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Abstract

We model the implications of the classical ideas that larger markets allow for a finer division

of labor and this division feeds back into larger market size. Market size affects specialization due

to firm-level increasing returns to scale arising from fixed costs of adopting intermediate-intensive

technologies. The impacts are magnified in general equilibrium by an endogenous multiplier—due to

input-output linkages in a roundabout structure—and a selection effect due to heterogeneous funda-

mental productivity and entry costs.

Market size expansions imply (i) larger real income gains than under fixed specialization; (ii) an

increase in the aggregate variable cost share for intermediates and a decrease for labor; (iii) increased

concentration; (iv) increased average productivity for survivors; and (v) an increase in the intermediate

trade share. We derive similar results for intermediate productivity improvements. The effects in (ii)-

(v) are absent in a similar model with exogenous specialization.

In a calibration to U.S. manufacturing in 1987-2007 we isolate trade and intermediate productivity

shocks and quantify their effects. Trade cost reductions increased effective market size by 7 log points

(lp) and generated (i) a real income gain 1.4 times higher than under exogenous specialization; (ii)

increases in the intermediate share in production and trade of 2 lp and a reduction in the labor share

of value added of similar magnitude. Two counterfactuals highlight the importance of industrial

and trade policy. First, a tax that induces firms to specialize increases real income; so the initial

equilibrium is inefficient. Second, an increase in trade costs of 16 lp—similar to the recent trade

war—reduces market size and real income substantially: almost half way to trade autarky.
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1 Introduction

“(...) the division of labour depends upon the extent of the market, but the extent of the

market also depends upon the division of labour. In this circumstance lies the possibility of

economic progress.” (Young, 1928, p. 539)

In “Increasing Returns and Economic Progress” Allyn Young builds on the core idea in Smith (1776)
that labor specialization is limited by the size of the market by emphasizing a feedback effect. Young
argues that labor specialization reduces production costs mainly due to a roundabout production structure
where the sources of increasing returns go beyond the individual firm and require “industrial operations
be seen as an interrelated whole” (p. 539). We formalize this idea using a model with input-output
linkages where heterogeneous firms can increase their specialization by adopting intermediate intensive
technologies thus reducing their own product’s cost and those of other firms using it as an input. We
show that increases in market size and intermediate productivity lead to higher aggregate income and firm
concentration, and changes in factor shares in production consistent with recent evidence. International
trade is a key determinant of market size and thus of these outcomes, as our reduced form evidence and
subsequent quantification for U.S. manufacturing in 1987-2007 illustrates.

We model specialization as a form of directed technical change (Acemoglu, 2002): firms can invest
in technologies with different intermediate-labor intensity. Firms initially draw a technology with con-
stant returns to labor and heterogeneous productivity to manufacture a variety sold under monopolistic
competition. After learning their productivity firms can invest in more specialized technologies that use
intermediate inputs sourced from others, which implies a lower share of labor in their production. This is
isomorphic to a setting where firms concentrate labor on tasks where it is most productive and outsource
the rest. A firm specializes if the productivity advantage of using intermediates, henceforth the specia-

lization premium, is sufficiently high relative to the adoption cost. We assume fixed costs of adoption
so the model predicts that larger firms are more specialized and thus have lower labor share, which is
consistent with the data (Autor et al., 2020).

The feedback mechanism that amplifies market size and technology shocks is the endogenous speci-
alization premium and multiplier. This premium is common across firms and decreasing in the effective
relative price of intermediates. An increase in market size lowers the relative price of intermediates and
this effect is amplified due to the input-output linkages. The resulting aggregate input-output multiplier is
central in other models but constant. We show this multiplier is determined by the aggregate cost share of
intermediates and thus exogenous and independent of market size in models where firms use a common
intermediate technology. In contrast, our model features an endogenous multiplier that is increasing in
market size because of new adoption and sales re-allocation towards more specialized firms due to entry
selection.

We derive a condition for a unique equilibrium and analytical comparative statics in a single sector
economy with free entry. In equilibrium the initially most productive firms become more specialized;
and increases in market size (via changes in labor endowment or trade liberalization) imply (i) larger
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real income gains relative to fixed specialization; (ii) an increase in the aggregate variable cost share for
intermediates and a decrease for labor; (iii) increased firm selection; (iv) increased concentration in the
profit and sales distributions; (v) increased average productivity over surviving firms and (vi) an increase
in the intermediate trade share. A similar model with exogenous specialization does not generate any
of the effects in (ii)-(vi), and is thus unable to explain either the recent increases in intermediate shares
described above or the increases in concentration documented in Bajgar et al. (2019). Firms do not
internalize the aggregate benefits of specialization so the market equilibrium is generally inefficient,
which raises the value of policies that promote specialization—either directly (e.g. adoption incentives)
or by expanding market size (e.g. trade policy).

We provide a calibration to U.S. manufacturing in 1987-2007 to unpack different shocks and mecha-
nisms as well as perform counterfactual policy changes. In section 2 we provide motivating evidence that
guides the calibration. We document an increase in the intermediate share in costs of almost 5 percen-
tage points, which is highly correlated with trade openness and the relative labor/intermediate price. The
intermediate/labor intensity within industries is increasing in market size—consistent with the modelled
economies of scale in specialization.

The calibration yields a reduction in the marginal trade cost and an improvement in intermediate
productivity; these changes allow us to match key targeted moments exactly, e.g. the increases in inter-
mediate intensity and relative labor/intermediate price, and generate outcomes consistent with untargeted
moments of the data, e.g. changes in real value added/worker and sales distribution. The improved
intermediate productivity is equivalent to a lower marginal cost of using intermediates (both domestic
and imported), hence it has a direct effect on the specialization premium and accounts for a substantial
fraction of its increase.1

We then isolate and quantify the impact of trade costs. The marginal cost reduction in 1987-2007
implies an effective market size increase of over 7 log points (lp) and thus has significant effects including:
(i) real income gains larger than under no specialization (4.6 times) or fixed specialization (1.4 times);
(ii) an increase in the intermediate share in production and trade of 2 lp and a reduction in the labor share
of value added of similar magnitude; and (iii) substantial increases in the fraction of firms specializing.

We conduct two counterfactual experiments to highlight the importance of industrial and trade policy.
First, an industrial policy (e.g. a tax/subsidy) that induces all firms to specialize would increase real
income; so the initial equilibrium is inefficient. That income increase is significant if the policy were
implemented in 1987 but negligible in 2007 since by the latter period trade and technical change had
induced sufficient specialization. Second, the impact in the 2007 economy of an increase in trade costs
of 16 lp—similar to the recent trade war—reduces market size and real income substantially: almost half
way to trade autarky.

We discuss related literature in section 1.1 and then present motivation evidence on changes in ag-
gregate production specialization and imported intermediates in section 2. In sections 3, 4 and 5 we

1We can interpret this as a reduction in the marginal cost of outsourcing, which is central in models such as Grossman and
Rossi-Hansberg (2008), and a source of production fragmentation towards domestic and foreign sources (Fort, 2016).
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respectively develop the framework, characterize the equilibrium and derive size and technology compa-
rative statics in a closed economy. In section 6 we extend the results to an open economy and use it as
the basis for the quantification in section 7.

1.1 Related Literature

Our focus on intermediate adoption as a source of firm specialization, and the role of trade in spurring
it, is motivated by several facts. First, intermediates are a large fraction of international trade (Johnson
and Noguera, 2012, 2017); central to understanding its growth (Yi, 2003, 2010; Hummels et al., 2001);
and imported intermediates increase firm productivity (Amiti and Konings, 2007; Halpern et al., 2015)
and lower costs (De Loecker et al., 2016). Second, imported intermediates are negatively correlated with
the labor share in value added in U.S. manufacturing (Elsby et al., 2013).2 This labor share decline is
present in other countries and its potential causes include a substitution towards capital (Karabarbounis
and Neiman, 2014) or increasing profits due to higher concentration (Barkai, 2020; Autor et al., 2020).
The labor share declines may also be caused by our specialization channel, which entails increases in the
intermediate cost share in manufacturing that we document in section 2.

A growing literature on endogenous production networks provides interesting predictions about firm-
level sourcing. Some of this research assumes a constant expenditure share of intermediates (e.g. Antras
et al., 2017; Fieler et al., 2018; Oberfield, 2018) and thus can’t explain increases in specialization. Other
work is numerically consistent with specialization but not amenable to analytical solutions (e.g. Acemo-
glu and Azar, 2020; Dhyne et al., 2021). By using a roundabout structure and adoption decisions we
provide a tractable framework that focuses on general equilibrium effects of market size and the impli-
cations for other outcomes such as documented increases in concentration in sales and declines in labor
share (Autor et al., 2020).

There are three pervasive features of modern industries: productivity heterogeneity, input-output
linkages and technical change. We show the interaction of all three is important in understanding the
effect of globalization on the gains from trade and productivity; moreover we bridge models that study
them separately. If the market is small enough then firms use only labor and the equilibrium in our mo-
del is similar to Melitz (2003). If the market is large enough then all firms adopt the most specialized
technology in equilibrium, which has the constant intermediate share typically assumed in models with
linkages (Ethier, 1982; Krugman and Venables, 1995; Eaton and Kortum, 2002). Income gains from
international trade are larger in models with intermediate linkages (Costinot and Rodrı́guez-Clare, 2014;
Caliendo and Parro, 2015); these gains are further magnified with multiple stages of production (Melitz
and Redding, 2014) or endogenous choice of imported inputs (Ramanarayanan, 2020); and there is evi-
dence that imported intermediates lower consumer prices (Blaum et al., 2018). The gains from trade due
to intermediates are also larger in our model and magnified by endogenous adoption of both domestic

2They are also negatively correlated with relative demand for production labor in U.S. manufacturing in 1972-1990 (Feen-
stra and Hanson, 1999).
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and imported intermediates so trade affects outsourcing not just offshoring.3 Trade liberalization indu-
ces some firms to improve productivity (Lileeva and Trefler, 2010; Bustos, 2011; Bloom et al., 2015).
In our model, liberalization increases labor productivity for the most productive firms but can lower it
for the least productive (due to downgrading from competition)—so it is consistent with the increased
productivity dispersion found in Berlingieri et al. (2017). Aggregate productivity (both labor and TFPQ)
increases with liberalization due to selection and re-allocation effects.

Finally, our work relates to the literature on the implications of market size and scale economies for
development emphasized by Young (1928). Rosenstein-Rodan (1943) argues that adopting increasing
returns technologies may require coordinated investments across sectors in underdeveloped economies.
Murphy et al. (1989) formalize this idea and show pecuniary externalities can create multiple Pareto
ranked equilibria. Our model also features pecuniary externalities—via the love-of-variety production
(Ethier, 1982)—and endogenous specialization can generate multiple equilibria with real income incre-
asing in specialization. This potential under-adoption inefficiency implies a role for coordinating inves-
tments across firms within a sector. The calibration has a unique equilibrium; however it still reflects
under-adoption that is significant in 1987 but negligible by 2007—by the latter period trade and technical
change had induced sufficient specialization.

2 Motivation Evidence

We present evidence of increases in production specialization in manufacturing and its relationship with
market size and trade. We focus on U.S. data for 1987-2007 here and provide related data for 67 countries
in 1997-2007 in Appendix A.

