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Abstract 
We explore the idea that the comparative advantage of regions within a country is shaped by their 
productivity in supplying ‘functions’ such as law, finance, advertising and engineering, to multiple sectors.   
The paper addresses two questions.  How do region-function specific productivity differences shape the 
location decisions of industries that use multiple functions, and hence determine patterns of regional 
specialization both in functions and in sectors?  How do changes in the ease with which industries can draw 
on functions produced in other regions affect these patterns of specialization?  We derive theoretical 
answers to these questions in a model in which region-function specific productivity differentials may be 
exogenous or driven by agglomeration economies.  The model’s prediction that falling barriers to inter-
regional trade in functions lead to increasing functional specialization and decreasing sectoral specialization 
is confirmed by empirical study of specialization of US states over a 20-30 year period.   
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1. Introduction 

From popular press reports to formal journal articles, much has been written about the changing nature of 

work both within and across countries.  A good deal of this focuses on the rise and fall of different sectors 

(industries), as changing technology, higher incomes, and foreign competition lead to a shift in production 

and demand across industries.  There is also much interest in changing demand for different skills and 

occupations.  These two are often closely linked: rising service sectors and declining manufacturing imply 

changes in the demand for different worker skills and occupations.  The third phenomenon attracting 

attention is the change in the geography of production and jobs.  Some regions grow and thrive, others 

stagnate or decline.  This third phenomenon is also linked to the first two, as growing areas are observed 

to specialize in the employment of workers needed in the expanding sectors, often drawing them from 

other regions.  Moretti (2012) is a broad and sweeping study of these trends and how they are related.   

 This paper develops a theoretical approach and offers an empirical analysis of these issues, based 

on the core idea that regions’ comparative advantages have evolved from being based on sectors, to being 

based on productivity differences in functions or occupations. Our approach draws on elements from a 

number of literatures.  In no particular order, these include international trade theory, new economic 

geography, multinational firms and outsourcing, and urban/regional economics.  From each, we pick-and-

chose certain features and discard others to try capture the correct combination of assumptions that seems 

consistent with the changing economic geography of industry, and occupational specialization and 

concentration within the country.    

  From international trade theory, we use the typical assumption that sectors (industries) differ in 

the intensity with which they use inputs.  These inputs are produced by a primary factor – labor -- and we 

refer to them as functions, in the empirical section identifying them with occupations.   The key feature of 

our approach is that regions differ in the relative productivity of labor in performing different functions.  

Crucially, regional comparative advantage therefore lies in region-function, not region-sectoral, 

productivity differentials, although in equilibrium these differentials will show up in patterns of both 

functional and sectoral specialization.  What are the sources of region-function productivity differences? 

In developing the model, we start by assuming these are exogenous, as in Ricardian trade theory.  

Drawing on the new economic geography literature, however, the productivity advantages of a region 

may arise due to agglomeration economies (spillovers) where a larger set of workers specializing in the 

same function leads to higher productivity.  This seems closely consistent with many of the examples in 

Moretti (2012).  Regional productivity in functions such as software engineering, banking and finance, 

marketing, and biotechnology increases with the number of regional workers in those functions.    

 The extent to which productivity advantage in a function can be exploited depends on the extent 

to which sectors can ‘fragment’, performing different functions in different regions.  We capture this by 
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drawing on the literature on fragmentation, vertical multinational firms and outsourcing.  We assume that 

a sector in a region may draw all of its functions from within the region, or source them from other 

regions.  While doing the latter brings the benefit of exploiting region-function specific productivity and 

wage differentials, it incurs a fragmentation cost.  When this cost is large, sectors are integrated and each 

region contains multiple functions.  With a lower fragmentation cost, sectors will outsource the region’s 

comparative disadvantage functions so leading to functional specialization.   

A final ingredient in our approach is labor mobility between regions, a typical assumption in the 

urban/regional literature. However, we draw on the urban-regional literatures to endogenise nominal 

wages (as faced by producers).  Migration equalizes real wages, but a larger population in a region, other 

things equal, implies higher land prices and (in an urban context) longer average commutes, these 

creating regional variation in the cost of living and hence in nominal wages. 

 The model creates a distribution of fragmented and integrated sectors across industries and across 

regions and identifies the characteristics of industries that are fragmented versus integrated, and of the 

regions in which integrated sectors locate.  Falling fragmentation costs are then the key experiment 

applied to the model.  The central result is that, as these costs fall, regions become more specialized 

across functions and less specialized in sectors.  The world less resembles the archetype model of 

international trade theory.  Turning from regional specialization to sector and function concentration 

across regions, the model similarly predicts that sectors become less concentrated as some of their 

employment is spread across regions.  But functions become more concentrated as employment in a 

function occurs in fewer regions.  Here is a simple example.  With high fragmentation costs, a region has 

lawyers, accountants, machinists, mechanics and many other occupations working in a small number of 

comparative-advantage sectors.  With lower fragmentation costs, a region has a smaller range of 

occupations working in a large number of sectors.  New York specializes in white-collar functions such as 

finance and marketing, but these individuals are working for many different sectors. 

The final section of the paper is an empirical investigation using US state level data on sectoral 

and occupational (as a proxy for functional) employment. States are relatively large geographical units for 

the questions we are addressing, and the data limitations than require us to operate at this level are 

discussed in section 5.  A further limitation is that fragmentation costs are not directly observed, and 

available proxies (e.g. travel costs for both personnel and physical products, internet applications from 

email to Skype and Zoom) do not provide either state- or sector-level variation.  As a consequence, our 

empirical analysis instead examines how some of the key relationships obtained from the theory behave 

over a 20-30 period. Charnoz, Lelarge, and Tevien (2018), and Eckert, Ganapati, and Walsh (2020) 

present evidence that information, communications and technology costs (ICT) are decreasing over time. 
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This provide support for our suggestion that our empirical analysis over time is a rough proxy for falling 

fragmentation costs in the theory section (see also Eckert 2019). 

Findings from the empirical work are consistent with predictions from the theory.   First, we find 

declining sectoral concentration and increasing functional (occupational) concentration over time, and a 

large fraction of those changes is explained by within-sector and within-function changes in geographic 

concentration.  Second, regional specialization indices in functions and sectors have the same properties 

as the concentration indices.   Third finding, larger regions have lower levels of both sectoral and 

functional specialization.   

Ideas in this paper are complementary to the influential paper by Duranton and Puga (D&P, 2005) 

on sectoral and functional specialisation.  The present paper is tailored to be simpler than D&P in a 

number of respects, having perfect competition (rather than monopolistically competitive input sectors), 

and a given set of places (rather than endogenous city formation).  D&P have a tight input-output 

structure of business services, head-quarters, production plants, and intermediates to production, in 

contrast to our twofold classification of sectors and functions, with all sectors using a mix of functions in 

different proportions. Our approach gives a relatively flexible way of thinking about the interactions 

between the range of functions and range of sectors present in a region, as compared to the central 

proposition of D&P.1   

Our focus on functions is also distinct from the literature on trade in tasks (for example Grossman 

and Rossi-Hansberg 2008). 2  We think of there as being relatively few functions (law, engineering, 

accountancy) most of them used by many sectors, as compared to the task approach of many tasks, each 

specific to a single sector. Fundamentally, the task literature asks questions about international trade 

between countries with fixed factor endowments, and the effect of such trade on factor returns.  

International aspects of fragmentation are also addressed in the literatures on multinational firms 

Markusen (1989, 2002) and on global value chains (Antràs and Chor 2021), although these literatures do 

not address our central question of the interplay between functional and sectoral specialisation.   

 
1  D&P proposition 1 states that (depending on parameters) either all firms are fully integrated and all cities fully 
specialized; or all firms are fragmented (multi-locational) with each city fully specialized in either headquarters and 
business services, or in one sector’s production and intermediate suppliers. 
2 The Grossmann and Rossi-Hansberg (GRH, 2008, 2012), tasks are a narrow stage of production, similar to the 
earlier models of Feenstra and Hanson (1996) and Markusen (1989), while our concept is a broader professional 
concept.  In GRH, each worker resides in one country and is either a low-skilled or high skilled worker, and there is 
no endogenous switching of location or between high and low-skilled work.  We assume workers can move between 
regions or from a hinterland to one of the regions, shaping the comparative advantage of each region.  The ability to 
trade tasks in GRH allows for some of the continuum of low-skilled tasks to be offshored for example, to a low-
skilled-abundant country.  But this cannot change the occupational structure and functional specialization of a 
region’s workers nor (with only two final goods) does it change the sectoral specialization of regions.   
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As noted above, the questions we pose and the model we develop touch on many strands of 

international trade, economic geography, and urban economics. Some of our analysis builds on the large 

literature on economic geography, agglomeration, and multiple equilibria (see Henderson and Thisse 

(2004), Duranton, Henderson and Thisse (2015)).   Relevant work includes Audretsch and Feldman 

(1996), Berhens, Duranton and Robert-Nicoud (2014), Brackman and van Marrewijk (2013), Courant and 

Deardorff (1992), Davis and Dingel (2018), Fujita, Krugman and Venables (1999), Krugman (1991).   

Empirical tools for measuring concentration and specialization are drawn from Krugman (1991), 

Audretsch and Feldman (1996), and especially Ellison and Glaeser (1997). Evidence on urban 

specialization (sectoral and functional) includes Barbour and A. Markusen (2007), Duranton and 

Overman (2005), Ellison and Glaeser (1997), Gabe and Able (2012), Michaels, Rauch and Redding 

(2019), and the broad analysis of Moretti (2012).  Our empirical results are also related to recent studies 

in the urban economics literature. For instance, Berry and Glaeser (2005), Moretti (2013), and Diamond 

(2016) all documents skill divergence across cities. While these studies concentrate on dichotomous 

differences (i.e. skilled vs unskilled workers) across regions, our paper reports changes in concentration at 

much more disaggregated level. We find that even within detailed occupation categories, workers are 

increasingly concentrated. Our results also complement previous works on functional specialization, 

including Duranton and Puga (2005). Using data from the Decennial Census of Population and Housing, 

they find that the ratio of managers to production worker is diverging across U.S. cities: ratios were 

similar across cities in 1977, but ratios for larger cities were significantly higher compared to those of 

small cities in 1997. 

The remainder of the paper is as follows.  In section 2 we develop a partial equilibrium model 

with two symmetric regions with exogenous Ricardian differences in productivity by function and region. 

In section 3, we endogenize productivity differences by adding external economies of scale in the form of 

spillovers. In section 4, we characterise the general equilibrium model and address these questions via 

simulation analysis.  In section 5, we confront the main theoretical predictions with the data using region-

level information on production and employment by sector and occupation for US states for the period 

1990-2019. 

 

2. Regions, sectors and functions   
 

The ingredients of the model are locations, focussing in the theory on two regions; sectors, which we 

model as a continuum; two functions that are used as inputs to production each sector; and a single 

primary factor, labour, which is used to produce functions and is perfectly mobile between regions and 
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functions.3 We build the model in stages. In this section and the next we focus on sectors and functions to 

draw out results on fragmentation and specialisation, whilst keeping the general equilibrium side of the 

model in the background; there is an outside good that we take as numeraire, and we make sufficient 

assumptions to ensure that the two regions are symmetric. In section 4, we fully specify the general 

equilibrium side of the model, enabling analysis of a richer set of possibilities.  

The two regions are indexed 𝑟𝑟 = 1, 2, and the wage rate in region r is denoted 𝑤𝑤𝑟𝑟.  The single 

factor of production, labour, is perfectly mobile between regions but, since the cost of living may vary 

across regions, so may the nominal wage.  The two functions, labelled  f = A, B, are produced by labour 

with productivity that varies by region and function; production of one unit of function f in region  r 

requires 𝜆𝜆𝑓𝑓𝑓𝑓 > 0 units of labour.  Regions are labelled such that productivity differences (if any) give 

region 1 a comparative advantage in function A, i.e., 𝜆𝜆𝐴𝐴1 𝜆𝜆𝐵𝐵1⁄ ≤ 𝜆𝜆𝐴𝐴2 𝜆𝜆𝐵𝐵2⁄ .   

There is a continuum of sectors, indexed 𝑠𝑠 ∈ [0,1].   Production occurs with constant returns to 

scale and perfect competition, and the output of sector s is denoted 𝑛𝑛(𝑠𝑠).  This is freely traded at price 

𝑝𝑝(𝑠𝑠).  A unit of sector s output requires inputs of the two functions, and no other inputs.  Sector s uses 

𝑎𝑎(𝑠𝑠) units of function A per unit output, and 𝑏𝑏(𝑠𝑠) units of function B, technical coefficients which we 

refer to as the function intensity of the sector.4  These intensities vary with sector s but are the same in 

both regions; we assume that sectors can be ranked such that low s sectors are A-intensive and B-

unintensive, i.e.  𝑎𝑎′(𝑠𝑠) < 0 and 𝑏𝑏′(𝑠𝑠) > 0.   

Producers in each sector can source functions from either region, but if the two functions come 

from different regions then a per unit fragmentation cost t is incurred.  Producers in each sector therefore 

operate in one of three modes, choosing to operate entirely in region 1, entirely in 2, or to purchase one 

function from region  1 and the other from region 2.  Producers in a single region are ‘integrated’ and will 

be labelled by subscript 1, 2 according to region of operation; those operating in both are ‘fragmented’ 

(subscript F). The unit profits in sector s for each of the three production modes are therefore 

 𝜋𝜋1(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − [𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1]𝑤𝑤1, 

𝜋𝜋𝐹𝐹(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − [𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1𝑤𝑤1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1𝑤𝑤2] − 𝑡𝑡,      (1) 

 𝜋𝜋2(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − [𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2]𝑤𝑤2. 

