Labor Supply and the Pension Contribution-Benefit Link

Eric French1 Attila Lindner2 Cormac O’Dea3 Tom Zawisza2

1Cambridge University
2University College London
3Yale University

April 12, 2022
Outline for section 1

Introduction

Data and Design

Results

Conclusion

Appendix
Question: Are Social Security Contributions a Tax?

- Social security contributions (SSCs) are a large component of ‘tax’ burden in OECD countries (23% of labor costs in 2010)
 - Potential labor supply disincentive

- But pension contributions (largest part of SSCs) lead to higher future pension entitlements

- Policy proposals (from WB, IMF) have advocated tight link between pension contributions and benefits to encourage work

- Does current labor supply respond to future incentives?
Question: Are Social Security Contributions a Tax?

- Social security contributions (SSCs) are a large component of ‘tax’ burden in OECD countries (23% of labor costs in 2010)
 - Potential labor supply disincentive

- **But** pension contributions (largest part of SSCs) lead to higher future pension entitlements

 - Policy proposals (from WB, IMF) have advocated tight link between pension contributions and benefits to encourage work

 - Does current labor supply respond to future incentives?
Question: Are Social Security Contributions a Tax?

- Social security contributions (SSCs) are a large component of ‘tax’ burden in OECD countries (23% of labor costs in 2010)
 - Potential labor supply disincentive

- But pension contributions (largest part of SSCs) lead to higher future pension entitlements

- Policy proposals (from WB, IMF) have advocated tight link between pension contributions and benefits to encourage work

- Does current labor supply respond to future incentives?
Question: Are Social Security Contributions a Tax?

- Social security contributions (SSCs) are a large component of ‘tax’ burden in OECD countries (23% of labor costs in 2010)
 - Potential labor supply disincentive

- But pension contributions (largest part of SSCs) lead to higher future pension entitlements

- Policy proposals (from WB, IMF) have advocated tight link between pension contributions and benefits to encourage work

- Does current labor supply respond to future incentives?
This Paper

• Massive literature showing how labor supply close to retirement age responds to pension incentives
 • Surveys in Lumsdaine and Mitchell (1999), Gruber and Wise (2008), Blundell et al. (2016), many others

• Little is know about how labor supply far from retirement age responds to pension incentives

• We provide an empirical assessment of how pension incentives affect labor supply far from retirement age
 • Exploit 1999 pension reform in Poland from a Defined Benefit (DB) to a Notional Defined Contribution (NDC)
This Paper

• Massive literature showing how labor supply close to retirement age responds to pension incentives
 • Surveys in Lumsdaine and Mitchell (1999), Gruber and Wise (2008), Blundell et al. (2016), many others

• Little is know about how labor supply far from retirement age responds to pension incentives
 • We provide an empirical assessment of how pension incentives affect labor supply far from retirement age
 • Exploit 1999 pension reform in Poland from a Defined Benefit (DB) to a Notional Defined Contribution (NDC)
This Paper

• Massive literature showing how labor supply close to retirement age responds to pension incentives
 • Surveys in Lumsdaine and Mitchell (1999), Gruber and Wise (2008), Blundell et al. (2016), many others

• Little is known about how labor supply far from retirement age responds to pension incentives

• We provide an empirical assessment of how pension incentives affect labor supply far from retirement age
 • Exploit 1999 pension reform in Poland from a Defined Benefit (DB) to a Notional Defined Contribution (NDC)
Polish Pension Reform 1999

- **Pre-reform** Defined Benefit

\[b_{db} \approx r_{db} \cdot \text{AIME} \approx \text{over best 10 years} \]

- **Post-reform** Notional Defined Contribution

\[b_{dc} \approx r_{dc} \cdot \frac{1}{N} \sum_{s=18}^{65} y_{is} \approx \text{over all years} \]

- The change affected only those aged 50 and younger in 1999
Polish Pension Reform 1999

• **Pre-reform** Defined Benefit

\[b_{db} \approx r_{db} \cdot \overbrace{AIME}^{\approx \text{over best 10 years}} \]

• **Post-reform** Notional Defined Contribution

\[b_{dc} \approx r_{dc} \cdot \frac{1}{N} \sum_{s=18}^{65} y_{is} \]

\[\approx \text{over all years} \]