2.1 Aggregate Facts

We use the NBER-CES industry aggregation of U.S. firm based measures of sales, input costs and prices
covering 459 SIC-4 industries from 1987 to 2007.

A key summary statistic is the average intermediate share, ᾱm, which is defined as the sales weighted
average of intermediate cost shares across firms (indexed by ϕ) in industry m:

ᾱm ≡
Σϕα

m
ϕ Y

m
ϕ

Y m
=
Im

Cm
.

Sales, Y m
ϕ , are proportional to variable costs in our model so we construct ᾱm as the industry intermediate

expenditure, Im, relative to all variable costs, Cm (the sum of non-energy materials, Im, energy, labor
and investment). We use the industry cost share in 1997 (ᾱ = Σm

Cm97

C97
ᾱm) to aggregate them, so variation

over time reflects within industry changes, not composition. In Figure 1 we see an increase of almost 5

3Kee and Tang (2016) find globalization lowered Chinese materials prices and increased domestic sourcing by Chinese
firms.
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Figure 1: Intermediate cost share and specialization premium: 1987–2007

percentage points in ᾱ—half of it since China’s WTO entry.4

In the model, firm adoption of intermediate-intensive technologies increases ᾱ; one of its determinants
is the relative price of labor to intermediates, wmt /P

m
t . In Figure 1 we examine if this correlation is

present by constructing a change in relative costs relative to 1987, Smt ≡ ln
(
wmt /P

m
t

wm87/P
m
87

)
, and its cost

weighted average, S̄t ≡ Σm
Cm97

C97
Smt . Unanticipated shocks to the premium that induce firms to invest at

t− n can take time to be reflected in increased intermediate intensity thus in Figure 1 we plot S̄t−2, and
find it has a correlation of 0.9 with ᾱt. 5

The annual growth trend of Smt between 1987 and 2007 is 2.5 lp; our subsequent calibration accounts
for it in terms of increased productivity and trade cost reductions. Here we show this premium and the in-
termediate share are strongly correlated with imports. We measure import penetration in industrym by its
import value relative to domestic absorption: λmt ≡

Importsmt
dommt

, where domm
t ≡Salesmt -Exportsmt +Importsmt

and its aggregate counterpart at fixed weights is λ̄t ≡ Σm
domm97

dom97
λmt . In the left panel of Figure 2 we see

a 10 percentage point increase in λ̄t between 1990 and 2007 (we start in 1990 due to industry data avai-
lability). The increase occurred in a period with several liberalization episodes. NAFTA was signed in
1993 and the WTO was established in 1995, and both lead to substantial reductions in both U.S. applied
trade barriers and uncertainty (e.g. after China’s WTO accession). The correlation of import penetration,
λ̄t, is over 0.9 with respect to both the premium, S̄t, and intermediate share, ᾱmt , which suggests imports
affected the incentive to adopt intermediates.

4This measure assumes that existing capital captures fixed costs, which explains why the intermediate and labor shares are
higher than when total costs are used. The calibration considers alternative measures of investment and capital use in variable
costs.

5It is slightly lower if we use S̄t−1 and 0.77 for S̄t. Figure 1 raises the question of whether the relationship is mechanical
or simply reflects a simple CES production—where relative input shares are proportional to their relative prices. If so then the
correlation should be similarly large for other periods. However, we find it is much lower, only 0.1, between year 1967 and
1987. Below we also find differential impacts of Smt on relative industry shares consistent with our model.
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Figure 2: Import consumption share, export production share, and intermediate cost share

These trade agreements also reduced foreign barriers, which along with other trade cost reductions
increased the effective market size for U.S. producers. This is reflected in the increased export share of
production shown in the right panel of Figure 2.6 There were increases in the wake of NAFTA and the
WTO, followed by a stagnant share, and new increases after China’s WTO accession. The correlation
between this export intensity and the intermediate share is over 0.9.
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Figure 3: Intermediate and labor cost shares: 1987–2007 change

The model has one type of labor so we aggregate production and non-production pay to compute
total labor expenditures and denote their share in industry cost by ᾱmw . The corresponding aggregate

6This measure is calculated as Exportsmt
Salesmt

for each industry and the corresponding aggregate is Σm
Salesm97
Sales97

Exportsmt
Salesmt

.
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share, ᾱw = Σm
Cm

C
ᾱmw , fell from 0.23 in 1987 to 0.16 in 2007. The correlation between the labor and

intermediate share, ᾱw and ᾱ, is -0.97, which is consistent with the model’s focus on the substitution
between these inputs.7

2.2 Industry Panel Evidence

Disaggregated industry data provides additional evidence for the model’s mechanisms and implications.
First, changes in shares are also strongly negatively correlated within industries: the correlation is -0.93.8

The relation is shown in Figure 3 where the change in the intermediate share, ∆ᾱm, the x-axis, is positive
for most industries and most where ᾱm increased also experienced declines in ᾱmw .9 Importantly, there
is considerable variation in the magnitude of ∆ᾱm across industries that we can exploit. There is also
considerable variation within the specialization premium; the standard deviation of Smt over time is 0.13
for the typical industry (it ranges from 0.03 to .73).

In Table 1 we examine the impact of two potential determinants of these relative cost shares, ln
ᾱmt
ᾱmw,t

,
conditional on industry and time effects. We focus on the specialization premium and market size (mea-
sured by the value of shipments). We lag each of these to allow for time to build and also instrument each
to minimize endogeneity concerns.10 The first column shows that specialization increases with the pre-
mium, εS ≥ 0, but only significantly so in concentrated industries, ∆εS > 0.11 Moreover, specialization
is increasing in market size, εY > 0.

ln
ᾱmt
ᾱmw,t

= (εS + ∆εS × Concm)Smt−1 + (εY + ∆εY × Concm) lnY m
t−1 + at,m + utm

This evidence rejects simple production structures and provides some support for the mechanisms in
the model. First, the findings reject a standard production model (Cobb-Douglas or CES) where relative
intermediate/labor shares are common across firms in an industry because in those cases the relative indu-
stry share would be independent of market size. The specialization bias from size suggests a composition
effect: large firms are more specialized and their sales share is increasing in market size. This channel is
present in our model and magnified by endogenous specialization. Table 1 is also consistent with endoge-

7In the model the labor share of variable costs is 1− ᾱm so the two have a correlation of -1, but that need not be true in the
data for two reasons. First, there are other inputs included in costs, such as energy and investment, so that ᾱ and ᾱw do not
add up to unity, therefore ᾱ can in principle have any correlation with ᾱw. Second, in the model labor is also used for fixed
costs and to the extent that in practice they do use labor (in addition to investment expenditures) then they are reflected in ᾱw.
This attenuates the correlation of ᾱ and ᾱw because the model predicts that adoption of intermediate technology increases the
usage of fixed cost labor.

8We find a similar relationship with labor cost in value-added but with a lower correlation of -0.38.
9Industries where ᾱmw increased were fewer and smaller on average as illustrated by the smaller circles (proportional to the

weights, Cm97/C97).
10Specifically, letM2 denote a SIC-2 sector so for eachm ∈M2 we construct an instrument for xm based on the average of

x in that period over all m′ ∈M2\m. The first stage has high explanatory power and the instruments are not weak according
to alternative F-statistics.

11Here we use the share of sales by top 20 but the result is robust to alternative concentration measures such as the Her-
findahlHirschman Index for the 50 largest firms (HHI50). It also holds for industries with relatively higher average sales per
firm.
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Table 1: Annual intermediate/labor cost shares (log): 1987-2007, SIC-4 manufacturing
IV IV IV

ln(Wage/Interm. Price) (lag) 0.004 0.083 0.057
[0.059] [0.050] [0.050]

ln(Wage/Interm. Price) (lag) 0.296 0.247
× Top 20 share ’87 [0.052] [0.058]
ln(Size) (lag) 0.128 0.124

[0.028] [0.029]
ln(Size) (lag) 0.254
× Top 20 share ’87 [0.071]
Observations 9,389 9,389 9,389

Notes: Robust standard errors in brakets, clustered at SIC-2 by year: the lowest level of variation of instruments.
All specifications include year and SIC 4-digit fixed effects.

IV: Two-stage least square instrumenting specialization (or size) in SIC 4 by the value in the other industries of
specialization (or size) sharing the same SIC-2 (and the respective interactions with the Top 20 variable when
included).

Source: NBER CES Manufacturing database sic 1987 version and US Census of Manufacturing.
Intermediate cost share = Non-energy material expenditure

Total costs , Total costs = Intermediate + Energy + Investment +

Labor pay. ln
(

Wage
Intermediates price

)
calculated by SIC 4 and normalized by its respective 1987 value. Size: va-

lue of shipments. Top 20 Share 1987: Sales share of largest 20 firms in each SIC 4, demeaned.

nous specialization in specific industries. If all firms in an industry are too small to specialize then there
is a negligible effect of the specialization premium provided production is Cobb-Douglas (as we will as-
sume). In industries with high concentration it is more likely that at least some firms are sufficiently large
to respond to increases in the premium (and/or market size) and specialize. The specialization premium
elasticity is 0.07 higher for an industry with concentration 1 sd higher than the mean. In the calibration
we find a similar relationship even though it is not targeted.

3 Environment and Firm Decisions

We model consumer preferences and firm technology in the absence of adoption similarly to Melitz
(2003) and show how endogenous specialization affects aggregate real income, the labor share in pro-
duction, profit and sales concentrations. We also show that endogenous specialization magnifies the
importance of economies of scale and generates a feedback effect between productivity and size.

We develop the key results in a simple version of the model with a single industry in a closed economy.
We then show that size increases are mostly isomorphic to trade cost reductions.
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3.1 Preferences and Technology

There are L consumers with identical preferences over the set of differentiated varieties ω ∈ Ω with
constant elasticity of substitution σ > 1. This yields the standard demand function

q(ω) = EP σ−1p(ω)−σ, (1)

where p(ω) is the variety price, E is consumer expenditure on all varieties, derived below, and P the
associated price index given by P =

(∫
ω∈Ω

p(ω)1−σdω
)1/(1−σ).

After paying a sunk cost, each firm obtains a blueprint for a single variety ω identified by a core pro-
ductivity ϕ drawn from a distribution G(ϕ). Conditional on ϕ, the firm chooses between production
technologies by paying fi units of labor to access a CRS process with non-labor input cost shares
αi ∈ {0, ..., αn}; where 1− αn > 0 is the minimum labor variable cost share constraint. We capture the
gains from specialized inputs by modelling the non-labor inputs as a CES bundle of intermediates pro-
duced by other firms, similar to Ethier (1982). We assume a common CES aggregator in production and
consumption so they have the same price index, P . The unit cost functions for alternative technologies
are:

ci(ϕ) =
w1−αi

ϕ

(
P

φ

)αi
, i = 0, . . . , n ≥ 1; (2)

where w is the wage rate and, when intermediates are adopted, we allow for a fixed productivity change
parameter, φ, so P/φ is the effective unit price of intermediates.12,13

The degree of firm specialization is defined by the share αi it chooses, which depends in part on the
following specialization premium.