 
3 Thus, engineers can convert to lawyers.  Comparative advantage comes from cross-region variation in the 
productivity of labour in producing functions.  It would be possible to add a Heckscher-Ohlin flavour by assuming 
endowments of engineers and accountants, but this adds little to our basic story.  
4  𝑎𝑎(𝑠𝑠) and 𝑏𝑏(𝑠𝑠) can be thought of as rows of a matrix mapping sectors to functions, as in Timmer et al. (2019).  We 
show how the mapping only operates in circumstances where there is sufficient spatial variation in productivity or 
wages, and sufficiently low costs of fragmentation. 
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Unit costs are those of the functions purchased, sector s using 𝑎𝑎(𝑠𝑠) units of function A and 𝑏𝑏(𝑠𝑠) units of 

B.  The functions use labour, with region r productivity 𝜆𝜆𝑓𝑓𝑓𝑓,  f = A, B, and costed at the region’s wage 𝑤𝑤𝑟𝑟, 

r = 1, 2.  Since the technology with which functions are combined into final goods (𝑎𝑎(𝑠𝑠), 𝑏𝑏(𝑠𝑠)) is the 

same in both regions, urban comparative advantage is determined entirely by the efficiency with which 

regions use labour to produce functions, 𝜆𝜆𝑓𝑓𝑓𝑓.  

Choice of mode partitions the continuum of sectors into three groups.  First is a range of s in 

which production is integrated, sourcing both functions in region 1.  Since we have labelled regions such 

that region 1 has a comparative advantage in function A, and ranked sectors such that low s sectors are A-

intensive, it follows that these will be low s sectors.  Second is a range of sectors in which production is 

fragmented, sourcing function A from region 1 and function B in region 2; if this range exists it will 

contain sectors with intermediate values of s (i.e. using both functions in similar proportions). Third are 

high s (B-intensive) sectors in which production is integrated in region 2, the region with comparative 

advantage in function B.   

The boundaries between these ranges are denoted 𝑠𝑠1, 𝑠𝑠2 and are the sectors for which different 

modes of operation are equi-profitable, i.e. 𝜋𝜋1(𝑠𝑠1) = 𝜋𝜋𝐹𝐹(𝑠𝑠1), and 𝜋𝜋2(𝑠𝑠2) = 𝜋𝜋𝐹𝐹(𝑠𝑠2). Using (1), these 

mode-boundaries are implicitly defined by 

𝜋𝜋𝐹𝐹(𝑠𝑠1) − 𝜋𝜋1(𝑠𝑠1) = 𝑏𝑏(𝑠𝑠1)[𝜆𝜆𝐵𝐵1𝑤𝑤1 − 𝜆𝜆𝐵𝐵2𝑤𝑤2] − 𝑡𝑡 = 0,     (2) 

𝜋𝜋𝐹𝐹(𝑠𝑠2) − 𝜋𝜋2(𝑠𝑠2) = 𝑎𝑎(𝑠𝑠2)[𝜆𝜆𝐴𝐴2𝑤𝑤2 − 𝜆𝜆𝐴𝐴1𝑤𝑤1] − 𝑡𝑡 = 0.  

 

For a given level of output each sector, 𝑛𝑛(𝑠𝑠), the levels of employment by function, region, and sector, 

denoted 𝐿𝐿𝑓𝑓𝑓𝑓(𝑠𝑠), follow directly from eqn. (1) and are given in appendix Table A.1.  The lower rows of the 

table give employment by function in each region, 𝐿𝐿𝑓𝑓𝑓𝑓 = ∫ 𝐿𝐿𝑓𝑓𝑓𝑓(𝑠𝑠)𝑑𝑑𝑑𝑑𝑠𝑠 , employment by sector in each 

region, 𝐿𝐿𝑟𝑟(𝑠𝑠) = ∑ 𝐿𝐿𝑓𝑓𝑓𝑓(𝑠𝑠)𝑓𝑓 , and total employment in each region, 𝐿𝐿𝑟𝑟 = ∑ ∫ 𝐿𝐿𝑓𝑓𝑓𝑓(𝑠𝑠)𝑑𝑑𝑑𝑑𝑠𝑠𝑓𝑓 .  

 

3. Sectoral and functional specialisation in symmetric equilibria 

 

We start by analysing the way in which modes of operation and the consequent location of sectors and 

functions depend on technology and fragmentation costs, looking first at the case where efficiency 

differences are exogenous (3.1) and then turning to economies of scale (3.2).  Full general equilibrium is 

set out in section 4, while some material on asymmetric cases is found in Appendix 2.  The empirical 

analysis is presented in section 5.  
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3.1  Functional productivity: Ricardian differences 

Throughout this section, we make strong assumptions which make regions and sectors symmetrical, 

enabling us to derive key results on the location of sectors of functions. We assume that output in each 

sector s is the same and constant, 𝑛𝑛(𝑠𝑠) = 𝑛𝑛.  Wages are the same in both regions taking common value w.  

Labour productivity in functions is assumed to be symmetric across regions, which we capture by 

denoting the labour input coefficient in each region’s high productivity function as 𝜆𝜆 ≡ 𝜆𝜆𝐴𝐴1 = 𝜆𝜆𝐵𝐵2, and 

that of the lower productivity function 𝜆𝜆𝐴𝐴2 = 𝜆𝜆𝐵𝐵1 = 𝜆𝜆 + ∆𝜆𝜆, with ∆𝜆𝜆 > 0.  Values for the mode-

boundaries come from eqns. (2), and are implicitly given by 

        𝑏𝑏(𝑠𝑠1)𝑤𝑤∆𝜆𝜆 = 𝑡𝑡,   and   𝑎𝑎(𝑠𝑠2)𝑤𝑤∆𝜆𝜆 = 𝑡𝑡.                 (3) 

A simple case which we develop in detail takes the function intensity of sectors as linear in s, taking the 

form 𝑎𝑎(𝑠𝑠) = [1 + 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  and 𝑏𝑏(𝑠𝑠) = [1 − 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  with 1 ≥ 𝛾𝛾 > 0. This is symmetric, with 

middle sector, 𝑠𝑠 = 1 2⁄ , equally intensive in A and B.  The parameter γ measures the heterogeneity of 

function intensities across sectors and 1 ≥ 𝛾𝛾 means that both functions are used in all sectors.5  Appendix 

Table A.2 gives employment levels by region, function, and sector, replicating Table A.1 with explicit 

expressions derived from this functional form.  The unit profit functions of eqn. (1) become,  𝜋𝜋1(𝑠𝑠) =

𝑝𝑝(𝑠𝑠) − {2𝜆𝜆 + ∆𝜆𝜆[1 − 𝛾𝛾(1 − 2𝑠𝑠)]}𝑤𝑤 2⁄ ,  𝜋𝜋𝐹𝐹(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − 𝜆𝜆𝜆𝜆 − 𝑡𝑡, and  𝜋𝜋2(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) −

{2𝜆𝜆 + ∆𝜆𝜆[1 + 𝛾𝛾(1 − 2𝑠𝑠)]}𝑤𝑤 2⁄ , from which explicit expressions for the mode boundaries are   

  𝜋𝜋1(𝑠𝑠1) = 𝜋𝜋𝐹𝐹(𝑠𝑠1):       𝑠𝑠1 =
1
2
�1 − �1 −

2𝑡𝑡
wΔ𝜆𝜆

�
1
𝛾𝛾
� ,                                    (4)    

 𝜋𝜋2(𝑠𝑠2) = 𝜋𝜋𝐹𝐹(𝑠𝑠2):      𝑠𝑠2 =
1
2
�1 + �1 −

2𝑡𝑡
wΔ𝜆𝜆

�
1
𝛾𝛾
�.                                              

 

These relationships capture the way in which the sourcing of functions in each sector depends on 

fragmentation costs t relative to wages, the range of function intensities γ, and inter-regional differences 

in relative labour productivity, ∆𝜆𝜆. 

Integration to fragmentation:  If 𝑡𝑡 = 𝑤𝑤Δ𝜆𝜆 2⁄  then 𝑠𝑠1 = 𝑠𝑠2 = 1 2⁄ ; i.e. half of sectors are integrated in 1, 

the other half integrated in 2, and no sectors are fragmented.  We call this the critical value 𝑡𝑡∗ = 𝑤𝑤Δ𝜆𝜆 2⁄  

and note that there is no fragmentation for any values 𝑡𝑡 ≥ 𝑡𝑡∗.  If 𝑡𝑡 < 𝑡𝑡∗ then fragmented sectors emerge, 

first in sectors that have similar use of both functions, i.e. s in an interval around ½ and of width 

 
5 Thus, for all 𝑠𝑠 ∈ [0,1] ,  𝑎𝑎(𝑠𝑠), 𝑏𝑏(𝑠𝑠) ≥ 0.  The assumption is not necessary for our main results, see e.g. the proof 
of proposition 1 in appendix A1.  Figure 1 has γ = 1, this being the special case in which all sectors become 
fragmented (s1 = 0 and s2 = 1) at t = 0. If sectors are more similar in function intensity, γ < 1, then all sectors become 
fragmented at some positive value of t; if γ > 1 then extreme sectors use only one function.  
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𝑠𝑠2 − 𝑠𝑠1 = (1 − 2𝑡𝑡 𝑤𝑤Δ𝜆𝜆⁄ )/𝛾𝛾, wider the smaller is t, and the larger are productivity differences, ∆𝜆𝜆.  

Intuitively, these are the sectors where both functions have a high share of costs (e.g. close to 50%), so it 

is worthwhile incurring cost t to source each from the lowest cost region.  Sectors with more extreme 

function intensities remain integrated in the region where the function with highest cost share is relatively 

cheap.   

This and equations (4) are illustrated on figure 1, which has sectors on the vertical axis and 

fragmentation costs, t, on the horizontal. Thus, at 𝑡𝑡 < 𝑡𝑡∗ the most A-intensive sectors operate with 

integrated production in region 1, the most B-intensive are integrated in region 2, and those with 

intermediate function intensities are fragmented, locating their functions according to inter-region 

differences in the productivity of labour in each function.  Figure 1 is constructed with 𝛾𝛾 = 1 and Δ𝜆𝜆 =

0.4, and w = 1.  The critical value 𝑡𝑡∗ is proportional to 𝑤𝑤Δ𝜆𝜆 and, for a given value of 𝑡𝑡 𝑤𝑤Δ𝜆𝜆⁄  the range of 

fragmented sectors is larger the smaller is γ, the parameter that measures the range of function intensities. 

 

 

 

Sectoral to functional specialisation: The preceding paragraph established where producers in each 

sector source their input of functions. The dual question is: what activities are present in which regions?  

The range of sectors with a presence in regions of each type increases as fragmentation costs fall below 

𝑡𝑡∗, as more sectors become fragmented (see the curly brackets in figure 1).  This implies a decline in the 

sectoral specialisation of regions.  In the empirical section we will measure this by calculating 
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specialisation indices defined on the shares of each region in total employment of each sector, i.e. 𝑚𝑚𝑠𝑠𝑠𝑠 ≡

𝐿𝐿𝑠𝑠𝑠𝑠/𝛴𝛴𝑟𝑟𝐿𝐿𝑠𝑠𝑠𝑠.  While regions’ specialisation in sectors is falling, their specialisation in functions is 

increasing; intuitively, as fragmentation costs fall so production of each function moves into the region 

according to comparative advantage.  In later sections of the paper we compute functional specialisation 

indices, based on shares of each region in total employment of each function,  𝑚𝑚𝑓𝑓𝑓𝑓 ≡ 𝐿𝐿𝑓𝑓𝑓𝑓/𝛴𝛴𝑟𝑟𝐿𝐿𝑓𝑓𝑓𝑓.  Pulling 

this together, we summarise results in the following proposition: 

 

Proposition 1: In the symmetric model with γ ≤ 1. 

i) If fragmentation costs are high, i.e.  𝑡𝑡 ≥ 𝑡𝑡∗ = 𝑤𝑤Δλ 2⁄ , then 𝑠𝑠1 = 𝑠𝑠2 = 1 2⁄  and: 

a) Mode: All sectors are integrated. 

b) Sectors:  Each region contains activity in half the sectors; each sector operates in a single 

region (region 1 for 𝑠𝑠 ≤ 1 2⁄ , and region 2 for 𝑠𝑠 > 1 2⁄ ).  

c) Functions: Both functions are present in each region. 

ii) If fragmentation costs are low, 𝑡𝑡 < 𝑡𝑡∗ = 𝑤𝑤Δλ 2⁄ , then 𝑠𝑠2 − 𝑠𝑠1 = (1 − 2𝑡𝑡 𝑤𝑤Δλ⁄ )/𝛾𝛾 > 0   and: 

a) Mode:  Sectors with 𝑠𝑠 𝜖𝜖 [s2, s1] are fragmented, operating in both regions; sectors with more 

extreme function intensities (𝑠𝑠 <  𝑠𝑠2, 𝑠𝑠 > 𝑠𝑠1) are integrated, operating in a single region. 

b) Sectors:  Each region contains activity in more than half the sectors. If 𝑡𝑡 ≤ (1 − 𝛾𝛾)𝑤𝑤Δ𝜆𝜆 2⁄   

then each region contains activity from all sectors.   

c) Functions: If  𝑡𝑡 ≤ (1 − 𝛾𝛾)𝑤𝑤Δ𝜆𝜆 2⁄   then each region specialises in a single function, 

𝐿𝐿A1 = 𝐿𝐿B2 > 0, 𝐿𝐿A2 = 𝐿𝐿B1 = 0 , (complete functional concentration). 

 

The implications of this proposition will be discussed further in section 4.3 where, in the context of the 

full general equilibrium model, specialisation and concentration indices are calculated for the distribution 

of both sectoral and functional employment across regions. They are central to the empirical work of 

section 5. 

 

3.2 Functional productivity: localisation economies 

Ricardian efficiency differences provide the simplest model framework, but we think it unlikely that 

regional differences in the productivity of functions are due to exogenous efficiency differences.  We 

therefore explore an alternative mechanism in which there are agglomeration economies in production of 

functions, and it is these regionally focussed scale economies that drive the location of functions and thus 

of sectors.  
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Labour input coefficients are function and region specific, and are now assumed to be based on 

an endogenous part deriving from productivity spillovers in the same function and region, as well as a 

possible Ricardian component.  The Ricardian component is as before, taking values λ and λ + Δλ. 