• The change affected only those aged 50 and younger in 1999
Polish Pension Reform 1999

- **Pre-reform** Defined Benefit
 \[
 b_{db} \approx r_{db} \cdot \overbrace{AIME}^{\approx \text{over best 10 years}}
 \]

- **Post-reform** Notional Defined Contribution
 \[
 b_{dc} \approx r_{dc} \cdot \frac{1}{N} \sum_{s=18}^{65} y_{is} \approx \text{over all years}
 \]

- The change affected only those aged 50 and younger in 1999
Polish Pension Reform 1999

- **Pre-reform** Defined Benefit
 \[
 b_{db} \approx r_{db} \cdot AIME \approx \text{over best 10 years}
 \]

- Highest earnings years (often around age 50) play key role

- **Post-reform** Notional Defined Contribution
 \[
 b_{dc} \approx r_{dc} \cdot \frac{1}{N} \sum_{s=18}^{65} Y_{is} \approx \text{over all years}
 \]

- All earnings years play equivalent role in pension formula

- The change affected only those aged 50 and younger in 1999
Polish Pension Reform 1999

- **Pre-reform** Defined Benefit

 \[b_{db} \approx r_{db} \cdot AIME \approx \text{over best 10 years} \]

 - Highest earnings years (often around age 50) play key role

- **Post-reform** Notional Defined Contribution

 \[b_{dc} \approx r_{dc} \cdot \frac{1}{N} \sum_{s=18}^{65} y_{is} \approx \text{over all years} \]

 - All earnings years play equivalent role in pension formula

- The change affected only those aged 50 and younger in 1999
An Implication of ‘Best Years’ Type Rules

• Individuals with high wage growth more likely to have ‘best’ earnings relative to national average later in life (in 50s/60s)

• In DB system, incentives for labor supply late in working life:
 • greater for high-wage-growth individuals
 • worse for low-wage-growth individuals
An Implication of ‘Best Years’ Type Rules

- Individuals with high wage growth more likely to have ‘best’ earnings relative to national average later in life (in 50s/60s)
- In DB system, incentives for labor supply late in working life:
 - greater for high-wage-growth individuals
 - worse for low-wage-growth individuals
Zasady wypłaty emerytur z ZUS

Prawo do emerytury i jej wysokość zależy od daty urodzenia

- osoby urodzone **przed 1 stycznia 1949 r.** mają obliczane świadczenia na starych zasadach z uwzględnieniem części socjalnej oraz kwoty bazowej (3536,87 zł)
- tylko osoby urodzone przed 1 stycznia 1949 r., za których były opłacone składki, a wniosek o emeryturę o jej przyznanie został złożony po 31 grudnia 2008 r., mają możliwość ustalenia świadczenia na nowych zasadach

Ważne!

- 5,2 mln osób pobiera emeryturę z ZUS
- 2257,64 zł - wysokość przeciętnej emerytury z ZUS
- 849,3 tys. osób pobiera rentę z tytułu niezdolności do pracy
- 1605,22 zł - przeciętna wysokość renty z tytułu niezdolności do pracy

Gdzie są nasze pieniądze?

ZUS zainwestował fundusz emerytalny prawie 500 mln zł
Choice for the future

Zasady wpłaty emerytur z ZUS

Prawo do emerytury i jej wysokość zależy od daty urodzenia

osoby urodzone przed 1 stycznia 1949 r., mają obliczone świadczenia na starych zasadach z uwzględnieniem części socjalnej oraz kwoty bazowej (3536,87 zł)

tylko osoby urodzone przed 1 stycznia 1949 r., za których były opłacane składki, a wniosek o emeryturę o jej przyznanie został złożony po 31 grudnia 2008 r., mają możliwość ustalenia świadczenia na nowych zasadach

1948 1949 1968 1969
Salience

Important! A pension is award on application from the insured individual.