Definition 1. (Specialization Premium)
The premium, sI , from a technology with more specialized inputs δI ≡ αi+I − αi > 0 is

sI ≡
ci(ϕ)

ci+I(ϕ)
=

(
w

P/φ

)δI
. (3)

The specialization premium is increasing in the relative effective cost of labor to intermediates, w
P/φ

,
and independent of firm core productivity. Moreover, a firm only adopts a more specialized technology
if sI > 1, or equivalently if wages are sufficiently high, w > P/φ. This condition is independent of the
degree of specialization.

Our framework is isomorphic to one where the firm pays fi and uses a fraction of labor to produce
inputs in house using a linear technology and the remaining fraction, 1 − α, to assemble it. In appendix
B, we map our baseline cost structure to one with a two-stage production process, where firms can pay fi

12More precisely, the cost function is ci(ϕ) = w1−αiPαi

ϕφi(1−αi)1−αiα
αi
i

and we assume φi = φαi

(1−αi)1−αiα
αi
i

. Under this specifica-
tion φi is first increasing than decreasing in αi.

13Alternatively, the inverse of φ can be interpreted as the impediments to specialization in an iceberg fashion, such as
communication costs between firms emphasized by Becker and Murphy (1992).
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to replace some of their first stage input production with outsourced inputs. Doing so reallocates workers
towards the more productive inputs while lowering the overall labor share.

3.2 Entry and Technology Decisions

The operating profit for firm ϕ using technology i is defined by πi(ϕ) = [pi(ϕ)− ci(ϕ)] qi(ϕ). This firm
faces the isoelastic demand from consumers and in a model without intermediates the profit maximi-
zing price under monopolistic competition is given by the constant markup over marginal cost, p̃i(ϕ) =
σ
σ−1

ci(ϕ). This is also the optimal price charged to firms in our setting because the input aggregator is
CES with elasticity σ. Therefore the aggregate demand faced by firm ϕ is

q̃i(ϕ) = XP σ−1 [pi(ϕ)]−σ , (4)

where X is the total expenditure of consumers and firms, which is taken as given by the firm and derived
below. Replacing p̃ and q̃ in πi we obtain the maximized operating profit for any i

π̃i(ϕ) = σ̃XP σ−1 [ci(ϕ)]1−σ (5)

where σ̃ ≡ 1
σ−1

(
σ
σ−1

)−σ. We define the equilibrium profit as a function of firm productivity after it
chooses its technology, where the firm pays fi > 0 to produce using technology i, or zero if it decides
not to enter.

π̃(ϕ) ≡ argi max {0, π̃i(ϕ)− wfi} (6)

Assumption 1. (Technology)

1. There is a continuum of firms with heterogeneous core productivity drawn from G (ϕ) with support

[ϕl,∞);

2. Specialization technology has constant share increments: ∆αi+1 ≡ αi+1 − αi = δ thus sI = (s1)I

and increasing costs: ∆fi+1/fi = f̂ > 1.

The equilibrium is characterized by entry and adoption thresholds, so for partial specialization we re-
quire heterogeneous firms; the continuum and unbounded productivity assumptions are made to simplify
the analysis. The share and cost assumptions are used to show that specialization increases with core
productivity.

The solution to the production and entry decisions using technology i is characterized by the zero
profit cutoff productivity derived from setting π̃i(ϕ̄i,e) = wfi, which is

(ϕ̄i,e)
σ−1 =

wfi
σ̃X
· P 1−σ ·

(
ws−i1

)σ−1
. (7)
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All else equal entry is easier, and so the cutoff lower, if fixed costs can be spread over a larger market
(the first term), competitor prices are higher (the second) and marginal costs are lower (the third). If
entrants use only labor then i = 0 and the third term reflects only the wage, but if there is adoption then
the marginal cost relative to the labor technology is reduced by the specialization factor s−i1 , which is the
only difference in the cutoff relative to a standard model without adoption.

A firm that is indifferent between technologies i + 1 and i, has productivity ϕ̄i+1 defined by the
equality between the operating profit increase of two adjacent technologies and the differential adoption
cost, ∆π̃i+1(ϕ̄i+1) = w∆fi+1, which yields:

(ϕ̄i+1)σ−1 = S−1
i+1 · (ϕ̄i,e)

σ−1 . (8)

The expression is proportional to the entry cutoff expression if the entrant adopted i by a factor represen-
ting the relative gain in profits relative to fixed costs from switching technologies:

Si+1 ≡
π̃i+1/π̃i − 1

∆fi+1/fi
=
sσ−1

1 − 1

f̂
= S1

Under the second part of technology assumption 1, Si+1 is the same for all i and thus the relative
cutoff across any two technologies is simply (ϕ̄i+1/ϕ̄i)

σ−1 =
(

1 + f̂
)
/sσ−1

1 . Therefore we can write the
adoption cutoff for any technology i+ I as(

ϕ̄i+I
ϕ̄i,e

)σ−1

= S−1
1 ·

[(
1 + f̂

)
/sσ−1

1

]I−1

. (9)

Solving for the cutoff i+ I we obtain the function ϕI ≡ ϕ
(
ϕ̄i,e, s1, f̂ , I

)
for I ≥ 1.

In Proposition 1 we characterize how firm specialization depends on the premium, fixed costs and
productivity. We say that specialization is increasing in productivity if ϕ̄i+1 > ϕ̄i for all i and adopt the
convention that an indifferent firm adopts the higher technology.

Proposition 1. (Heterogeneous specialization)
Under technology assumption 1, specialization:

1. occurs iff there is a premium: s1 > 1;

2. is increasing in productivity, ϕ, iff sσ−1
1 < 1 + f̂ and heterogeneous across firms for (s1)σ−1 ∈

(1, 1 + f̂);

3. is common at αn = α iff (s1)σ−1 ≥ 1 + f̂ .

The proof is in Appendix C.1. Part 1 shows it is necessary for s1 > 1, so specialization lowers mar-
ginal costs enough to offset the fixed costs, otherwise no firms specialize; the condition is also sufficient
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for specialization because of the existence of sufficiently high productivity firms. Part 2 shows the con-
dition for sorting, ϕ̄i+1 > ϕ̄i, namely that the operating profit growth is no higher than that of fixed costs,
S1 < 1⇔ sσ−1

1 − 1 < f̂ . Moreover, when S1 < 1 we obtain ϕ̄i+1 > ϕ̄i,e so the marginal producer does
not choose the most specialized technology and thus there is heterogeneity in adoption. Part 3 shows that
if S1 > 1 then all firms gain from any incremental specialization and thus adopt the maximum possible.

The proposition illustrates how the specialization premium spans three types of equilibria: no specia-
lization (S1 ≤ 0), full specialization as in models where all firms must use a fixed share of intermediates
(S1 ≥ 1), and partial specialization (0 < S1 < 1), which is the novel range we focus on.

4 General Equilibrium

We aggregate the consumer and firm decisions and solve for the general equilibrium in a closed economy.
We use the wage as the numeraire, w = 1, and define the equilibrium as follows.

Definition 2. (General Equilibrium)

1. Consumers choose the quantity of each variety and labor supply to maximize their utility subject
to their budget constraint taking prices as given.

2. Firms with productivity ϕ choose a production technology i to maximize profits taking aggregate
prices (P ), expenditure (X), costs (fi), and the specialization premium (si) as given.

3. Goods and labor markets clear.

4. There is free entry by ex-ante identical potential producers to obtain a blueprint at cost fE .

4.1 Endogenous Specialization Mechanisms and Number of Firms

Endogenous specialization features two novel mechanisms absent from standard models (e.g. Melitz,
2003, or variants without endogenous input adoption). First, an endogenous multiplier effect: an incre-
ase in market size generates adoption, which further reduces input prices via intermediates and amplifies
the initial shock. Second, a selection effect: the marginal entrant depends on market size and thus
economic scale impacts the equilibrium distribution of firm performance (size, labor demand, etc). We
derive the multiplier as a function of productivity thresholds and the specialization premium, and then
use free entry to pin down the entry threshold. After that we characterize the equilibria as a function
of the specialization premium and price index. Subsequently we show that both effects amplify the im-
pacts of economic scale on real income and generate novel predictions about the interaction of size and
technology.
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4.1.1 Aggregate Expenditure and Multiplier

We aggregate consumer and firm decisions to derive total expenditure, X , and the associated endogenous
multiplier due to intermediate linkages.

Consumers do not value leisure and so supply their unit of labor at any wage. Thus aggregate labor
income is L, as is consumer expenditure, E, because there are no aggregate profits under free entry.

A fraction αi of a firm’s variable costs is spent on intermediates, which under CES and monopolistic
competition is simply a fraction σ−1

σ
αi of its sales. Thus total expenditure is

X = L+
σ − 1

σ

n∑
i=0

αiYi = L ·
(

1− σ − 1

σ
ᾱ

)−1

︸ ︷︷ ︸
Multiplier: ā

, (10)

where we used E = L and Yi represents aggregate sales of all firms using the ith technology. The
second equality uses the market clearing condition X = Y ≡

∑n
i=0 Yi. The multiplier, henceforth ā,

is unity without specialization and larger otherwise. In standard models with intermediate linkages the
technology is fixed and so is the multiplier. A contribution of this paper is deriving how this endogenous
multiplier depends on the aggregate intermediate cost share and its determinants

ᾱ ≡
n∑
i=0

αi
Yi
Y
. (11)

Below we provide an analytical solution for this share. For now we note that the CES structure
implies that Yi/Y is a function of the relative price index for each group of firms and thus depends on
the cost functions and cutoff vector, {ϕ̄i≥e}. Moreover, the technology assumptions allow us to write
those relative prices as a function of the specialization premium si1, and all cutoffs as a function of the
entry one, ϕ̄i,e. Thus we denote the solution as a function of two endogenous variables, s1 and ϕ̄i,e, and
underlying parameters.

α̃ ≡ ᾱ
(
s1, f̂ , I, ϕ̄i,e, G

)
=

n∑
i=0

αi

(
si−e1

ϕ̂i
ϕ̂

)σ−1

∑n
i=0

(
si−e1

ϕ̂i
ϕ̂

)σ−1 . (12)

In the next proposition we derive this expression. Here we note two points. First, conditional on the
endogenous variables, it is independent of two parameters: size, L, and technology φ. Second, it depends

on ϕ̄i,e via the terms
(
ϕ̂i
ϕ̂

)σ−1

, which measure the average productivity of firms ϕ ∈ [ϕ̄i, ϕ̄i+1] relative to
all active firms and would represent their sales share in the absence of specialization. Thus the average
intensity is a premium weighted average of the underlying sales share in a model without adoption. Thus
we can also decompose the impacts of s1 into an intensive margin (holding the cutoffs constant) and an
extensive margin.
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Proposition 2. (Heterogeneous specialization, multiplier and intermediate share)
The average intermediate cost share in (12) and the associated multiplier ā are increasing in the

specialization premium if and only if there is heterogeneous specialization. Moreover, the share elasticity

can be decomposed as

d ln α̃

d ln s1

=
σ − 1

δᾱ

n∑
i=e

λi (αi − ᾱ)2

︸ ︷︷ ︸
intensive ≥0

+
1

ᾱ

n∑
i=e

λi(αi − ᾱ)

(
n∑
j=e

∂ lnYi
∂ ln ϕ̄j

d ln ϕ̄j
d ln s1

)
︸ ︷︷ ︸

extensive ≥0

. (13)

The proof is in appendix C.2, here we provide intuition. From (13) we see that under homogeneous
specialization αi = ᾱ for all i so there is no impact of s1. The intensive impact is positive because more
specialized firms are more exposed to changes in the premium; the intensive elasticity is also higher
when there is more heterogeneity in specialization, as measured by the sales share weighted coefficient
of variation of αi. The extensive margin elasticity is also positive because technology upgrading of more
specialized firms outweighs potential downgrading by those less specialized. We note that the latter result
accounts for changes in selection, and thus requires us to derive the impact of s1 on ϕ̄i,e, which we do in
the next section.

