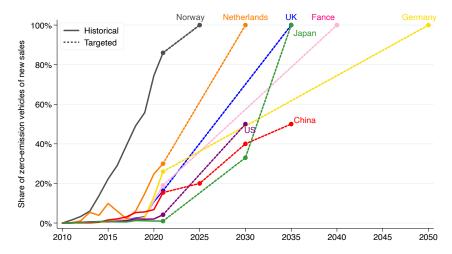
Optimal Charging Infrastructure for Electric Vehicles

Panle Jia Barwick UW-Madison & NBER


Christopher Knittel MIT & NBER

Shanjun Li Cornell & NBER Youming Liu Bank of Canada

James Stock Harvard & NBER

Economics of Transportation in the 21st Century October 14, 2022 Preliminary

ZEV Targets and EV Shares in 2021

Note: ZEV target and EV market shares for major EV countries. Source: ICCT with authors' updates.

- The Bipartisan Infrastructure Law provides \$7.5 billion to build a national EV charging network by 2026
- Our research questions:
 - What would the optimal charging network look like in terms of station density and the spatial pattern?
 - One of the second terms of terms o

Research Framework

() A model of the two-sided market on EV demand and charging stations

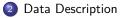
② Estimation using granular data on EV sales and stations

Policy simulations

- Solve for socially optimal charging network without budget constraint
- Examine market outcomes under different cost-sharing ratios
- Find subsidy policies to mimic the social optimal under a budget

Research Framework

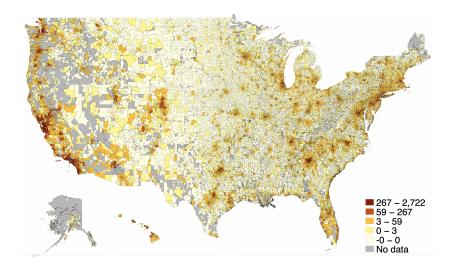
() A model of the two-sided market on EV demand and charging stations


Stimation using granular data on EV sales and stations

Policy simulations

- Solve for socially optimal charging network without budget constraint
- Examine market outcomes under different cost-sharing ratios
- Find subsidy policies to mimic the social optimal under a budget

- **()** A model of the two-sided market on EV demand and charging stations
- Stimation using granular data on EV sales and stations
- Policy simulations
 - Solve for socially optimal charging network without budget constraint
 - Examine market outcomes under different cost-sharing ratios
 - Find subsidy policies to mimic the social optimal under a budget

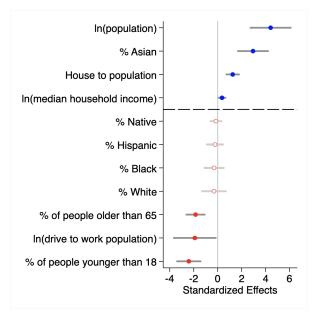


3 Empirical Model

- 4 Policy Simulations
- 5 Findings and Next Steps

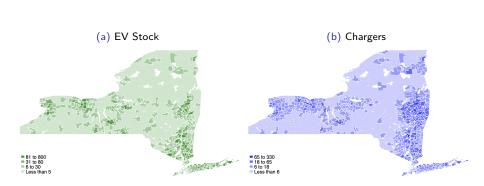
- Annual EV sales by model by zip, and vehicle attributes 2013-19
- Charging stations with location, entry time, and characteristics
- 2017 National Household Travel Survey
- Demographics, foot traffic at POIs, road network and vehicle traffic

EV Sales by Zip Code in 2019


Charging Station Density •

→ 2022 Map → Facility Type

Networks


• No. of stations within 20 miles by zipcode.

Charging Stations and Demographics

EV Stock and Charging in New York in 2021

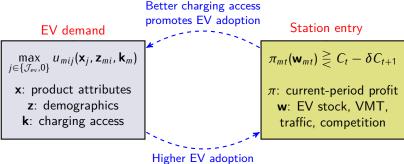
Top 10 states

2 Data Description

3 Empirical Model

- 4 Policy Simulations
- 5 Findings and Next Steps

→ EV demand

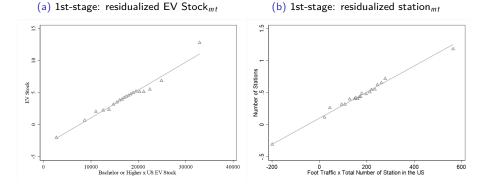

EV demand

Station entry

$$\pi_{mt}(\mathbf{w}_{mt}) \stackrel{\geq}{\leq} C_t - \delta C_{t+1}$$

π: current-period profit**w**: EV stock, VMT, traffic, competition

Empirical Model Overview • EV demand



Station entry

incentivizes station entry

Estimation Strategy

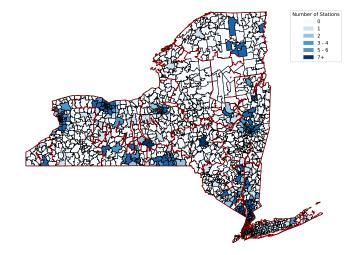
- GMM for EV demand and station entry
 - ▶ Pop. share with college education in $m \times$ national stock at t
 - Foot traffic in m × national stations at t
 - Micro-moments: shares by income group among EV buyers, ...