Zasady wypłaty emerytur z ZUS

Prawo do emerytury i jej wysokość zależy od daty urodzenia

- osoby urodzone przed 1 stycznia 1949 r. mają obliczane świadczenia na starych zasadach z uwzględnieniem części socjalnej oraz kwoty bazowej (3536,87 zł)
- tylko osoby urodzone przed 1 stycznia 1949 r., za których były opłacane składki, a wniosek o emeryturę o jej przyznanie został złożony po 31 grudnia 2008 r., mają możliwość ustalenia świadczenia na nowych zasadach

1948 1949 1968 1969

Choice for the future
Important! A pension is awarded on application from the insured individual.

Choice for the future

Where is our money?

Zasady wypłaty emerytur z ZUS

Prawo do emerytury i jej wysokość zależy od daty urodzenia

osoby urodzone przed 1 stycznia 1949 r. mają obliczane świadczenia na zasadach z uwzględnieniem części socjalnej oraz kwoty bazowej (3536,87 zł)
tylko osoby urodzone przed 1 stycznia 1949 r., za którymi były opłacane składy, a wniosek o emeryturę o jej przyznanie został złożony po 31 grudnia 2008 r., mają możliwość ustalenia świadczenia na nowych zasadach

5,2 mln osób pobiera emeryturę z ZUS
2257,64 zł wysokość przeciętnej emerytury z ZUS
849,3 tys. osób pobiera rentę z tytułu niezdolności do pracy
1605,22 zł przeciętna wysokość renty z tytułu niezdolności do pracy

1948 1949 1968 1969

Ważne!
Salience

Choice for the future

Important! A pension is awarded on application from the insured individual.

Rules for being awarded the state pension: the right to a pension and its size depend on the date of birth.

Where is our money?
Wiek emerytalny	Wariant 1	Wariant 2
67 (lata/miesiące) | 856,59 zł | 1758,26 zł

Dla ubezpieczonego, który przekroczył powszechny wiek emerytalny i nie wystąpił o ustalenie emerytury, hipotetyczną emeryturę podaje się dla jego faktycznego wieku oraz kolejnych pięciu lat.

• na koncie (I filar) i subkoncie (II filar) łącznie: 1072,55 zł
Outline for section 2

Introduction

Data and Design

Results

Conclusion

Appendix
Did Labor Supply respond to the Pension Reform?

We want:

\[\Delta \text{Labor Supply Caused by the Reform} \]
\[\Delta \text{Financial Work Incentives Due to the reform} \]

We need:

1. Data
2. Approach for measurement of the change in incentives
3. Research Design to identify causal impact of the policy
Did Labor Supply respond to the Pension Reform?

We want:

$$\Delta \text{Labor Supply Caused by the Reform}$$

$$\Delta \text{Financial Work Incentives Due to the reform}$$

We need:

1. Data
 - We use admin data on entire Polish population from 2000

2. Approach for measurement of the change in incentives

3. Research Design to identify causal impact of the policy
Did Labor Supply respond to the Pension Reform?

We want:

\[
\Delta \text{Labor Supply Caused by the Reform} \\
\Delta \text{Financial Work Incentives Due to the reform}
\]

We need:

1. Data

2. Approach for measurement of the change in incentives
 - We simulate whole-life earnings trajectories, distinguishing between high-earnings-growth and low-earnings-growth regions

3. Research Design to identify causal impact of the policy
Reform impact on incentives

<table>
<thead>
<tr>
<th>Region type</th>
<th>High-growth</th>
<th>Low-growth</th>
<th>Difference (High-Low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Change in net return to work (%)</td>
<td>-11.17</td>
<td>-5.94</td>
<td>-5.23</td>
</tr>
</tbody>
</table>
Reform impact on wealth

<table>
<thead>
<tr>
<th>Region type</th>
<th>High-growth</th>
<th>Low-growth</th>
<th>Difference (High-Low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Change in net return to work (%)</td>
<td>-11.17</td>
<td>-5.94</td>
<td>-5.23</td>
</tr>
<tr>
<td>2. Change in pension wealth (%)</td>
<td>-14.58</td>
<td>-14.93</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Wealth effect of reform: expected pension wealth at age 65, absent changes in behavior.
Did Labor Supply respond to the Pension Reform?