The change in s1 can be driven by technology, e.g. φ, or a parameter affecting P , e.g. size, L. If
increases in φ (or L) increase s1 (as we later derive) then the proposition above also shows that increases
in φ (or L) increase the intermediate share because it only depends on these parameters via the premium.

4.1.2 Selection under Free Entry

The ex-ante identical potential firms obtain their core productivity by paying fE units of labor. Thus
under free entry the ex-ante period profit from this blueprint—the expectation of π̃(ϕ) in (6) over the
productivity distribution G must equal that cost:∫ ∞

ϕ̄e

π̃(ϕ)dG(ϕ) = fE. (14)

In the following proposition we show (14) can be rewritten similarly to models without adoption by
using the cutoffs in (7) and (8), and defining Fi as ∆fi for i > e and fe otherwise:

n∑
i=e

Fi

∫ ∞
ϕ̄i

[(
ϕ

ϕ̄i

)σ−1

− 1

]
dG(ϕ) = fE. (15)

In an equilibrium with homogeneous specialization we have n = e and obtain a standard expression
where the marginal production cutoff, ϕ̄e, is determined by fE/fe and G. This includes models without
intermediates (e.g. Melitz, 2003)—captured endogenously in our model when s1 < 1—and those with
an exogenous common share of intermediates for all firms—when s1 is sufficiently large in our model
(Proposition 1). In those two special cases of our model with homogeneous specialization, selection is

14



independent of market size and this independence extends to any outcomes determined only by fixed costs
and the survival probability, 1−G (ϕ̄e), e.g. average operating profits, firm size and their distributions.

Under heterogeneous specialization, we still use (14) to solve for ϕ̄e. Replacing the cutoffs ϕ̄I =

ϕ
(
ϕ̄i,e, s1, f̂ , I

)
from (9) in (15) we see that the equilibrium ϕ̄e depends on the determinants of ϕ̄I , fixed

costs, and G; thus we denote the resulting function by

ϕ̄e ≡ ϕe (s1, f ,I, G) . (16)

The following proposition shows how this cutoff depends on the specialization premium, s1. Moreo-
ver, conditional on s1, selection depends on fixed costs (f = {f̂ , fE, fe} for adoption, operation, and
entry, respectively), technology upgrades available (I), the underlying productivity distribution (G), and
σ (omitted).

Proposition 3. (Heterogeneous specialization and selection)
The entry cutoff ϕ̄e in (16) is increasing in the specialization premium if and only if there is heteroge-

neous specialization. Moreover,
d ln ϕ̄e
d ln s1

=
ᾱ− αe
δ

≥ 0. (17)

We prove this in appendix C.3. Holding ϕ̄e constant, an increase in s1 lowers all adoption cutoffs
and increases ex-ante expected profit above the entry cost. This induces additional entry and eventually
a lower probability of survival due to higher competition that re-establishes the equality in (15). The
elasticity of selection in (17) is zero if all firms adopt the same technology such that ᾱ = αe.

The change in s1 can be driven by technology, e.g. φ, or a parameter affecting P , e.g. size, L. If
increases in φ (or L) increase s1 (as we later derive) then this proposition also shows that they increase
selection because ϕ̄e only depends on these parameters via the premium. This also further clarifies that
the selection effect due to size in our model is only present under endogenous specialization.

4.1.3 Number of Firms

Using free entry and the fact that aggregate operating profits equal a fraction of total expenditure, X/σ,
we can express the mass of entering firms as

M =
X

σ
(
fE + F̄

) =
L · ā

σ
(
fE + F̄

) , (18)

where we recall ā is the multiplier and F̄ ≡
∫∞
ϕ̄e
fi(ϕ)dG(ϕ) is the average expenditure of entering firms

on fixed production costs. The second equality uses (10) and shows how the multiplier affects M , which
will be an important channel for the impact of size and trade on real income.

Under homogeneous specialization we obtain a standard expression for M : log linear in size L and
independent of the specialization premium. In such a setting, ᾱ is fixed and F̄ is determined by the entrant
production cost fe,i required for ᾱ and ϕ̄e, where the latter is independent of size as described before. So,
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in models without endogenous specialization M is determined by (L, fE, fe,i), and this is also the case
in our model if s1 is outside the heterogeneous specialization range (in which case the entrant uses either
i = 0 or n). This implies that without heterogeneous specialization there is no amplification of market
size on the mass of entrant or surviving firms even in the presence of intermediate linkages.

With heterogeneous specialization, size can affect M via changes in s1. We denote the mass as a
function of the premium and entry cutoffs by M̃ ≡ M

(
L, ᾱ (s1, ϕ̄e) , F̄ (s1, ϕ̄e)

)
. An increase in s1

increases ᾱ and thus M . Increases in s1 also affect F̄ : holding ϕ̄e fixed, it increases F̄ because of
increased adoption but this increase is partially offset by selection since higher s1 reduces the fraction of
entrants that produce.

The labor market will also clear and we can verify it yields the same condition for the mass of firms.
For completeness we describe the labor income-expenditure equality showing its allocation here

L =
σ − 1

σ
(1− ᾱ)X︸ ︷︷ ︸

variable labor

+M
(
F̄ + fE

)
. (19)

The first component is labor expenditure on variable costs; since intermediates account for ᾱσ−1
σ
X and

the process is constant returns, labor accounts for the remaining. The second represents the total fixed
cost payments in production MF̄ and entry costs given by MfE . Using the goods market condition (10)
we obtain (18).

4.2 Equilibrium Specialization and Price

4.2.1 Characterization

The price index, P , determines real income and specialization, via s1. Thus we write all variables in
terms of these aggregates, show conditions for existence and uniqueness of the equilibrium and derive
comparative statics.

To obtain the relationship between P and s1 we substitute the goods market clearing condition (10)
into the production entry expression (7), and obtain:

P̃ (s1) =

(
fe
σ̃L

) 1
σ−1

· [ā (s1)]−
1

σ−1︸ ︷︷ ︸
multiplier

· [ϕ̄e(s1)]−1︸ ︷︷ ︸
selection

·(s1)−e, (20)

which reflects how s1 affects P via the endogenous multiplier, selection and the entrant technology. If
we then substitute the definition s1 ≡

(
φ
P

)δ
we obtain the equilibrium P as the fixed point(s) (P̄ ) that

satisfy (20).

(P̄ )1−αe =

(
fe
σ̃L

) 1
σ−1

·
[
ā
(
s1

(
P̄
))]− 1

σ−1︸ ︷︷ ︸
multiplier

·
[
ϕ̄e
(
s1

(
P̄
))]−1︸ ︷︷ ︸

selection

·φ−αe (21)

In our model under heterogeneous specialization the marginal entrant optimally chooses the minimum
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level of specialization (shown in Lemma C.4 in the appendix), so αe = α0. If we take α0 to be zero so
fe = f0 then we can immediately see that the equilibrium price in our model under heterogeneous spe-
cialization is lower than in a model without specialization (where P̄0 =

(
f0

σ̃L

) 1
σ−1 ϕ̄−1

0 ) and the difference
across models is captured by the multiplier and selection terms in (21).

To provide some insight, we analyze the equilibrium by using P̃ (s1) and the specialization schedule,
Ps (s1), obtained from the definition 1 of the specialization premium:

Ps (s1) = φs
− 1
δ

1 . (22)

In Figure 4 we plot the log of this and expression (20) against ln s1. Their intersection, E, represents
the equilibrium and we depict a case when it is unique in the heterogeneous specialization range,

defined by s : s1 ∈
(

1,
(

1 + f̂
) 1
σ−1

)
.

heterogeneous specialization

Figure 4: Existence and uniqueness of equilibrium

Proposition 4 establishes the existence of a unique equilibrium and characterizes it in terms of spe-
cialization, ᾱ, and heterogeneity, depending on the size of the economy and the productivity of inter-
mediates, indexed by Li and φi, respectively. The characterization is qualitatively similar using either
x = {L, φ} so we refer to a change in either L or φ as a change in x and use x ∈ [x0, xn] to denote either
L ∈ [L0, Ln] at a given φi or vice versa.

Proposition 4. (Equilibrium)

1. In an economy x = {L, φ} with size L and intermediates productivity φ, there is an equilibrium

with ᾱ (x) ∈ [α0, αn];
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2. The equilibrium is unique and has homogenous specialization given by

(a) ᾱ = α0 if x < x0;

(b) ᾱ = αn if x > xn.

3. There exist equilibria with heterogeneous specialization and ᾱj (x) ∈ (α0, αn) for some x ∈
[x0, xn].

4. If d ln P̃
d ln s1

> −1
δ

for all s1 then ᾱ is unique and non-decreasing in x.

We provide the proof in Appendix C.4. The existence in part 1 follows from continuity of Ps and of
P̃ in s1 coupled with the facts that Ps ∈ (0,∞) and it is steeper than P̃ (s1) at least for s1 /∈ s, i.e. at
the extremes. Thus, P̃ must cross Ps at least once from below as illustrated in Figure 4, which occurs
whenever it is flatter, what we refer to as the stability condition

d ln P̃ (s1)

d ln s1

>
d lnPs
d ln s1

= −1

δ
. (23)

Figure 4 assumes stability holds for all s1. This need not be the case for the full range but does hold at
least when s1 /∈ s. To see this note from (20) that P̃ depends on s1 via the entrant technology choice,
the multiplier and selection effect. But for s1 /∈ s the last two effects are absent (since either none or all
specialize) so d ln P̃ (s1)

d ln s1
= −e, the number of adoption steps of the marginal producer, which is at most n.

If the minimum technology is α0 = 0 then ln P̃ (s1) is initially flat, as in Figure 4, and when all adopt, it
is −n = −αn

δ
> −1

δ
since we assume αn < 1 (labor is necessary).

log specialization premium ln s1

0 ln smax

lo
g
p
ri
ce

ln
P

0

12

3

4

ln P̃ (L)

ln P̃ (L̃0)

ln P̃ (L̃n)
lnPs(φ)

Figure 5: Specialization under unique equilibrium
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Part 2a shows that in an economy that is sufficiently small or unproductive all firms use the minimum
intermediate share, α0. Part 2b establishes that in large/productive economies all firms adopt the maxi-
mum, αn. It also establishes the critical x at which this occurs. In Figure 5 we illustrate the critical values
for L. Note that increases in L shift only ln P̃ and do so proportionally without affecting the slope. Thus
starting at L1 we can find a lower L̃0 such that it just supports the minimum heterogeneous specialization
equilibrium defined by P̃ (1, L̃0) = Ps(1) in the figure, thus any further reductions in L do not affect ᾱ.
In this case L̃0 = L0. A similar argument applies to part 2b and in Figure 5 we see L̃n = Ln. The same
logic applies to increases in φ; these shift lnPs up without affecting the slope. We can find critical values
of φ to support equilibria along P̃ with different s1.

