# The Aggregate Effects of Global and Local Supply Chain Bottlenecks: 2020–2022

Alessandria, Khan, Khederlarian, Mix, Ruhl\*

NBER ISOM - Bank of Greece | June 2022

\*Authors' opinions only. Does not reflect views of Federal Reserve or World Bank.

## Supply chain disruptions

- Getting inputs for sale or production has been hard since 2020.
- Confluence of factors
  - ► Production disruptions
  - ▶ Border closures
  - Reduced air freight capacity
  - Unexpected pace of recovery
  - Disease outbreaks at ports
  - Congestion effects
- ▶ Disruptions happening both internationally and domestically
- ▶ Lead time on inputs: 60 days → 100 days
  - ▶ Mix of longer lead times and longer shipping times.
- Firms lack buffer stocks to absorb these delays.

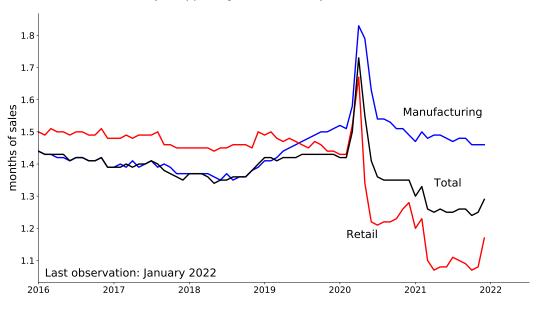
1

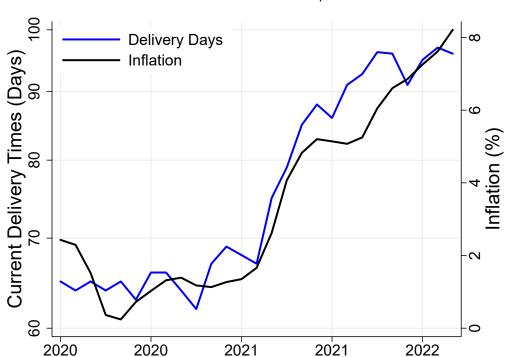


#### Domestic and foreign supplier delays (Census, Pulse survey)



#### Delays happening when inventory levels are low





## The aggregate impact of supply disruptions

- ▶ How do supply disruptions/delays affect
  - ▶ Aggregate production?
  - ▶ Trade?
  - ► Consumption?
  - ▶ Employment?
  - ▶ Prices?
- ► Standard "macro" frameworks ill-equipped to provide answers
- Model ingredients
  - ► Firms can hold inventories, but at a cost (interest/depreciation)
  - Fixed order costs
  - Orders can be delayed
  - Firm-level demand is uncertain
  - Production/Consumption may be constrained by availability of goods.
  - ▶ Not in our framework: endogenous delay

## **Findings**

- Delays have been
  - A drag on economic activity and trade
  - ► Source of price increases
  - ▶ Hidden by stimulus/shift in spending
  - ▶ Worse because of lean inventories
  - ▶ Starting to wane even if delays are still high (its the surprise that matters most)
- ► Effects arise from
  - ▶ Delays → higher carrying costs
  - Production disrupted from lack of inputs
  - ▶ Uneven effects across firms affect highest value, lean inventory products most

,

#### Production structure

- ► Two countries: home and foreign (\*)
- ▶ The aggregate state is  $\eta_t$  and the aggregate history is  $\eta^t = (\eta_0, \dots, \eta_t)$
- ► Two continua of retail/wholesale firms
  - ▶ Use "manufacturing inputs" to produce differentiated goods
  - ▶ Sell to the consumption good firm and manufacturing-good firm
  - ➤ One continuum buys domestic manufactures (D), one buys imported (I)
  - ► Fixed order cost, shipping delays, demand uncertainty vs. holding costs
- ▶ Representative consumption-good firm
  - ▶ Uses retail goods from *D* and *I* sector to produce consumption
- ▶ Representative manufactures firm
  - ▶ Uses retail goods from *D* and *I* sector and labor to produce
  - ▶ Sells to domestic retailers and foreign country import retailers
- ▶ Domestic & imported goods differ in fixed costs + 'timeliness'
  - ▶ Global vs local supply chains.