Productivity spillovers generated by each function in each region are equal to output in the function-

region pair, 𝑋𝑋𝑓𝑓𝑓𝑓 = 𝐿𝐿𝑓𝑓𝑓𝑓/𝜆𝜆𝑓𝑓𝑓𝑓 , 𝑓𝑓 = 𝐴𝐴,𝐵𝐵, 𝑟𝑟 = 1, 2 with parameters σ𝐴𝐴 and σ𝐵𝐵 measuring the impact of 

spillovers on productivity. The Ricardian and endogenous components of labour input coefficients are 

additive, giving 

𝜆𝜆𝐴𝐴1 = λ − σ𝐴𝐴𝑋𝑋𝐴𝐴1,    𝜆𝜆𝐴𝐴2 = λ + Δλ − σ𝐴𝐴𝑋𝑋𝐴𝐴2,    (5) 

  𝜆𝜆𝐵𝐵1 = λ + Δλ − σ𝐵𝐵𝑋𝑋𝐵𝐵1,   𝜆𝜆𝐵𝐵2 = λ − σ𝐵𝐵𝑋𝑋𝐵𝐵2.  

Hence, productivity differentials are, using expressions from appendix Table A.2, block IV, 

𝜆𝜆𝐵𝐵1 − 𝜆𝜆𝐵𝐵2 = Δλ − σ𝐵𝐵𝑛𝑛 �−
1
2

+ 𝑠𝑠1[1 − 𝛾𝛾(1 − 𝑠𝑠1)]�,     (6a)  

𝜆𝜆𝐴𝐴2 − 𝜆𝜆𝐴𝐴1 = Δλ − σ𝐴𝐴𝑛𝑛 �
1
2
− 𝑠𝑠2[1 + 𝛾𝛾(1 − 𝑠𝑠2)]�.          (6b) 

Thus, if 𝑠𝑠2 is large a relatively small range of sectors undertake function A in region 2, thereby reducing 

region 2’s productivity in A, i.e. raising 𝜆𝜆𝐴𝐴2 − 𝜆𝜆𝐴𝐴1. If these spillovers are equally powerful in both 

functions (𝜎𝜎 ≡ 𝜎𝜎𝐴𝐴 = 𝜎𝜎𝐵𝐵 > 0) and wages are the same in both regions then the mode-boundaries defined 

in eqn. (2) become, 

𝜋𝜋𝐹𝐹(𝑠𝑠1) − 𝜋𝜋1(𝑠𝑠1) = {[1 − 𝛾𝛾(1 − 2𝑠𝑠1)](𝜆𝜆𝐵𝐵1 − 𝜆𝜆𝐵𝐵2)}𝑤𝑤 2⁄ − 𝑡𝑡 = 0,   (7a)   

𝜋𝜋𝐹𝐹(𝑠𝑠2) − 𝜋𝜋2(𝑠𝑠2) = {[1 + 𝛾𝛾(1 − 2𝑠𝑠2)](𝜆𝜆𝐴𝐴2 − 𝜆𝜆𝐴𝐴1)}𝑤𝑤 2⁄ − 𝑡𝑡 = 0.   (7b) 

To analyse these relationships, we focus on (6a) and (7a), the other pair, (6b) and (7b), being symmetric.  

Substituting (6a) in (7a) gives 𝜋𝜋𝐹𝐹(𝑠𝑠1) − 𝜋𝜋1(𝑠𝑠1) as a function of 𝑠𝑠1.  The objective is to find sets of 

parameters at which different types of equilibria hold.   

Notice first that there is full integration if 𝜋𝜋𝐹𝐹(𝑠𝑠1) ≤ 𝜋𝜋1(𝑠𝑠1) at 𝑠𝑠1 = ½.  Straightforward calculation 

gives critical value 𝑡𝑡∗∗ = [∆λ + 𝑛𝑛𝑛𝑛𝑛𝑛 4⁄ ]𝑤𝑤 2⁄   at which 𝜋𝜋𝐹𝐹(𝑠𝑠1) = 𝜋𝜋1(𝑠𝑠1) evaluated at s1 = ½.  Evidently, 

this reduces to the Ricardian case if 𝜎𝜎 = 0, while 𝜎𝜎 > 0 implies a strictly higher critical point 𝑡𝑡∗∗.   At 

higher values of t, 𝑡𝑡 ≥ 𝑡𝑡∗∗, there is an equilibrium with fully integrated production. This is illustrated by 

the solid horizontal line on Figure 2.  
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Figure 2 differs from Figure 1 in the non-linearity of the mode boundaries and, in particular, the 

overlap between these lines that occurs in the interval (𝑡𝑡∗∗, 𝑡̃𝑡).6  This is a region of multiple equilibria.  

Integrated production is an equilibrium, because at this equilibrium productivity differences are small.  

But so too is a fragmented equilibrium.  At such an equilibrium production of function A is relatively 

concentrated in region 1, and B in region 2; the presence of increasing returns means that the productivity 

differential is now large, justifying sectors’ choices to fragment production. 

Formally, this occurs because using (6a) in (7a) generates a cubic equation.  Appendix 1 works 

this through in some detail, deriving the critical value 𝑡̃𝑡 below which fragmented production is an 

equilibrium.  There is a positive interval (𝑡𝑡∗∗, 𝑡̃𝑡) in which there are multiple equilibria if spillovers 𝜎𝜎 are 

large relative to any Ricardian productivity difference, ∆Λ. To summarise:  

 

Proposition 2: In the symmetric model with external economies of scale 

i) If  𝑡𝑡 ≥ 𝑡𝑡∗∗ = [∆Λ + 𝑛𝑛𝑛𝑛𝑛𝑛 4⁄ ]𝑤𝑤 2⁄ , there is an equilibrium in which all sectors are 

integrated.  

ii) If 𝑡𝑡 < 𝑡𝑡∗∗, there is a unique equilibrium, in which sectors 𝑠𝑠 𝜖𝜖 [s2, s1] are 

fragmented.  

 
6 Figure 2 has the same parameters as Figure 1, except that Δλ = 0 and σ𝐴𝐴 = σ𝐵𝐵 =  1.5. 
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iii) There is a range of values of 𝑡𝑡 ∈ (𝑡𝑡∗∗, 𝑡̃𝑡)  at which integration of all sectors and 

fragmentation of a range of sectors are both equilibria. 

iv) Increasing returns (σ > 0) means that, should fragmentation occur, the range of 

sectors that are fragmented is wider, at each t and for each ∆λ, than if σ = 0.  

 

Parts (i) and (ii) of the proposition mean that the qualitative predictions concerning the effect of 

reductions in t on regions’ sectoral diversification and functional specialisation are as in proposition 1; we 

use these predictions in the empirical section.  Parts (iii) and (iv) are a consequence of the externality 

created by technological spillovers. An important difference is that the localisation economy operates at 

the functional rather than the sectoral level.  Thus, while there are no direct technology spillovers between 

sectors, expansion in one sector will increase the quantity of functions supplied, this raising productivity 

in functions and reducing costs for other sectors, particularly those with similar function intensities.  

Linkages between sectors are created via the medium of localisation economies in functions. 

 These arguments set out the driving mechanisms that we want to explore, and we now move to 

place them in a general equilibrium setting, endogenizing wages and the scale of activity (total output) in 

each sector.  

 

4. General Equilibrium 

To this point we have assumed product prices are constant, wages are constant and equal in both regions, 

and the total output of each sector is fixed and the same in all sectors.  We now relax these assumptions 

and develop the general equilibrium of the model. In section 4.1 we model regions as sets of urban areas, 

between which labour mobility equalises real, but not necessarily nominal, wages.  In section 4.2 we look 

at product supply and demand, adding zero profit conditions and endogenizing prices.  Section 4.3 sets 

out the full equilibrium structure of the production side as the basis for the empirical analysis of section 5. 

Section 4.4 considers asymmetric cases. 

 

4.1 Region size, employment and wages 

In addition to the sectors and functions modelled above we now add an ‘outside good’ which we use as 

numeraire.  This good is produced in a hinterland region, using labour alone at constant productivity 

giving fixed hinterland wage w0.  The hinterland produces no other goods or functions, and this and all 

other final goods are perfectly freely traded.   

Labour is perfectly mobile, equating utilities across regions.  To prevent corner solutions – such 

as all population ending up in one region -- we require some sort of diminishing returns to regional 

population, and this is achieved by supposing the existence of a fixed factor in each region.  We take this 
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to be the number of urban areas, each of which is described by the standard urban model (the Alonso-

Mills-Muth model, see for example Henderson and Thisse 2004).  Thus, region r contains 𝐾𝐾𝑟𝑟 cities, 

assumed to be identical. In each of these cities, workers face costs of commuting and land rent, costs 

which depend on city population.  Since the cost-of-living may vary across regions, labour mobility is 

consistent with equilibrium nominal wages in each region, 𝑤𝑤1, 𝑤𝑤2, differing from 𝑤𝑤0 and from each 

other.  The micro-foundations of the simplest possible urban model are that each urban household 

occupies one unit of land, all urban jobs are in the city centre and commuting costs are 𝑐𝑐𝑟𝑟  per unit 

distance.  A worker living at distance z from the centre has to pay commuting costs 𝑐𝑐𝑟𝑟𝑧𝑧, plus rent at 

distance z from the centre, denoted ℎ𝑟𝑟(𝑧𝑧). Workers choose residential location within and between cities 

and regions, and real wages are equalised when 𝑤𝑤𝑟𝑟 − 𝑐𝑐𝑟𝑟𝑧𝑧 − ℎ𝑟𝑟(𝑧𝑧) = 𝑤𝑤0 for all r and at all occupied 

distances z.  People in each city live and commute along a spoke from the centre, so city population is 𝑧𝑧𝑟𝑟∗, 

where 𝑧𝑧𝑟𝑟∗ is the edge of the city (length of the spoke).  At the city edge land rent is zero, so 𝑧𝑧𝑟𝑟∗ = (𝑤𝑤𝑟𝑟 −

𝑤𝑤0)𝑐𝑐𝑟𝑟.  The total urban population living in region r cities is 𝐾𝐾𝑟𝑟𝑧𝑧𝑟𝑟∗, so the relationship between the region 

r wage and its total urban population, 𝐿𝐿𝑟𝑟 = 𝐾𝐾𝑟𝑟𝑧𝑧𝑟𝑟∗, is    

            𝐿𝐿𝑟𝑟 = 𝐾𝐾𝑟𝑟(𝑤𝑤𝑟𝑟 − 𝑤𝑤0) 𝑐𝑐𝑟𝑟⁄ ,   r = 1, 2.              (8) 

These equations imply that, given the number of cities and commuting costs, regions with a larger 

population and labour force have to pay higher wages in order to cover the commuting costs and rents 

incurred by workers.  Note that rent in each city can be expressed as, ℎ𝑟𝑟(𝑧𝑧) = 𝑤𝑤𝑟𝑟 − 𝑤𝑤0 − 𝑐𝑐𝑟𝑟𝑧𝑧 =

𝑐𝑐𝑟𝑟(𝐿𝐿𝑟𝑟/𝐾𝐾𝑟𝑟 − 𝑧𝑧), so integrating over z and adding over all cities, total rent in a region of size 𝐿𝐿𝑟𝑟 is  

𝐻𝐻𝑟𝑟 = 𝑐𝑐𝑟𝑟𝐿𝐿𝑟𝑟2 2𝐾𝐾𝑟𝑟⁄ .        (9) 

Thus, while workers’ utility is equalised across all locations, the productivity gap associated with 

𝑤𝑤1,𝑤𝑤2 > 𝑤𝑤0 is partly dissipated in commuting costs, with the rest going to recipients of land rents.  This 

is general enough to be a city model 𝐾𝐾𝑟𝑟 = 1 or a state level model… 

 

4.2   Sectoral price and output 

We have to this point held the price and output of each sector constant. We now endogenize these 

variables by modelling demand for each sector’s output and letting output adjust such that price equals 

unit cost.  

Demands for final output comes from domestic spending and from exports.  The domestic 

country is assumed small as an importer, and so foreign prices in all of the s sectors take exogenous value 

𝑝̅𝑝, common across all sectors. Demand comes from domestic and foreign sales, respectively 

𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠),   𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠) for sector s, and domestic and foreign goods are CES substitutes in each market with an 
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elasticity of substitution 𝜀𝜀 > 1.  Sectoral composites (domestic and foreign varieties) are Cobb-Douglas 

substitutes. The outside good (numeraire) is additively separable with a constant marginal utility, 

implying that income does not appear in the demand functions for the Q goods (though we will introduce 

a demand shifter later).  With these assumptions, demand for the output of each sector is  

𝑄𝑄𝑑𝑑(𝑠𝑠) = 𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠) + 𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)  =
𝛼𝛼 𝜃𝜃𝑑𝑑𝑝𝑝(𝑠𝑠)−𝜖𝜖

𝜃𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖 + 𝜃𝜃𝑓𝑓  𝑝̅𝑝1−𝜖𝜖
+

𝛼𝛼�𝜃̅𝜃𝑑𝑑𝑝𝑝(𝑠𝑠)−𝜖𝜖

𝜃̅𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖 + 𝜃̅𝜃𝑓𝑓𝑝̅𝑝1−𝜖𝜖
.                        (10) 

Demand parameters are α, θ, and overbars are used to denote parameters in foreign. The utility functions 

and budget constraints that support these demand functions are given in appendix 2, and are used in some 

welfare calculations that follow.   

In equilibrium price is less than or equal to unit cost in all sectors and regions (complementary 

slack inequalities since not all modes will be active in all sectors) so, from equations 1,  

𝑤𝑤1[𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1] ≥ 𝑝𝑝(𝑠𝑠)     ⊥ 𝑛𝑛1(𝑠𝑠),   

 𝑤𝑤2[𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2] ≥ 𝑝𝑝(𝑠𝑠)     ⊥ 𝑛𝑛2(𝑠𝑠),  (11) 

 𝑤𝑤1𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑤𝑤2𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1 +  𝑡𝑡(𝑤𝑤1 + 𝑤𝑤2) 2⁄ ≥ 𝑝𝑝(𝑠𝑠)  ⊥ 𝑛𝑛𝐹𝐹(𝑠𝑠). 7    

Total domestic supply in each sector s is may come from each mode, so 

 𝑄𝑄𝑑𝑑(𝑠𝑠) = 𝑛𝑛1(𝑠𝑠) + 𝑛𝑛𝐹𝐹(𝑠𝑠) + 𝑛𝑛2(𝑠𝑠).       (12) 

Prices and output adjust to clear markets, and ss they do so employment levels, wages, and the structure 

of economic activity in each region are determined.  Sectors and modes may be active or non-active in 

each region, so the equilibrium can be thought of as a non-linear complementarity problem in which 

corner solutions are a crucial feature of the model.  To explore this we use numerical techniques, and the 

full set of equations and inequalities used simulation are given in appendix 3.  To implement this, we 

discretize the number of sectors: in the simulations to follow model development, there are 51 sectors 

(i.e., s = 1, 2, …, 51.  an odd number allows for a middle sector).  The total number of weak inequalities 

and non-negative unknowns is 318 (appendix 3).  