Part 4 uses the insights above to show that when (23) holds globally the model explains how increases
in x monotonically increase specialization. We use Figure 5 to illustrate it for market size. We start at
point 0 and an increase in L shifts P̃ down to point 1, further increases eventually imply maximum
adoption at point 4. A simple corollary is that our model subsumes as special cases the standard Melitz
model (x < x0 and α0 = 0) and a version of it with fixed share of intermediates (x > xn). Given
part 4, which assumes (23) holds globally, it is clear that in those conditions there exist heterogeneous
specialization equilibria, as stated in part 3.14

5 Qualitative Implications

We provide additional qualitative implications of the model. First, we show there is a potential for
inefficiency of the market equilibrium in small/unproductive economies due to under-adoption. Second,
we derive equilibrium elasticities of various model outcomes with respect to x = {L, φ}. Furthermore,
we decompose those elasticities into the novel endogenous specialization terms consisting of selection
and multiplier effects.

While a government may not literally be able to increase the number of workers or technology within
its borders, it may increase the relevant market size via trade with others. In section 6 we show that the
size increases have identical impacts to trade liberalization for nearly all outcomes.

5.1 Market Inefficiency

The market equilibrium may not be efficient if some firms remain unspecialized. The resulting possibility
of efficiency-enhancing policies stands in contrast to Melitz (2003), which Dhingra and Morrow (2019)
show is socially optimal.15 Our model yields the Melitz (2003) market equilibrium if the minimum spe-

14Heterogeneous specialization equilibria also exist if (23) does not hold globally; in that case there are multiple equilibria.
We can show at least one is stable and non-decreasing in x.

15The equilibrium coincides with the solution of a planner that maximizes consumer utility (since there are no aggregate
profits) subject to the labor resource constraint and linear technology by choosing the mass of entrants, the minimum producti-
vity firm, and a production quantity function that is continuously differentiable in productivity, {M, ϕ̄e, q (ϕ)} respectively.
They show this occurs in the one sector economy with CES (similar to our framework) because the quantity-variety trade off
exactly offset: firms produce less than the optimal quantity given their monopoly power but this is offset by the extra entry of
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cialization possible is α0 = 0 and the economy is sufficiently small/unproductive (part 2a of proposition
4). If that is the unique equilibrium then it is also socially efficient under the Dhingra-Morrow planner,
which restricts the technology to use only labor. If firms can choose different technologies and use in-
termediates, then the planner problem would still involve maximizing utility subject to the resource and
technology constraints. However, now the choice variables should also include the thresholds for adop-
tion and quantity functions for firms in each group. This would allow the planner to replicate any market
equilibrium in our model.

Instead of a full planner solution we simply ask if a government can improve on some market equi-
librium, in which case we will say the latter is inefficient. This is the case even if the government has
a single instrument at its disposal: a tax on fixed costs of operating with any technology other than the
most specialized. Moreover, we restrict this tax to be prohibitive so that in equilibrium all firms adopt the
most specialized technology. Any improvement from this prohibitive tax rate on the market equilibrium
provides a lower bound relative to an optimal tax rate (or planner solution).

Figure 6: Inefficiency of heterogeneous specialization equilibrium

Utility is increasing in real wages, 1/P , and a prohibitive tax rate generates no revenue. Therefore we
need only determine when P is lower under the specialization tax. This requires deriving the equilibrium
price, P̄ spec, which is equal to what we obtain in an economy where only the most specialized technology
is available. In Appendix C.5 we show that P̃ spec (s1) is loglinear in s1 as depicted in Figure 6 and the
equilibrium is at its intersection with Ps (s1)—the latter is still defined by (22) as in the full model. Note
that the price schedules P̃ spec (s1) and P̃ (s1) coincide if s1 ≥ smax and the equilibrium price is the same
if x > xn. The reason is simple: in the full model with a unique equilibrium and large economy all
firms adopt the most specialized technology so removing the option of adopting other technologies is

monopolistic firms that ignore their impact on the profits of competitors.
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irrelevant. If x < xn and the heterogeneous specialization equilibrium is at E then the equilibrium with
a single technology is Espec, with lower prices and thus higher utility. In Appendix C.5 we show that
there is always some x close enough to xn such that P̃ spec lies below P̃ since the latter is steeper when
s1 increases to smax—the effect of the premium has an additional impact on P in that case from the firms
adopting.

Alternatively, there are economies sufficiently small or unproductive where forcing adoption is not
efficient so P̄ spec > P̄ .16 However, as long as the price schedules intersect left of s1 = 1 (as depicted in
Figure 6) then a market equilibrium such as EL without specialization is inefficient.

In the quantitative section we show the equilibrium reflects this inefficiency and that it is not simply
due to the input-output linkage but rather the endogenous specialization. Moreover, we find it is stronger
in the initial period when there is less specialization.

5.2 Size and Technology Elasticities

We derive the impacts of economic size and technology on aggregate and firm outcomes. Moreover, we
contrast them with alternative models with a fixed specialization premium. To do so we start with an
equilibrium outcome function o (x, s1 (x)) and decompose the impact of a parameter x (e.g. L or φ) as
follows

d ln o(x,s1(x))
d lnx

= d ln o
d lnx
|s1 + d ln o

d ln s1
· d ln s1
d lnx

εxo = ε̄xo
fixed s1

+ εso · d ln s1
d lnx

endogenous s1

(24)

The overall elasticity of outcome o, denoted by εxo , reflects the direct elasticity holding s fixed, denoted
by ε̄xo and the novel endogenous response in the model, εso, from selection and multiplier effects. We
will show how ε̄xo can also be interpreted as the elasticity in certain standard models with homogeneous
specialization where either no firm adopts or all do so but at a common level ᾱ, which will be a convenient
form to compare the additional impacts of endogenous specialization. Moreover, we also illustrate how to
relate the effect of endogeneous specialization to the multiplier effect, d ln ᾱ

d ln s1
, and show that this multiplier

elasticity is sufficient to compute those size and technology elasticities in the quantitative section. We
focus on locally stable equilibria, so d ln s

d lnx
> 0, as shown in the proof of proposition 5.

5.2.1 Income Gains

The elasticities εxW of aggregate real income are simply the inverse of those for the price index (since
W ≡ 1/P given no aggregate profits) and we focus on size and technology shocks: x = {L, φ}.

Proposition 5. (Real income elasticities)
16Graphically this would occur if the equilibrium s1 under endogenous specialization were left of the intersection of P̃ spec

and P̃ .
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Real income W = 1/P increases with economic size (L) and intermediates technology (φ) around

stable equilibria and the respective elasticities are

εLW = ε̄LW (1− δεsW )−1 > 0 ; εφW =
(
ε̄φW + δεsW

)
(1− δεsW )−1 > 0. (25)

In an equilibrium with heterogeneous specialization (x ∈ (x0, xn) so s1 ∈ s) the specialization premium

elasticity reflects multiplier and selection effects.

δεsW (ᾱ) =
ᾱδ

σ − ᾱ (σ − 1)

d ln ᾱ

d ln s1
Multiplier

+ ᾱ
Selection

≥ ᾱ. (26)

Thus, these income elasticities exceed those of alternative models with homogeneous specialization fixed

at any level αe ≤ ᾱ

εLW |s1∈s = [(σ − 1) (1− δεsW (ᾱ))]−1 > [(σ − 1) (1− αe) |αe≤ᾱ]−1 = εLW |αe≤ᾱ,s̄ (27)

εφW |s1∈s = (1− δεsW (ᾱ))−1 − 1 > [(1− αe) |αe≤ᾱ]−1 − 1 = εφW |αe≤ᾱ,s̄. (28)

We derive the expressions in Appendix C.6, here we provide the insight for L, which extends to φ.
Consider an initial economy with L < L0 such that, according to proposition 4 there is no specialization.
We can see directly that increases in L shift (20) down by ε̄LW = 1/ (σ − 1) (if α0 = 0) and thus raise
real income. That elasticity is constant until L = L0, the equilibrium point 0 in Figure 5, where some
firms are indifferent about adopting. Further increases in L continue to shift the price schedule down by
ε̄LW and would increase real income from point 0 to 2 if s1 was fixed (and thus ᾱ = 0) but by more in our
model as s1 falls to the final equilibrium at point 3. The magnification is captured by (1− δεsW )−1, which
captures both a selection and a multiplier effect as shown by the expression for δεsW . The elasticity is also
larger when compared to an alternative model where all firms use the same intermediate technology with
a share no higher than ᾱ, the average in our model. In the quantitative section we show how to construct
this alternative fixed premium economy such that it has the same initial price index as our model. The
elasticity of welfare with respect to size in this fixed premium economy is obtained by using (21) directly
holding s fixed and is equal to ε̄LW |αe=ᾱ(s1). We can see that this is smaller than εLW |s1∈s for any αe ≤ ᾱ,
when that economy uses exactly ᾱ then the difference between them is due to the multiplier effect. This
holds whenever δεsW (ᾱ) ≥ ᾱ , which requires average specialization to be increasing in s1, d ln ᾱ

d ln s1
≥ 0, as

shown in proposition 2.

5.2.2 Aggregate Cost Shares and Labor Productivity

We first derive the elasticity of alternative aggregate variable cost shares with respect to size and techno-
logy. In addition to the intermediate share ᾱ we also examine the variable labor cost share in production,
lsc = 1 − ᾱ. The model implies that the correlation between these cost shares is -1, which is consistent
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with what we find in the U.S. manufacturing between 1987–2007. We also consider an alternative labor
share common in the literature, that in value added, lsv, which for variable cost is defined as

lsv =
σ−1
σ

(1− ᾱ)Y

Y − σ−1
σ
ᾱY

=
(σ − 1)(1− ᾱ)

1 + (σ − 1)(1− ᾱ)
. (29)

The numerator is the aggregate labor share in variable costs. The denominator represents the gross value-
added, calculated as total sales minus intermediates expenditure.17

Using the decomposition in (24) we write the size elasticities for these outcomes as

εLᾱ =
d ln ᾱ

d ln s1

· δεLW ; εLlsc = − ᾱ

1− ᾱ
· εLᾱ ; εLlsv = − ᾱ

1− ᾱ
· εLᾱ

1 + (σ − 1)(1− ᾱ)
. (30)

Size affects variable production cost shares only via the endogenous specialization premium elasticity,
εso. To see this note that ε̄Lo = 0 since conditional on ᾱ all shares are independent of L and the same is
true for ᾱ conditional on s1 (from α̃ in (12) and ϕ̄e in (16)). We summarize these results below and derive
them in Appendix C.7:

Proposition 6. (Aggregate variable cost share elasticities) The elasticities of aggregate variable cost

shares with respect to size are given by (30); non-zero iff there is heterogeneous specialization and

positive for intermediates, εLᾱ > 0, negative for both labor, εLlsc < 0, and for labor value added in

production, εLlsv < 0.

The intermediate share elasticity εLᾱ depends only on the effect of size on s1, which is positive in a
stable equilibrium (proposition 5) and the effect of specialization premium on intermediate cost share,
d ln ᾱ
d ln s1

> 0 iff there is heterogeneous specialization (proposition 2). The labor results follow directly since
they can be written as functions of ᾱ, so their elasticity is inversely proportional to εLᾱ as shown in (30).