#### Standard model elements

- Representative household chooses consumption, labor supply, and state-contingent debt
- ► Consumption-goods producers combine retail goods from D and I to produce C
- Manufacturing producers combine retail goods and labor to produce M

$$\boldsymbol{C}(\eta^t) = \left[ \left( \int_0^1 \nu_{\mathcal{D}}(j,\eta^t)^{\frac{1}{\theta}} \boldsymbol{c}_{\mathcal{D}}(j,\eta^t)^{\frac{\theta-1}{\theta}} \boldsymbol{d}j \right)^{\frac{\theta}{\theta-1}\frac{\gamma-1}{\gamma}} + \tau_{\boldsymbol{c}}^{\frac{1}{\gamma}} \left( \int_0^1 \nu_{l}(j,\eta^t)^{\frac{1}{\theta}} \boldsymbol{c}_{l}(j,\eta^t)^{\frac{\theta-1}{\theta}} \boldsymbol{d}j \right)^{\frac{\theta}{\theta-1}\frac{\gamma-1}{\gamma}} \right]^{\frac{\gamma}{\gamma-1}}$$

$$\begin{split} M(\eta^t) = & L_p^{1-\alpha} Y_m^{\alpha} \\ Y_m(\eta^t) = & \left[ \left( \int_0^1 \nu_D(j,\eta^t)^{\frac{1}{\theta}} m_D(j,\eta^t)^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1}\frac{\gamma-1}{\gamma}} + \tau_m^{\frac{1}{\gamma}} \left( \int_0^1 \nu_I(j,\eta^t)^{\frac{1}{\theta}} m_I(j,\eta^t)^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1}\frac{\gamma-1}{\gamma}} \right]^{\frac{\gamma}{\gamma-1}} \end{split}$$

9

#### Retailers

- ▶ Two continua of monopolistic competitors: *D*, *I* (focus on a *D* firm)
- ▶ Firm j begins period with inventory  $s_D(j)$ , demand shock  $\nu(j)$ , and chooses inputs  $z_D(j)$  and prices  $p_D(j)$
- ▶ If firm places an order:  $z_D(j) > 0$ 
  - ▶ Pay fixed cost  $\phi_D$  (in units of labor, numeraire)
  - ▶ With probability  $1 \mu_D$ , order arrives at t;  $\mu_D$  arrives at t + 1
  - $\blacktriangleright$  vary  $\mu_D$  to match avg. delivery lag
- ▶ Firm's state is  $(\eta_t; s_t, \nu_t)$
- lacktriangleright Timing: observe demand shock  $\Longrightarrow$  place order  $\Longrightarrow$  observe delivery  $\Longrightarrow$  set prices

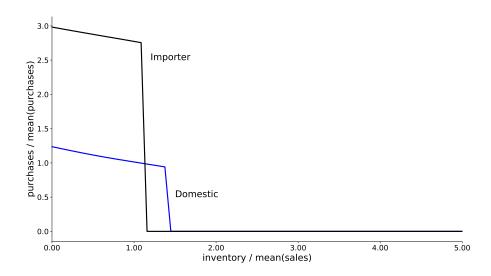
#### Decision rules

▶ Prices are a markup over discounted **marginal** value of inventories

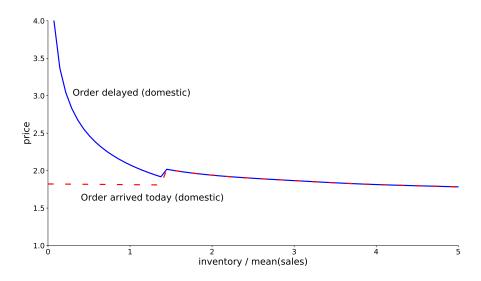
$$p(s, \nu) = rac{ heta}{ heta - 1} \mathop{\mathbb{E}}_{
u'} Q(\eta' | \eta) V_1 \left( s', 
u'; \eta' 
ight)$$

- Inventories follow an "Ss rule"
  - ▶ Only when a firm is ordering and it arrives on time is  $p(s, \nu) = \frac{\theta}{\theta 1} p^m(\eta)$
  - ▶ If it does not arrive, set stock-out price, i.e.  $p(s, \nu)$  s.th.  $c(p, \nu) + m(p, \nu) = s$  Qualitatively consistent with evidence on firm-level response to supply disruptions.