We want:

\[\Delta \text{Labor Supply Caused by the Reform} \]
\[\Delta \text{Financial Work Incentives Due to the reform} \]

We need:

1. Data
2. Approach for measurement of the change in incentives
3. Research Design to identify causal impact of the policy
 - Cohort Based Regression Discontinuity
Empirical Strategy: Cohort Based Regression Discontinuity

Meet Jan and his twin brother Pawel:

Jan born
11:50pm on 31 Dec 1948

Pawel born
0:10am on 01 Jan 1949

Until age 50, they lived parallel lives. In 1999, the pension system changed for Pawel (not Jan).
Empirical Strategy: Cohort Based Regression Discontinuity

Meet Jan and his twin brother Pawel:

Jan born 11:50pm on 31 Dec 1948

Pawel born 0:10am on 01 Jan 1949

Until age 50, they lived parallel lives. In 1999, the pension system changed for Pawel (not Jan).
Empirical Strategy: Cohort Based Regression Discontinuity

Meet Jan and his twin brother Pawel:

Jan born
11:50pm on 31 Dec 1948

Pawel born
0:10am on 01 Jan 1949

Until age 50, they lived parallel lives. In 1999, the pension system changed for Pawel (not Jan).
Outline for section 3

Introduction

Data and Design

Results

Conclusion

Appendix
2000-2002: high-growth regions

Switching to NDC

Staying in DB

Change in Empl./Pop. = -0.015 at cut-off (0.003)

Regression table
2000-2002: low-growth regions

Regression table

Switching to NDC
Change in Empl./Pop. = 0.001 at cut-off (0.002)

Staying in DB

Age at the time of reform (01/01/1999)
Reform impact on employment rate

<table>
<thead>
<tr>
<th>Region type</th>
<th>High-growth</th>
<th>Low-growth</th>
<th>Difference (High-Low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Change in net return to work (%)</td>
<td>-11.17</td>
<td>-5.94</td>
<td>-5.23</td>
</tr>
<tr>
<td>2. Change in pension wealth (%)</td>
<td>-14.58</td>
<td>-14.93</td>
<td>0.34</td>
</tr>
<tr>
<td>3. Change in employment (%)</td>
<td>-2.01 (0.78)</td>
<td>0.28 (0.70)</td>
<td>-2.29 (0.95)</td>
</tr>
</tbody>
</table>
Implied elasticities

Table: Elasticity estimates

<table>
<thead>
<tr>
<th>Region type</th>
<th>High-growth</th>
<th>Low-growth</th>
<th>Difference (High-Low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Change in net return to work (%)</td>
<td>-11.17</td>
<td>-5.94</td>
<td>-5.23</td>
</tr>
<tr>
<td>2. Change in pension wealth (%)</td>
<td>-14.58</td>
<td>-14.93</td>
<td>0.34</td>
</tr>
<tr>
<td>3. Change in employment (%)</td>
<td>-2.01 (0.78)</td>
<td>0.28 (0.70)</td>
<td>-2.29 (0.95)</td>
</tr>
<tr>
<td>4. Employment elasticity (Row 3) / (Row 1)</td>
<td>–</td>
<td>–</td>
<td>0.44 (0.18)</td>
</tr>
</tbody>
</table>
Implied elasticities

Table: Elasticity estimates

<table>
<thead>
<tr>
<th>Region type</th>
<th>High-growth</th>
<th>Low-growth</th>
<th>Difference (High-Low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Change in net return to work (%)</td>
<td>-11.17</td>
<td>-5.94</td>
<td>-5.23</td>
</tr>
<tr>
<td>2. Change in pension wealth (%)</td>
<td>-14.58</td>
<td>-14.93</td>
<td>0.34</td>
</tr>
<tr>
<td>3. Change in employment (%)</td>
<td>-2.01 (0.78)</td>
<td>0.28 (0.70)</td>
<td>-2.29 (0.95)</td>
</tr>
<tr>
<td>4. Employment elasticity (Row 3) / (Row 1)</td>
<td>–</td>
<td>–</td>
<td>0.44 (0.18)</td>
</tr>
</tbody>
</table>

\[
\eta^P = \frac{%\Delta \text{Employment}_t}{%\Delta \text{Net return from work}_t}
\]
Robustness

- Placebo tests: estimated effects for neighbouring cohorts small and not statistically significant

- Robust to:
 - Finer regions
 - Alternative estimation methods
 - Alternative assumptions on earnings process
Robustness