The same points and proposition apply to the technology parameter φ, the only difference is that we
replace δεLW = d ln s1

d lnL
with d ln s1

d lnφ
in (30).

The model also generates novel predictions for two measures of worker productivity. Similarly to
the cost shares we focus on workers used in assembly, i.e. the variable component, and denote their
aggregate quantity by Lv. We then define aggregate real productivity per variable worker in terms of
output, ϕ̄Q ≡ Y/PLv, and real value-added: ϕ̄V A ≡ Y

(
1− σ−1

σ
ᾱ
)
/PLv.

Proposition 7. (Aggregate variable labor productivity) The elasticities of aggregate variable worker

productivity with respect to size are

εLϕ̄Q = εLW − εLlsc > 0 ; εLϕ̄V A = εLW − εLlsv > 0. (31)

17This is the measure Karabarbounis and Neiman (2014) employ to document the global decline in labor share; whereas
they emphasize substitution towards capital, our explanation relies on adoption of less labor intensive technologies and a
re-allocation of production towards the more productive less labor intensive firms.
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These are positive and exceed those of alternative models with homogeneous specialization fixed at any

level αe ≤ ᾱ.

This is a corollary of propositions 5 and 6, as we show in Appendix C.8. First, both real output and
value added increase as the price index falls and thus reflect εLW , which we show is positive in proposition
5 and larger in our model under heterogeneous specialization. Second, Y/Lv is inversely proportional to
the share lsc, and ϕ̄V A = 1/P lsv so there is an additional effect as those shares fall as shown in proposition
6.

5.2.3 Selection and Firm Entry

We show that size increases selection into production and thus lowers the fraction of entrants that actu-
ally produce. Moreover, there are productivity distributions such that the size effect from endogenous
specialization increases the mass of entrants but is dominated by the selection effect, which results in a
reduction of active firms (and thus variety).

We define selection into production as the fraction of firms that invested to enter and remain active,
Ma/M = 1−G(ϕ̄e), and summarize the effect of size in the following proposition.

Proposition 8. (Selection, entrants, and producer mass)

1. The size elasticities for selection, entrants, and active firms are respectively

εLMa/M = εsMa/M · δε
L
W ; εLM = 1 + εsM ·

d ln s1

d lnL
; εLMa

= 1 +
(
εsM + εsMa/M

)
· δεLW ; (32)

2. The size elasticity components from specialization for selection and entrants are respectively

εsMa/M = − ϕ̄eg(ϕ̄e)

1−G(ϕ̄e)

ᾱ− αe
δ

; εsM = (ā− 1)
d ln ᾱ

d ln s1

− F̄

fE + F̄

d ln F̄

d ln s1

; (33)

3. Larger economies have more selection into production if and only if there is heterogeneous speci-

alization: εLMa/M
< 0 iff s ∈ s;

4. There are distributions gk(·) s.t. size increases the mass of firms via specialization, εsM > 0, and

simultaneously reduces active firms, εsM + εsMa/M
< 0, for an economy with sufficiently large L and

αn.

We prove this in Appendix C.9. Holding s1 constant, the mass of entrants and active firms is directly
proportional to size—the effect in standard models. The novel elasticity components due to specialization
are in (33). The mass of active firms falls relative to entrants, so selection increases if there is heteroge-
neous specialization, otherwise there is no effect since ᾱ = αe. The specialization increases the mass of
entrants due to the multiplier effect, d ln ᾱ

d ln s1
>0, but that may be partly offset if the increased premium also
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increases the average production fixed cost over all entrants, i.e. if d ln F̄
d ln s1

> 0. In part 4 we show that
the mass of entrants unambiguously increases with size due to specialization under certain productivity
distributions, namely any gk (ϕ) with constant elasticity in ϕ, e.g. if G is Pareto. Under these distribu-
tions we obtain d ln F̄

d ln s1
= 0: some firms incur increased fixed cost expenditures to upgrade, however this

is offset by the reduction in the fraction of producers (and thus lower production fixed costs per entrant).
For such distributions we can also show that for economies that are sufficiently large, the selection effect
offsets the mass effect and so εsM + εsMa/M

< 0, which implies that specialization can simultaneously
increase overall entry and reduce active firms. This existence result is present in our quantification so it
is useful to understand how it arises in the theory.

We obtain similar results if we focus on technology improvements, φ.18

In sum, endogenous specialization introduces a novel set of predictions for the impacts of size and
technology that are absent in standard models due to the presence of multiplier effect.

5.3 Profit, Sales and Productivity Distributions

The model has implications for the role of size on profits net of fixed costs and sales distributions. We
show these distributions are invariant with respect to size in standard models without changes in speci-
alization. However, in our model increases in size generate a mean preserving spread in profits, and so
higher concentration. The same is true for sales under the most standard type of productivity distribution,
Pareto. We conclude by discussing the size effects on alternative measures of productivity.

5.3.1 Profit

Profits net of production costs are given by π̃(ϕ,L) in (6) and the free entry condition in (14) implies its
mean is constant across any equilibria with the same entry cost, fE . Thus we can focus on measuring its
concentration.

We characterize the distributional impacts of size shocks using the profit CDF:

Φ (x, L) ≡ Pr (π̃(ϕ,L) ≤ x) ; x ∈ [0,∞); (34)

and the profit cumulative share among all entrants of firms with productivity at least ϕ̄:

Π (ϕ̄, L) ≡
∫∞
ϕ̄
π̃(ϕ,L)dG(ϕ)∫∞

ϕmin
π̃(ϕ,L)dG (ϕ)

. (35)

We say that after a change in size from L to L′ profit concentration increases if either Φ (x, L) second-
order stochastic dominates (SSD) Φ (x, L′) or Π (ϕ̄, L) ≤ Π (ϕ̄, L′) for all ϕ̄ (with some inequality).

18Simply adjust (32) to use d ln s1
d lnφ instead of d ln s1

d lnL and remove the direct effect since ε̄φM = ε̄φMa
= 0.
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Homogeneous specialization Heterogeneous specialization

Figure 7: Size and profit distributions (L′ > L)

Proposition 9. (Profit distribution) An increase in size implies an increase in profit concentration iff it

changes specialization. The resulting profit distribution is a mean-preserving spread of the original with

higher cumulative shares for all ϕ̄.

We provide a formal proof in Appendix C.10. A change in specialization is necessary after the shock
because otherwise technology is unchanged and so is selection (shown in section 4.1.2). Thus, if the
economy remains either unspecialized or fully specialized then the marginal entrant and π̃(·) are the
same and so are Π(·) and Φ(·). What if the increase in size were large enough to move the economy
from no specialization to full specialization? This special case illustrates the basic intuition: the shock
increases selection so π̃(ϕ,L′) ≤ π̃(ϕ,L) for ϕ ≤ ϕ∗; but the expected profit is still fE (due to free
entry) so π̃(ϕ,L′) ≥ π̃(ϕ,L) above some ϕ∗. Since π̃(·) is continuous and the only difference across
firms (within each equilibrium) is their productivity we can show the intersection ϕ∗ is unique and the
new π̃(·) intersects the original only once from below as depicted in the left panel of Figure 7. In sum, a
smaller share of entrants produces, and the ones that adopt have sales and operating profit rise faster in
ϕ than non-adopters. This implies a higher share of cumulative profits, Π (ϕ̄, L′) ≥ Π (ϕ̄, L), and also
that the original distribution Φ (x, L) SSD Φ (x, L′). Since the mean profits are equal across equilibria
the two conditions are equivalent in this setting.19

A similar intuition applies to a shock under heterogeneous specialization. The shock leads to se-
lection and we show π̃(ϕ,L′) is continuous and crosses π̃(ϕ,L) once from below and thus implies higher
concentration. The right panel of Figure 7 illustrates a case with two specialization technologies and the
proof extends it to arbitrary number of technologies. A key part of the insight is that initially the most
productive firms already have the technology most intensive in intermediates and thus benefit the most
from reductions in their price, P .

19Atkinson (1970) shows that Φ (x, L′) being a mean-preserving spread of Φ (x, L) is equivalent to Φ (x, L) Lorenz-
dominating, which in our setting requires Π (ϕ̄, L) ≤ Π (ϕ̄, L′) for any ϕ̄.
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5.3.2 Sales

We establish the analogue of proposition C.10 for firm sales. To isolate the effect of size on concentration
we provide a sufficient condition that implies constant average sales per entrant, Y/M . Using (18) we
have Y/M = σ

(
fE + F̄

)
where F̄ ≡

∫∞
ϕe
fi(ϕ)dG(ϕ) so average sales are constant if the change in size

leaves F̄ unchanged, which holds in the following two cases. First, if there is no change in specialization
and thus no changes in selection or adoption, in which case the full sales distribution remains unchanged.
Second, if there is a change in specialization but the change in entry fixed costs (selection) are exactly
offset by the change in upgrading costs. In part 4 of proposition 8 we provide the following sufficient
productivity condition for constant mean sales under heterogeneous specialization:

dγ(ϕ̄)

dϕ̄
= 0 for all ϕ̄ > ϕmin and z ∈ [1, σ]; γ(ϕ̄, z) ≡ −

d ln
∫∞
ϕ̄
ϕz−1dG(ϕ)

d ln ϕ̄
. (36)

The condition is satisfied by the untruncated Pareto where γ = k − (z − 1).20

Similarly to profit, we define the sales cumulative share among all entrants of firms with productivity
at least ϕ̄ as:

λ (ϕ̄, L) ≡
∫∞
ϕ̄
ỹ(ϕ,L)dG(ϕ)∫∞

ϕmin
ỹ(ϕ,L)dG (ϕ)

. (37)

Sales concentration increases if either the original distribution SSD the new one or λ (ϕ̄, L) ≤
λ (ϕ̄, L′) for all ϕ̄ (with some inequality).

The shares of operating profits are also given by (37) so the proposition below applies to these as
well. Operating profits differ from overall profits due to endogenous fixed costs so we need to extend the
results in Proposition 9 to account for this.

Proposition 10. (Sales distribution)
An increase in size implies an increase in sales concentration iff it changes specialization and dγ(ϕ̄)

dϕ̄
=

0. The resulting sales distribution is a mean-preserving spread of the original with higher cumulative

shares for all ϕ̄.

