the number of months to generate lagged inputs. This is indicative of explod-

ing gradient issues, which means the trained model go to some extremes or gradient-based

interpretation methods are not that suitable for such RNN-like models in our case.

While gradient exploding problem can be solved by gradient clip during training (back-
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propagation), when we have a well-trained model and use it to test OOS, researchers typically

do not know whether in the test sample there is a problem of gradient explosion. In other

words, the detection of gradient explosions in computer science focuses on the training stage

and would not flag such technical issues of a model from test samples. Our economic distilla-

tion therefore helps to detect modeling issues out-of-sample that the traditional CS approach

neglects.
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Table C.3: Fama-Macbetch T-test Values of Selected Terms (Bi-LSTM-Based AP)

This table presents the results of using Fama-Macbetch method to interpret Algorithm 1. Poly-
nomial degree is set as one and for all terms with suffixed like ” no”, no indicates the sequence
number of input features, i.e., pe 7 denotes P/E ratio at the time of five (12 − 7 = 5) months
ago. For details of each characteristic, please refer to Appendix B. q indicates the size percentile
of NYSE firms. In this table, we present the top 50 significant terms.

All size > q10 size > q20

pe 0 85.04 tan 11 -83.87 tan 11 -84.56
ivc 11 -82.17 ivc 11 -78.49 ivc 11 -81.81
C 11 78.34 pe 0 68.77 pe 0 68.10
Q 11 -70.57 C 11 68.14 C 11 62.64
tan 11 -65.63 Q 11 -52.07 Q 11 -50.44
ivc 0 -58.49 Idol vol 0 50.99 e2p 11 50.42
Idol vol 0 51.74 ivc 0 -50.08 Idol vol 0 48.96
Turnover 0 -44.84 Turnover 0 -48.06 ret 11 -46.00
delta so 11 -43.99 e2p 11 45.04 Turnover 0 -45.15
Idol vol 11 38.00 ret 11 -44.48 ivc 0 -44.60
Turnover 11 -34.92 delta so 11 -39.49 delta so 11 -38.08
Ret max 11 -33.85 Beta daily 0 -37.94 Turnover 11 -37.19
s2p 11 33.25 Turnover 11 -36.8 Beta daily 0 -35.24
Beta daily 0 -31.15 beme 11 31.72 beme 11 28.06
delta shrout 11 26.15 Idol vol 11 27.07 s2p 11 26.95
s2p 0 23.97 s2p 11 25.91 investment 11 -26.54
ret 11 -23.82 cto 0 -24.41 Idol vol 11 24.57
beme 11 23.29 Std volume 0 -20.67 oa 11 24.23
oa 11 23.03 investment 11 -20.65 cto 0 -22.75
roa 11 -22.62 Beta daily 11 20.31 Beta daily 11 22.07
roa 0 -22.36 sat 11 20.29 Std volume 0 -20.98
investment 11 -19.87 oa 11 20.17 sat 11 20.78
Std volume 0 -19.86 s2p 0 20.03 s2p 0 20.68
pe 11 -18.91 delta shrout 11 19.97 delta shrout 11 19.08
sat 11 18.49 roa 11 -19.52 noa 11 19.05
at 11 17.02 pe 11 -17.76 shrout 11 17.93
cto 0 -16.31 shrout 11 17.58 roic 0 17.45
c2d 11 16.28 Ret max 11 -16.09 me 11 16.33
shrout 11 15.09 sat 0 16.05 nop 0 -15.85
beme 0 13.93 me 11 15.49 roa 11 -14.59
investment 0 -13.84 nop 0 -15.46 pe 11 -14.16
sga2s 11 13.61 c2d 11 14.39 c2d 11 13.81
roic 11 13.42 roic 0 13.9 sat 0 13.39
me 11 13.20 noa 11 12.89 Ret max 11 -13.31
aoa 11 -12.21 delta pi2a 11 12.86 delta so 0 -12.92
delta pi2a 0 12.09 sga2s 11 12.45 sga2s 11 12.38
Beta daily 11 12.07 delta so 0 -11.76 vol 11 -11.13
roic 0 12.07 sale g 0 11.62 a2me 11 -10.69
shrout 0 11.07 roic 11 11.23 sale g 0 10.66
delta pi2a 11 10.89 at 11 11.12 roic 11 10.62
sat 0 10.52 a2me 11 -10.35 investment 0 -10.38
e2p 11 10.21 beme 0 10.29 at 11 9.91
delta so 0 -9.56 C 0 10.14 nop 11 9.41
C 0 9.03 nop 11 10.02 shrout 0 9.29
sale g 0 8.93 vol 11 -9.83 aoa 11 -9.03
sale g 11 8.53 shrout 0 8.82 beme 0 8.65
std 0 -8.23 sale g 11 8.09 C 0 8.40
a2me 11 -8.07 investment 0 -7.53 std 11 -6.95
Spread 11 -6.79 std 11 -6.9 free cf 11 6.84
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Appendix D. Economic Distillation via Textual Factor