• Placebo tests: estimated effects for neighbouring cohorts small and not statistically significant
 - Placebo tests

• Robust to:
 - Finer regions
 - Finer regions
 - Alternative estimation methods
 - Alternative estimation methods
 - Alternative assumptions on earnings process
Robustness

• Placebo tests: estimated effects for neighbouring cohorts small and not statistically significant

• Robust to:
 • Finer regions
 • Alternative estimation methods
 • Alternative assumptions on earnings process
Robustness

- Placebo tests: estimated effects for neighbouring cohorts small and not statistically significant

- Robust to:
 - Finer regions
 - Alternative estimation methods
 - Alternative assumptions on earnings process
Also in the paper

1. Compare to later reform where the return to work changed but where effect of change in incentives is on **immediate income**
 - Labor supply effects of a qualitatively similar elasticities

2. Use the results to estimate the parameters of a lifecycle model to look at the effects **over the whole lifecycle**
 - The reform improved work-incentives earlier in working life, disimproved them late in working life
 - Negative LS late in working life only partially offset by positive LS effect earlier
 - People later in life are closer to participation margin - incentives particularly matter then
Outline for section 4

Introduction

Data and Design

Results

Conclusion

Appendix
Conclusions

- Empirical assessment of labor supply effects induced by a pension reform
- We find substantial LS effects 15 years before retirement
- Implications for when in the life-cycle to target incentives
Thank you!
Outline for section 5

Introduction

Data and Design

Results

Conclusion

Appendix
Simulations: “best-years” by region type

![Bar chart showing fraction using earnings in best-10/best-20 for ages 51 to 54, with high-growth regions and low-growth regions indicated.

- Ages: 51, 52, 53, 54
- High-growth regions: Fraction using earnings in best-10/best-20
- Low-growth regions: Fraction using earnings in best-10/best-20

Bar chart with four bars for each age, with bars for high-growth regions in red and bars for low-growth regions in blue.

- Age 51: 0.46
- Age 52: 0.44
- Age 53: 0.51
- Age 54: 0.48

Legend:
- Low-growth regions
- High-growth regions
Finer regional variation: incentives and wealth effect

Panel A. Incentives.

<table>
<thead>
<tr>
<th>Change in return from work (ages 51-53)</th>
<th>Average annual earnings growth (relative to mean), 2000-2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Panel B. Wealth effect.

<table>
<thead>
<tr>
<th>Wealth effect of reform (pension at age 65)</th>
<th>Average annual earnings growth (relative to mean), 2000-2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.25</td>
<td>-0.25</td>
</tr>
<tr>
<td>-0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>-0.15</td>
<td>-0.15</td>
</tr>
<tr>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>-0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Finer regional variation: employment effect

Slope (Emp. elasticity) = 0.45 (0.26)
Formulas

\[
b_{i65}^{DB} = \begin{align*}
&= \alpha + r \cdot f \left(\frac{y_i}{\bar{y}} \right) \cdot \bar{y}_{65} \\
&\approx \text{AIME}
\end{align*}
\]

\[
b_{i65}^{NDC} = \begin{align*}
&= \frac{1}{E[T_t | t = 65]} \sum_{s=18}^{65} \left(\prod_{j=s}^{65} (1 + r_j^{NDC}) \right) \tau^{ss} y_{is}
\end{align*}
\]
Assuming Low Eligibility

Table: Elasticity Estimates using Contemporaneous Incentives

<table>
<thead>
<tr>
<th>Region type</th>
<th>Change in net return to work (%)</th>
<th>Change in net wealth (%)</th>
<th>Change in empl. (%)</th>
<th>Implied elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>All regions</td>
<td>-46.06</td>
<td>0.0</td>
<td>-29.37</td>
<td>0.64</td>
</tr>
<tr>
<td>High-growth</td>
<td>-50.63</td>
<td>0.0</td>
<td>-32.03</td>
<td>0.63</td>
</tr>
<tr>
<td>Low-growth</td>
<td>-42.99</td>
<td>0.0</td>
<td>-28.27</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Assuming Middle Eligibility