Estimation Results

- EV demand: parameter estimates
 - EV demand increases with charging station density
 - Average station elasticity: 0.88
 - Consumer preference heterogeneity based on observed (income, VMT) and unobserved demographics
 - Average price elasticity: -2.52
- Station entry: parameter estimates
 - Charging demand increases with foot traffic and decreases with distance
 - Demand for charging at level-3 stations is stronger than level-2
 - Average markup per kWh: 20 cents. Decreases with competition

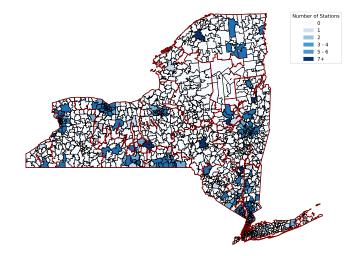
1 Introduction

- 2 Data Description
- 3 Empirical Model

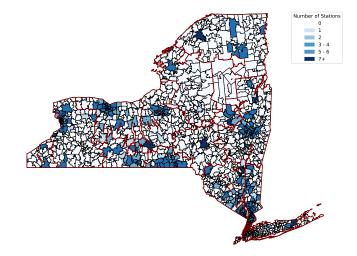

Policy Simulations

5 Findings and Next Steps

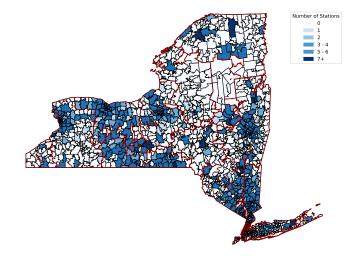
- Focus on level-3 stations and hold level-2 stations fixed
- Initialize the starting point at 2021 and simulate forward to 2026
- Assume certain cost-sharing ratio for the fixed cost
- Solve for investment decisions and EV sales for each commuting zone


Key assumptions

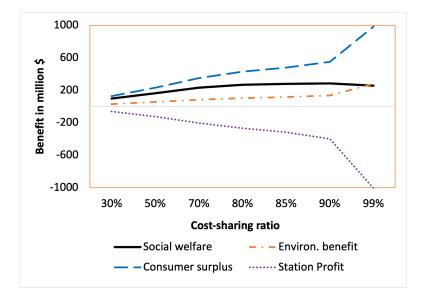
No. of Level-3 Stations by 2026 at Baseline


• No subsidies for station entry. 1351 stations

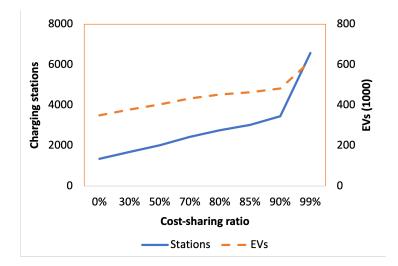
No. of Level-3 Stations by 2026 with 30% Cost-sharing


• Total subsidies (2012-2026): \$77 million. 1682 stations.

No. of Level-3 Stations by 2026 with 50% Cost-sharing

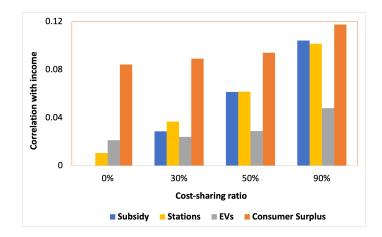

• Total subsidies (2012-2026): \$159 million. 2012 stations

No. of Level-3 Stations by 2026 with 90% Cost-sharing

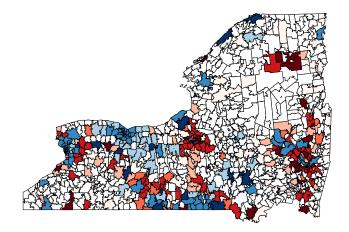


• Total subsidies (2012-2026): \$530 million. 3455 stations

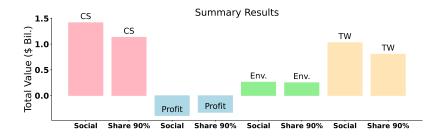
Welfare under Cost-sharing (relative to baseline)