 

4.3  Symmetric Ricardian and localization economies in general equilibrium 

Figures 3 and 4, and appendix Figures A2 to A5 present simulation results that develop economic 

implications of the model.  Figure 3 presents the symmetric Ricardian case, with fragmentation costs t on 

the horizontal axis. Each column of the figure is a solution to the model for that value of t, as will be the 

 
7 Fragmentation costs t are in units of labor; we arbitrarily assume that this is divided evenly between labour from 
each region, giving 𝑡𝑡(𝑤𝑤1 + 𝑤𝑤2) 2⁄  as fragmentation cost. 
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case in the following figures (the jagged line is a consequence of the discreteness of sectors). The results 

naturally qualitatively resemble Figure 1 earlier in the paper.  At high t , all production is integrated in 

either one country or the other – except for the middle sector (there is an odd number of sectors) where 

integrated sectors produce in both countries.   

 

 
Figure 3: Symmetric Ricardian Case (fragmentation cost t on horizontal axes) 

 

Figure 4 shows further results for the case in Figure 3 in four panels. The upper left panel gives 

Herfindahl employment concentration indices for sectors and functions across the two regions for each 

level of fragmentation costs. The concentration of sector s is the sum over regions r of the share of sector 

s’s national employment that is in r minus region r’s share of national employment, squared:8 

  𝐺𝐺𝑠𝑠 = ∑ (𝑚𝑚𝑠𝑠𝑠𝑠 − 𝑚𝑚𝑟𝑟)2𝑟𝑟 ,              𝑚𝑚𝑠𝑠𝑠𝑠 = 𝐿𝐿𝑠𝑠𝑠𝑠/∑ 𝐿𝐿𝑠𝑠𝑠𝑠𝑟𝑟  ,                    𝑚𝑚𝑟𝑟 = 𝐿𝐿𝑟𝑟/∑ 𝐿𝐿𝑟𝑟𝑟𝑟 ,        (13) 

The concentration of function f employment across regions is similarly defined. 

𝐺𝐺𝑓𝑓 = ∑ �𝑚𝑚𝑓𝑓𝑓𝑓 − 𝑚𝑚𝑟𝑟�
2

𝑟𝑟    𝑚𝑚𝑓𝑓𝑓𝑓 = 𝐿𝐿𝑓𝑓𝑓𝑓/∑ 𝐿𝐿𝑓𝑓𝑓𝑓𝑟𝑟  ,   𝑚𝑚𝑟𝑟 = 𝐿𝐿𝑟𝑟/∑ 𝐿𝐿𝑟𝑟𝑟𝑟 . (14) 

These are then averaged over all sectors s and functions f to get the indices used in the upper left-hand 

panel of Figure 4.  As fragmentation costs fall, the sectoral concentration index falls and the function 

 
8  Definitions of employment levels 𝐿𝐿𝑠𝑠𝑠𝑠, 𝐿𝐿𝑓𝑓𝑓𝑓 , 𝐿𝐿𝑟𝑟 are given in appendix tables A1 and A2.   𝐿𝐿𝑟𝑟 = ∑ 𝐿𝐿𝑠𝑠𝑠𝑠 = ∑ 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠 ,  
𝐿𝐿𝑠𝑠 = ∑ 𝐿𝐿𝑠𝑠𝑠𝑠𝑟𝑟 ,  𝐿𝐿𝑓𝑓 = ∑ 𝐿𝐿𝑓𝑓𝑓𝑓𝑟𝑟 .   
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concentration index rises.  This is a central prediction of the model, which will be examined empirically 

in section 5 below. 

 

 
 

Figure 4: Symmetric Ricardian Case (fragmentation cost t on horizontal axes) 
 

In addition to examining sector and function concentration theoretically here and empirically in 

section 5, we can compute indices of regional specialization. Each region is compared to the national 

distribution of employment across sectors and functions via specialization indices, 𝐷𝐷𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝐷𝐷𝑟𝑟
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 

Similar to our measure of concentration, the specialization of region r is defined as the sum over sectors 

(functions) of the square of the difference between the share of region r’s employment in sector s 

(function f) and the share of national employment that is in sector s (function f) as follows 

 

𝐷𝐷𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ (𝑞𝑞𝑟𝑟𝑟𝑟 − 𝑞𝑞𝑠𝑠)2𝑠𝑠 ,      𝑞𝑞𝑟𝑟𝑟𝑟 = 𝐿𝐿𝑠𝑠𝑠𝑠/∑ 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠  , 𝑞𝑞𝑠𝑠 = 𝐿𝐿𝑠𝑠/∑ 𝐿𝐿𝑠𝑠𝑠𝑠 ,    (13a) 

 

𝐷𝐷𝑟𝑟
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ �𝑞𝑞𝑟𝑟𝑟𝑟 − 𝑞𝑞𝑓𝑓�

2
𝑓𝑓 , 𝑞𝑞𝑟𝑟𝑟𝑟 = 𝐿𝐿𝑓𝑓𝑓𝑓/∑ 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓  ,  𝑞𝑞𝑓𝑓 = 𝐿𝐿𝑓𝑓/∑ 𝐿𝐿𝑓𝑓𝑓𝑓  .  (14a) 

  

These are then averaged over all regions to get the indices used in the upper right-hand panel of Figure 4. 
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 The top left panel of Figure 4, giving the sector and function concentration indices and the top 

right panel giving the regional specialization indices in both sectors and functions, are qualitatively 

almost identical, though they differ some in scale (note the different scale on the right and left axis in the 

top left panel).  This is largely due to the fact that this example has regions and sectors that are symmetric 

in size.  This choice of example is deliberate, providing an intuitive base case which is examined 

empirically in section 5.  We do not hypothesize that the concentration and specialization indices are 

qualitatively the same, only that the sector indices both fall with falling fragmentation costs and the 

function indices both rise with falling t.  We have done many simulations with various asymmetries 

between regions and sectors, and these slope relations always hold for both concentration and 

specialization. 

The bottom left panel of Figure 4 graphs the producer wage and welfare (recall all workers earn a 

wage net of commuting costs and land rent equal to 𝑤𝑤0).  Note from equation (8) that the producer wage 

is proportional to urban population or region size. The producer wage / region size curve shown in the 

bottom left of Figure 4 indicates that lowering fragmentation costs does have a significant effect on region 

size: increased outputs depress product prices some, and so from the free-entry conditions, producer 

wages (region populations) do not change much. The increase in welfare as fragmentation costs fall is 

larger. Part of potential welfare gains is dissipated by falling prices (worsening terms of trade with the 

outside world) due to the increased domestic productivity. Average prices p(s) are 2.5% lower with full 

fragmentation than under fully integrated production. This fall in prices also holds down urbanization 

(producer wages and employment) as fragmentation costs fall. Nevertheless, falling fragmentation costs is 

analogous to an aggregate productivity improvement and raise welfare. 

The bottom right panel of Figure 4 illustrates an effect which was not discussed in previous 

sections. The fall in fragmentation costs improves the competitiveness of the urban (manufacturing and 

services) sectors relative to the outside good. The vertical axis gives the trade balance (exports minus 

imports) of urban goods as a proportion all domestic urban goods production.  This trade balance in urban 

sectors is normalized to zero at zero fragmentation costs. The trade balance with the rest of the world is 

negatively related to fragmentation costs. Ease of internal transport and communications is a source of 

comparative advantage. 

Turning to the spillovers case, Figure A2a shows results confirming those in Figure 2 earlier. 

There is a region of multiple equilibria: one in which all sectors are integrated and one in which some 

(middle) sectors are fragmented. Results corresponding to those in Figure 4 for the Ricardian case are 

qualitatively the same as for the Ricardian case, and thus we won’t show them here.  

One thing that is qualitatively different between the Ricardian and spillovers cases is the effect of 

increasing demand (increases in the alphas) in (10) on the equilibrium regime. In the Ricardian case in 
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which the λ’s are constants, a symmetric situation (𝑤𝑤1 = 𝑤𝑤2) means that the boundaries between the 

integrated and fragmented sectors do not depend on demand (also true in the partial-equilibrium case as 

seen in (4)).  However, in (7) and here in (A14) - (A17) we see that increases in total market demand will 

affect the λ’s and hence will affect regime boundaries in the spillovers case. Figure A2b shows the effect 

on the regime boundaries following a 50 percent increase in αd and αf. For middle levels of t, additional 

sectors will now fragment as shown, which implies increases function specialization and lower sectoral 

specialization for a given level of fragmentation costs. 

 

4.4 Asymmetric cases 

Asymmetric cases are not just a theoretical curiosity, nor is the possibility of multiple equilibria.  Several 

papers referenced above could be interpreted to suggest (translated into our framework) that some 

functions such as occupations in business services may be more subject to agglomeration economies that 

other functions. While agglomeration due to spillovers (as opposed to site-specific resources) is generally 

not explicitly investigated, evidence in Davis and Dingel (2018) and Eckert et. al. (2020) is important in 

this regard.  Duranton and Puga (2005) assume that headquarter services across industries are subject to 

agglomeration economies while plants have agglomeration economies at the sector level.  Theirs is quite a 

different model from ours as explained earlier, but it is consistent with an analogous view that spillovers 

may be more important in some functions than others.  This also seems closely consistent with the many 

examples given in Moretti (2012). 

Figures A.3 and A.4 consider asymmetry between the sectors/regions in the Ricardian case. 

Figure A.3 assumes that region 1 has a comparative and absolute advantage in function A, while region 2 

has a comparative advantage in function B, but no absolute advantage. For intermediate or high levels of 

fragmentation costs, the result in Figure A.3 is that region 1 will have a larger range of integrated 

industries. The intuition follows from a simple argument by contradiction. Consider high fragmentation 

costs such that all sectors are integrated. Suppose that the solution was symmetric across regions. Then if 

sector s = 0.5 is just breaking even in region 2, there would be positive profits for sector s in region 1.  

 Two further results follow in the asymmetric Ricardian case.  The right-hand panel of Figure A.3 

shows the employment levels in the two regions.  Intuitively, the region with the absolute advantage 

(region 1) will be larger for all levels of fragmentation costs, but this difference shrinks as these costs fall.  

Figure A.4 shows the function and sector concentration indices for the same asymmetric Ricardian case.  

The more productive region 1 will have lower concentration for both sectors and functions.  The intuitive 

follows from the previous paragraph: region 1 will have more integrated industries.  But the difference 

disappears as fragmentation costs go to zero.  In our empirics in section 5, we show that larger regions do 

have lower levels of both forms of concentration.   
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Finally, consider an asymmetric spillovers case, motivated by this idea that perhaps business 

service occupations are more characterized by spillovers than other functions.  Figure A.5 shows a case 

where only function A has spillovers, but in both regions (in contrast to the Ricardian case where only 

𝜆𝜆𝐴𝐴 is smaller in region 1 only). In equilibrium however, the spillovers case is similar: region 1 will have a 

comparative and an endogenous absolute advantage in function A, while region 2 has a comparative but 

not absolute advantage in function B.  

These results show up as differences in region size/employment (which in turn translate into 

producer wages), shown in the right-hand panel of Figure A.5. The region size difference is large when all 

industries are integrated and small when all are fragmented (though largest in the middle for the spillovers 

case). Again, the intuition follows from a simple argument by contradiction. If region sizes (employment) 

were the same, then producer wages would be the same, in which case there must be positive profit 

opportunities in region 1 and/or losses incurred in region 2.  

An important point about Figure A.5 is that it illustrates the possibility that regional fortunes may 

diverge over some range of falling fragmentation costs.  The region with the comparative advantage in the 

function characterized by spillovers grows and the other region can actually shrink.  This also seems to fit 

much of the evidence and discussion in Moretti (2012). 

The convergence in region sizes as fragmentation costs become small seems to be in large part a 

terms-of-trade effect: as fragmentation costs fall, the relative prices of goods with low sector indices 

(located in region 1) fall a lot more in general equilibrium than the prices of the high index goods. An 

alternative way to think about this is that the high productivity of region 1 workers in the A function 

means that less workers are required to produce those tasks at given output prices and hence region 1's 

employment falls some in response to that increased productivity.  

 

5.  Sectoral and functional concentration in the US 

 

The theoretical model provides a rich set of predictions that relate changes in fragmentation costs to 

changes in a region’s sectoral and functional composition. In this section, we explore the empirical 

validity of three key predictions of the model using information on US employment. For empirical 

purposes, we interpret sectoral as industries, functional as occupational, and geographical as US states. 

In section 5.1, we look at the spatial concentration of sectors and functions in order to test the 

hypotheses that as fragmentation costs fall sectoral concentration declines while occupational 

concentration rises. Fragmentation costs are not directly observed, and available proxies (e.g., travel 

costs, long-distance phone calls, or access to internet) do not provide either state- or sector-level variation. 



 20 

Therefore, we simply assume fragmentation costs are falling over time, and use time as the proxy.9 We 

find declining sectoral concentration and increasing occupational concentration over time. In line with the 

predictions of theory, a large fraction of those changes is explained by within-sector and within-function 

changes in geographic concentration. 

In section 5.2, we explore time series changes in states’ distributions of employment across 

sectors and across functions. The model predicts that, as fragmentation costs decrease, regions should 

experience decreasing sectoral specialization and increasing functional specialization. To test this 

hypothesis, we calculate our two measures of regional specialization defined in equations (13a) and (14a) 

for each state-year in the sample. As predicted by the model, we find that the states’ sectoral 

specialization is decreasing overtime, whereas the functional specialization is increasing. 

Finally, in section 5.3, we estimate the correlation between regional specialization and size (i.e., 

total employment in the region). The theoretical model predicts that larger regions have lower sectoral 

and functional specialization. In line with the prediction of model, we find a negative correlation between 

US states’ size and measures of specialization for both sectors and functions. 