Analysis

The concept of projecting a complex model onto simpler spaces can be extended to natural

languages too. The main idea behind a textual factor analysis is that texts are written in

natural languages and if we find correlations of AP holdings with the topics discussed in text

documents, we may be able to develop a narrative or a better understanding of the model.

To do this, we use the general framework Cong, Liang, and Zhang (2018) introduce for

analyzing large-scale text-based data. The methodology combines the strengths of neural

network language models and generative statistical modeling. It generates textual factors

by (i) representing texts using vector word embedding, (ii) clustering words using locality-

sensitive hashing, and (iii) identifying spanning vector clusters through topic modeling. Ar-

guably, one can use other text analytics but the data-driven approach in Cong, Liang, and

Zhang (2018) captures complex linguistic structures while ensuring computational scalability

and economic interpretability.36

Specifically, we use Google’s word2vec for the word embedding step and follow Cong,

Liang, and Zhang (2018) to generate textual factors from firm-level documents. They are

essentially topics and themes with relative frequency on a set of words and phrases that span

the textual space. We then regress each firm’s document on the textual factors to obtain

the loadings on each topic.

We obtain text data from Company Filings at SEC Edgar (https://www.sec.gov/

edgar/). The U.S. Securities and Exchange Commission (SEC) approved a rule requir-

ing publicly-listed firms to file their securities documents via the Electronic Data Gathering,

Analysis and Retrieval (EDGAR) system since 1993. We illustrate the approach with Man-

agement Discussion and Analysis (MD&A) sections of both the quarterly report (10-Q) and

the annual report (10-K). Other forms of text data we can utilize are Risk Factor Discussion

in 10-K reports and analyst reports.

36The difficulties in analyzing textual data are three-fold: first, language structures are intricate and
complex, and representing or summarizing them using simple frequency/count-based approaches is highly
reductive and may lose important informational content; second, textual data are high-dimensional and pro-
cessing a large corpus of documents is computationally demanding; third, there lacks a framework relating
textual data to sparse regression analysis traditionally used in social sciences while maintaining interpretabil-
ity. In the paper, the authors also discuss applications of textual factors in (i) prediction and inference, (ii)
interpreting existing models and variables, and (iii) constructing new metrics and explanatory variables,
with illustrations using topics in economics such as macroeconomic forecasting and factor asset pricing.
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Mathematically, let K denote the number of textual factors, where K is endogenously

specified and can potentially depend on the data (we use 200 for simplicity). Denote the set

of textual factors by the triplet (Si, Fi ∈ R|Si|, di ∈ R≥0), where Si denotes the support of

word-cluster i = 1, · · · , K, Fi is a real-valued vector representing the textual factor indicating

the relative frequencies of words of factor, and the factor importance di. Given the textual

factors and a firm’s document D (represented by a document-term vector N (D) ∈ RV , where

V is the size of the vocabulary in the texts), the loading of the textual factor i is simply the

projection

x
(D)
i :=

〈N (D)
Si

, Fi〉
〈Fi, Fi〉

, (50)

and the document D can be represented quantitatively as (x
(D)
1 , . . . x

(D)
K ) ∈ RK .

To understand the meaning of these loadings (textual βs), think about how a company

continuously discusses and discloses information on profitability, social responsibility, inno-

vativeness, etc., through MD&A. The x
(D)
k we obtain allows us to assign a number that

measures how much the company loads on that topic—a metric we can use in simple sparse

regression framework.

