Climate Risks and FDI

Grace Weishi Gu Galina Hale

UC Santa Cruz

UC Santa Cruz, NBER, CEPR

ISOM @ Athens (June 20, 2022)

Research Question

- Climate-related risks have increased in recent decades in terms of
 - Frequency of extreme weather events (physical risk)
 - Implementation of green house gas abatement policy (transition risk)
- Research questions:
 - Do climate risks affect FDI flows and MNE affiliate location?
 - If so, to what extent and how is the impact affected by emission productivity and firm exposure to the climate risks?

• Methodology:

- Build a partial equilibrium model to provide intuition
- Conduct country, bilateral, industry, firm-level analyses, with interactions of country/industry emission productivity and firm climate risk exposure/awareness

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Research Question

- Climate-related risks have increased in recent decades in terms of
 - Frequency of extreme weather events (physical risk)
 - Implementation of green house gas abatement policy (transition risk)
- Research questions:
 - Do climate risks affect FDI flows and MNE affiliate location?
 - If so, to what extent and how is the impact affected by emission productivity and firm exposure to the climate risks?
- Methodology:
 - Build a partial equilibrium model to provide intuition
 - Conduct country, bilateral, industry, firm-level analyses, with interactions of country/industry emission productivity and firm climate risk exposure/awareness

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Contributions and Results

- Little research about the effect of climate change on FDI
 - Barua et al. (2020, country-level), Doytch (2020, country-level), Pankratz and Schiller (2021, global supply chain), Kato and Okubo (2022, input-output linkage model, country-level empirical)
 Our paper provides: Multi-aggregation-level and firm-level analyses with interactions, and model intuitions of both climate risks and interactions
- Model Predictions: Target-country physical risk and transition risk directly reduce FDI inflows and MNE affiliates; emission productivity increases them
- Emission productivity can dampen or amplify the impact of climate risks
- **Empirical Findings**: Few statistically significant effects (those significant bear the model-predicted signs) indicate limited attention to climate risks
- At firm-level, higher exposure/attention to climate risks associated with more response to them, thus likely to increase the effects going forward

Contributions and Results

- Little research about the effect of climate change on FDI
 - Barua et al. (2020, country-level), Doytch (2020, country-level), Pankratz and Schiller (2021, global supply chain), Kato and Okubo (2022, input-output linkage model, country-level empirical)
 Our paper provides: Multi-aggregation-level and firm-level analyses with interactions, and model intuitions of both climate risks and interactions
- **Model Predictions**: Target-country physical risk and transition risk directly reduce FDI inflows and MNE affiliates; emission productivity increases them
- Emission productivity can dampen or amplify the impact of climate risks
- **Empirical Findings**: Few statistically significant effects (those significant bear the model-predicted signs) indicate limited attention to climate risks
- At firm-level, higher exposure/attention to climate risks associated with more response to them, thus likely to increase the effects going forward

Contributions and Results

- Little research about the effect of climate change on FDI
 - Barua et al. (2020, country-level), Doytch (2020, country-level), Pankratz and Schiller (2021, global supply chain), Kato and Okubo (2022, input-output linkage model, country-level empirical)
 Our paper provides: Multi-aggregation-level and firm-level analyses with interactions, and model intuitions of both climate risks and interactions
- **Model Predictions**: Target-country physical risk and transition risk directly reduce FDI inflows and MNE affiliates; emission productivity increases them
- Emission productivity can dampen or amplify the impact of climate risks
- **Empirical Findings**: Few statistically significant effects (those significant bear the model-predicted signs) indicate limited attention to climate risks
- At firm-level, higher exposure/attention to climate risks associated with more response to them, thus likely to increase the effects going forward

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □□ のへで

Outline

Introduction

2 Model

3 Empirical Strategy

Data

5 Empirical Results

6 Conclusion

7 Appendix

▶ ★ E ▶ ★ E ▶ E = 9 QQ

Outline

Introduction

2 Model

3 Empirical Strategy

4 Data

- 5 Empirical Results
- 6 Conclusion

7 Appendix

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Environment

- Our model explains:
 - How many affiliates MNE locates and how much FDI flows to a target country
 - e How the above measures change with physical and transition risks
 - What is the interaction effect with emission productivity
- Two-country partial-equilibrium model: Horizontal FDI (Helpman, Melitz, and Yeaple, 2004), without goods trade
- Each country: one MNE and N other firms (domestic firms/foreign affiliates)
- Entry mode: M&A with bargained price between MNE and local owners and MNE cost advantage, to calculate FDI inflow (Razin et al, 2007)
- Each affiliate/local firm produces one product variety, monopolistic competition in the product market, standard CES utility function
- Timing: MNE decides to purchase an affiliate or not before disaster state realizes

Environment

- Our model explains:
 - How many affiliates MNE locates and how much FDI flows to a target country
 - Itow the above measures change with physical and transition risks
 - What is the interaction effect with emission productivity
- Two-country partial-equilibrium model: Horizontal FDI (Helpman, Melitz, and Yeaple, 2004), without goods trade
- Each country: one MNE and *N* other firms (domestic firms/foreign affiliates)
- Entry mode: M&A with bargained price between MNE and local owners and MNE cost advantage, to calculate FDI inflow (Razin et al, 2007)
- Each affiliate/local firm produces one product variety, monopolistic competition in the product market, standard CES utility function
- Timing: MNE decides to purchase an affiliate or not before disaster state realizes

- Each prospective affiliate's production function: $q_{in} = z_{in}k_{in}$ where z_{in} is a known idiosyncratic output-per-unit-emission (emission productivity), k_{in} is emission
- Conditional on producing, an affiliate *n*'s problem is: $\max_{k_{in}} E(\Pi_{in}) = \beta[p_{in}q_{in} - r_ik_{in} - E(f_i)] \ge 0$ where r_i (transition risk): affected by input costs and *i*'s current climate policy $E(f_i) = \pi f_{id} + (1 - \pi)f_{in}$ (physical risk): disaster probability $0 < \pi < 1$ and $f_{id} > f_{in} > 0$, and f_i is overhead cost only during production, affected by *i*'s extreme weather state, is repeated and not fixed over time
- There exists an emission productivity threshold \bar{z} such that potential affiliates with $z_{in} \geq \bar{z}$ are acquired by the MNE
- Assume $z_{in} \sim Pareto$ with scale parameter b_i (lower bound) and shape parameter v_i (dispersion), and $\bar{z} > b_i$ (Helpman, Melitz, and Yeaple, 2004; Bloom et al, 2010; Boyd, 2017)

- Each prospective affiliate's production function: $q_{in} = z_{in}k_{in}$ where z_{in} is a known idiosyncratic output-per-unit-emission (emission productivity), k_{in} is emission
- Conditional on producing, an affiliate *n*'s problem is: $\max_{k_{in}} E(\Pi_{in}) = \beta[p_{in}q_{in} - r_ik_{in} - E(f_i)] \ge 0$ where r_i (transition risk): affected by input costs and *i*'s current climate policy $E(f_i) = \pi f_{id} + (1 - \pi)f_{in}$ (physical risk): disaster probability $0 < \pi < 1$ and $f_{id} > f_{in} > 0$, and f_i is overhead cost only during production, affected by *i*'s extreme weather state, is repeated and not fixed over time
- There exists an emission productivity threshold \bar{z} such that potential affiliates with $z_{in} \geq \bar{z}$ are acquired by the MNE
- Assume $z_{in} \sim Pareto$ with scale parameter b_i (lower bound) and shape parameter v_i (dispersion), and $\overline{z} > b_i$ (Helpman, Melitz, and Yeaple, 2004; Bloom et al, 2010; Boyd, 2017)

- Each prospective affiliate's production function: $q_{in} = z_{in}k_{in}$ where z_{in} is a known idiosyncratic output-per-unit-emission (emission productivity), k_{in} is emission
- Conditional on producing, an affiliate *n*'s problem is: $\max_{k_{in}} E(\Pi_{in}) = \beta[p_{in}q_{in} - r_ik_{in} - E(f_i)] \ge 0$ where r_i (transition risk): affected by input costs and *i*'s current climate policy $E(f_i) = \pi f_{id} + (1 - \pi)f_{in}$ (physical risk): disaster probability $0 < \pi < 1$ and $f_{id} > f_{in} > 0$, and f_i is overhead cost only during production, affected by *i*'s extreme weather state, is repeated and not fixed over time
- There exists an emission productivity threshold \bar{z} such that potential affiliates with $z_{in} \geq \bar{z}$ are acquired by the MNE
- Assume $z_{in} \sim Pareto$ with scale parameter b_i (lower bound) and shape parameter v_i (dispersion), and $\overline{z} > b_i$ (Helpman, Melitz, and Yeaple, 2004; Bloom et al, 2010; Boyd, 2017)

- Each prospective affiliate's production function: $q_{in} = z_{in}k_{in}$ where z_{in} is a known idiosyncratic output-per-unit-emission (emission productivity), k_{in} is emission
- Conditional on producing, an affiliate *n*'s problem is: $\max_{k_{in}} E(\Pi_{in}) = \beta[p_{in}q_{in} - r_ik_{in} - E(f_i)] \ge 0$ where r_i (transition risk): affected by input costs and *i*'s current climate policy $E(f_i) = \pi f_{id} + (1 - \pi)f_{in}$ (physical risk): disaster probability $0 < \pi < 1$ and $f_{id} > f_{in} > 0$, and f_i is overhead cost only during production, affected by *i*'s extreme weather state, is repeated and not fixed over time
- There exists an emission productivity threshold \bar{z} such that potential affiliates with $z_{in} \geq \bar{z}$ are acquired by the MNE
- Assume $z_{in} \sim Pareto$ with scale parameter b_i (lower bound) and shape parameter v_i (dispersion), and $\overline{z} > b_i$ (Helpman, Melitz, and Yeaple, 2004; Bloom et al, 2010; Boyd, 2017)

Propositions

Proposition 1. Physical risk When a target country's physical climate risk increases such that the affiliate's expected overhead cost $E(f_i)$ increases, or when a disaster actually happens, it reduces the number of affiliates in the target country.