 

5.1 Sectoral and functional concentration over time 

In this section, we explore the first prediction of the model related to sectoral and functional geographic 

concentration. We begin by describing the main data sources. We then develop the method we use to 

measure the geographic concentration. Finally, we implement the index of concentration to study the time 

series changes in sectoral and functional concentration. 

 

5.1.1 Data 

To construct the indexes of concentration, such as those defined in equation (13), we need information on 

the geographic distribution of sectoral and functional economic activity, measured throughout by 

employment. The two sources from which we derive information are the BLS’s Quarterly Census of 

Employment and Wage dataset (QCEW) and Occupational Employment Statistics (OES). We discuss 

each in turn. 

The theoretical model can accommodate different definition of sectors and regions. The QCEW 

program publishes a quarterly count of employment reported by employers covering more than 95 percent 

of U.S. jobs available at the county, Metropolitan Statistical Area (MSA), state and national levels by 

 
9 While this assumption is consistent with the general decrease in the cost of exchanging goods and services at a 
distance, it has two main drawbacks. First, it prevents us from exploiting across sector variation to identify the 
impact of changes in fragmentation costs. Second, it prevents us from making quantitative predictions regarding the 
impact of fragmentation costs on regional outcomes. 
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detailed industry.10 For the analysis, we use employment by six-digit North-American Industrial 

Classification System (NAICS) industries for each US state for the period 1990-2019. We supplement 

this data with sector-level information on employment by firm size class, also from the QCEW, to 

compute the Herfindahl index, 𝐻𝐻𝑠𝑠, defined in (15).  

Using states as our unit of geography has three advantages. First, our results are comparable to 

previous studies on industry concentration such as Ellison, and Glaeser (1997, henceforth EG97) and 

Dumais, Ellison, and Glaeser (2002). Second, using states ensures a consistent geography over time. The 

delineations (i.e., the list of geographic components at a particular point in time) of states remains 

constant over our sample period. By contrast, between censuses, the delineations for MSAs are revised to 

reflect Census Bureau population estimates (even the number of counties changes over time).11 Third, 

using states increases the reliability of our estimates. In accordance with the BLS Confidentiality policy, 

data reported under a promise of confidentiality are published in a way so as to protect the identifiable 

information of respondents. Obviously, the share of observations suppressed is inversely related to the 

size of regions. We note that totals at the industry level for the states and the nation include the 

undisclosed data suppressed within the detailed tables without revealing those data. In some case, missing 

or undisclosed values (at the states-level) create significant gaps in otherwise continuous levels of 

employment. We fill in the gaps in the data using linear interpolation. About 15 percent of the 

observations in our sample are imputed using this procedure.  

A difficulty we face in developing our data is the frequent reclassification of sectors and 

functions over time. To minimize the impact of industry reclassification on our results, we restrict our 

attention to years 1990 to 2019. Information for years prior to 1990 is available only on a Standard 

Industrial Classification (SIC) basis. Over the period covered by our sample, the NAICS classification 

introduced in 1997 is revised multiple times, first in 2002, and subsequently in 2007, 2012, and 2017.12 

We limit the sample to industries that we can track accurately across changes in classification. This 

reduces the size of the sample but ensures that our results are not driven by changes in the scope of our 

sample or changes in sector definitions.13 We also remove industries in the “Farming” (NAICS 11), 

 
10 Additional information on the QCEW is available online at https://www.bls.gov/cew/overview.htm. 
11 In a recent paper, Eckert et al. (2021) describe a method to impute missing employment to counties in the County 
Business Patterns. They provide a very detailed description of the types of issues researchers face when trying to 
construct longitudinal dataset. In particular, their analysis brings to light the fact that undisclosed information along 
with changes in geographic units and industrial classification present almost unsurmountable obstacles to the 
creation of long panels at detailed levels of geography. 
12 For years 1990 to 1996, the QCEW is available on a NAICS basis even if the NAICS was introduced only in 
1997. 
13 We remove the “Other Services” (NAICS 81) sectors and industries that contain the word “other” in their title, 
because by their nature these categories are likely to vary from year to year. 
 

https://www.bls.gov/cew/overview.htm
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“Mining, Quarrying, and Oil and Gas Extraction” (NAICS 21), Utilities (NAICS 22), and “Public 

Administration” (NAICS92) sectors because the mapping from sectors to functions is too direct (i.e., 

“miners” work in “mining”) so that the distinction between functional and sectoral specialisation is hard 

to establish. 

The OES program is the only comprehensive source of regularly produced occupational 

employment and wage rate information for the U.S. economy.14 It produces employment estimates 

annually for over 800 occupations. These estimates are available for the nation as a whole and for 

individual States; national occupational estimates for specific industries are also available. From the OES, 

we derive function-by-state data, specifically employment by six-digit Standard Occupational 

Classification (SOC) occupations by US states for the period 2000-2019. We also draw on national 

function-by-sector data from the OES to construct or to compute the Herfindahl index, 𝐻𝐻𝑓𝑓, defined in 

(16).  

As was the case with the QCEW, we face data limitations. Beginning in year 2000, the OES 

survey began using the Office of Management and Budget (OMB) Standard Occupational Classification 

(SOC) system, which was revised in 2010 and in 2018. To limit the impact of reclassification, we exclude 

years prior to 2000.15 For the analysis, we construct a longitudinal region-function datasets restricted to 

functions that we can defined consistency across changes in classification. We remove “Farming, Fishing, 

and Forestry Occupations” and occupations that contain the word “other” in their title. Finally, we fill in 

gaps in the data using interpolation. About 11 percent of the data in our sample is imputed. 

Together, the QCEW and the OES data allow us to construct the sectoral and functional 

concentration indices for each year in our sample. 

 

5.1.2 The Ellison and Glaeser concentration index 

Indices similar to 𝐺𝐺𝑠𝑠, defined in (13), are often used to measure agglomeration across regions (e.g., 

Krugman (1991) and Audretsch and Feldman (1996)). As explained by EG97, an important limitation of 

these measures is that they could suggest high levels of concentration in sectors comprised of a few large 

companies locate in a dispersed, random pattern. To control for this possibility, EG97 incorporate 

information about the size distribution of firms in the sector to construct the following index of 

concentration 

 

 
14 Additional information on the OES can be found online at https://www.bls.gov/oes/oes_emp.htm. 
15 Before 1997, data is available only at the national level. For years 1997, 1998 and 1999 the information on 
employment was collected under a OES proprietary occupational classification system.  

https://www.bls.gov/oes/oes_emp.htm
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            𝐸𝐸𝐸𝐸𝑠𝑠 =
𝐺𝐺𝑠𝑠 (1 − ∑ 𝑚𝑚𝑟𝑟

2
𝑟𝑟 )⁄ − 𝐻𝐻𝑠𝑠

1 − 𝐻𝐻𝑠𝑠
, (15) 

  

where 𝐻𝐻𝑠𝑠 = ∑ 𝑧𝑧𝑗𝑗𝑗𝑗2𝑗𝑗  is the Herfindahl index of the sector’s plant size distribution and 𝑧𝑧𝑗𝑗𝑗𝑗 is the jth plant’s 

share of sectoral employment. EG97 refer to 𝐺𝐺𝑠𝑠 (equation (13) above) as the “raw geographic 

concentration” of employment in a sector. The subtraction of 𝐻𝐻𝑠𝑠 is a correction that accounts for the fact 

that the index 𝐺𝐺𝑠𝑠 is expected to be larger in industries consisting of fewer larger plants if locations were 

chosen completely at random.16  

The EG97 index of concentration defined in equation (15) has many useful properties.17 First, it is 

easy to implement. Second, it is widely used which allows us to compare our results with previous 

studies. Third, it uses employment shares, which implies that it does not confound features in time-series 

data such as the general decline in manufacturing. 

To measure functional concentration index, we use a modified version of the EG97 index defined 

as follows 

 

𝐸𝐸𝐸𝐸𝑓𝑓 =
𝐺𝐺𝑓𝑓 �1 − ∑ 𝑚𝑚𝑓𝑓

2
𝑟𝑟 �⁄ − 𝐻𝐻𝑓𝑓

1 −𝐻𝐻𝑓𝑓
. (16) 

 

As for sectors, we adjust our raw measure of concentration 𝐺𝐺𝑓𝑓, defined in (14), to account for the fact that 

functions that are specific to a small number of plants will be more concentrated geographically compared 

to functions that are ubiquitous. Because we do not have information on plant-level employment by 

function, we cannot control directly for the dispersion of occupations across plants. Instead, we use  𝐻𝐻𝑓𝑓 =

∑ 𝑚𝑚𝑓𝑓𝑓𝑓
2

𝑠𝑠  , where 𝑚𝑚𝑓𝑓𝑓𝑓 is the share of employment in sector s performing function f.18 The intuition for the 

correction factor 𝐻𝐻𝑓𝑓, suggested by Gabe and Able (2010), is that when a function’s employment is 

 
16 In practice, changes in the value of the 𝐸𝐸𝐸𝐸𝑠𝑠 index over time are well approximated by changes in 𝐺𝐺𝑠𝑠. This happens 
because plant size distributions tend to change fairly slowly, so the correction is less important in cross-time 
comparisons within a short time period than in cross-industry comparisons. Nevertheless, we use 𝐸𝐸𝐸𝐸𝑠𝑠 as our 
benchmark measure. 
17 The motivation for the EG97 index defined in equation (15) is that it is an unbiased estimate of a sum of two 
parameters that reflect the strength of agglomeration forces (spillovers and unmeasured comparative advantage) in a 
model of location choice. At one extreme, the case of  𝐸𝐸𝐸𝐸 = 0, corresponds to a model in which location decisions 
are independent of region characteristics. In this case, the probability of choosing area r is 𝑚𝑚𝑟𝑟, the share of total 
employment in the region. At the other extreme, when 𝐸𝐸𝐸𝐸 = 1, region characteristics are so important that they 
completely overwhelm other factors, and the one region that offers the most favourable conditions will attract all the 
firms. In describing our results, we follow EG97 and refer to those industries with EGs above 0.05 as being 
concentrated and to those with EGs below 0.02 as being dispersed. 
18 In the 2-function model of earlier sections, 𝑚𝑚𝐴𝐴𝐴𝐴 = 𝑎𝑎(𝑠𝑠)/[𝑎𝑎(𝑠𝑠) + 𝑏𝑏(𝑠𝑠)] if productivity 𝜆𝜆𝑓𝑓𝑓𝑓 is the same for all f, r. If 
𝜆𝜆𝑓𝑓𝑓𝑓 varies then 𝑚𝑚𝐴𝐴𝐴𝐴 is a mode weight average of these ratios adjusted by productivity factors 𝜆𝜆𝑓𝑓𝑓𝑓.  
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concentrated in a few industries, the measured geographic concentration of the function should be higher 

all else equal. 

 

5.1.3 Sectoral concentration 

As explained in sections 3 and 4 above, the theoretical model predicts that a decrease in fragmentation 

costs leads to lower sectoral concentration. To test this prediction, we explore the time-series in the 

geographic concentration index defined in equation (15). For this part of the empirical analysis, we use a 

balanced panel that contains state-level data on 626 six-digit NAICS industries across all sectors of the 

economy for years 1990 to 2019. About 41 percent of the 18,780 observations are in the manufacturing 

sector, the remainder of the observations are distributed across industries in the business services (23%), 

personal services (20%), and wholesale, retail and transportation (15%). 

Time series changes in the geographic concentration of sector employment can be decomposed into 

two adjustments margins, within-sector changes in geographic concentration and across-sector 

reallocation of employment. We are mostly interested in quantifying the contribution of the first margin 

because the theoretical model’s predictions are related to within-sector changes in employment 

concentration. For any given year 𝜏𝜏, the mean sectoral concentration can be decomposed as follows 

 

 𝐸𝐸𝐸𝐸𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ 𝑚𝑚𝑠𝑠𝑠𝑠 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑚𝑚𝑠𝑠 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 +  ∑ (𝑚𝑚𝑠𝑠𝑠𝑠 − 𝑚𝑚𝑠𝑠) 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 ,     (17) 

   

where 𝑚𝑚𝑠𝑠𝑠𝑠 is sector-s’s share of national employment in year 𝜏𝜏 and 𝑚𝑚𝑠𝑠 is the sector’s share of 

employment in the sample (i.e., the mean over time of 𝑚𝑚𝑠𝑠𝑠𝑠). The first equality follows by definition of a 

weighted average. The second equality decomposes time series changes into two components. The first 

term of the decomposition holds employment shares constant at the sample mean and provides 

information on the contribution of the within-industry changes in concentration over time. The second 

term captures the remainder of the time series change. 

We report the results from decomposition (17) in Figure 5. The solid line depicts the weighted 

average 𝐸𝐸𝐸𝐸𝜏𝜏𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. It clearly shows the steady decline in the weighted mean geographic concentration of 

sector employment. The dashed line depicts the within-industry component of the decomposition, i.e., the 

term ∑ 𝑚𝑚𝑠𝑠 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠  in equation (17). The figure makes clear that even when holding the employment 

weights constant, the mean geographic concentration of sectors declines steadily over time. 
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Figure 5: Geographic concentration of sectors over time 

 

As illustrated in Figure 5, the rate of decay is lower when considering only the within-sector 

changes in concentration. This happens because part of the observed decrease in sectoral concentration is 

due to labor movement from less concentrated industries towards more concentrated industries. As seen 

from the first line table 1, the mean sectoral concentration decreases by about 44% over the period (going 

from 0.027 in 1990 to 0.015 in 2019), while the within-sector component decreases by about 30% (going 

from 0.023 in 1990 to 0.016 in 2019) as shown in the second line. So, the decline in the within-industry 

component of geographic concentration is large in absolute term and represents the majority of the time 

series change in geographic concentration. Overall, the results presented in Table 1 suggest that the 

average worker is employed in a more geographically dispersed sector in 2019 than he was in 1990. 

Given our assumption on the evolution of fragmentation costs, the decrease in the sectoral concentration 

over time observed in the data is consistent with the predictions of the theoretical model. 
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To get a sense of which component of the weighted mean drives the time series changes, Table 1 

also reports the simple means of the EG97 index, EG, the raw geographic concentration, G, and the 

correction factor, H. As seen in the table, the simple average decreases by about 14% over the period. The 

time series changes in raw concentration closely mimic those of the EG97 index. This happens because 

changes in the plant-level Herfindahl are an order of magnitude smaller compared to the raw geographic 

concentration index. Comparing the simple and the weighted mean reveals that large sectors tend to be 

more dispersed on average compared to smaller ones. The simple mean suggests that the average sector is 

geographically concentrated (𝐸𝐸𝐸𝐸 > 0.05), whereas the weighted mean suggests that the average 

employee works in a geographically dispersed industry (𝐸𝐸𝐸𝐸 < 0.02). 