We provide the proof in Appendix C.11. If i = e for all i and a shock to L does not change
specialization then the sales distribution remains unchanged. With homogeneous specialization F̄ is
constant and so are mean sales; moreover the cumulative shares are also unchanged: λ (ϕ̄, L) =∫∞
ϕ̄
ϕσ−1dG(ϕ)/

∫∞
ϕ̄e
ϕσ−1dG(ϕ) and ϕ̄e is unchanged as shown in section 4.1.2. This share expres-

sion also shows that if the shock changes specialization from none to full then the increased selection

20Recall that firm sales are proportional to ϕσ−1 so we can interpret γ(ϕ̄, σ) > 0 as the elasticity of cumulative sales with
respect to ϕ̄ (of firms with productivity above ϕ̄ that share a given technology). These elasticities weight the impacts of changes
in cutoffs as s1 increases. Melitz and Redding (2015) define γ (z = σ − 1) as the “hazard function for the distribution of log
fim size in a market” and show that it determines if the partial trade elasticity is constant and is thus important in determining
the gains from trade.
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leads to higher λ (ϕ̄, L) if dγ(ϕ̄)
dϕ̄

= 0. A similar insight applies when we move from no specialization to
some or within heterogeneous specialization equilibria. The proposition applies to the Pareto distribution
used in the calibration.21

5.3.3 Productivity

We focus on a baseline firm measure of TFPQ given by the inverse of unit cost net of inputs, which is
simply the fundamental productivity parameter22:

C−1
i ≡

(
ci

w1−αi (P/φ)αi

)−1

= ϕ. (38)

We focus on surviving firms and define µ(·) as the survivor density of TFPQ: µ (ϕ,L) =

g (ϕ) /
(
1−G

(
ϕ̄Le
))

for ϕ ≥ ϕ̄Le and zero otherwise, where ϕ̄Le is the production cutoff under L.

Proposition 11. (Survivor TFPQ distribution)
An increase in size changes the TFPQ distribution iff it changes specialization and then implies

µ (ϕ,L′) FOSD µ (ϕ,L).

Changes in specialization are necessary because otherwise there is no selection, as previously dis-
cussed. Large enough shocks from no specialization to full specialization will generate selection and
thus a higher mean productivity of surviving firms. Selection is also the only channel operating under
heterogeneous specialization since L only affects µ (ϕ,L) via ϕ̄e.

In appendix C.12 we discuss how alternative weighted averages of TFPQ are affected by size due to
selection and re-allocation.

6 International Trade

We allow for international trade between symmetric countries and show the size comparative statics are
isomorphic to moving from autarky to free trade; or to partial trade liberalization. This extends the
applicability of the results in an important direction because trade policy is a government lever to change
market size. Moreover, the extension provides a direct connection between trade costs and specialization,
which we highlight in the motivation facts and exploit in the calibration.

We also provide two additional insights about the effect of liberalization. With endogenous speciali-
zation we show that liberalization generates (i) higher income gains and (ii) increases the share of trade
in intermediates (in contrast to standard models where it is constant). These occur only for economies

21When dγ(ϕ̄)
dϕ̄ > 0 there are competing effects and we can’t show that the size shock leads to higher cumulative shares for

all ϕ̄.
22The result applies to “true” quantity TFP, which requires a measure of the effective intermediate price index. In practice,

we measure aggregate expenditure in intermediates, which implies that shocks increasing variety would typically have an
additional impact on measured productivity.
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with size or intermediates technology in the heterogeneous specialization range, and thus imply different
impacts of trade liberalization across countries (or industries) and over time.

6.1 Market Size Equivalence

We show size and trade shocks have nearly isomorphic results in the absence of fixed export costs for
most outcomes.

6.1.1 Free Trade Areas

We first illustrate the basic equivalence between liberalization and market size with a simple example.
Consider an initial equilibrium where point 0 in Figure 5 represents a closed economy of size L. In a
fully integrated economy of size N ×L the new equilibrium can be represented by point 1, which results
from shifting P̃ down as the result of increasing size by a factor N ; this is also the equilibrium if we only
allow for free trade in goods between N symmetric countries.23

In this setting (and without fixed exporting costs), an advalorem export cost factor τ ≥ 1 enters
P̃ similarly to L, as we show explicitly below. So an identical reduction in τ between N symmetric
countries from infinity (autarky) to τ = 1 (free trade) can also be represented by Figure 5. If we interpret
N as a measure of a continuum of countries then we can derive elasticities with respect to κ: the fraction
of countries with free trade. The income elasticity with respect to κ is equal to εLW given in proposition 5.
Moreover, the effects of κ are similar to those of L in propositions 6, 7, 9, and 10; since in them L works
only through the price index and specialization.24

In proposition 5 we show that size expansions have larger income effects for countries in the en-
dogenous specialization range relative to those below it. Combining this and the isomorphism implies
that expansions of free trade areas can have heterogeneous and threshold effects, which are larger if the
expansion of the area is sufficiently large (or between countries with sufficiently advanced intermediate
technology φ). This provides one possible rationale for mega-regional deals.

6.1.2 Trade Liberalization

The liberalization-size isomorphism described above extends to partially integrated economies: those
with iceberg export costs, τ ≥ 1. In this setting the price index is still given by (21) but with L̃ ≡ L× l∗,
where l∗ is the trade market size factor, which we derive below as

l∗ ≡ 1 + (N − 1) τ 1−σ ≥ 1. (39)

23Free trade and identical preferences imply a firm sets the same price across markets but faces higher aggregate expen-
diture, NX , and competition (lower P ) relative to autarky. Firms in each country with a given productivity make the same
specialization decisions. Similar prices, technologies, and size imply that in the free trade equilibrium, which replicates the
fully integrated economy outcome, the income-expenditure constraints hold for individual countries.

24The main difference is that L has a direct effect on the mass of each country’s firms, reflected in the first term of εLM =
1 + εsM ·

d ln s1
d lnL , whereas κ does not.
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This factor is increasing in the number of trading partners and decreasing in export costs and spans the
two special cases in the previous section: free trade case, τ = 1, and l∗ = N , and autarky, τ = ∞ and
l∗ = 1.

To derive l∗, note that total operating profits from domestic and foreign sales are now

π̃i(ϕ) = σ̃XP σ−1 [ci(ϕ)]1−σ + σ̃ (N − 1)X∗(P ∗)σ−1 [τci(ϕ)]1−σ (40)

= σ̃ [l∗X]P σ−1 [ci(ϕ)]1−σ ,

where the export profit in the first line reflects the N − 1 additional markets where sales incur an extra
marginal cost. The second equality reflects the symmetry, which implies identical aggregate expenditures,
X = X∗, at home (no asterisk) and each foreign market, (asterisk). In the absence of fixed export costs all
firms export, so all firms have the same profit expression. Moreover, the profit expression is identical to
what we had under autarky except that it reflects “effective expenditure” X̃ ≡ l∗X . Thus the expressions
for productivity thresholds are unchanged but now use X̃ .

The expression for each country’s total expenditure is still the first equality in (10); total sales of a
given country’s firms, Y , must equal world expenditure on them. In a symmetric equilibrium this implies
we still obtain Y = X and (10) holds: X = Lā . The free entry expression does not reflect expenditure
so it remains unchanged.

In sum, the only difference in the price index is that the entry cutoff in (7) reflects X̃ so in (21) we use
L̃ ≡ L× l∗, implying that P has the same elasticity with respect to L and l∗. The following proposition
summarizes the equivalence between increases in L and trade liberalization—i.e., increases in l∗ due to
a reduction in τ or an increase in N .

Proposition 12. (Impacts of trade liberalization)
A trade liberalization increases effective market size, L̃ = L × l∗, and has the same impacts as

increased size in propositions 5 through 11; except that εl
∗
M = εLM − 1 and εl

∗
Ma

= εLMa
− 1.

The proof is straightforward. First, the trade liberalization parameters, τ or N , only affect s1 via P ,
which we already showed has equal elasticity for both L and l∗. Second, with one exception, the effects of
size increases in propositions 5 through 11 work through the specialization elasticities and don’t depend
directly on L or l∗ (or its determinants); so εso · d ln s1

d ln l∗
= εso · d ln s1

d lnL
implies these shocks have similar

impacts. The exception is the mass of firms, which depends directly on a country’s L but not on l∗, hence
εl
∗
M = εLM − 1, with a similar modification for active firms.

We summarize some of the key results from proposition 12 here. Under endogenous specialization,
trade liberalization implies (i) larger real income gains than alternative models with homogeneous spe-
cialization (proposition 5); (ii) an increase in the aggregate variable cost share for intermediates and a
decrease for labor (proposition 6); (iii) increased selection (proposition 8); (iv) increased concentration in
profit (proposition 9) and sales (proposition 10) and (v) a FOSD of surviving firm productivity distribu-
tions (proposition 11). All effects in (ii), (iii), (iv), (v) are absent in similar trade models with exogenous
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specialization and no fixed costs of exporting.

6.2 Intermediate Trade Share

Estimation and calibration often makes use of trade shares and costs. Thus we note two results related to
these. First, using proposition 12 and (39) we can obtain elasticities in terms of τ , e.g. for real income
we obtain

ετW = εl
∗

W ·
d ln l∗

d ln τ
= εLW · [− (σ − 1) (1− 1/l∗)] . (41)

Second, the trade share of intermediates increases with trade liberalization. Since the consumption and
intermediates bundle are the same, the intermediate share of total trade, v, is simply the intermediate
share of expenditures:

v =
[(σ − 1)/σ] ᾱY

Y
=
σ − 1

σ
ᾱ. (42)

The elasticity of this share with respect to l∗ is simply εl∗ᾱ , which is positive under endogenous specializa-
tion as shown in proposition 12—so trade liberalization increases v. Therefore, reductions in export costs,
τ , common to final and intermediates can explain increases in v only under endogenous specialization.

7 Quantitative Implications

We have three objectives in the following simple calibration to U.S. manufacturing in 1987-2007. First,
to assess if the model is consistent with first order changes in the data untargeted in the calibration.
Second, to illustrate the relative importance of the selection and specialization mechanisms, and the
extent of market inefficiency. Third, to quantify the effects of large shocks, such as moving from the
2007 equilibrium to autarky or a trade war on real income, intermediate trade, firm technology, and profit
concentration and contrast to alternative models.

7.1 Calibration: Assumptions and Identification

We focus on a symmetric setting where the U.S. accounts for one fourth of world income (N = 4)
and use it to calibrate the parameters in Table 2. We assume three potential intermediate technologies

(αi = 0, α/2, α) so δ = α/2. Productivity follows a Pareto: G(ϕ) = 1 −
(
ϕmin

ϕ

)k
, and technology

parameters are constant as are all fixed costs, f .
The baseline elasticity of substitution is σ = 5.25 The following parameters are common to ot-

her models of heterogeneous firms and so we use the external standard values (L) and normalizations
(ϕmin, f0, fE) listed in Table 2.26 The most productive firms fully specialize in our model so their sales

25Melitz and Redding (2015) use a value of 4 and Costinot and Rodrı́guez-Clare (2014) use a value of 6.
26Our model is not neutral with respect to economic size but our calibration strategy allows us to find the “effective size”

of the economy, which is a function of fE , ϕmin, f0, and φ. See the online appendix of the working paper version Limão and
Xu (2021) for details.
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distribution is Pareto and thus we choose its parameter k/ (σ − 1) = 1.42, which is consistent with sales
distribution evidence.27

The calibration of variable export costs τt is also standard: it directly matches average firm exports as
a share of sales, (N − 1)τ 1−σ

t /
(
1 + (N − 1)τ 1−σ

t

)
, which we observe in the data in 1987 and 2007.