EV Adoption and Charging Stations


Impact Heterogeneity w.r.t. Income • Population size

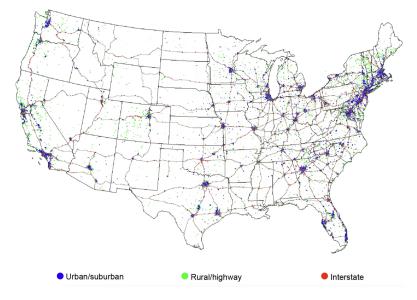
• Correlation between zip-level income with outcomes


Socially optimal vs. 90% cost-sharing

- No. of stations under socially optimal relative to 90% cost-sharing
- Warm color: under-subsidized areas; cool color: over-subsidized

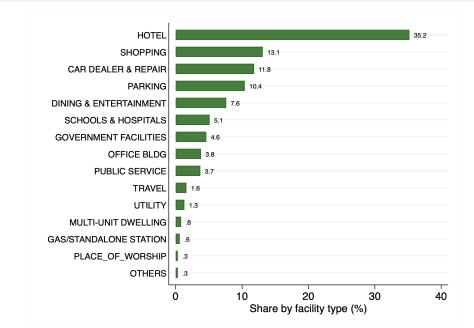
Socially optimal vs. 90% cost-sharing

- Better targeting leads to more stations, and higher consumer surplus
- Socially optimal network leads to a 30% increase in welfare

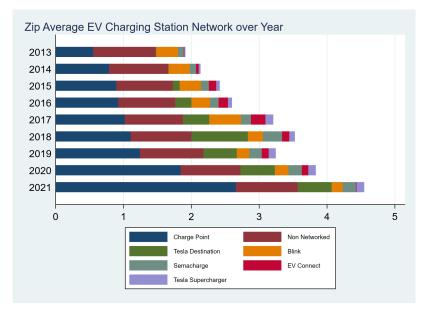


- \$175 million federal funding to NY during 2022-2026 can support about 50% cost-sharing. Increasing stations by 49% and EVs by 15%
- A higher cost-sharing appears justifiable. The cost-sharing ratio of 90%, or \$530 million during 2022-2026 for NY leads to the highest welfare
- Uniform subsidies benefit high-income areas more. More so for a higher cost-sharing
- Place-based vs. uniform cost-sharing. Lower subsidies for locations with stronger private incentives. Gains from targeted subsidies about 30%

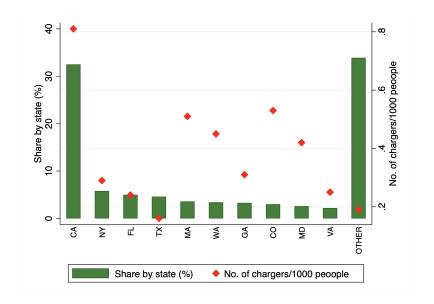
- Allow long-distance trips
- Add road network and vehicle traffic in the analysis
- Distinguish facility types
- Expand the analysis to the whole U.S.
- Additional suggestions?


THANKS FOR THE SUPPORT!

Charging Stations in 2022 • Back to Map



Source: IEA Global EV Outlook 2022


Charging Facility Type in 2021 • Back to Map

Charging Network over Time • Back to Map

Charging Stations by State in 2021

Back

• Consumers choose among a set of EV models and an outside good (e.g., a gasoline model) based on preferences and available choices

• Utility of consumer *i* from choice *j* in location *m*

$$u_{ijm} = \alpha_i(p_j - s_{ij}) + x_j\beta_i + \gamma_i\sum_{l=1}^n \omega(z_l, d_{lm})k_l + \varepsilon_{ijm},$$

• α_i , β_i and γ_i : heterogeneous consumer preference, f(income, VMT)

$$\alpha_i = -e^{\bar{\alpha} + y_i \alpha_y^P + v_i^P \sigma^P}$$

$$\theta_{i} = \bar{\theta} + y_{i}\theta_{y} + vmt_{i}\theta_{vmt} + v_{i}^{\theta}\sigma^{\theta}, \forall \theta \in \{\beta, \gamma\}$$

• $\sum_{l=1}^{n} \omega(z_l, d_{lm}) k_l$ characterizes station density in a location. d_{lm} : distance; k_l : station count

Empirical Model: EV Demand Back

• Free-entry condition: indifferent between entering at t and t + 1 for type τ

$$\pi_m^{\tau} \gtrless C_t^{\tau} - \delta C_{t+1}^{\tau}$$

• Period-profit function from providing charging and/or being an ancillary service:

$$\pi_m^\tau = q_m^\tau r_m^\tau + \varepsilon_{r_m}$$

- q_m^{τ} : total charging at a type- τ station in m
- ► r_m^{τ} markup per kWh: $\frac{\lambda_1}{1+\lambda_2 \bar{k}_m}$, $\bar{k}_m = \sum_{j=1}^n \frac{k_j}{d_{jm}+1}$