Overall, changes in the weighted averages are useful indicators of the time series behavior of 

geographic concentration. However, to provide a more formal assessment of the time series trend in 

geographic concentration, we estimate regressions of the sectoral EG97 indices on a time trend 

controlling for sector-level factors using fixed effects 

   

             ln𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠 = 𝛽𝛽𝑠𝑠 + 𝛽𝛽 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝜏𝜏 + 𝜀𝜀𝑠𝑠𝑠𝑠 .         (18) 

 

Under the assumption that fragmentation costs are decreasing over time, the theoretical model predicts 

that the trend, 𝛽𝛽, should be negative. 

The results from estimating equation (18) by OLS are reported in Table 2. The first row reports 

the results for the full sample of 626 six-digit NAICS sectors. As predicted, the point estimate is negative 

and statistically significant and suggests that the within-sector geographic concentration of employment is 

declining over time. To evaluate if the results are driven by a specific set of sectors, we estimate equation 

(18) separately for each broad group: manufacturing, business services, personal services, and wholesale, 

retail and transportation. As reported in Table 2, every point estimate is negative and statistically 
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significant. Overall, the results presented so far, support the prediction that the geographic concentration 

of sectoral employment is declining over time. 

 

 
 

The results presented in this section share many similarities with the findings of Dumais, Ellison, 

and Glaeser (2002) who study the geographic concentration of sectoral employment across US states from 

1972 to 1997. First, the two sets of estimates are of the same magnitude. They report a (simple) mean 

0.034 for 1992. Our corresponding estimate is 0.056 (not in Table 1). The fact that our sectors are more 

concentrated on average can be explained by differences in scope and aggregation levels for sectors 

across studies. We include services and manufacturing sectors, whereas they focus on manufacturing, and 

we use six-digit NAICS industries as our definition of sectors, whereas they use three-digit NAICS. 

Second, they also find a decline in geographical concentration of sectors using US data. Both the simple 

and the employment weighted means of their index declines by more than 10% between 1972 and 1992. 

 

5.1.4 Functional concentration 

In this section, we use the decomposition in equation (17)—defined over functional shares instead of 

sectoral shares— to study the times series properties of the geographic concentration of functional 

employment. For this part of the empirical analysis, we use a balanced panel that contains state-level data 

on 704 six-digit SOC occupations across all sectors of the economy for years 2000 to 2019.   

The results are depicted in Figure 6. The solid represents the employment-year weighted mean 

concentration, while the dashed line depicts the within-function component of the weighted average. The 

figure clearly shows that there is an increase in the geographic concentration of functions over time, even 

when holding the employment weights constant. Our empirical results complement those of previous 

studies, such as Berry and Glaeser 2005, Duranton and Puga (2005), Moretti (2013) and Diamond (2016), 

that documents divergence in the skill-level of U.S. cities over time. We provide evidence that functional 

concentration holds even within disaggregated definitions of occupations. 
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Figure 6: Geographic concentration of functions over time 

 

Results from the decomposition (17), applied to functions, are reported in Table 3 for selected 

years. As seen in the table, the Herfindahl correction factor has little impact on the index because of its 

small magnitude, such that most of the changes in concentration over time is explained by the raw 

concentration index 𝐺𝐺𝑓𝑓, defined in equation (14). Comparing the simple and the weighted means reveals 

that occupations that represent a large shares of employment tend to be more dispersed on average 

compared to occupations that accounts for small shares. 
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As we did for the concentration of sectoral employment, we estimate OLS regressions of the form  

 

        ln𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓 = 𝛽𝛽𝑓𝑓 + 𝛽𝛽 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝜏𝜏 + 𝜀𝜀𝑓𝑓𝑓𝑓             (19) 

 

to estimate the time trend of geographic concentration. Under the assumption that fragmentation costs are 

decreasing over time, the theoretical model predicts that the trend, 𝛽𝛽, should be positive. The results are 

reported in Table 4 for the full sample and by broad function categories defined in the OCC. As seen in 

the first row of the table, the time trend is positive and statistically significant in the full sample. This is 

not surprising given that the estimated beta is the slope of the fitted value through the solid line in Figure 

6. The remaining rows of Table 4 show that 17 out of 21 estimated time trends are positive and 13 of 

those are statistically significant at conventional levels.  
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Overall, the results presented in Figure 6 and Tables 3 and 4 provide empirical support to the 

predictions of the theoretical model. As explained in sections 3 and 4 above, as fragmentation costs fall, 

more sectors fragment such that regions move from sectoral to functional specialization. Under our 

assumption, this implies that function concentration should increase over time. 

 

5.2  Regional specialization over time 

In this section, we explore the sectoral and functional structure of regional employment. Under our 

assumption about the time series evolution of fragmentation costs, we expect to find a decrease in sector 

specialization and an increase in functional specialization. 

We use the region-sector and the region-function datasets described in the previous section to 

construct the two measures of regional specialization defined in equations (13a) and (14a) for each 

region-year in our datasets. In each case, we aggregate state-level measures using a weighted average, 

where the weights are the states’ shares of national employment in the corresponding year. The results are 

reported in Figure 7. The decreasing trend observed in panel (a) indicates that the states’ employment is 

becoming more evenly distributed across sectors over time. Conversely, panel (b) shows that states’ 

distribution of employment across function is becoming increasingly uneven. As predicted by the 

theoretical model, these results indicate that states are becoming less specialized in terms of sectoral 

employment, but more specialized in terms of functional employment. 

Next, we evaluate the average time series changes in regional specialization using OLS 

regressions of the form  

 

        ln𝐷𝐷𝑟𝑟𝑟𝑟 = 𝛽𝛽𝑟𝑟 + 𝛽𝛽 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝜏𝜏 + 𝜀𝜀𝑟𝑟𝑟𝑟 ,            (20) 

 

where 𝛽𝛽𝑟𝑟 represent region-level fixed effects. The results are reported in Table 5. As seen in the first row 

of the table, the time trend 𝛽𝛽 is negative and statistically significant for the sectoral specialization, and 

positive and statistically significant for the functional specialization. Overall, the results provide empirical 

support to the predictions of the theoretical model. 
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(a)  sectors 

 
(b) Functions 

 

Figure 7: Regional specialization over time 
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5.3   Region size 

As explained in sections 3 and 4 above, the theoretical model predicts that larger regions have lower 

industrial and functional employment concentration. To test this prediction, we use thee indices of 

regional specialization for sectors and functions. The first set of measures are the indices D, defined in 

(13a) and (14a). The second set are Herfindahl-Hirschman indices (HHI) defined, respectively, over 

sectoral and functional employment for each region-year in the sample as 

 

𝐻𝐻𝐻𝐻𝐻𝐻𝑟𝑟𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟2 ,𝑠𝑠    and 𝐻𝐻𝐻𝐻𝐻𝐻𝑟𝑟𝜏𝜏
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ 𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟2

𝑓𝑓 .   (21) 

 

These measures, which are commonly used in the literature, are similar to our index D but without the 

deviation from national employment. The third set of measures are Krugman (1991) indices of regional 

specialization defined as  

 

𝐾𝐾𝑟𝑟𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ |𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑞𝑞�𝑟𝑟𝑟𝑟𝑟𝑟|,𝑠𝑠   and  𝐾𝐾𝑟𝑟𝜏𝜏
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∑ �𝑞𝑞𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑞𝑞�𝑟𝑟𝑟𝑟𝑟𝑟� 𝑠𝑠 ,   (22) 

 

where 𝑞𝑞�𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑞𝑞�𝑟𝑟𝑟𝑟𝑟𝑟 denote the region’s average share of employment in a sector and a function in year 𝜏𝜏, 

respectively. By definition, high values of the specialization indices imply that regional employment is 

concentrated among a small number of sectors or functions. In our sample, the correlation between the 

two indices is 0.50 for sectors and 0.85 for functions. 

We test for the negative association between regional specialization and size by estimating 

regressions of the form 

 

           𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 = 𝛽𝛽𝜏𝜏 + 𝛽𝛽 log 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟 + 𝜀𝜀𝑟𝑟𝑟𝑟 ,                      (23)                                                          

  

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟 represents one of the three specialization indices (D, HHI, or K), 𝛽𝛽𝜏𝜏 denotes year fixed 

effects, 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟 is the state’s employment, and 𝜀𝜀𝑟𝑟𝑟𝑟 is a residual term that capture the impact of exogenous 

factors that affect regional specialization and are not included in the model.  

We report results from estimating (23) by OLS in Table 6. Panels A and B report, respectively, 

results for sectoral specialization and functional specialization. The first, second and third line present, 

respectively, the results using the D indices defined in (13a) and (14a), the HHI index of specialization 

defined in equation (21) and the Krugman specialization index defined in equation (22). To obtain more 

meaningful magnitudes for the point estimates, we report so-called “beta coefficients” (defined as the 

usual OLS point estimates multiplied by the ratio of the independent and dependent variables’ standard 
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deviation) which gives the number of standard deviations in the dependent variable associated with a one 

standard deviation change in the independent variable. 

As seen in the table, the point estimates vary across measures of specialization but, in all cases, 

the partial correlation between the measures and regional employment is negative and statistically 

significant at conventional levels as expected. These results indicate that region size is a strong predictor 

of the cross-sectional variation in both sectoral and functional specialization. 

 

 
 

6. Conclusions 

 

Our paper is motivated by what are widely seen as changes in the nature of work and changes in scope of 

activities performed in our urban areas.  Our approach is necessarily circumscribed by the requirements of 

formal theory and data analysis, but many of the ideas here are consistent with the broad analysis and 

vision of Moretti (2012) for example.   

 The paper draws on both concepts and analyses from a number of fields of study including 

international trade, multinational corporations, urban economics and economic geography.  Industries 

(sectors) produce with a range of functions, synonymous with occupations in the empirical analysis.  A 

sector in a region may produce with only locally sourced functions or may draw functions from other 

locations, the latter referred to as fragmentation.  Our model creates a distribution of fragmented and 
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integrated production across industries and across regions and identifies the characteristics of industries 

that are fragmented versus integrated, and of the regions in which integrated production occurs.   

A key variable in our theory is a cost of geographically separating the sourcing of function inputs 

into a sector, referred to as the fragmentation cost.  Our principal result is that, at high costs, a region’s 

employment is concentrated in certain sectors, with each sector’s employees performing many different 

functions.  At low fragmentation costs, a region’s employment switches to being concentrated in certain 

functions, with employees in a particular function doing work for many different sectors.  Instead of a 

region having a range of production workers, managers, lawyers and accountants working in a few 

sectors, it comes to have a smaller range of functions, for example lawyers or accountants, working for 

many different sectors, often at a distance.   

 This basic model result is in turn used to draw out qualitative and quantitative predictions about a 

range of issues including how concentration indices for sectors and function behave, welfare effects and a 

country’s trade position with the outside world.  Asymmetric cases capture some interesting outcomes, 

including a possibility that falling fragmentation costs lead to a divergence in city size over some range of 

these costs.       

 We do not have good measures of these fragmentation costs and existing proxies do not provide 

either state or sector level variation.  But we are able to measure key relationships over a twenty-year 

period for functions, thirty years for sectors.  We find that over time our measure of sectoral concentration 

within regions has steadily decreased and functional concentration has increased.  We show that these 

adjustments are not just due to employment shifting from concentrated sectors to dispersed sectors; e.g., it 

is not due to employment shifting from geographically concentrated manufacturing to dispersed services.  

Our effect holds just as strongly within sectors.   

 Second, we use the same data to calculate measures of regional specialization, more in line with a 

traditional international trade approach.  With the confines of our theory model, these measures of 

regional specialization in sectors and functions should be qualitatively similar to the concentration 

measures and indeed they are in our simulations.  Empirically, they also have the property that regional 

sectoral specialization is falling over time and regional functional specialization is rising, though the 

former has a slight u-shaped feature at the end of the time period.  

Finally, we find that larger regions are less specialized in both sectors and functions.  All three 

results are consistent with the model and with fragmentation costs that are falling over time.  We argue, 

though only informally, that our theoretical and empirical findings seem consistent with a wide range of 

results in several related literatures. 



 35 

References 
 
Antràs, Pol and David Chor (2021), “Global Value Chains”, NBER working paper 28549, March 2021. 

Audretsch, David B. and Maryann P. Feldman (1996), “R&D Spillovers and the Geography of Innovation 
and Production”, American Economic Review 86, 630-640. 

Autor, David H. (2013), “The Task Approach to Labor Markets; an Overview”, Journal for Labour 
Market Research 46, 185-199, NBER working paper 18711. 

Barbour, Elisa and Ann Markusen (2007), “Regional Occupational and Industrial Structure: Does one 
Imply the Other?”, International Regional Science Review 30, 92-90. 

Behrens, Kristian, Gilles Duranton, and Frédéric Robert-Nicoud (2014), “Productive Cities: Sorting, 
selection, and agglomeration”, Journal of Political Economy 122, 507-553. 

Berry, Christopher R., and Edward L. Glaeser. "The divergence of human capital levels across cities." 
Papers in regional science 84, no. 3 (2005): 407-444. 

Brakman, Steven, and Charles van Marrewijk (2013), “Lumpy Countries, Urbanization and Trade”, 
Journal of International Economics, 89, 252-261. 

Charnoz, Pauline, Claire Lelarge and Corentin Trevien (2018), “Communication Costs and the Internal 
Organization of Multi-Plant Businesses: Evidence from the Impact of the French High-Speed 
Rail”, Economic Journal 128, 949-994. 

Courant, Paul N. and Alan Deardorff (1992). ‘International Trade with Lumpy Countries’. Journal of 
Political Economy 100, 198–210 

Davis, Donald R., and Johnathan Dingel (2018), “The Comparative Advantage of Cities”, Journal of 
International Economics 123, Article 103291. 