Table: Elasticity Estimates using Contemporaneous Incentives

<table>
<thead>
<tr>
<th>Region type</th>
<th>Change in net return to work (%)</th>
<th>Change in net wealth (%)</th>
<th>Change in empl. (%)</th>
<th>Implied elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>All regions</td>
<td>-46.06</td>
<td>0.0</td>
<td>-17.62</td>
<td>0.38</td>
</tr>
<tr>
<td>High-growth</td>
<td>-50.63</td>
<td>0.0</td>
<td>-19.22</td>
<td>0.38</td>
</tr>
<tr>
<td>Low-growth</td>
<td>-42.99</td>
<td>0.0</td>
<td>-16.96</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Assuming High Eligibility

Table: Elasticity Estimates using Contemporaneous Incentives

<table>
<thead>
<tr>
<th>Region type</th>
<th>Change in net return to work (%)</th>
<th>Change in net wealth (%)</th>
<th>Change in empl. (%)</th>
<th>Implied elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>All regions</td>
<td>-46.06</td>
<td>0.0</td>
<td>-11.01</td>
<td>0.24</td>
</tr>
<tr>
<td>High-growth</td>
<td>-50.63</td>
<td>0.0</td>
<td>-12.01</td>
<td>0.24</td>
</tr>
<tr>
<td>Low-growth</td>
<td>-42.99</td>
<td>0.0</td>
<td>-10.60</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Appendix: Wage process

Wage process estimated:

$$\log y_{irt} = \alpha + \sum_{k=1}^{4} \beta_r^k \text{age}_{irt}^k + \gamma_r \cdot t + \omega_{it} + \varepsilon_{irt}$$ \hspace{1cm} (1)

where y_{irt} are earnings from work, r denotes whether individual i is in high or low-growth region. Permanent component of earnings η_{irt} follows AR(1):

$$\eta_{it} = \rho \eta_{i,t-1} + \varepsilon_{it}, \quad \varepsilon_{it} \sim N(0, \sigma_\varepsilon^2).$$ \hspace{1cm} (2)

while ω_{it} evolves according to MA(1) process:

$$\omega_{it} = \xi_{it} + \theta \xi_{i,t-1}, \quad \xi_{it} \sim N(0, \sigma_\xi^2).$$ \hspace{1cm} (3)

AR(1) and MA(1) process parameters are estimated on 2000-2015 Polish tax data.
Regression discontinuity design: histogram

Histogram of births unrestricted around cutoff:

![Histogram of births unrestricted around cutoff](image-url)
Regression discontinuity design: histogram

Histogram of births restricted around cutoff.
Results

<table>
<thead>
<tr>
<th>Income growth region</th>
<th>Donut Linear</th>
<th>Donut Local</th>
<th>Full sample Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-growth</td>
<td>-0.0145***</td>
<td>-0.0144***</td>
<td>-0.0188***</td>
</tr>
<tr>
<td></td>
<td>(0.0027)</td>
<td>(0.0049)</td>
<td>(0.0024)</td>
</tr>
<tr>
<td>Low-growth</td>
<td>0.0014</td>
<td>0.0029</td>
<td>-0.0010</td>
</tr>
<tr>
<td></td>
<td>(0.0022)</td>
<td>(0.0040)</td>
<td>(0.0020)</td>
</tr>
</tbody>
</table>

- Donut RDD excludes those born Jan 1-5 ’49 and Dec 16-31 ’48.
- Triangular kernel used for local linear estimation.
Placebo tests

![Graph showing placebo estimates and effect of reform over different cohorts](image)

- Placebo Estimates (Older Cohorts)
- Effect of Reform (1948-1949)
- Placebo Estimates (Younger Cohorts)

Change in Emp./Pop.