The final step is to regress each stock’s winner score in each month from AP onto the

contemporaneous textual βs. We iterate the process a few times to reduce the number of

textual factors based on their interpretability, importance in the MD&A data, and signifi-

cance in the AP construction. Specifically, after each iteration, we discard word clusters that

are in coherent or are infrequently mentioned in the firms’ filing or have insignificant correla-

tions with the winner score. Table D.1 contains examples of the most loaded topics/textual

factors when constructing AP. A positive coefficient indicates when discussions on the topic

dominate the firm’s text data, the firm’s stock more likely receives a long position; a negative

coefficient indicates the opposite. The word lists are the corresponding words within each

textual factor. The stocks AP buys typically mention issues such as loss-cutting, sales, and

actions as well as profitability, cash, and investment that are related to C, Cˆ2, investment,

ipm, and ipmˆ2 from the polynomial sensitivity analysis; the stocks AP short-sells are the

ones heavily discussing real estates, corporate events, and acknowledging mistakes as well as

uncertainty and inventory, which relate to Cˆ2, delta so, ivc, ivcˆ2, Idol vol, and Idol volˆ2.

Further analysis can be conducted. For example, one can relate the negative loading on

corporate events textual factor to theories explaining why stock returns may be negative on

average for firms going through certain corporate events.
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Table D.1: Winner Scores’ Loadings on Textual Factors

This table contains examples of the most loaded topics/textual factors when firms’ winner scores are re-
gressed on over 30 contemporaneous textual factor loadings selected based on factor importance and domain
expertise. The regression coefficients are reported under the textual topics, where a positive (negative) num-
ber indicates a long (short) position on stocks with the topic prominently showing up in the firm’s filings.
The remainder columns list words within each textual factor. We do not stem words because we use word
vectors trained directly by Google word2vec in the word embedding step.

Topics Most Frequent Words in the Textual Factor

Loss-cutting deferral curtailment divestiture diminution cutback
(0.1500) shutdown abolishment retrenchment imposition reductions

decrease reclassification amortization resell resale
recycled afford salable

Profitability profit ebit quarterly earnings profitably
(0.1358) profits pretax revenue revenues viable

profitable writedown business unprofitable net loss
yoy gross margin net income efficiency operational

Sales sales purchases growth retail earnings
(0.0428) profit income profits comps resales

shipments sale fiscal revenue

Cash/Invest subsidizing unaffordable reimburse reinvestment subsidy
(0.0381) invest paying afford cash trapped tariffs

Actions secures closing unveils receives exploring
(0.0339) acquire introduces signs agreement deploys stopped

completion donates acquires announces delayed

Inventory hoarding replenishing stockpiling overcharging supplying
(-0.0209) accumulating distributing producing restock stockpile

rationing buying storing restocking inventory
transfers seasonal restocked shipping stocked

Mistakes forgiveness confess forgives admit forgiving
(-0.0536) contrition forgiven wrongs excuses atonement

apologize punish repay mistake amends
clarifications sorry forgave repent redress

Uncertainty volatility speculator irrationals traders fluctuation
(-0.1411) speculative risky turmoil instability uncertainty

turbulance changing evolving unpredictable hedge

Corporate recapitalization divestitures mergers divestiture unbundling
Events buyout acquire transaction acquisitive restructure
(-0.1444) acquisitions acquired divestiture merger amalgamated

takeovers synergies expansions takeover takeover

Real Estate bungalows dwellings acres houses carport
(-0.2362) residences cottages barns cabins outbuilding

homes buildings condos lofts mansion
condominiums townhome real estate foreclosure backyard

apartment farmhouse cottage bedroom villa
rented residence duplex ranch motorhome
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This textual factor analysis only constitutes an initial step towards developing a narrative

for how AP behaves. Our simple choice of text data and the application of textual factors are

not meant to be optimal and definitive but serve as an illustration of interpreting AI models

with texts. More comprehensive analysis in combination with economic theory constitutes

future research. For parsimony, we have only included representative textual factors. More

implementation details can be found in Cong, Liang, and Zhang (2018).
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