Proposition 2. Transition risk When climate policies increase emission unit cost r_i , the number of MNE's affiliates in the target country decreases; and the policies *dampen* the effect of physical risk from Proposition 1.

Proposition 3. Emission Productivity When technology becomes greener which increases the emission productivity distribution's lower bound b_i (i.e., shifting distribution right and increasing the emission productivity mean), the number of MNE's affiliates in the target country increases; and in this case higher emission productivity **amplifies** the effect of climate risks from Propositions 1 and 2 (**Better Loses**).

Similar propositions for FDI flows: FDI value calculated from bargained M&A price assuming MNE cost advantage over local owners

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □□ のへで

Emission Productivity Interaction: Better Loses

So far we assume that $\bar{z} > b_i$ always holds: More emission-productive industries/target-countries have more exits or FDI reduction due to rising climate risks

Pareto PDFs: b1 < b2 < zbar1 < zbar2

Emission Productivity Interaction: Better Wins

More emission-productive industries/target-countries have fewer exits or less FDI reduction due to rising climate risks

Pareto PDFs: b1 < zbar1 < zbar2 < b2

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < ○

Emission Productivity Interaction: No Effect

 \bar{z} is so low (e.g., due to a low r_i or a high market size, or highly emission-efficient industries) that emission-productivity does not matter to the impact of climate risks on FDI

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

Model Result Summary

- Physical risk ↑, or Transition risk ↑, or actual disaster realizes
 → FDI ↓ (intensive and extensive margins)
- Transition risk may dampen the negative impact of physical risk
- Emission productivity can amplify (*Proposition 3, or Better Loses*) or dampen (*Better Wins*) the impact of climate risks on FDI, depending on the relative position of \bar{z} and b_i ...
- ... with amplification (*Proposition 3, or Better Loses*) being a more likely empirically as on average $b_{AE} > b_{EME}$ slightly and both close to 0 in data [Histogram]

Outline

Introduction

2 Model

3 Empirical Strategy

Data

5 Empirical Results

6 Conclusion

7 Appendix

▶ ★ E ▶ ★ E ▶ E = 9 QQ

Empirical Strategy

- Target country(i) level, clustered at region level: $(FDI/GDP)_{igt} = Phy'_{it-1}\Gamma_1 + Tran'_{it-1}\Gamma_2 + \gamma_3 z_{it-1} + Macro'_{it-1}\Gamma_3 + \alpha_i + \beta_t + \delta_{gt} + \epsilon_{it},$ where *g* is country group (AE/EME/LIC)
 - Interaction with z_{it-1} : ... + $(z_{it-1}Phy_{it-1})'\Gamma_4 + (z_{it-1}Tran_{it-1})'\Gamma_5$,
 - Also interaction with Post_{COP21} (2016 onward), and cross sectional analysis
- Target Country(i)-industry(k) level, clustered at country-industry level: $(FDI/VA)_{ikt} = Phy'_{it-1}\Gamma_1 + Tran'_{it-1}\Gamma_2 + \gamma_3 z_{ikt-1} + Macro_{it-1}\Gamma_4 + \alpha_{ik} + \delta_{kt} + \epsilon_{ikt}$ $(FDI/VA)_{ikt} = (z_{ikt-1}Phy_{it-1})'\Gamma_1 + (z_{ikt-1}Tran_{it-1})'\Gamma_2 + \gamma_3 z_{ikt-1} + \alpha_{ik} + \beta_{it} + \delta_{kt} + \epsilon_{ikt}$
- Firm(f) level, headquartered in country j, clustered at firm-country (i) level: $\triangle NAffShare_{jjikt} = Phy'_{it-1}\Gamma_1 + Tran'_{it-1}\Gamma_2 + \gamma_3 z_{it-1} + Phy'_{jt-1}\Gamma_4 + Tran'_{jt-1}\Gamma_5 + \gamma_6 z_{jt-1} + \gamma_7 CCR_{jt-1} + Macro_{it-1}\Gamma_3 + \alpha_f + \beta_i + \delta_{ik} + e_t + \epsilon_{jjikt} - Interaction with z_{it-1}: \triangle NAffShare_{jjikt} = (z_{it-1}Phy_{it-1})'\Gamma_1 + (z_{it-1}Tran_{it-1})'\Gamma_2 + \gamma_3 z_{it-1} + (z_{it-1}Phy_{jt-1})'\Gamma_4 + (z_{it-1}Tran_{jt-1})'\Gamma_5 + \gamma_6(z_{jt-1}z_{it-1}) + \gamma_7 (CCR_{jt-1}z_{it-1}) + Macro_{it-1}\Gamma_3 + \alpha_{ft} + \beta_i + \delta_{ik} + \epsilon_{fjikt}$

14/57

Empirical Strategy

- Target country(i) level, clustered at region level: $(FDI/GDP)_{igt} = Phy'_{it-1}\Gamma_1 + Tran'_{it-1}\Gamma_2 + \gamma_3 z_{it-1} + Macro'_{it-1}\Gamma_3 + \alpha_i + \beta_t + \delta_{gt} + \epsilon_{it},$ where *g* is country group (AE/EME/LIC)
 - Interaction with z_{it-1} : ... + $(z_{it-1}Phy_{it-1})'\Gamma_4 + (z_{it-1}Tran_{it-1})'\Gamma_5$,
 - Also interaction with Post_{COP21} (2016 onward), and cross sectional analysis
- Target Country(i)-industry(k) level, clustered at country-industry level: $(FDI/VA)_{ikt} = Phy'_{it-1}\Gamma_1 + Tran'_{it-1}\Gamma_2 + \gamma_3 z_{ikt-1} + Macro_{it-1}\Gamma_4 + \alpha_{ik} + \delta_{kt} + \epsilon_{ikt}$ $(FDI/VA)_{ikt} = (z_{ikt-1}Phy_{it-1})'\Gamma_1 + (z_{ikt-1}Tran_{it-1})'\Gamma_2 + \gamma_3 z_{ikt-1} + \alpha_{ik} + \beta_{it} + \delta_{kt} + \epsilon_{ikt}$
- Firm(f) level, headquartered in country j, clustered at firm-country (i) level: $\triangle NAffShare_{jjikt} = Phy'_{it-1}\Gamma_1 + Tran'_{it-1}\Gamma_2 + \gamma_3 z_{it-1} + Phy'_{jt-1}\Gamma_4 + Tran'_{jt-1}\Gamma_5 + \gamma_6 z_{jt-1} + \gamma_7 CCR_{ft-1} + Macro_{it-1}\Gamma_3 + \alpha_f + \beta_i + \delta_{ik} + e_t + \epsilon_{fjikt} - \text{Interaction with } z_{it-1} : \triangle NAffShare_{jjikt} = (z_{it-1}Phy_{it-1})'\Gamma_1 + (z_{it-1}Tran_{it-1})'\Gamma_2 + \gamma_3 z_{it-1} + (z_{it-1}Phy_{jt-1})'\Gamma_4 + (z_{it-1}Tran_{jt-1})'\Gamma_5 + \gamma_6(z_{jt-1}z_{it-1}) + \gamma_7 (CCR_{ft-1}z_{it-1}) + Macro_{it-1}\Gamma_3 + \alpha_{ft} + \beta_i + \delta_{ik} + \epsilon_{fjikt}$