Diamond, Rebecca. "The determinants and welfare implications of US workers' diverging location 
choices by skill: 1980-2000." American Economic Review 106, no. 3 (2016): 479-524. 

Dumais, Guy, Glenn Ellison, and Edward L. Glaeser (2002), “Geographic concentration as a dynamic 
process.” Review of Economics and Statistics, 84(2), 193-204. 

Duranton, Giles, J. Vernon Henderson and William Strange (eds.) (2015), Handbook of Regional and 
Urban Economics, volume 4, Amsterdam North Holland. 

Duranton, G., & Overman, H. G. (2005). Testing for localization using micro-geographic data. The 
Review of Economic Studies, 72(4), 1077-1106. 

Duranton, Giles, and Diego Puga (2005), “From sectoral to functional urban specialization”, Journal of 
Urban Economics, 57, 343-370.   

Eckert, Fabian, Sharat Ganapati and Conor Walsh (2020), “Skilled Scalable Services: The New Urban 
Bias in Economic Growth”, CESifo Working Paper No 8705. 

Eckert, Fabian. "Growing apart: Tradable services and the fragmentation of the US economy." 
mimeograph, Yale University (2019). 

Eckert, Fabian, Teresa C. Fort, Peter K. Schott, and Natalie J. Yang (2021) Imputing Missing Values in 
the US Census Bureau's County Business Patterns. NBER working paper 28549. 

Ellison, Glenn and Glaeser, Edward L. (1997), “Geographic Concentration in U.S. Manufacturing 
Industries: A Dartboard Approach”, Journal of Political Economy 105, 889-927. 

Feenstra, Robert C, and Gordon H Hanson (1996), “Globalization, Outsourcing, and 
Wage Inequality”, American Economic Review 86, 240-245. 



 36 

Fujita, Masahisa, Paul Krugman and Anthony. J. Venables (1999), The Spatial Economy: Cities, Regions 
and International Trade, MIT press. 

Gabe, Todd M. and Jaison R. Able (2012), “Specialized Knowledge and the Geography Concentration of 
Occupations”, Journal of Economic Geography 12, 435-453. 

Grossman, Gene. M. and Esteban Rossi-Hansberg (2008), “Trading Tasks: A Simple Theory of Off-
shoring”, American Economic Review, 98, 1978-1997. 

Grossman, Gene M. and Esteban Rossi-Hansberg (2012), “Task Trade between Similar Countries”, 
Econometrica, 80, 593-629. 

Henderson, Vernon, and Jacques-Francois Thisse (eds.) (2004), Handbook of Regional and Urban 
Economics, volume 4, Amsterdam North Holland. 

Krugman, Paul (1991), “Increasing Returns and Economic Geography” Journal of Political Economy 99, 
483-99.  

Markusen, James R. (1989), “Trade in Producer Services and in Other Specialized Intermediate Inputs”, 
American Economic Review 79, 85-95. 

Markusen, James R. (2002), Multinational Firms and the Theory of International Trade, Cambridge: MIT 
Press. 

Michaels, Guy, Ferdinand Rauch and Stephen Redding (2019), “Task Specialization in U.S. Cities from 
1880-2000”, Journal of the European Economic Association 17, 754-798. 

Moretti, Enrico (2012), The New Geography of Jobs, Mariner Press. 

Moretti, Enrico. "Real wage inequality." American Economic Journal: Applied Economics 5, no. 1 
(2013): 65-103. 

Rossi-Hansberg, Esteban, Pierre-Daniel Sarte and Raymond Owens III (2009), “Firm Fragmentation and 
Urban Patterns”, International Economic Review, 50, 143-186. 

Timmer, Marcel P, Sebastien Miroudot and Gaaitzen J. de Vries, (2019), “Functional Specialisation and 
Trade”, Journal of Economic Geography, 19, 1-30. 

 

 

 

  



 37 

Appendix 1: Section 3 theory 

 

Table A1:   Employment by function f = A, B, in sector s and region r = 1, 2. 

 Region 1 Region 2 

Integrated in 1:  0 < 𝑠𝑠 < 𝑠𝑠1 

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1  𝐿𝐿𝐴𝐴2(𝑠𝑠) = 0 

Function B 𝐿𝐿𝐵𝐵1(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 0 

Fragmented:    𝑠𝑠1 < 𝑠𝑠 < 𝑠𝑠2 

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1  𝐿𝐿𝐴𝐴2(𝑠𝑠) = 0 

Function B     𝐿𝐿𝐵𝐵1(𝑠𝑠) = 0 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2 

Integrated in 2:    𝑠𝑠2 < 𝑠𝑠 < 1 

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 0 𝐿𝐿𝐴𝐴2(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 

Function B 𝐿𝐿𝐵𝐵1(𝑠𝑠) = 0 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 𝑛𝑛(𝑠𝑠)𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2 

𝐿𝐿𝑓𝑓𝑓𝑓:   Employment in each function/region (all sectors) 

Function A 𝐿𝐿𝐴𝐴1 = � 𝐿𝐿𝐴𝐴1(𝑠𝑠)𝑑𝑑𝑑𝑑   
𝑠𝑠2

0
 𝐿𝐿𝐴𝐴2 = � 𝐿𝐿𝐴𝐴2(𝑠𝑠)𝑑𝑑𝑑𝑑      

1

𝑠𝑠2
 

Function B 𝐿𝐿𝐵𝐵1 = � 𝐿𝐿𝐵𝐵1(𝑠𝑠)𝑑𝑑𝑑𝑑  
𝑠𝑠1

0
 𝐿𝐿𝐵𝐵2 = � 𝐿𝐿𝐵𝐵1(𝑠𝑠)𝑑𝑑𝑑𝑑      

1

𝑠𝑠1
 

𝐿𝐿𝑠𝑠𝑠𝑠: Employment in each sector/region (all functions) 

 𝐿𝐿𝑠𝑠1 = 𝛴𝛴𝑓𝑓=𝐴𝐴,𝐵𝐵𝐿𝐿𝑓𝑓1(𝑠𝑠) 𝐿𝐿𝑠𝑠2 = 𝛴𝛴𝑓𝑓=𝐴𝐴,𝐵𝐵𝐿𝐿𝑓𝑓2(𝑠𝑠) 

𝐿𝐿𝑟𝑟:   Total employment in each region 

 𝐿𝐿1 = 𝐿𝐿𝐴𝐴1 + 𝐿𝐿𝐵𝐵1 = � 𝐿𝐿1(𝑠𝑠)𝑑𝑑𝑑𝑑   
1

0
 𝐿𝐿2 = 𝐿𝐿𝐴𝐴2 + 𝐿𝐿𝐵𝐵2 = � 𝐿𝐿2(𝑠𝑠)𝑑𝑑𝑑𝑑   

1

0
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Table A.2:   Employment by function f = A, B, in sector s and region r = 1, 2. 

 Region 1 Region 2 

I Integrated in 1:  0 < 𝑠𝑠 < 𝑠𝑠1     

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐴𝐴1 [1 + 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄   𝐿𝐿𝐴𝐴2(𝑠𝑠) = 0 

Function B 𝐿𝐿𝐵𝐵1(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐵𝐵1 [1 − 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  𝐿𝐿𝐵𝐵2(𝑠𝑠) = 0 

II Fragmented:    𝑠𝑠1 < 𝑠𝑠 < 𝑠𝑠2 

Function A 𝐿𝐿𝐴𝐴1(𝑠𝑠) = 𝑛𝑛𝑛𝑛𝐴𝐴1 [1 + 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄   𝐿𝐿𝐴𝐴2(𝑠𝑠) = 0 

Function B   𝐿𝐿𝐵𝐵1(𝑠𝑠) = 0 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐵𝐵2 [1 − 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  

III Integrated in 2:    𝑠𝑠2 < 𝑠𝑠 < 1 

Function A   𝐿𝐿𝐴𝐴1(𝑠𝑠) = 0 𝐿𝐿𝐴𝐴2(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐴𝐴2 [1 + 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  

Function B   𝐿𝐿𝐵𝐵1(𝑠𝑠) = 0 𝐿𝐿𝐵𝐵2(𝑠𝑠) = 𝑛𝑛𝜆𝜆𝐵𝐵2 [1 − 𝛾𝛾(1 − 2𝑠𝑠)] 2⁄  

IV 𝐿𝐿𝑓𝑓𝑓𝑓:   Employment in each function/region (all sectors) 

Function A 𝐿𝐿A1 = λA1𝑠𝑠2[1 + γ(1 − 𝑠𝑠2)]𝑛𝑛 2⁄  𝐿𝐿𝐴𝐴2 = 𝜆𝜆𝐴𝐴2 (1 − 𝑠𝑠2)(1 − 𝛾𝛾𝛾𝛾2)𝑛𝑛 2⁄  

Function B 𝐿𝐿𝐵𝐵1 = 𝜆𝜆𝐵𝐵1𝑠𝑠1[1 − 𝛾𝛾(1 − 𝑠𝑠1)]𝑛𝑛 2⁄  𝐿𝐿𝐵𝐵2 = 𝜆𝜆𝐵𝐵2(1 − 𝑠𝑠1)(1 + 𝛾𝛾𝛾𝛾1)𝑛𝑛 2⁄  

V 𝐿𝐿𝑠𝑠𝑠𝑠: Employment in each sector/region (all functions) 

 𝐿𝐿𝑠𝑠1 = 𝛴𝛴𝑓𝑓=𝐴𝐴,𝐵𝐵𝐿𝐿𝑓𝑓1(𝑠𝑠) 𝐿𝐿𝑠𝑠2 = 𝛴𝛴𝑓𝑓=𝐴𝐴,𝐵𝐵𝐿𝐿𝑓𝑓2(𝑠𝑠) 

VI 𝐿𝐿𝑟𝑟:   Total employment in each region 

 𝐿𝐿1 = 𝐿𝐿𝐴𝐴1 + 𝐿𝐿𝐵𝐵1 = � 𝐿𝐿1(𝑠𝑠)𝑑𝑑𝑑𝑑   
1

0
 𝐿𝐿2 = 𝐿𝐿𝐴𝐴2 + 𝐿𝐿𝐵𝐵2 = � 𝐿𝐿2(𝑠𝑠)𝑑𝑑𝑑𝑑   

1

0
 

 

Unit profit functions are: 

𝜋𝜋1(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − {2𝜆𝜆 + ∆𝜆𝜆[1 − 𝛾𝛾(1 − 2𝑠𝑠)]}𝑤𝑤 2⁄ ,    𝜋𝜋𝐹𝐹(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − 𝜆𝜆𝜆𝜆 − 𝑇𝑇,  

𝜋𝜋2(𝑠𝑠) = 𝑝𝑝(𝑠𝑠) − {2𝜆𝜆 + ∆𝜆𝜆[1 + 𝛾𝛾(1 − 2𝑠𝑠)]}𝑤𝑤 2⁄ . 
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Proposition 1:     

iib)  𝑠𝑠2 = 1
2
�1 + 1

𝛾𝛾
�1 − 2𝑡𝑡

Δ𝜆𝜆
�� , decreasing in t.   𝑠𝑠2 = 1 when 𝑡𝑡 = (1 − 𝛾𝛾)Δ𝜆𝜆 2⁄    

iic)   𝐿𝐿𝐴𝐴2 = 𝜆𝜆𝐴𝐴2 (1 − 𝑠𝑠2)(1 − 𝛾𝛾𝛾𝛾2)𝑛𝑛 2⁄ .  If γ < 1 then  𝐿𝐿𝐴𝐴2 = 0  at  𝑠𝑠2 = 1, i.e. 𝑡𝑡 = (1 − 𝛾𝛾)Δ𝜆𝜆 2⁄ .  All 

sectors use all functions and all sectors are fragmented at this value of t. 

If γ > 1 then  𝐿𝐿𝐴𝐴2 = 0  at  𝛾𝛾𝑠𝑠2 = 1 , i.e. 𝑡𝑡 = (𝛾𝛾 − 1)Δ𝜆𝜆 2⁄ .   Some sectors use only one function: all 

sectors that use both functions are fragmented at this value of t. 

 

Section 3.2: localisation economies  

Using equation (6a) in (7a) gives the unit profit advantage from integration,   

𝛱𝛱(𝑠𝑠1, 𝑡𝑡) ≡ 𝜋𝜋1(𝑠𝑠1) − 𝜋𝜋𝐹𝐹(𝑠𝑠1) = 𝑡𝑡 − [1 − 𝛾𝛾(1 − 2𝑠𝑠1)] �∆Λ − 𝜎𝜎𝜎𝜎 �−
1
2

+ 𝑠𝑠1[1 − 𝛾𝛾(1 − 𝑠𝑠1)]��𝑤𝑤 2,   (A1)�  

There exists an integrated equilibrium if  𝑡𝑡 ≥ 𝑡𝑡∗∗, where 𝑡𝑡∗∗ is the minimum value at which 𝛱𝛱(𝑠𝑠1 =

1/2, 𝑡𝑡) ≥ 0, and its value is (from inspection of A1), 𝑡𝑡∗∗ = [∆Λ + 𝑛𝑛𝑛𝑛𝑛𝑛 4⁄ ]𝑤𝑤 2⁄ . 