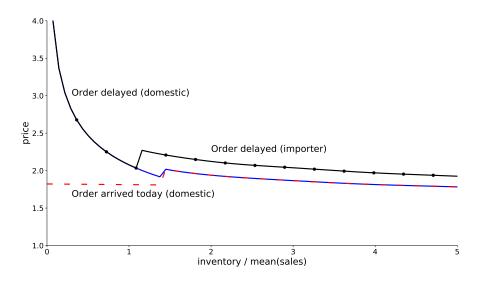
## Policy function: Ordering (median demand shock)



## Policy function: Price (median demand shock)



## Policy function: Price (median demand shock)



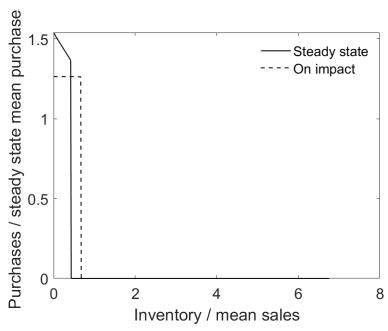
## International delivery delays: Dynamics

 $\blacktriangleright$  Start from steady state; unforeseen change in  $\mu_I$  from 0.5 to 1; perfect foresight afterward

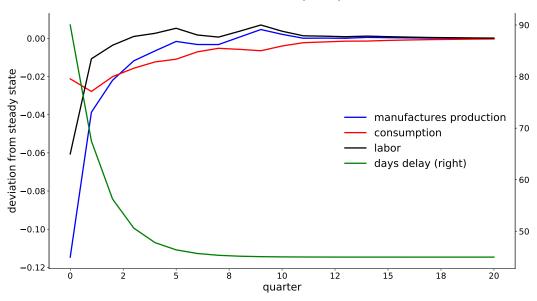
$$\mu_{I,t+1} = (1 - \rho_I)\mu_I^{ss} + \rho_I \mu_{It}$$

- $ho_I = 0.5$  implies shock duration of two quarters
- ▶ Impulse increases average delivery time from 45 to 90 days

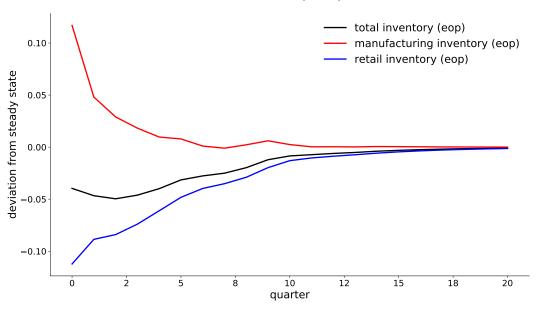
#### Policy function: Ordering (median demand shock)