14/57

Empirical Strategy

- Target country(i) level, clustered at region level: $(FDI/GDP)_{igt} = Phy'_{it-1}\Gamma_1 + Tran'_{it-1}\Gamma_2 + \gamma_3 z_{it-1} + Macro'_{it-1}\Gamma_3 + \alpha_i + \beta_t + \delta_{gt} + \epsilon_{it},$ where *g* is country group (AE/EME/LIC)
 - Interaction with z_{it-1} : ... + $(z_{it-1}Phy_{it-1})'\Gamma_4 + (z_{it-1}Tran_{it-1})'\Gamma_5$,
 - Also interaction with Post_{COP21} (2016 onward), and cross sectional analysis
- Target Country(i)-industry(k) level, clustered at country-industry level: $(FDI/VA)_{ikt} = Phy'_{it-1}\Gamma_1 + Tran'_{it-1}\Gamma_2 + \gamma_3 z_{ikt-1} + Macro_{it-1}\Gamma_4 + \alpha_{ik} + \delta_{kt} + \epsilon_{ikt}$ $(FDI/VA)_{ikt} = (z_{ikt-1}Phy_{it-1})'\Gamma_1 + (z_{ikt-1}Tran_{it-1})'\Gamma_2 + \gamma_3 z_{ikt-1} + \alpha_{ik} + \beta_{it} + \delta_{kt} + \epsilon_{ikt}$
- Firm(f) level, headquartered in country j, clustered at firm-country (i) level: $\triangle NAffShare_{fjikt} = Phy'_{it-1}\Gamma_1 + Tran'_{it-1}\Gamma_2 + \gamma_3 z_{it-1} + Phy'_{jt-1}\Gamma_4 + Tran'_{jt-1}\Gamma_5 + \gamma_6 z_{jt-1} + \gamma_7 CCR_{ft-1} + Macro_{it-1}\Gamma_3 + \alpha_f + \beta_i + \delta_{ik} + e_t + \epsilon_{fjikt} - \text{Interaction with } z_{it-1} : \triangle NAffShare_{fjikt} = (z_{it-1}Phy_{it-1})'\Gamma_1 + (z_{it-1}Tran_{it-1})'\Gamma_2 + \gamma_3 z_{it-1} + (z_{it-1}Phy_{jt-1})'\Gamma_4 + (z_{it-1}Tran_{jt-1})'\Gamma_5 + \gamma_6(z_{jt-1}z_{it-1}) + \gamma_7(CCR_{ft-1}z_{it-1}) + Macro_{it-1}\Gamma_3 + \alpha_{ft} + \beta_i + \delta_{ik} + \epsilon_{fjikt}$

Outline

Introduction

2 Model

3 Empirical Strategy

Data 🛛

- 5 Empirical Results
- 6 Conclusion

7 Appendix

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Climate Disaster Data for Physical Risk

- The Emergency Events Database (EM-DAT) from the Centre for Research on the Epidemiology of Disasters (CRED), U of Louvain
- Worldwide extreme weather events from 1900 to present:
 - 10+ human deaths; or 100+ people injured or left homeless;
 - Declaration by the country of a state of emergency and/or an appeal for international assistance
- For us only climate-related disaster events:
 - Climatological (wildfire and drought);
 - Meteorological (extreme temperatures and storms);
 - Hydrological (flood)
- Monthly number of events, deaths, number of people affected, and economic losses in USD, we aggregate data to country-year level

◆□ > ◆□ > ◆豆 > ◆豆 > 三目目 のへの

Climate Policy Data for Transition Risk

- OECD Environmental Policy Stringency (EPS):
 - Computed by scoring and aggregating environmental policy instruments, including emission taxes, trading schemes, renewable and R&D subsidies, and emission limits
 - Hypothesis: Countries with stricter environmental regulations are more likely to be more aggressive on climate change mitigation
- CO2 tax:
 - ► Interpret: Higher existing CO2 tax as higher transition risk
 - ► Dummy (1/0) for having CO2 tax or not
- Notre Dame-Global Adaptation Index (ND-GAIN)'s Climate Vulnerability Index:
 - Reflect climate change exposure, sensitivity and adaptive capacity, as well as economic, governance and social components
 - Used alone

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Country-industry Emission Data

- World Input-Output Database (v2016)'s environmental accounts (2000-2016) (Timmer et. al., 2015)
- Emission = emission relevant total energy use (in Terajoule) emission relevant energy use from nuclear and renewables (in Terajoule)
- Country-industry emission productivity $z_{ikt} = Real VA_{ikt} / Emission_{ikt}$
- Country emission productivity $z_{it} = RGDP_{it} / \sum_k Emission_{ikt}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Firm Exposure/Awareness Data

- Climate change exposure index for publicly traded firms, with ISIN numbers (2002-2019) from Sautner et. al. (2021)
- Based on textual analysis of firm conference calls, we use their "risk" measure

- Hypothesis: More exposed firms are more reactive to climate risks
- Dummy (1/0) for higher/lower than median climate change exposure index

・ロ・・ (口) ・ (日) ・ (日) ・ (日)

FDI Data: Aggregate Levels*

- Country level: WDI (1970-2019, 94 countries), divided by GDP
- Bilateral: IMF CDIS (2009-2019, 125 countries), calculated target-country's received FDI share in source-country' total outflow position
- Country-industry: OECD International Direct Investment Statistics Yearbook (2005-2019, 49 industries), classified by ISIC4 codes (2-digit level), manually merged with WIOD industries to be divided by industry value added
- Extensive margins (inflow/outflow) = An indicator (1/0) of whether the inflow is positive (or negative for outflow)

◆□ > ◆□ > ◆豆 > ◆豆 > 三目目 のへの

FDI Data: Firm level

- ORBIS (2007-2019), restricted to firms with total assets in excess of 1 billion USD for a given year and excluding OFCs as target countries (but keep firms with headquarters in OFCs)
- For each firm *f*, Collect information on firm headquarter country *j* and its industry *k*, aggregate information on affiliates by target country *i* and year *t*
 - Intensive margin = $N affiliates_{fjikt} / \sum_i N affiliates_{fjikt}$
 - Extensive margins (inflow/outflow) = A dummy (1/0) of whether a firm f has more (or fewer) affiliates in a target country i in a given year t
- Regression sample includes up to 138,824 observations, with 2140 firms located in 31 countries (2 OFCs) and affiliates in 32 countries (10 EMEs, 22 AEs)

FDI Data: Firm level

- ORBIS (2007-2019), restricted to firms with total assets in excess of 1 billion USD for a given year and excluding OFCs as target countries (but keep firms with headquarters in OFCs)
- For each firm *f*, Collect information on firm headquarter country *j* and its industry *k*, aggregate information on affiliates by target country *i* and year *t*
 - Intensive margin = $N affiliates_{fjikt} / \sum_i N affiliates_{fjikt}$
 - Extensive margins (inflow/outflow) = A dummy (1/0) of whether a firm f has more (or fewer) affiliates in a target country i in a given year t
- Regression sample includes up to 138,824 observations, with 2140 firms located in 31 countries (2 OFCs) and affiliates in 32 countries (10 EMEs, 22 AEs)

Outline

Introduction

2 Model

3 Empirical Strategy

4 Data

5 Empirical Results

6 Conclusion

7 Appendix

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Result Roadmap

- Summarize the coefficients' significance and signs
- Use a heatmap to compare coefficients' magnitudes: Most climate variables between 0 and 1
 - Disasters Only
 - Main effects of climate disasters and policies
 - Interaction effects of emission productivity
- Examine the role of firm-level climate exposure: On average MNEs do not fully take into account the effects of climate risks; so perhaps firm-level climate change risk (CCR) matters. We expect most exposured firms react more

Signs and Significance

- Count of significantly + coef. / Count of significantly - coef. / Total number of specifications available

- Robust results: Green/blue: Half+ results consistent with model predictions; Red: Half+ results contradicting model predictions

	Main effects				Interactions with emission productivity			
	Model	All	AEs	EMEs	Model	All	AEs	EMEs
Effect on FDI (intensive margin)								
Target:								
Climatological	< 0	2/3/12	1/3/12	1 / 2 / 12	< 0 or > 0	1/0/4	1/0/4	0/0/4
Meteorological	< 0	1/2/9	2/1/9	0/2/9	< 0 or > 0	1/0/4	1/1/4	2/0/4
Hydrological	< 0	2 / 1 /12	1/2/12	2/0/12	< 0 or > 0	1/0/4	1/0/4	1/0/4
EPS	< 0	1/0/4	0/0/4	1/0/4	< 0 or > 0	0/1/4	0/2/4	1/0/4
CO2 Tax	< 0	0/1/3	0/1/3	0/2/3	< 0 or > 0	0/1/3	1/1/3	1/0/3
Emission Productivity	> 0	0/1/4	0/0/4	0/0/4	> 0	1/0/4	2/0/4	0/1/4

Also did for extensive margins

• Few significant effects, robust coefs consistent with model predictions

• No robust results contradicting model predictions (no red cell)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Signs and Significance

- Count of significantly + coef. / Count of significantly - coef. / Total number of specifications available

- Robust results: Green/blue: Half+ results consistent with model predictions; Red: Half+ results contradicting model predictions

	Main effects				Interactions with emission productivity			
	Model	All	AEs	EMEs	Model	All	AEs	EMEs
Effect on FDI (intensive								
Target:								
Climatological	< 0	2/3/12	1/3/12	1 / 2 / 12	< 0 or > 0	1/0/4	1/0/4	0/0/4
Meteorological	< 0	1/2/9	2/1/9	0/2/9	< 0 or > 0	1/0/4	1/1/4	2/0/4
Hydrological	< 0	2 / 1 /12	1 / 2 /12	2/0/12	< 0 or > 0	1/0/4	1/0/4	1/0/4
EPS	< 0	1/0/4	0/0/4	1/0/4	< 0 or > 0	0/1/4	0/2/4	1/0/4
CO2 Tax	< 0	0/1/3	0/1/3	0/2/3	< 0 or > 0	0/1/3	1/1/3	1/0/3
Emission Productivity	> 0	0/1/4	0/0/4	0/0/4	> 0	1/0/4	2 / 0 / 4	0/1/4