The function 𝛱𝛱(𝑠𝑠1, 𝑡𝑡) is cubic in 𝑠𝑠1, and is illustrated in figure A1 over the interval 𝑠𝑠1 ∈ [0, 0.5], for three 

different values of t, higher values of t shifting the curve upwards.  At the lowest value of t illustrated, 

integration is profitable for sector 1 at 𝑠𝑠1 ≤ 0.22.  The middle curve is drawn for value 𝑡𝑡∗∗, i.e. is the 

value of t at which 𝛱𝛱(𝑠𝑠1 = 1 2⁄ , 𝑡𝑡∗∗) = 0.  There is an interval of values somewhat greater than 𝑡𝑡∗∗ at 

which there are two values of 𝑠𝑠1 at which 𝛱𝛱(𝑠𝑠1, 𝑡𝑡) = 0, the lower one of which is stable, the upper 

unstable.  The highest curve is the greatest value of t at which there is a fragmented equilibrium, this 

occurring at values {𝑠̃𝑠1, 𝑡̃𝑡, } .  It is possible to derive the values {𝑠̃𝑠1, 𝑡̃𝑡} from the pair of equations 

𝜕𝜕𝛱𝛱(𝑠̃𝑠1, 𝑡̃𝑡) 𝜕𝜕𝑠𝑠1⁄ = 0,  𝛱𝛱(𝑠̃𝑠1, 𝑡̃𝑡) = 0.  If ∆Λ = 0, the value is, 𝑡̃𝑡 = 𝑛𝑛𝑛𝑛(1 + 𝛾𝛾2)3 2⁄ 31 2⁄ 𝑤𝑤/(36𝛾𝛾).  There is a 

positive interval (𝑡𝑡∗∗, 𝑡̃𝑡) in which there are multiple equilibria if spillovers 𝑛𝑛𝑛𝑛 are large relative to 

Ricardian productivity difference, ∆Λ.  
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Appendix 2: Specification of utility and income 

The specification of utility (welfare) is quite standard for trade models. The Q goods are a two-level CES 

nest. Domestic and foreign varieties for any z sector have an elasticity of substitution of ε > 1 whereas 

goods from different s sectors are Cobb-Douglas substitutes. R is the outside good, giving a standard 

quasi-linear utility function  

𝑈𝑈 = 𝛽𝛽 ln�∏ �𝜃𝜃𝑑𝑑 �
𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)
𝜃𝜃𝑑𝑑

�
𝜀𝜀−1
𝜀𝜀 + 𝜃𝜃𝑓𝑓 �

𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠)
𝜃𝜃𝑓𝑓

�
𝜀𝜀−1
𝜀𝜀
�

𝜀𝜀
𝜀𝜀−1

𝑠𝑠 � + 𝑅𝑅     (A1) 

where 𝛽𝛽 is a scaling parameter. Income (Y) is given the sum of wages (net of commuting costs and rents = 

𝑤𝑤0) for all urban and outside workers (𝐿𝐿�) plus land rents 𝐻𝐻1 and 𝐻𝐻2 from (12).  

 𝑌𝑌 = 𝑤𝑤0𝐿𝐿� + 𝐻𝐻1 + 𝐻𝐻2         (A2) 

The domestic economy’s budget constraint is that Y is spent on R (used as numeraire) plus domestic and 

foreign urban goods. 

 𝑌𝑌 = 𝑅𝑅 + ∑ 𝑝𝑝(𝑠𝑠)𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)𝑠𝑠 + ∑ 𝑝̅𝑝𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠)𝑠𝑠        (A3) 

(A3) can be substituted into (A1) to replace R. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

𝛱𝛱(𝑠𝑠1, 𝑡𝑡) 

𝑠𝑠1 

𝛱𝛱(𝑠𝑠1, 𝑡𝑡∗∗) 

𝛱𝛱(𝑠𝑠1, 𝑡𝑡�) 𝛱𝛱(𝑠𝑠1, 𝑡𝑡) 

Figure A1:  Expression A1 for different values of t 
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   𝑈𝑈 = 𝛽𝛽 ln�∏ �𝜃𝜃𝑑𝑑 �
𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)
𝜃𝜃𝑑𝑑

�
𝜀𝜀−1
𝜀𝜀 + 𝜃𝜃𝑓𝑓 �

𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠)
𝜃𝜃𝑓𝑓

�
𝜀𝜀−1
𝜀𝜀
�

𝜀𝜀
𝜀𝜀−1

𝑠𝑠 � + 𝑌𝑌 − ∑ 𝑝𝑝(𝑠𝑠)𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠)𝑠𝑠 − ∑ 𝑝̅𝑝𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠)𝑠𝑠   (A4) 

Maximization of (A4) with respect to the Q’s (and equivalently for foreign) yields the demand functions 

in the body of the paper, which do not depend directly on Y as is the usual result in quasi-linear 

preferences. Domestic demand for domestic good s for example is: 

 𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠) = 𝛼𝛼𝑑𝑑𝜃𝜃𝑓𝑓𝑝𝑝(𝑠𝑠)−𝜖𝜖 {𝜃𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖 + 𝜃𝜃𝑓𝑓𝑝̅𝑝1−𝜖𝜖}⁄       (A5) 

where 𝛼𝛼𝑑𝑑 is a scaling parameter that is increasing in 𝛽𝛽 (𝛽𝛽𝑑𝑑 which could differ from the foreign 𝛽𝛽𝑓𝑓). 

Suppose θd = θf = 0.5 and all p(s) = 𝑝𝑝�  = 1. Then α = 2 in the demand functions implies β = 21/ε and Qij = 1. 

Parameters αd and αf in the demand functions in section 2 are increasing in the β of the domestic or 

foreign economy, and increases in the α’s or β’s can represent increases in or differences in market size.19   

 

Appendix 3: General equilibrium as a non-linear complementarity problem 

Here we give the specification for the model with agglomeration economies, which has more equations 

and unknowns than the Ricardian model.  The latter is simpler because the 𝜆𝜆s are exogenous. 

Non-negative variables: 

       𝐿𝐿𝑖𝑖  labor demand or employment in region i 

       𝑤𝑤𝑖𝑖  wages in region i 

   𝑋𝑋𝑖𝑖𝑖𝑖  output of function j in region i 

  𝜆𝜆𝑖𝑖𝑖𝑖  labor requirements in function j in region j 

𝑄𝑄𝑑𝑑(𝑠𝑠)  total output of sector z (all firm types) 

𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠)   domestic demand for foreign goods 

𝑛𝑛𝑘𝑘(𝑠𝑠)  output of type 𝑘𝑘 = 1, 2,𝐹𝐹 in sector s 

𝑝𝑝(𝑠𝑠)  price of (domestic) good z 

 

With the dimension of s equal to 51, the model has 318 non-negative variables complementary to 

318 weak inequalities. A strict inequality corresponds to a zero value for the complementary variable. 

First, the supply-demand relationships for labor demand in the two regions are given as follows, where ⊥ 

denotes complementarity between the inequality and a variable.  Labor is used in variables costs for all 

firm types in all sectors, plus used in fragmentation costs for fragmented sectors.  We use a simple 

 
19Our algebra indicates that the relationship between the 𝛽𝛽 in (A1) and the 𝛼𝛼 in the demand functions above are 
related by 𝛼𝛼 = (𝛽𝛽 2⁄ )

𝜀𝜀
1+2𝜀𝜀. Because of the concavity of the log formulation of utility, 𝛽𝛽 must more than double to 

double market demand (𝛼𝛼) at constant prices.   



 42 

formulation of the fragmentation labor use, which divides it between the two regions, each using  𝑡𝑡 2⁄  per 

F type firm. 

 𝐿𝐿1  ≥ ∑ 𝑛𝑛1(𝑠𝑠)(𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1) + 𝑛𝑛𝐹𝐹(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1𝑠𝑠 +   𝑛𝑛𝐹𝐹(𝑠𝑠)𝑡𝑡 2⁄   ⊥  𝐿𝐿1 (A6) 

 𝐿𝐿2  ≥ ∑ 𝑛𝑛2(𝑠𝑠)(𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2) + 𝑛𝑛𝐹𝐹(𝑠𝑠)𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 +  𝑛𝑛𝐹𝐹(𝑠𝑠)𝑡𝑡 2⁄𝑠𝑠   ⊥  𝐿𝐿2 (A7) 

 

Second, from eqn. (11) wages are given by:  

 (𝑤𝑤1 − 𝑤𝑤0)𝐾𝐾 𝑐𝑐⁄ ≥ 𝐿𝐿1     ⊥ 𝑤𝑤1   (A8) 

 (𝑤𝑤2 − 𝑤𝑤0)𝐾𝐾 𝑐𝑐⁄ ≥ 𝐿𝐿2     ⊥ 𝑤𝑤2   (A9) 

 

Third, output levels of the two functions in the two regions are given by:   

 𝑋𝑋𝐴𝐴1  ≥ ∑ 𝑎𝑎(𝑠𝑠)�𝑛𝑛1(𝑠𝑠) + 𝑛𝑛𝐹𝐹(𝑠𝑠)�𝑠𝑠     ⊥ 𝑋𝑋𝐴𝐴1   (A10) 

 𝑋𝑋𝐴𝐴2  ≥ ∑ 𝑎𝑎(𝑠𝑠)𝑛𝑛2(𝑠𝑠)𝑠𝑠      ⊥ 𝑋𝑋𝐴𝐴2   (A11) 

 𝑋𝑋𝐵𝐵1  ≥ ∑ 𝑏𝑏(𝑠𝑠)𝑛𝑛1(𝑠𝑠)𝑠𝑠      ⊥ 𝑋𝑋𝐵𝐵1   (A12) 

 𝑋𝑋𝐵𝐵2  ≥ ∑ 𝑏𝑏(𝑠𝑠)�𝑛𝑛2(𝑠𝑠) + 𝑛𝑛𝐹𝐹(𝑠𝑠)�𝑠𝑠     ⊥ 𝑋𝑋𝐵𝐵2   (A13) 

Fourth, the labor input coefficients (inverse productivity) are given by: 

 𝜆𝜆𝐴𝐴1  ≥ Λ𝐴𝐴1 − 𝜎𝜎𝐴𝐴X𝐴𝐴1     ⊥ 𝜆𝜆𝐴𝐴1   (A14) 

 𝜆𝜆𝐴𝐴2  ≥ Λ𝐴𝐴2 − 𝜎𝜎𝐴𝐴X𝐴𝐴2     ⊥ 𝜆𝜆𝐴𝐴2   (A15) 

 𝜆𝜆𝐵𝐵1  ≥ Λ𝐵𝐵1 − 𝜎𝜎𝐵𝐵X𝐵𝐵1     ⊥ 𝜆𝜆𝐵𝐵1   (A16) 

 𝜆𝜆𝐵𝐵2  ≥ Λ𝐵𝐵2 − 𝜎𝜎𝐵𝐵X𝐵𝐵2     ⊥ 𝜆𝜆𝐵𝐵2   (A17) 

 

The volume of output in each sector is complementary to a zero-profit condition, that unit cost is greater 

than or equal to price. Fragmentation costs are: 𝑡𝑡( 𝑤𝑤1 + 𝑤𝑤2) 2⁄ . 19F

20  Therefore 

 𝑤𝑤1(𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1) ≥ 𝑝𝑝(𝑠𝑠)    ⊥ 𝑛𝑛1(𝑠𝑠)   (A18) 

 𝑤𝑤2(𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴2 + 𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵2) ≥ 𝑝𝑝(𝑠𝑠)    ⊥ 𝑛𝑛2(𝑠𝑠)   (A19) 

 𝑤𝑤1𝑎𝑎(𝑠𝑠)𝜆𝜆𝐴𝐴1 + 𝑤𝑤2𝑏𝑏(𝑠𝑠)𝜆𝜆𝐵𝐵1 +  𝑡𝑡(𝑤𝑤1 + 𝑤𝑤2) 2⁄ ≥ 𝑝𝑝(𝑠𝑠) ⊥ 𝑛𝑛𝐹𝐹(𝑠𝑠)   (A20) 

 

Total output of good s is given by the sum the outputs across firm types: 

 𝑄𝑄𝑑𝑑(𝑠𝑠) ≥ 𝑛𝑛1(𝑠𝑠) + 𝑛𝑛2(𝑠𝑠) + 𝑛𝑛𝐹𝐹(𝑠𝑠)   ⊥ 𝑄𝑄𝑑𝑑(𝑠𝑠)   (A21) 

 

 
20 Note that all inequalities are homogeneous of degree 1 in wages and prices. 
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The final element is to specify the demand size of the model, which links outputs, prices, and the 

external foreign market. The domestic country is assumed small as an importer, and so all foreign prices 

for the z sectors are given by an exogenous value, common across all sectors. Domestic and foreign goods 

within a sector are CES substitutes with an elasticity of substitution 𝜀𝜀 > 1. Sectoral composites (domestic 

and foreign varieties) are Cobb-Douglas substitutes. The outside good R is treated as a numeraire. It is 

additively separable with a constant marginal utility and hence income does not appear in the demand 

functions for the Q goods (though we will introduce a demand shifter later).  

The market clearing equation for the domestic good z is that supply equal the sum of domestic 

and foreign demand. αd and αf are “short-hand” scaling parameters for domestic and foreign, that could 

depend on the relative market sizes for example (see appendix). 𝜃𝜃𝑑𝑑 and 𝜃𝜃𝑓𝑓 are the weights on the 

domestic and foreign varieties in the nest for each sector z.  

 

𝑄𝑄𝑑𝑑(𝑠𝑠) = 𝑄𝑄𝑑𝑑𝑑𝑑(𝑠𝑠) + 𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠) = 𝛼𝛼𝑑𝑑𝜃𝜃𝑑𝑑𝑝𝑝(𝑠𝑠)−𝜖𝜖

𝜃𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖+𝜃𝜃𝑓𝑓𝑝̅𝑝1−𝜖𝜖
+ 𝛼𝛼𝑓𝑓𝜃𝜃𝑑𝑑𝑝𝑝(𝑠𝑠)−𝜖𝜖

𝜃𝜃𝑓𝑓 𝑝𝑝(𝑠𝑠)1−𝜖𝜖+𝜃𝜃𝑓𝑓𝑝̅𝑝1−𝜖𝜖
 ⊥  𝑝𝑝(𝑠𝑠)   (A22) 

 

Domestic demand for foreign goods is not needed to solve the core model, but is needed for welfare 

calculations after solution. These are given by 

 𝑄𝑄𝑓𝑓𝑓𝑓(𝑠𝑠) = 𝛼𝛼𝑑𝑑𝜃𝜃𝑓𝑓𝑝̅𝑝−𝜖𝜖

𝜃𝜃𝑑𝑑 𝑝𝑝(𝑠𝑠)1−𝜖𝜖+𝜃𝜃𝑓𝑓𝑝̅𝑝1−𝜖𝜖
       ⊥  𝑄𝑄𝑓𝑓𝑓𝑓(𝑧𝑧)   (A23) 

 

As noted above, the core model is then 318 weak inequalities complementary with 318 non-negative 

unknowns.  
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Figure A.2: Symmetric Spillovers Case 

 

Figure A.3: Asymmetric Ricardian Case 

Region 1: comparative and absolute advantage in function A 

 
Figure A.4: Asymmetric Ricardian Case 

Region 1: comparative and absolute advantage in function A. 
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Figure A.5: Asymmetric Spillovers Case; spillovers in function A only 
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