- 1946-1947
- 1947-1948
- 1948-1949
- 1949-1950
- 1950-1951

Cohorts

- Low-growth region
- High-growth region
Table: Elasticity estimates under different specifications

<table>
<thead>
<tr>
<th>Region type</th>
<th>Change in net return to work (%)</th>
<th>Change in net wealth (%)</th>
<th>Change in empl. (%)</th>
<th>Implied elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>-8.52</td>
<td>-0.6</td>
<td>-2.85</td>
<td>0.33 (0.80)</td>
</tr>
<tr>
<td>Panel B: Estimation methods (not net of placebo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear (full sample)</td>
<td>-8.52</td>
<td>-0.6</td>
<td>-4.05</td>
<td>0.48 (0.52)</td>
</tr>
<tr>
<td>Linear (donut RDD)</td>
<td>-8.52</td>
<td>-0.6</td>
<td>-3.67</td>
<td>0.43 (0.58)</td>
</tr>
<tr>
<td>Robust (donut RDD)</td>
<td>-8.52</td>
<td>-0.6</td>
<td>-4.03</td>
<td>0.47 (1.06)</td>
</tr>
<tr>
<td>Panel C: Simulations of incentives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR(1) earnings (from French, 2005)</td>
<td>-12.70</td>
<td>-0.4</td>
<td>-2.85</td>
<td>0.22 (0.80)</td>
</tr>
<tr>
<td>AR(1) + WN earnings</td>
<td>-8.66</td>
<td>-0.4</td>
<td>-2.85</td>
<td>0.33 (0.85)</td>
</tr>
<tr>
<td>Panel D: Perception of PV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d = 0.9$</td>
<td>-7.14</td>
<td>-0.6</td>
<td>-2.85</td>
<td>0.35 (0.80)</td>
</tr>
<tr>
<td>$d = 0.5$</td>
<td>-4.18</td>
<td>-0.6</td>
<td>-2.85</td>
<td>0.58 (0.80)</td>
</tr>
</tbody>
</table>
Treatment and placebo comparison

Panel A. Treatment.

Panel B. Placebo.
Comparison of regions

<table>
<thead>
<tr>
<th></th>
<th>High-growth</th>
<th>Low-growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural (%)</td>
<td>65.0%</td>
<td>59.1%</td>
</tr>
<tr>
<td>Age < 25 (%)</td>
<td>19.9%</td>
<td>18.8%</td>
</tr>
<tr>
<td>Age 25-60 (%)</td>
<td>58.8%</td>
<td>57.0%</td>
</tr>
<tr>
<td>Age > 60 (%)</td>
<td>22.3%</td>
<td>23.0%</td>
</tr>
<tr>
<td>Earnings Growth p25</td>
<td>3.6%</td>
<td>2.6%</td>
</tr>
<tr>
<td>Earnings Growth p50</td>
<td>4.0%</td>
<td>3.0%</td>
</tr>
<tr>
<td>Earnings Growth p70</td>
<td>4.3%</td>
<td>3.2%</td>
</tr>
</tbody>
</table>
Pensions

- $pen^k(t, r, y, P)$ is estimated as containing two components:
 - $pen^k_1(t, r, y)$, which agents accrue whether you work or not
 - $pen^k_2(t, r, y, P)$, which agents only accrue if they do work
- We estimate these using our simulated data for each year, each year calculating the increment if the agent works or not
Pre-Retirement Allowance: Effect in High-Growth Regions

Pre-retirement discontinuity (empl./pop.)

No pre-retirement

Pre-retirement available

Change in Empl./Pop. = \(-0.042\) at cut-off (0.004)
Pre-Retirement Allowance: Effect in Low-Growth Regions

Pre-retirement discontinuity (empl./pop.)

No pre-retirement

Pre-retirement available

Change in Empl./Pop. = -0.034 at cut-off (0.003)
Comparing effects of two incentives

To compare elasticities, need to consider one further detail:

- Eligibility requires employment terminated by employer
- Elasticity of employment w.r.t. net return from work:
 \[\eta^P = \frac{\Delta \text{Employment}_t}{P(P_t=1 \cap \text{Elig}=1)} \times \frac{\% \Delta \text{Net return from work}_t}{1} \]

- Unknown to us what proportion is vulnerable to (or can engineer!) employment termination
- We consider 3 scenarios \(P(\text{Elig} = 1 \mid P_t = 1) \):
 - Low (40%), High (80%)
Comparing effects of two incentives

To compare elasticities, need to consider one further detail:
- Eligibility requires employment terminated by employer
- Elasticity of employment w.r.t. net return from work:

\[\eta^P = \frac{P(P_t=1 \cap Elig=1)}{\% \Delta \text{Net return from work}_t} \]