Also did for extensive margins

• Few significant effects, robust coefs consistent with model predictions

No robust results contradicting model predictions (no red cell)

Signs and Significance

- Count of significantly + coef. / Count of significantly - coef. / Total number of specifications available

- Robust results: Green/blue: Half+ results consistent with model predictions; Red: Half+ results contradicting model predictions

	Main effects				Interactions with emission productivity			
	Model	All	AEs	EMEs	Model	All	AEs	EMEs
Effect on FDI (intensive margin)								
Target:								
Climatological	< 0	2/3/12	1/3/12	1 / 2 / 12	< 0 or > 0	1/0/4	1/0/4	0/0/4
Meteorological	< 0	1/2/9	2/1/9	0/2/9	< 0 or > 0	1/0/4	1/1/4	2/0/4
Hydrological	< 0	2 / 1 /12	1/2/12	2/0/12	< 0 or > 0	1/0/4	1/0/4	1/0/4
EPS	< 0	1/0/4	0/0/4	1/0/4	< 0 or > 0	0/1/4	0/2/4	1/0/4
CO2 Tax	< 0	0/1/3	0/1/3	0/2/3	< 0 or > 0	0/1/3	1/1/3	1/0/3
Emission Productivity	> 0	0/1/4	0/0/4	0/0/4	> 0	1/0/4	2 / 0 / 4	0/1/4

- Also did for extensive margins
- Few significant effects, robust coefs consistent with model predictions
- No robust results contradicting model predictions (no red cell)
Magnitude: Disasters Only and Post-2016

- Heatmap: Red for most – coefficients of the block, blue for most +

Aggregation level:	X-9	section TC		X-sec	tion Bilat	eral	X-section	bilateral	PPML	Tar	get count	ry	
	Full	AE	EME	Full	AE	EME	Full	AE	EME	Full	AE	EME	
Sample years	pre/post	2015 aggr	egate	pre/pos	pre/post 2015 aggregate			pre/post 2015 aggregate			1970(96)-2019		
FEs	Cor	untry group)		TC, SC			TC, SC		TC, Year, CG*Year			
LHS	TC	inflow/GD	Р	D.FDI / 1	fotal FDI	from SC	D.FDI / T	otal FDI i	from SC	TC inflow/GDP			
Effect on FDI (intensive)	margin)												
reg1													
Climatological	0.029	0.043	-0.016	0.011	0.104	-0.003	0.046	-0.073	-0.050	-0.309	-0.334	-0.094	
Meteorological										0.013	0.007	0.009	
Hydrological	-0.007	-0.030	0.000	-0.002	-0.033	0.000	0.023	0.034	0.044	-0.112	-0.311	-0.085	
Post*C	0.249	0.195	-0.148	0.014	0.103	-0.001	-0.064	-0.018	-0.027	0.979	1.444	-0.121	
Post*M										-0.108	-0.337	-0.064	
Post*H	0.015	0.060	0.023	-0.001	-0.042	0.000	0.036	-0.057	0.046	0.167	0.858	0.172	
reg2													
Vulnerability	-3.674	17.55	-3.509	4.42	16.23	0.89	9.29	-42.35	-10.49	-23.8	4.8	-34.5	
Post*Vulnerability	12.38	-16.10	5.713	0.54	2.07	0.09	5.98	13.04	6.29	6.0	-15.1	15.7	

• Also did for bilateral (OLS/PPML), country-industry, and firm analysis

- Post-COP21: FDI has not become uniformly more sensitive to climate risk
- Effects are small: e.g., for country panel, 2019 median FDI/GDP share is 2.18% (EME) 2.51% (AE)

・ロト (四) (モト (ヨト) 三日 ののの

Magnitude: Disasters Only and Post-2016

- Heatmap: Red for most – coefficients of the block, blue for most +

Aggregation level:	X-:	section TC		X-sec	tion Bilat	eral	X-section	bilateral	PPML	Tar	get count	ry	
	Full	AE	EME	Full	AE	EME	Full	AE	EME	Full	AE	EME	
Sample years	pre/post	2015 aggr	regate	pre/pos	pre/post 2015 aggregate			pre/post 2015 aggregate			1970(96)-2019		
FEs	Co	untry group)		TC, SC			TC, SC		TC, Year, CG*Year			
LHS	TC	inflow/GD	Р	D.FDI / 1	otal FDI	from SC	D.FDI / T	otal FDI i	from SC	TC inflow/GDP			
Effect on FDI (intensive)	margin)												
reg1													
Climatological	0.029	0.043	-0.016	0.011	0.104	-0.003	0.046	-0.073	-0.050	-0.309	-0.334	-0.094	
Meteorological										0.013	0.007	0.009	
Hydrological	-0.007	-0.030	0.000	-0.002	-0.033	0.000	0.023	0.034	0.044	-0.112	-0.311	-0.085	
Post*C	0.249	0.195	-0.148	0.014	0.103	-0.001	-0.064	-0.018	-0.027	0.979	1.444	-0.121	
Post*M										-0.108	-0.337	-0.064	
Post*H	0.015	0.060	0.023	-0.001	-0.042	0.000	0.036	-0.057	0.046	0.167	0.858	0.172	
reg2													
Vulnerability	-3.674	17.55	-3.509	4.42	16.23	0.89	9.29	-42.35	-10.49	-23.8	4.8	-34.5	
Post*Vulnerability	12.38	-16.10	5.713	0.54	2.07	0.09	5.98	13.04	6.29	6.0	-15.1	15.7	

- Also did for bilateral (OLS/PPML), country-industry, and firm analysis
- Post-COP21: FDI has not become uniformly more sensitive to climate risk
- Effects are small: e.g., for country panel, 2019 median FDI/GDP share is 2.18% (EME) 2.51% (AE)

・ロト (四) (モト (ヨト) 三日 ののの

Magnitude: Disasters Only and Post-2016

- Heatmap: Red for most – coefficients of the block, blue for most +

Aggregation level:	X-:	section TC		X-sec	tion Bilat	eral	X-section	bilateral	PPML	Tar	get count	ry	
	Full	AE	EME	Full	AE	EME	Full	AE	EME	Full	AE	EME	
Sample years	pre/post	2015 aggr	regate	pre/pos	pre/post 2015 aggregate			pre/post 2015 aggregate			1970(96)-2019		
FEs	Co	untry group)		TC, SC			TC, SC		TC, Year, CG*Year			
LHS	TC	inflow/GD	Р	D.FDI / 1	otal FDI	from SC	D.FDI / T	otal FDI i	from SC	TC inflow/GDP			
Effect on FDI (intensive)	margin)												
reg1													
Climatological	0.029	0.043	-0.016	0.011	0.104	-0.003	0.046	-0.073	-0.050	-0.309	-0.334	-0.094	
Meteorological										0.013	0.007	0.009	
Hydrological	-0.007	-0.030	0.000	-0.002	-0.033	0.000	0.023	0.034	0.044	-0.112	-0.311	-0.085	
Post*C	0.249	0.195	-0.148	0.014	0.103	-0.001	-0.064	-0.018	-0.027	0.979	1.444	-0.121	
Post*M										-0.108	-0.337	-0.064	
Post*H	0.015	0.060	0.023	-0.001	-0.042	0.000	0.036	-0.057	0.046	0.167	0.858	0.172	
reg2													
Vulnerability	-3.674	17.55	-3.509	4.42	16.23	0.89	9.29	-42.35	-10.49	-23.8	4.8	-34.5	
Post*Vulnerability	12.38	-16.10	5.713	0.54	2.07	0.09	5.98	13.04	6.29	6.0	-15.1	15.7	

- Also did for bilateral (OLS/PPML), country-industry, and firm analysis
- Post-COP21: FDI has not become uniformly more sensitive to climate risk
- Effects are small: e.g., for country panel, 2019 median FDI/GDP share is 2.18% (EME) 2.51% (AE)