Empirical Model: Charging Investment

- $q_m^{\tau} = \sum_{l=1}^n Q_l S_{lm}^{\tau}$: charging at *m* come from many locations
 - Q_l is total charging from EVs in l
 - S_{lm}^{τ} is the share allocated to charging type τ at m

$$Q_l = \frac{vmt_l \times EVstock_l}{fuelefficiency_l}$$

$$S_{lm}^{\tau} = \underbrace{\frac{exp\left[\psi^{1} \times foot_{l} + \psi^{2} \times d_{lm} + \psi^{3}\log(\sum_{s \in T_{m}} exp(\varphi_{0}^{s} + \varphi_{1}^{s}k_{m}^{s}))\right]}{\sum_{j=1}^{n} exp\left[\psi^{1} \times foot_{j} + \psi^{2} \times d_{lj} + \psi^{3}\log(\sum_{s \in T_{j}} exp(\varphi_{0}^{s} + \varphi_{1}^{s}k_{j}^{s}))\right]}_{\text{Prob. of charging at }m} \times \underbrace{\frac{exp(\varphi_{0}^{\tau} + \varphi_{1}^{\tau}k_{m}^{\tau})}{\sum_{s \in T_{m}} exp(\varphi_{0}^{s} + \varphi_{1}^{s}k_{m}^{s})} \times \underbrace{\frac{1}{k_{m}^{\tau}}}_{\text{Prob. of charging at }m}$$

Prob. of charging at type τ

Prob. of charging at a given station

Estimation Strategy: GMM

- Moment conditions for EV demand:
 - ► BLP IVs: of EV models, battery capacity, driving range, vehicle size
 - Micro-moments: shares by income group among EV buyers; shares of EV buyers by income group among new vehicle buyers; shares by VMT group among EV buyers
- Moment conditions for station entry:
 - Interaction of national EV stock with: (1) share of college degree or higher by zip, (2) foot traffic by zip, (3) foot traffic within 20 miles, (4) annual VMT per driver by zip
 - Interactions of foot traffic by zip with: (1) national stations, and (3) national L3 stations

→ First stage

Estimation Results: EV Demand

-

	Para.	S.E.
Linear para.		
Range	0.173	(0.042)
HP/Weight	-0.001	(0.010)
Vehicle Size	0.436	(0.136)
Non-linear para.		
Price (ᾱ)	5.252	(0.028)
Price*Income (α_u^P)	-1.564	(0.004)
Station density	17.463	(0.128)
Station density*VMT	-0.127	(0.002)
Random Coefs. (σ)		
Price (σ^P)	3.330	(0.019)
Constant	9.338	(0.112)

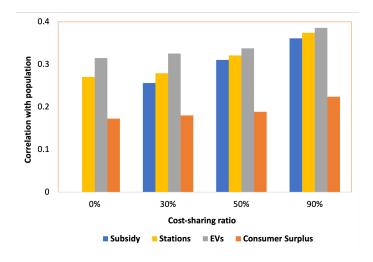
Back

$$\alpha_i = -e^{\bar{\alpha} + y_i \alpha_y^P + v_i^P \sigma^P}$$

Notes: unit of observation for the GMM objective function is model by commuting zone by year. Zone-year FEs, fuel type (BEV/PHEV) FEs, and Firm FEs included.

	Para.	S.E.
Markup (in \$/kWh)		
Constant (λ_1)	0.320	(0.012)
Competition effect (λ_2)	0.046	(0.003)
Charging Location Choice Foot traffic (ψ^1) Distance (ψ^2) Expected Utility of Charging (ψ^3)	0.805 -1.430 1.594	(0.030) (0.081) (0.055)
Charging Type Choice L3 Stations FE (φ_0) Number of Stations (φ_1)	1.065 0.071	(0.038) (0.004)

Back


Notes: unit of observation is zip by year. Zip FEs included.

Parameters	Value	Notes	
Fixed costs			
Level 2	\$20,000 (4 ports)	4% decline/yr	
Level 3	\$200,000 (4 ports)	4% decline/yr	
Charging at home vs. outside			
Charging at home	80%		
Environmental benefit			
Carbon and local pollutants	\$700-1974		

Note: the environmental benefit is the lifetime benefit of an average EV relative to a gasoline vehicle in NY. The lower bound is from "Benefit-Cost Analysis of Electric Vehicle Deployment in New York State," NYSERDA (2019). The upper bound is based on author's calculation. Results in the slides are based on the lower bound.

Impact Heterogeneity w.r.t. Population Size Income

• Correlation between zip-level population size with outcomes