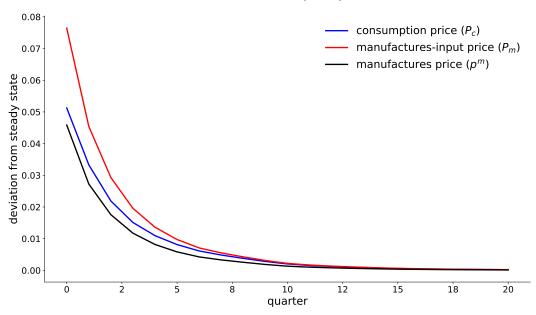
#### International delivery delays



#### International delivery delays



#### International delivery delays



## International delivery delays - Two main mechanisms

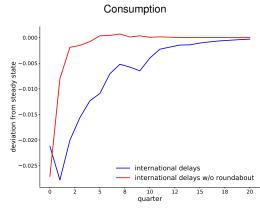
- 1. Reduced supply for production & consumption today
  - ► If nothing arrives today → production & consumption limited to what is on hand (about 1 quarters worth of output)
  - Decreases demand for production labor, more so with complementary inputs.
  - ► Affects firms with the lowest inventories (unlike trade cost or productivity shock)
- 2. Higher replacement costs of inventories
  - ► Interest costs: (extra days/365) × r
  - ▶ Depreciation costs: (extra days/365)  $\times \delta$
  - ▶ Fixed costs: more orders burns up resources

## The role of input-output links

- ➤ Outputs of retail/wholesale sector are inputs into manufacturing
  - Delays to wholesalers disrupt manufacturing
- Shut down roundabout structure by making manufacturing only use labor
  - ► Shipping delays do not disrupt manufacturing production
- ► Keep Trade/GDP constant by increasing import share in consumption
- Roundabout production
  - Magnifies shock on production
  - ▶ Propagates shock over time through decumulation of intermediate inputs.

#### International delays and Roundabout structure





#### Other factors

- ► Increase in spending on goods (taste, stimulus)
  - ► Temporarily more expansionary, offset effects of delays
  - ► Larger reduction in inventory, larger drag on recovery.
- ▶ Low inventory
  - ▶ More contractionary as more firms constrained by delays

## Fitting Data with Delay shocks (in progress)

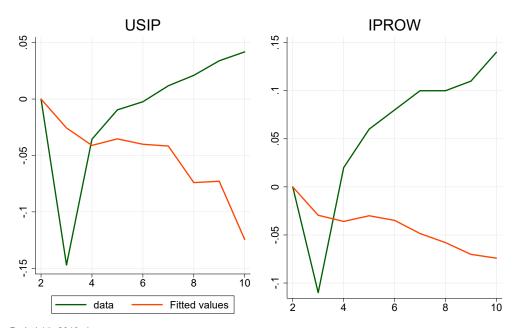
- Estimate sequence of shocks to global import delays  $(\mu_I = \mu_I^*)$  and US production delays  $(\mu_D)$  to match
  - ▶ Trade relative to Consumption of Goods
  - ▶ Trade Balance as share of sales
  - ► Working to introduce:
    - Other variables and shocks (IP, IP ROW, Stimulus, Inventories,...)
    - Measures of delays (PMI's, Cavallo & Kryvstov, 21)
- Recovers reasonable series of delays.
- ▶ And suggests important role of delays in US & ROW IP dynamics.

#### Trade and Delays: Model & Data



Period 1 is 2019q4

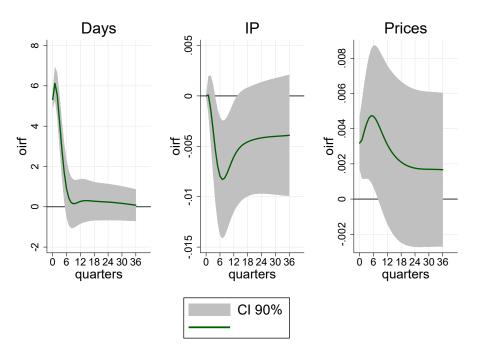
#### Trade and Delays: Model & Data



## Aggregate Evidence (AKKMR, 2021)

- ▶ VAR evidence for US from 1950-2020 (delay shocks more common from 50-87)
- ▶ LP cross country panel evidence from Suez-Canal closure in 1967 to 1975
- ▶ Both shocks show delays are contractionary and raise prices as in model
- ▶ Also consistent with elasticity of trade to time (Djankov, 2010)