・ロト (四) (モト (ヨト) 三日 ののの

Magnitude: Main Effects: Intensive Margin*

- Heatmap: Red for most - coefficients of the block, green for most +

Aggregation level:	Tar	get Country	у	Bi	ilateral-PPM	L	Target (Country-i	ndustry		Firm	
	Full	AE	EME	Full	AE	EME	Full	AE	EME	Full	AE	EME
Sample years	2001-2016				2006-	2014	2009-13		2008-2016			
FEs	TC, Year, CG*Year				TC*TI, TI*Year			Firm	*Year, TC, T	П		
LHS	TC inflow/GDP			D.FDI	/ Total FDI fr	om SC	TC	Inflow/V	A	D.Aff in TC/Total aff		
Effect on FDI (intensive marg	in)											
Source:												
Climatological				-0.26	-0.30	-0.24				-0.003	-0.004	-0.002
Meteorological				0.00	0.03	-0.03				0.000	0.000	-0.001
Hydrological				0.03	0.00	0.10				0.000	-0.001	0.000
EPS				-0.20	-0.33	0.17				0.002	0.001	0.004
CO2 Tax				-0.31	0.22	-0.89				0.009	0.021	-0.007
Emissions				-7.72	-9.72	-1.57				0.069	0.071	0.058
Climate risk										-0.002	-0.002	0.000
Target:												
Climatological	0.00	-0.04	0.16	-0.23	-0.13	0.12	0.004	0.119	-1.879	-0.011	-0.016	0.001
Meteorological	0.09	0.08	0.05	0.09	-0.04	0.05	-0.009	-0.002	0.977	0.001	0.001	-0.002
Hydrological	-0.16	-0.32	-0.14	0.08	-0.12	0.14	-0.006	-0.039	-0.268	-0.001	-0.002	0.000
EPS	0.16	0.12	1.09	0.31	0.00	1.86	-0.026	-0.142	17.340	-0.006	-0.006	-0.006
CO2 Tax	0.03	-0.93	2.01	-1.18	-1.09	-1.86				0.009	0.021	-0.007
Emissions	-15.46	-31.99	23.55	-6.59	-0.69	6.27	-0.340	-2.440	45.670	-0.239	-0.120	-0.054

- Also did for extensive margins, small effects except for emission productivity
- Transition risk has a slightly larger impact than physical risk
- Transition risk has a more impact on AE than on EME (Prop 3, Better Loses)
- Source country variables has less impact than target country variables

Gu & Hale

ELE DOO

Magnitude: Emission-Productivity Interactions

- Heatmap: Red for most – coefficients of the block, green for most +

Aggregation level:	Ta	rget Count	ry	Bi	lateral-PPMI		Target C	ountry-in	dustry	Firm		
	Full	AE	EME	Full	AE	EME	Full	AE	EME	Full	AE	EME
Sample years	2001-2016				2006-2	014	2009-13	1	2008-2016			
FEs	TC, Y	TC, Year, CG*Year			TC*SC, Year				TC*TI, TI*Year, TC*Year			TI
LHS	TC	TC inflow/GDP			Total FDI fro	m SC	TC Inflow/VA			D.Aff in TC/Total aff		
Effect on FDI (intensiv	e margin)											
Source:												
Climatological				1.34	1.84	0.55				-0.014	-0.016	-0.014
Meteorological				-1.39	-1.65	-1.15				0.002	0.003	0.002
Hydrological				0.45	0.42	0.47				-0.002	-0.006	-0.002
EPS				-0.99	-2.37	0.47				0.000	0.001	0.000
CO2 Tax				-7.91	-8.39	-5.57				-0.043	-0.060	-0.043
Emissions				-44.43	-40.58	-6.05				0.061	0.087	0.061
Climate risk										-0.019	-0.025	-0.019
Target:												
Climatological	-3.47	0.65	-5.69	-0.52	6.76	6.03	2.22	6.24	-22.16	-0.015	0.088	-0.015
Meteorological	-3.29	-7.88	-0.96	0.54	1.06	6.04	-0.17	-0.72	-5.96	0.017	0.026	0.017
Hydrological	0.50	-0.32	4.83	0.76	2.95	3.00	-0.91	-2.08	-3.59	-0.003	0.002	-0.003
EPS	-12.07	-14.16	-7.43	2.60	-3.61	26.96	-2.20	-2.41	-122.80	-0.025	0.008	-0.025
CO2 Tax	-4.02	40.87	-1.49	-5.33	-68.52	49.24				0.030	0.021	0.030
Emissions	21.22	26.31	6.74	-5.69	13.58	-37.35	2.05	0.63	293.80	-0.128	-0.242	-0.128

- Also did for extensive margins

- Emission productivity dampens or amplifies the climate risk impact

Magnitude: Bilateral PPML, Full Sample*

- The effects of source countries, control variables, and FEs are set to zero

- Blue layer is when disasters are set zero, red layer when climatological disasters are included

- Also did for other disasters and AE/EME
- Climatological disasters $\uparrow \rightarrow FDI \downarrow$ **slightly** (red plane below the blue one)
- Low-polluting countries (high z_{it}), EPS $\uparrow \rightarrow$ FDI \uparrow , CO2 tax $\uparrow \rightarrow$ FDI \downarrow (*Prop 3*, *Better Loses*); High-polluting countries (low z_{it}), no effect of EPS or CO2 tax

◆□ > ◆□ > ◆豆 > ◆豆 > 三目目 のへの

Firm-Level Climate Change Risk Exposure (CCR)

- $RelEPS = Target EPS_{it-1} Source EPS_{jt-1}$
- $CO_2 Tax_i$ = Dummy for only target country having CO2 tax in year t 1
- $CO_2 Tax_{both}$ = Dummy for both countries having CO2 tax in year t 1
- FEs: firm-target country, firm-year, target country-year, and target industry

		Full sample			Target in AE		Target in EME			
		Exten	isive		Exter	nsive	Extensive			
	Intensive	Inflow	Outflow	Intensive	Inflow	Outflow	Intensive	Inflow	Outflow	
CCR * Climat	-0.00034	-0.000016	0.00063	0.00376	-0.00148	0.00051	-0.00096	-0.00678	0.00347^{*}	
CCR * Meteo	0.000321	0.0004	-0.000004	-0.00147	-0.00050	-0.00125	-0.000350	0.00562**	-0.00096**	
CCR * Hydro	-0.00008	-0.00065	0.000031	0.00171	0.000751	0.00172	0.000640	-0.00560	-0.000143	
CCR * RelEPS	-0.00038	-0.00294	0.00071	0.00668	-0.000182	-0.00789	-0.00346	-0.0250	0.00292**	
$CCR * CO_2 Tax_i$	0.00450	0.00651*	0.000963	0.00307	0.00180	0.0136**	-0.0244	-0.0659**	-0.00035	
$CCR * CO_2 Tax_{both}$	-0.00571**	-0.00816***	-0.00470	-0.0122*	0.0674^{***}	0.0556^{*}	0.0515	0.0724^{*}	0.0220*	
Observations	80941	52959	26438	2823	123517	82191	38993	4757	108545	
R^2	0.490	0.500	0.583	0.541	0.725	0.755	0.746	0.822	0.765	

• Full and AE: More exposed firms do not react differently to disasters and EPS

- AE: More exposed firms are more likely to close affiliates after CO2 tax
- EME: More exposed firms are more likely to reduce inflow or close affiliates after climatological disasters or tightening of EPS and CO2 tax

Gu & Hale

Firm-Level Climate Change Risk Exposure (CCR)

- $RelEPS = Target EPS_{it-1} Source EPS_{jt-1}$
- $CO_2 Tax_i$ = Dummy for only target country having CO2 tax in year t 1
- $CO_2 Tax_{both}$ = Dummy for both countries having CO2 tax in year t 1
- FEs: firm-target country, firm-year, target country-year, and target industry

		Full sample			Target in AE		Target in EME			
	Extensive				Exter	nsive	Extensive			
	Intensive	Inflow	Outflow	Intensive	Inflow	Outflow	Intensive	Inflow	Outflow	
CCR * Climat	-0.00034	-0.000016	0.00063	0.00376	-0.00148	0.00051	-0.00096	-0.00678	0.00347^{*}	
CCR * Meteo	0.000321	0.0004	-0.000004	-0.00147	-0.00050	-0.00125	-0.000350	0.00562^{**}	-0.00096**	
CCR * Hydro	-0.00008	-0.00065	0.000031	0.00171	0.000751	0.00172	0.000640	-0.00560	-0.000143	
CCR * RelEPS	-0.00038	-0.00294	0.00071	0.00668	-0.000182	-0.00789	-0.00346	-0.0250	0.00292**	
$CCR * CO_2 Tax_i$	0.00450	0.00651^*	0.000963	0.00307	0.00180	0.0136**	-0.0244	-0.0659**	-0.00035	
$CCR * CO_2 Tax_{both}$	-0.00571**	-0.00816***	-0.00470	-0.0122*	0.0674***	0.0556^{*}	0.0515	0.0724^{*}	0.0220*	
Observations	80941	52959	26438	2823	123517	82191	38993	4757	108545	
R^2	0.490	0.500	0.583	0.541	0.725	0.755	0.746	0.822	0.765	

- Full and AE: More exposed firms do not react differently to disasters and EPS
- AE: More exposed firms are more likely to close affiliates after CO2 tax
- EME: More exposed firms are more likely to reduce inflow or close affiliates after climatological disasters or tightening of EPS and CO2 tax

Gu & Hale

Firm-Level Climate Change Risk Exposure (CCR)

- $RelEPS = Target EPS_{it-1} Source EPS_{jt-1}$
- $CO_2 Tax_i$ = Dummy for only target country having CO2 tax in year t 1
- $CO_2 Tax_{both}$ = Dummy for both countries having CO2 tax in year t 1
- FEs: firm-target country, firm-year, target country-year, and target industry