- Unknown to us what proportion is vulnerable to (or can engineer!) employment termination
- We consider 3 scenarios \(P(Elig = 1 \mid P_t = 1) \):
 - Low (40%), High (80%)
Comparing effects of two incentives

To compare elasticities, need to consider one further detail:

• Eligibility requires employment terminated by employer

• Elasticity of employment w.r.t. net return from work:

\[
\eta^P = \frac{\Delta \text{Employment}_t}{P(P_t=1 \cap \text{Elig}=1)} \times \% \Delta \text{Net return from work}_t
\]

• Unknown to us what proportion is vulnerable to (or can engineer!) employment termination

• We consider 3 scenarios \(P(\text{Elig} = 1 \mid P_t = 1) \):
 • Low (40%), High (80%)
Comparing effects of two incentives

To compare elasticities, need to consider one further detail:

- Eligibility requires employment terminated by employer
- Elasticity of employment w.r.t. net return from work:

\[\eta^P = \frac{\Delta \text{Employment}_t}{P(P_t=1 \cap \text{Elig}=1)} / \frac{\%\Delta \text{Net return from work}_t}{\%\Delta \text{Net return from work}_t} \]

- Unknown to us what proportion is vulnerable to (or can engineer!) employment termination
- We consider 3 scenarios \(P(\text{Elig} = 1 \mid P_t = 1) \):
 - Low (40%), High (80%)
Comparing effects of two incentives

To compare elasticities, need to consider one further detail:

• Eligibility requires employment terminated by employer

• Elasticity of employment w.r.t. net return from work:

\[\eta^P = \frac{\Delta \text{Employment}_t}{P(P_t=1 \cap \text{Elig}=1)} \frac{\% \Delta \text{Net return from work}_t}{\% \Delta \text{Net return from work}_t} \]

• Unknown to us what proportion is vulnerable to (or can engineer!) employment termination

• We consider 3 scenarios \(P(\text{Elig} = 1 \mid P_t = 1) \):
 • Low (40%), High (80%)
Comparing effects of two incentives

To compare elasticities, need to consider one further detail:

• Eligibility requires employment terminated by employer
• Elasticity of employment w.r.t. net return from work:

\[
\eta^P = \frac{\Delta \text{Employment}_t}{P(P_t=1 \cap \text{Elig}=1)} \frac{\% \Delta \text{Net return from work}_t}{1}
\]

• Unknown to us what proportion is vulnerable to (or can engineer!) employment termination
• We consider 3 scenarios \(P(\text{Elig} = 1 \mid P_t = 1) \):
 • Low (40%), High (80%)
Estimates

<table>
<thead>
<tr>
<th>Region type</th>
<th>Change in net return to work (%)</th>
<th>Change in net wealth (%)</th>
<th>Change in empl. (%)</th>
<th>Implied elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% Eligibility</td>
<td>-26.72</td>
<td>0.0</td>
<td>-14.68</td>
<td>0.82</td>
</tr>
<tr>
<td>60% Eligibility</td>
<td>-26.72</td>
<td>0.0</td>
<td>-14.68</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Estimates

<table>
<thead>
<tr>
<th>Fraction eligible</th>
<th>Change in net return to work (%)</th>
<th>Change in net wealth (%)</th>
<th>Change in empl. (%)</th>
<th>Implied elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% Eligibility</td>
<td>-26.72</td>
<td>0.0</td>
<td>-22.03</td>
<td>0.82</td>
</tr>
<tr>
<td>60% Eligibility</td>
<td>-26.72</td>
<td>0.0</td>
<td>-14.68</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Revenue equivalent DB vs. DC systems

-2 -1 0 1
Age

-2 -1 0 1
Percentage Point Change in Labor Supply

Low Growth
High Growth
Average
Investigating effects of pension reforms over the lifecycle

Effect of switching from DB to NDC

- Net change in lifecycle labor supply, all: -1.8 months
- Net change in lifecycle labor supply, high-growth: -3.3 months
- Net change in life-cycle labor supply, low-growth: -0.4 months

Frisch Employment Elasticity

- Frisch Employment Elasticity at age 30: 0.52
- Frisch Employment Elasticity at age 40: 0.57
- Frisch Employment Elasticity at age 50: 0.68
- Frisch Employment Elasticity at age 60: 0.90