## **Response to Days Shock**



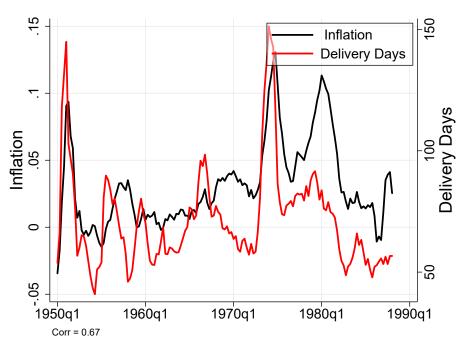
### Summary

- ▶ Supply delays much more costly than cost shocks, particularly in SR.
- ▶ Mitigated by inventory levels at firm & aggregate level.
  - ▶ Level of stocks quite different in 2020 than 2008.
- Can take time to clear
- ▶ Important policy consideration
  - ▶ Need to introduce congestion effects to properly analyze appropriate policy.

## Supporting Evidence

- ► Inflation and Delays 1950-1987
- ▶ Motor Vehicle production, sales, inventory & prices.

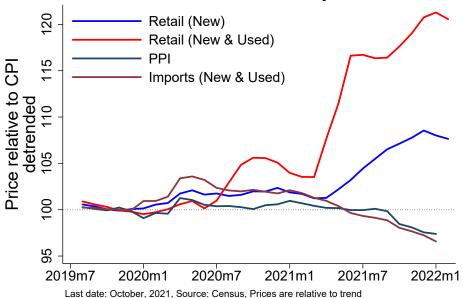
### **Delays and Inflation Highly Correlated**

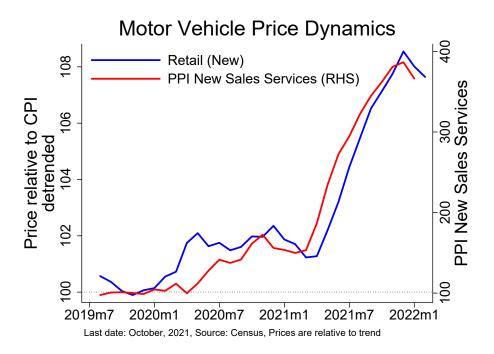


#### **US Motor Vehicles**

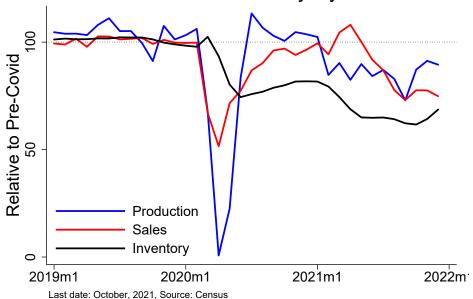
- ► Prime example of the effects of supply disruptions. Through January, relative to pre-COVID
- ► Production is constrained by inputs (-25%)
- ► Inventory is very low (-33%)
- ► Sales are now falling sharply (-25%)
- ► Prices are rising sharply (+7 to 20%)
  - ▶ Owing to an increases in markups
  - ► Cost of retail dealer services +350%

## Motor Vehicle Price Dynamics





# Motor Vehicle Quantity Dynamics



## Retailer optimization (suppressing the aggregate state)

$$V(s,
u) = \max\left\{V^N(s,
u),\ J(s,
u) - \phi W
ight\}$$

Value of not placing an order

$$V^{N}(s,\nu) = \max_{p,c,m} \pi(c(p,\nu), m(p,\nu)) + \mathbb{E}_{\nu'} QV(s',\nu')$$
s.t.  $s \ge c(p,\nu) + m(p,\nu)$ 

$$s' = (1 - \delta)(s - c(p,\nu) - m(p,\nu))$$

▶ Value of placing an order (within period; no primes)

$$J(s,\nu) = \max_{z} -p^{m}z + (1-\mu)V^{N}(s+z,\nu) + \mu V^{O}(s,\nu,z)$$

Value when order but it does not arrive

$$V^{O}(s, \nu, z) = \max_{p, c, m} \pi(c(p, \nu), m(p, \nu)) + \mathbb{E}_{\nu'} QV(s', \nu')$$
s.t.  $s \ge c(p, \nu) + m(p, \nu)$ 

$$s' = (1 - \delta)(s + z - c(p, \nu) - m(p, \nu))$$