		Full sample			Target in AE		Target in EME			
	Extensive				Exter	isive	Extensive			
	Intensive	Inflow	Outflow	Intensive	Inflow	Outflow	Intensive	Inflow	Outflow	
CCR * Climat	-0.00034	-0.000016	0.00063	0.00376	-0.00148	0.00051	-0.00096	-0.00678	0.00347^{*}	
CCR * Meteo	0.000321	0.0004	-0.000004	-0.00147	-0.00050	-0.00125	-0.000350	0.00562^{**}	-0.00096**	
CCR * Hydro	-0.00008	-0.00065	0.000031	0.00171	0.000751	0.00172	0.000640	-0.00560	-0.000143	
CCR * RelEPS	-0.00038	-0.00294	0.00071	0.00668	-0.000182	-0.00789	-0.00346	-0.0250	0.00292**	
$CCR * CO_2 Tax_i$	0.00450	0.00651*	0.000963	0.00307	0.00180	0.0136**	-0.0244	-0.0659**	-0.00035	
$CCR * CO_2 Tax_{both}$	-0.00571**	-0.00816***	-0.00470	-0.0122*	0.0674^{***}	0.0556^{*}	0.0515	0.0724^{*}	0.0220*	
Observations	80941	52959	26438	2823	123517	82191	38993	4757	108545	
R^2	0.490	0.500	0.583	0.541	0.725	0.755	0.746	0.822	0.765	

- Full and AE: More exposed firms do not react differently to disasters and EPS
- AE: More exposed firms are more likely to close affiliates after CO2 tax
- EME: More exposed firms are more likely to reduce inflow or close affiliates after climatological disasters or tightening of EPS and CO2 tax

Gu & Hale

Climate & FDI

Outline

Introduction

2 Model

3 Empirical Strategy

4 Data

5 Empirical Results

6 Conclusion

7 Appendix

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Conclusion

- Do MNEs incorporate climate risks into their FDI decisions? "Not yet."
- Key contributions:
 - One of the first few papers to study the FDI effect of both climate risks
 - At country-, bilateral-, industry- and firm-level, and with interactions with emission-productivity and firm-exposure to climate risk
 - The interaction results are not always intuitive but guided by model predictions
- Main takeaways:
 - Most statistically robust effects are consistent with model predictions, but few significant results and small in magnitude
 - ► But exposure/attention of MNEs to climate risks are rising and more exposed firms react more to transition risk → Future large and abrupt FDI changes are coming as climate risks intensify

◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日 のへで

Outline

Introduction

2 Model

3 Empirical Strategy

4 Data

5 Empirical Results

6 Conclusion

7 Appendix

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

• An MNE decides whether to purchase a prospective affiliate in the target country *h*, its production, and price of output

• The target country's extreme weather state (disaster or no disaster) realizes

• If a disaster realizes, the MNE can terminate some affiliates in the target country; otherwise, they continue to operate.

Affiliate Operating Threshold

• Expected operating profit of a potential affiliate: $E(\Pi_{in}) = \beta \left[\frac{A_i z_{in}^{\sigma-1} (1 - \frac{1}{\sigma})^{\sigma-1}}{\sigma r_i^{\sigma-1}} - E(f_i) \right] \ge 0$

where A_i is exogenous market size and $\sigma > 1$ is the elasticity of substitution between product varieties in a standard CES utility function

- There exists an emission productivity threshold: $\bar{z} = \left[\frac{E(f_i)\sigma r_i^{\sigma-1}}{A_i(1-\frac{1}{\sigma})^{\sigma-1}}\right]^{\frac{1}{\sigma-1}}$ such that potential affiliates with $z_{in} \geq \bar{z}$ are acquired by the MNE
- Assume $z_{in} \sim Pareto$ with scale parameter b_i (lower bound) and shape parameter v_i (dispersion), and $\bar{z} > b_i$ (Helpman, Melitz, and Yeaple, 2004; Bloom et al, 2010; Boyd, 2017)
- The number of MNE's affiliates in target country *i*: $M_i = \rho N[1 - F(\bar{z})] = \rho N(\frac{b_i}{\bar{z}})^{\nu_i} = \rho N b_i^{\nu_i} \left[\frac{A_i(1 - \frac{1}{\sigma})^{\sigma-1}}{E(f_i)\sigma r_i \sigma^{-1}}\right]^{\frac{\nu_i}{\sigma-1}}$ where $0 < \rho < 1$ and $\nu_i > 2$ to have a finite variance

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Affiliate Operating Threshold

• Expected operating profit of a potential affiliate: $E(\Pi_{in}) = \beta \left[\frac{A_i z_{in}^{\sigma-1} (1 - \frac{1}{\sigma})^{\sigma-1}}{\sigma r_i^{\sigma-1}} - E(f_i) \right] \ge 0$

where A_i is exogenous market size and $\sigma > 1$ is the elasticity of substitution between product varieties in a standard CES utility function

- There exists an emission productivity threshold: $\bar{z} = \left[\frac{E(f_i)\sigma r_i^{\sigma-1}}{A_i(1-\frac{1}{\sigma})^{\sigma-1}}\right]^{\frac{1}{\sigma-1}}$ such that potential affiliates with $z_{in} \geq \bar{z}$ are acquired by the MNE
- Assume $z_{in} \sim Pareto$ with scale parameter b_i (lower bound) and shape parameter v_i (dispersion), and $\bar{z} > b_i$ (Helpman, Melitz, and Yeaple, 2004; Bloom et al, 2010; Boyd, 2017)
- The number of MNE's affiliates in target country *i*: $M_i = \rho N[1 - F(\bar{z})] = \rho N(\frac{b_i}{\bar{z}})^{\nu_i} = \rho N b_i^{\nu_i} \left[\frac{A_i(1 - \frac{1}{\sigma})^{\sigma-1}}{E(f_i)\sigma r_i \sigma^{-1}}\right]^{\frac{\nu_i}{\sigma-1}}$ where $0 < \rho < 1$ and $\nu_i > 2$ to have a finite variance

◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日 のへで

Potential Affiliate and Operating Threshold

- Optimal emission input: $k_{ih} = \frac{A_h z_{ih}^{\sigma-1} (1 \frac{1}{\sigma})^{\sigma}}{r_h^{\sigma}}$ Optimal price: $p_{ih} = \frac{r_h}{z_{ih}(1 - \frac{1}{\sigma})}$ Optimal output: $q_{ih} = \frac{A_h z_{ih}^{\sigma} (1 - \frac{1}{\sigma})^{\sigma}}{r_h^{\sigma}}$
- Expected operating profit: $E(\Pi_{ih}) = \beta \left[\frac{A_h z_0^{\sigma-1} (1 \frac{1}{\sigma})^{\sigma-1}}{\sigma r_h^{\sigma-1}} E(f_h) \right] \ge 0$
- There exists an emission productivity threshold: $\bar{z} = \left[\frac{E(f_h)\sigma r_h^{\sigma-1}}{A_h(1-\frac{1}{\sigma})^{\sigma-1}}\right]^{\frac{1}{\sigma-1}}$ such that potential affiliates with $z_{ih} \geq \bar{z}$ are acquired by the MNE

うせん 正正 スポットボット (四)・ (ロ)

Consumer and Affiliate Operating Threshold

- Country *i*'s consumer preferences across varieties *j* of products have the standard CES form, with an elasticity of substitution $\sigma > 1$ and share parameters α_{ij} , as in (Helpman, Melitz, and Yeaple, 2004)
- Demand function for each good= $A_i p_{ij}^{-\sigma}$, where $A_i = \frac{\alpha_{ij}^{\sigma} E_i}{p_i^{1-\sigma}}$ the total demand of the target country *i*, E_i =the total expenditure $P_i = (\sum_{j=1}^N \alpha_{ij}^{\sigma} p_{ij}^{1-\sigma})^{\frac{1}{1-\sigma}} = i$'s price index Individual firms view A_i as exogenous
- Expected operating profit of a potential affiliate: $E(\Pi_{in}) = \beta[\frac{A_i z_{in}^{\sigma-1} (1 - \frac{1}{\sigma})^{\sigma-1}}{\sigma r_i^{\sigma-1}} - E(f_i)] \ge 0$
- There exists an emission productivity threshold: $\bar{z} = \left[\frac{E(f_i)\sigma r_i^{\sigma-1}}{A_i(1-\frac{1}{\sigma})^{\sigma-1}}\right]^{\frac{1}{\sigma-1}}$ such that potential affiliates with $z_{in} \geq \bar{z}$ are acquired by the MNE

◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日 のへで

Consumer and Affiliate Operating Threshold

- Country *i*'s consumer preferences across varieties *j* of products have the standard CES form, with an elasticity of substitution $\sigma > 1$ and share parameters α_{ij} , as in (Helpman, Melitz, and Yeaple, 2004)
- Demand function for each good= $A_i p_{ij}^{-\sigma}$, where $A_i = \frac{\alpha_{ij}^{\alpha} E_i}{p_i^{1-\sigma}}$ the total demand of the target country *i*, E_i =the total expenditure $P_i = (\sum_{j=1}^N \alpha_{ij}^{\alpha} p_{ij}^{1-\sigma})^{\frac{1}{1-\sigma}} = i$'s price index Individual firms view A_i as exogenous
- Expected operating profit of a potential affiliate: $E(\Pi_{in}) = \beta \left[\frac{A_i z_{in}^{\sigma-1} (1 - \frac{1}{\sigma})^{\sigma-1}}{\sigma r_i^{\sigma-1}} - E(f_i) \right] \ge \mathbf{0}$
- There exists an emission productivity threshold: $\bar{z} = \left[\frac{E(f_i)\sigma r_i^{\sigma-1}}{A_i(1-\frac{1}{\sigma})^{\sigma-1}}\right]^{\frac{1}{\sigma-1}}$ such that potential affiliates with $z_{in} \geq \bar{z}$ are acquired by the MNE

◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日 のへで

Number of Foreign Affiliates in h

- A fixed number of potential affiliates (existing local firms) in *i* for the MNE to M&A: N_i = ρN, where 0 < ρ < 1
- Assume $z_{in} \sim Pareto$ with scale parameter b_i (lower bound) and shape parameter v_i (dispersion) (Helpman, Melitz, and Yeaple, 2004; Bloom et al, 2010; Boyd, 2017)
- The number of MNE's affiliates in *i*: $M_i = \rho N[1 - F(\bar{z})] = \rho N(\frac{b_i}{\bar{z}})^{\nu_i} = \rho N b_i^{\nu_i} [\frac{A_i(1 - \frac{1}{\sigma})^{\sigma-1}}{E(f_i)\sigma r_i^{\sigma-1}}]^{\frac{\nu_i}{\sigma-1}},$ where $\bar{z} \ge b_i > 0$ and $\nu_i > 2$ to have a finite variance
- The number of affiliates ↑ if target country *h* has: lower physical risk *E*(*f_i*) ↓,
 lower emission cost *r_i* ↓,
 higher productivity mean *b_i* ↑,
 lower productivity dispersion *v_i* ↑,
 larger target market *A_i* ↑

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ◇ ◇

Number of Foreign Affiliates in h

- A fixed number of potential affiliates (existing local firms) in *i* for the MNE to M&A: N_i = ρN, where 0 < ρ < 1
- Assume $z_{in} \sim Pareto$ with scale parameter b_i (lower bound) and shape parameter v_i (dispersion) (Helpman, Melitz, and Yeaple, 2004; Bloom et al, 2010; Boyd, 2017)
- The number of MNE's affiliates in *i*: $M_i = \rho N[1 - F(\bar{z})] = \rho N(\frac{b_i}{\bar{z}})^{\nu_i} = \rho N b_i^{\nu_i} [\frac{A_i(1 - \frac{1}{\sigma})^{\sigma-1}}{E(f_i)\sigma r_i^{\sigma-1}}]^{\frac{\nu_i}{\sigma-1}},$ where $\bar{z} \ge b_i > 0$ and $\nu_i > 2$ to have a finite variance
- The number of affiliates ↑ if target country *h* has: lower physical risk *E*(*f_i*) ↓,
 lower emission cost *r_i* ↓,
 higher productivity mean *b_i* ↑,
 lower productivity dispersion *v_i* ↑,
 larger target market *A_i* ↑

◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日 のへで

Propositions

Proposition 1. Physical risk When a target country's physical climate risk increases such that the affiliate's expected overhead cost $E(f_i)$ increases, or when a disaster actually happens, it reduces the number of affiliates in the target country.

Proposition 2. Transition risk When climate policies increase emission unit cost r_i , the number of MNE's affiliates in the target country decreases; and the policies **dampen** the effect of physical risk from Proposition 1.

Intuition:

A higher emission unit cost

 \rightarrow a smaller mass of affiliates, but those remaining are more productive; When physical risk increases or a disaster strikes

 \rightarrow fewer productive affiliates will exit

◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日 のへで

Propositions

Proposition 3. Emission Productivity When technology becomes greener which increases the emission productivity distribution's lower bound b_i (i.e., shifting distribution right and increasing the emission productivity mean), the number of MNE's affiliates in the target country increases; and in this case higher emission productivity **amplifies** the effect of climate risks from Propositions 1 and 2 (**Better Loses**).

Intuition:

A higher b_i , z_{in} distribution shifts right (z_{in} mean \uparrow)

 \rightarrow a larger mass of affiliates be acquired;

When climate risks increase

 \rightarrow a larger mass of affiliates will exit

Similar propositions for FDI flows: FDI value calculated from bargained M&A price assuming MNE cost advantage over local owners

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FDI Inflow Value

- M&A: FDI inflow value=Purchasing cost of foreign affiliates
- Assume: original owners run target-country firms with a larger overhead cost *E*(*f*) > *E*(*f_i*)
- Assume: original owners of target country firms hold all the bargaining power
- Each potential affiliate with z_{in} > z̄ is purchased by the MNE at its expected profit to the MNE, which is the maximized E(Π_{in})
 FDI_i = ∫_{z̄}[∞] β[(A<sub>iz_{in}^{σ-1}(1- 1/σ)^{σ-1})/σr_i^{σ-1}) E(f_i)]f(z_{in})dz_{in}, where f(z) = (v_ib_i^{v_i})/(z^{v_i+1)} is the emission productivity PDF
 </sub>

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

FDI Inflow Value

- M&A: FDI inflow value=Purchasing cost of foreign affiliates
- Assume: original owners run target-country firms with a larger overhead cost E(f) > E(f_i)
- Assume: original owners of target country firms hold all the bargaining power
- Each potential affiliate with $z_{in} > \bar{z}$ is purchased by the MNE at its expected profit to the MNE, which is the maximized $E(\Pi_{in})$

• $FDI_i = \int_{\bar{z}}^{\infty} \beta \left[\frac{A_i z_{in}^{\sigma-1} (1 - \frac{1}{\sigma})^{\sigma-1}}{\sigma r_i^{\sigma-1}} - E(f_i) \right] f(z_{in}) dz_{in},$ where $f(z) = \frac{v_i b_i^{v_i}}{z^{\nu+1}}$ is the emission productivity PDF

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Propositions

$$FDI_{i} = \beta \frac{b_{i}^{\nu_{i}}(\sigma-1)}{1-(\sigma-\nu_{i})} \frac{1}{E(f_{i})^{\frac{1-(\sigma-\nu_{i})}{\sigma-1}}} [\frac{A_{i}(1-\frac{1}{\sigma})^{\sigma-1}}{\sigma r_{i}^{\sigma-1}}]^{\frac{\nu_{i}}{\sigma-1}}, \text{ assuming } \sigma - \nu_{i} < 1$$

- **Proposition 4. Physical risk.** When a target country's physical climate risk increases such that the affiliate's expected overhead cost $E(f_i)$ increases, it reduces the FDI inflows to the target country.
- **Proposition 5. Transition risk.** When climate policies increase emission unit cost r_i , the FDI inflows to the target country decrease.

Proposition 6. Emission Productivity. When technology becomes greener which increases the emission productivity distribution's lower bound b_i (i.e., increasing the emission productivity mean), the FDI inflows to the target country increase; and in this case higher emission productivity amplifies the effect of climate risks from Propositions 4 and 5.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Model Result Summary

- Physical risk ↑, or Transition risk ↑, or actual disaster realizes
 → FDI ↓ (intensive and extensive margins)
- Transition risk may dampen the negative impact of physical risk
- Emission productivity can amplify (*Proposition 3, or Better Loses*) or dampen (*Better Wins*) the impact of climate risks on FDI, depending on the relative position of \bar{z} and b_i with amplification (*Proposition 3, or Better Loses*) being a more likely empirically as on average $b_{AE} > b_{EME}$ slightly and both close to 0 in data [Histogram]
- Symmetrical source country affiliate location problem: Target country's climate risk relative to the source country's ↑
 → The *share* of total affiliates in the target country changes in the same direction

◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日 のへで

Figure: Histogram of Country Average Emission Productivity by Group

[Back to model]

|▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ 三 三 り へ ()

Empirical Strategy

- Proxy physical risk: Data on past hydrological, meterological, and climatological disasters
- Proxy transition risk: Data on environmental policies
- Proxy exposure/awareness: Data on
 - Country emission productivity (RGDP/emission)
 - country-industry emission productivity (RVA/emission)
 - ▶ firm exposures/awareness (Sautner et al, 2021)

▲母▶▲글▶▲글▶ 글|= ののの

- Climate-related disaster events:
 - Climatological (wildfire and drought);
 - Meteorological (extreme temperatures and storms);
 - Hydrological (flood)
- Monthly number of events, deaths, number of people affected, and economic losses in USD
- Aggregate data to country-year level, and for country-years where no disasters are reported we assume that all indicators are zero no events
- Economic losses in real USD, by dividing the amount by the U.S. CPI.

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ■ ● ● ●

Figure: Climate-related disaster events by type

Climate & FD

Figure: Climate-related disaster events by country group

Climate & FDI

Figure: Climate-related disaster event map

Gu & Hale

Climate & FDI

Climate Policy Data

Figure: Environmental policy stringency map

FDI Data: Country level and Bilateral

- WDI (1970-2019, 94 countries)
- Net inflows of investment to acquire a lasting management interest (10 percent or more of voting stock) in an enterprise operating in an economy other than that of the investor
- Includes equity capital, reinvestment of earnings, other long-term capital, and short-term capital as shown in the balance of payments
- Divided by GDP
- Bilateral: IMF CDIS (2009-2019, 125 countries), target-country's received FDI share in source-country' total outflow position
- Macro: Trade/GDP, PPI inflation, Real GDP Growth

FDI Data: Country level

Figure: Average annual change in net FDI inflows

FDI Data: Country-industry level

• OECD International Direct Investment Statistics Yearbook 2005-2019, 49 industries

• Classified by ISIC4 codes (2-digit level). Manually merged with WIOD industries to combine with emissions and value added data

向下 イヨト イヨト ヨヨ わない
FDI Data: Firm level

- ORBIS (2007-2019)
- Restrict to firms with total assets in excess of 1 billion USD for a given year: An unbalanced firm-year panel with 5915 firms from 66 countries with affiliates across 206 countries with the total of over a million of firm-target country-year observations
- For each firm, aggregate information on affiliates by target country and year
- Firm headquarter country and its industry
- Exclude OFCs as target countries, but do keep firms with headquarters in OFCs
- Sample includes up to 138,824 observations, with 2140 firms located in 31 countries (2 OFCs) and affiliates in 32 countries (10 EMEs, 22 AEs).

FDI Data: Firm level

- ORBIS (2007-2019)
- Restrict to firms with total assets in excess of 1 billion USD for a given year: An unbalanced firm-year panel with 5915 firms from 66 countries with affiliates across 206 countries with the total of over a million of firm-target country-year observations
- For each firm, aggregate information on affiliates by target country and year
- Firm headquarter country and its industry
- Exclude OFCs as target countries, but do keep firms with headquarters in OFCs
- Sample includes up to 138,824 observations, with 2140 firms located in 31 countries (2 OFCs) and affiliates in 32 countries (10 EMEs, 22 AEs).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FDI Data: Firm level

- ORBIS (2007-2019)
- Restrict to firms with total assets in excess of 1 billion USD for a given year: An unbalanced firm-year panel with 5915 firms from 66 countries with affiliates across 206 countries with the total of over a million of firm-target country-year observations
- For each firm, aggregate information on affiliates by target country and year
- Firm headquarter country and its industry
- Exclude OFCs as target countries, but do keep firms with headquarters in OFCs
- Sample includes up to 138,824 observations, with 2140 firms located in 31 countries (2 OFCs) and affiliates in 32 countries (10 EMEs, 22 AEs).

・ロト (四) (モト (ヨト) 三日 うらう

• An intensive margin: the number of affiliates in a given country in a given year as a share of total number of affiliates that the firm has in that year

• An extensive margin: an indicator of whether a firm has an affiliate in a given country in a given year

Main Effects: Extensive Results

Effect on FDI (extensive: inflow)	Bi	lateral-Linear				I			
Sample years	2010-2016			2006-2015 2009-15			3 2008-2016		
LHS	I(D.FDI / Total FDI from SC>0)			I(TC Inflow/VA>0)			I(new affiliates in TC)		
Source:							-		
Climatological	-0.01	-0.01	0.00				-0.005	-0.004	-0.006
Meteorological	0.00	0.00	0.00				0.002	0.002	0.002
Hydrological	0.00	0.01	0.00				-0.003	-0.003	-0.002
EPS	-0.02	-0.03	-0.01				-0.028	-0.028	-0.027
CO2 Tax	0.03	0.03	0.02				0.011	0.005	0.028
Emissions	-0.14	-0.23	0.02				0.315	0.284	0.400
Climate risk							0.000	0.001	-0.001
Target:									
Climatological	0.00	0.01	-0.01	0.029	0.055	-0.020	-0.002	-0.005	0.006
Meteorological	0.00	0.00	0.00	-0.022	-0.034	0.032	-0.001	0.000	-0.002
Hydrological	0.00	0.00	0.00	0.009	0.006	-0.034	-0.001	0.000	-0.001
EPS	0.00	0.00	0.00	0.012	-0.030	0.433	0.003	0.006	0.011
CO2 Tax	-0.01	0.00	0.01				0.011	0.005	0.028
Emissions	0.01	-0.11	-0.12	-6.12	-5.83	-28.22	0.148	0.163	-0.037
Effect on FDI (extensive: outflow)									
LHS	I(D.FDI / Total FDI from SC<0)			I(TC Inflow/VA<0)			I(no more affiliates in TC)		
Source:									
Climatological	0.01	0.01	0.01				0.004	0.004	0.002
Meteorological	0.00	-0.01	0.00				0.000	0.000	0.000
Hydrological	0.00	0.00	0.00				0.004	0.004	0.005
EPS	0.00	0.00	0.00				-0.006	-0.006	-0.008
CO2 Tax	0.03	0.04	0.01				0.002	0.010	0.000
Emissions	0.15	0.20	0.06				-0.008	-0.007	-0.007
Climate risk							0.006	0.009	-0.001
Target:							0.000	0.000	0.000
Climatological	0.00	0.01	0.00	-0.026	-0.039	0.012	0.002	0.001	0.007
Meteorological	0.00	0.00	0.00	0.006	0.010	-0.023	0.000	-0.001	-0.001
Hydrological	0.00	0.01	0.00	-0.001	0.002	0.021	0.000	0.000	0.001
EPS	0.00	0.01	-0.02	0.038	0.072	-0.270	0.001	0.001	0.005
CO2 Tax	0.03	0.01	-0.01				0.002	0.010	0.000
Emissions	-0.24	-0.34	0.43	3.117	2.49	30.95	-0.031	0.015	-0.076

Emission-Productivity Interactions: Extensive

Margins

Effect on FDI (extensive: inflow)	Bilatera	Bilateral-Linear Probability							
Sample years		2010-2016		2006-2015 2009-15		2008-2016			
FEs	TC	TC*SC, SC*Year		TC*TI, TI*Year, TC*Year			Firm*Year, TC, TI		
LHS	I(D.FDI /	I(D.FDI / Total FDI from SC>0)		I(TC Inflow/VA>0)			I(new affiliates in TC)		
Source:									
Climatological	-0.02	0.01	-0.03				-0.009	0.002	0.019
Meteorological	0.00	0.00	-0.02				0.002	0.000	-0.001
Hydrological	0.05	0.05	0.04				-0.009	-0.008	-0.007
EPS	0.10	0.14	0.23				-0.006	-0.002	0.008
CO2 Tax	-0.01	-0.08	-0.13				-0.055	-0.019	0.030
Emissions	-1.31	-0.93	-0.66				0.066	0.029	0.310
Climate risk							-0.008	-0.017	0.026
Target:									
Climatological	0.16	0.02	-0.02	2.64	3.20	-17.45	-0.102	0.013	-0.034
Meteorological	-0.06	-0.08	0.04	0.10	0.08	8.62	0.030	0.028	0.064
Hydrological	0.00	-0.06	-0.01	-0.49	-0.64	-2.00	0.003	0.049	0.008
EPS	0.08	0.02	0.21	-3.81	-2.38	-83.48	-0.058	-0.046	-0.323
CO2 Tax	0.06	0.32	-2.97				0.020	0.346	1.040
Emissions	-0.29	-0.18	-0.73	-1.00	-4.85	126.20	0.181	0.095	0.237
Effect on FDI (extensive: outflow)									
LHS	I(D.FDI /	I(D.FDI / Total FDI from SC<0)		I(TC Inflow/VA<0)			I(no more affiliates in TC)		
Source:									
Climatological	-0.05	-0.13	0.15				-0.005	-0.003	-0.014
Meteorological	-0.03	-0.01	-0.04				0.003	0.003	0.003
Hydrological	0.04	0.01	0.07				0.000	0.000	-0.002
EPS	0.32	0.42	0.27				0.002	0.004	-0.029
CO2 Tax	-0.09	-0.27	-0.09				-0.026	0.017	-0.075
Emissions	-0.59	-0.63	-1.88				0.101	0.114	0.088
Climate risk							0.033	0.037	-0.042
Target:									
Climatological	0.09	0.14	0.18	-0.51	-1.08	17.82	-0.021	0.003	-0.008
Meteorological	-0.01	0.01	-0.10	-0.42	-0.40	-8.72	-0.005	-0.007	-0.027
Hydrological	0.04	0.01	0.05	0.54	0.81	2.31	-0.008	0.002	-0.004
EPS	0.12	0.16	0.39	0.00	-1.32	81.13	-0.011	-0.011	-0.093
CO2 Tax	-0.12	1.01	3.01				0.049	0.086	1.960
Emissions	-1.39	-1.88	-0.56	6.42	9.61	-119.7	-0.009	-0.018	0.131
					Image: A		72	F 🕨 🗧	E () .

Result Summary

- Do MNEs incorporate climate risks into their FDI decisions? "Not yet."
- Main takeaways:
 - Most statistically robust effects are consistent with model predictions, but few significant results and small in magnitude
 - The effects of physical risks are smaller than those of transition risks or emission productivity
 - Higher emission productivity dampens or amplify the effects of climate risks in the data, as the model predicts
 - ► But attention of MNEs to climate risks are rising and more exposed firms react more to transition risk → Future large and abrupt FDI changes are coming as climate risks intensify

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0