The remaining four parameters, α, f̂ , φ0, and φT , are internally calibrated when solving for the equi-
libria. We sketch the data moments and two-loop algorithm here and provide details in Appendix D.1.
The inner loop uses initial guesses for f̂ , α, and the specialization premia, s1,t. Using these along with τt,
the pre-assigned parameters and the expression in (12) we choose the unobserved maximum intensities
αt to match the observed average share in each period (ᾱt=0,T =0.699, 0.743).28

The free entry condition is used to calculate the entry cutoff, ϕ̄e,t, and the zero cutoff profit condition
yields Pt. From the specialization schedule (22), we obtain φt, and calculate the model-implied changes
in relative factor prices ∆ ln

(
w
P

)
.29 If maximum intensity is constant and equal to the initial guess,

αt=0,T = α, and ∆ ln
(
w
P

)
= 0.383 (the change in relative intermediates costs to labor in the data) then

the algorithm moves to the outer loop, otherwise it iterate over alternative values of f̂ and s1,t. The outer
loop computes the top firms’ sales share in the initial equilibrium and stops if it is equal to the one in the
data in 1987 (0.645); otherwise it continues to iterate over α.30

7.2 Equilibrium, Parameters and External Validity

We illustrate the calibrated equilibria, discuss the resulting parameters and provide some external validity.
Figure 8 shows the calibrated equilibrium in the initial, E0, and final period, ET . The shift in the

specialization and price schedules reflect the φ and τ shocks respectively. Each equilibrium is unique for
the respective set of parameters and entails heterogeneous specialization. The change in specialization
premium is 17.6 lp.

The model is exactly identified and replicates all the targeted data moments listed in the third column
of Table 2. Thus we briefly discuss external validity by comparing (i) the internally calibrated parameters
to other estimates and (ii) model predictions to key untargeted data moments.

7.2.1 Trade growth

The calibration implies a variable export cost factor in 2007 that is about 14 log points lower than 1987.
This seems reasonable given the bilateral and multilateral liberalization in that 20-year period and the
reductions in transport and information costs.

27For example, Kondo et al. (2018) estimate it to be 1.49 for US manufacturing in 1982 and 1.75 in 1992 using establishment
data and around 1.15 using firms.

28We use non-energy material expenditure as a share of all costs: materials, labor and investment. In the appendix we
examine robustness to alternative capital expenditure measures.

29From the specialization schedule (22), ∆ ln
(
w
P

)
=

∆ ln s1,t
α0

−∆ lnφt.
30We measure the sales share as the fraction of total manufacturing sales done by the top 20 firms in each industry (equiva-

lently an industry sales weighted measure of top 20 firm shares).
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Figure 8: Calibrated equilibria

Given some stark simplifications of the model we ask if the calibrated model can explain key untar-
geted aggregate trade statistics. Specifically, the model assumes that all firms export and countries are
symmetric. This implies that the growth of export intensity is common across firms and so equal to the
aggregate growth of (i) exports to sales ratio (all firms export) and (ii) import penetration (country sym-
metry). The average of these two untargeted aggregate growth rates in the data is 2.6 log points/annum—
very close to the 2.4 export intensity growth using the targeted firm level moments.31

7.2.2 Input shares and adoption

The calibrated model implies a change in the aggregate labor share of variable cost of −4.4 percentage
points over the full period, which is similar to the corresponding untargeted change in the data: −4.0.32

The calibration replicates the average intermediate shares for the initial and final period, ᾱt=0,T ; it
implies a maximum intensity of 0.746, which as we would expect is above each of these targeted averages
but also above the similarly computed ᾱt for any other year in between. It also allows us to compute the
fraction of adopters of each technology, n = 0, 1, 2. We obtain an increase from 0.24 to 0.77 in the share
of adopters that prefer at least an intensity of 0.37 (and thus adopt either n = 1, 2).

31The aggregate growth rates employ NBER-CES data combined with the import and export data from the motivation
section from year 1990 to 2007, hence the comparison of average yearly growth rates. These growth rates are computed
within industry and aggregated with fixed weights, which is similar to how the intermediate shares are computed.

32We target the intermediate share in the data but not the labor share. While reductions in the latter mirror any intermediate
share increase in the model, that is not necessarily the case in the data where total costs also reflect energy and investment.
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7.2.3 Productivity Growth

The calibration yields an intermediate productivity improvement of ∆ lnφ = 9 lp. There is no direct data
counterpart so we assess its reasonableness indirectly by comparing its implications (jointly with the rest
of the parameters) for a measure of productivity it affects. In section 5.2.2 we defined the value added TFP
and we can show that the change is ∆ ln ϕ̄V A = ∆ ln (w/P lsv) = ∆ ln

(
w
P

)
−∆ ln

[
(σ−1)(1−ᾱ)

1+(σ−1)(1−ᾱ)

]
= 45.8

lp in the quantitative model, about 2.3 lp /annum from 1987 to 2007. In the data we compute it as real
value added per production-worker hour and its change over the period is 3.65 lp/annum.33 So the model
explains almost 2/3 of this untargeted moment.34

7.2.4 Sales Distribution Change

The calibration targets the share of top 20 firm sales in 1987 but not its change relative to 2007. In Table
3 we show that the model-implied change is over two thirds of the observed when we consider changes
in the top 20 and almost all observed in the top 50.35

Table 3: Changes in sales share: untargeted data vs. calibrated model (pp)
Moments (Change share, pp) Data Model (τ and φ shock) Model (τ shock)
Top 8V firms 3.98 1.82 0.66
Top 20V firms 3.45 2.38 0.87
Top 50V firms 2.95 3.12 1.14

Notes: Comparison of untargeted changes in alternative sales concentration ratios in the data (1987-2007) with
the model-implied changes due to the calibrated trade and productivity shocks. The V denotes the number of
industries of US manufacturing industries with more than 100 firms used in the calculation. The aggregation of
the concentration ratios across industries in each year t uses each industry’s sales share. For the model-implied
change, we compute the productivity cutoff that matches the fraction of firms corresponding to the top firm
sales share in year 1987, and see how much changes in the sales share are generated at the same cutoff in the
final equilibrium.

7.2.5 Model Versus Data Regressions: Specialization and Concentration

In Table 1 we found specialization increases with an industry’s relative input price wmt /P
m
t , significantly

so for more concentrated industries. To examine if the calibrated model can generate this finding we
must bridge between the model and the multiple industries in the regression. The model could be exten-
ded to incorporate multiple industries if we allowed linkages only within industries (and Cobb-Douglas

33The within industry log change (1987-2007) weighted by 1997 industry total costs, divided by 20.
34One reason the calibration can match this is that it generates a large enough change in the specialization premium, about

18 lp, when we allow for trade and φ shocks, with the latter accounting for a large fraction of that growth. The premium would
have increased by almost 15 lp in a counterfactual with only the shock to φ.

35That fraction is smaller when we consider the top 8, suggesting superstar firms may be specializing even more (the model
could capture this by allowing more than 3 intermediate intensities).
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aggregation across them on the consumption side). By doing so we could calibrate similarly to the single
industry approach; however this would exactly replicate the intermediate shares, specialization premia
and top sales share by industry in the data and thus the empirical relationship in Table 1. Therefore we
follow an alternative approach. We start from the aggregate calibration, apply an exogenous shock to
generate variation in the initial conditions and then apply a trade shock to it. We then use the model-
generated outcomes to run a regression similar to Table 1.

We describe the basic approach here (for details see Appendix D.3). We take 500 draws of shocks
(approximately the number of industries in the regression) from a lognormal to apply to the calibrated
adoption cost, f̂ , and generate new economies that vary only in this dimension and thus in initial sales
concentration. We re-calculate the initial equilibrium variables, denoted x̃m0 . We then draw a trade shock
(from a lognormal consistent with the mean and standard deviation in the data) and apply to each initial
equilibrium. We compute the resulting final period outcomes holding all other parameters fixed. Finally,
we compute the change in outcomes, ∆tx̃

m, and run a version of specification in column 1 of Table 1 in
changes using the 500 model draws. We report the average OLS coefficients over 100 repetitions of this
procedure, all of which are significant at the 1% level.

∆t ln

(
α̃mt
αmw,t

)
=
(

0.40 + 1.67× C̃onc
m)

∆t ln

(
w̃mt
Pm
t

)
+ 0.015 + ∆tutm (43)

We find a positive differential elasticity for industries with higher initial concentration. This is also
the case in the data where the differential elasticity is 0.067 for industries with concentration 1 standard
deviation above the mean in the data. The analogous differential using the model is 0.13 (the standard
deviation of C̃onc

m
is 0.08). In Appendix D.3 we argue that the data estimate is attenuated by measure-

ment error of the concentration variable (top 20 share) relative to its model counterpart (share of sales by
a fixed percentile of firms).

7.3 Equilibrium Trade Effects and Role of Endogenous Specialization

We now focus on the reduction in trade cost between 1987 and 2007 and examine its impacts on the initial
equilibrium of the calibrated economy while holding intermediate technology (φ) fixed. The objectives
are to illustrate the quantitative relevance of the model in studying trade shocks and contrast it with
alternative models with fixed or no specialization.

7.3.1 Income, Cost Shares and Productivity

The first three rows of Table 4 illustrate the relative impacts of technology and trade shocks in explaining
the observed changes between 1987 and 2007. We observe that shocks to φ generate most of the changes
but the trade shock is still quantitatively relevant.

The third row of Table 4 shows the effects of the 14 lp decrease in trade costs. It increases real income
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Table 4: Changes in real income, cost shares, and productivity (lp)

Model
Real

income (W )
Intermediate

share (ᾱ)
Labor VA
share (lsv)

Labor VA
productivity (ϕ̄V A)

Both shocks 37.9 6.10 -7.48 44.0
Technology shock 30.3 5.68 -6.89 35.9
Trade cost shock 8.34 1.96 -2.16 10.5

Fixed Specialization 6.03 0 0 6.03
No Specialization 1.81 N.A. N.A. 1.81

Notes: The first three rows apply the calibrated changes in trade costs (τ ) and technology (φ) jointly or separa-
tely to the initial equilibrium under endogenous specialization. The fourth and fifth present the outcomes with
only the trade cost shock under fixed specialization and no specialization, respectively.

by over 8 lp. The aggregate intermediate share in variable cost increases by close to 2 lp; this is also the
growth in the share of trade in intermediates (see (42)).

The share of labor in variable cost, lsc, mirrors that of the intermediate share, so it falls by 1.96 lp ,
whereas the labor share in value added, lsv, falls by 2.16. As we show in proposition 6, the growth in real
productivity per variable production worker is given by the difference of real productivity (or income in
first column) and that of the respective labor share (lsv in the third), which yields the 10.5 increase in
labor VA productivity.

The model provides a simple decomposition of the gains from liberalization. Using the equilibrium
price expression in (20) that determines real income changes, we obtain

∆ lnW =
∆ ln L̃

σ − 1︸ ︷︷ ︸
No Specialization

+
∆ ln ā

σ − 1︸ ︷︷ ︸
Multiplier

+ ∆ ln ϕ̄e︸ ︷︷ ︸
Selection

8.34 = 1.81 + 0.63 + 5.9

. (44)

Using the relationship in proposition 12 the 14 lp decrease in τ is equivalent to a size increase of
∆ ln L̃ = 7.3 lp. The no specialization component divides it by σ − 1. This yields a modest income
increase of 1.81 lp, which is common to a variety of trade models.36 The endogenous multiplier effect
adds 0.63 lp and the selection effect is about 3.3 times larger than the basic no specialization effect.
Overall, the income effect is 4.6 times higher with endogenous specialization than without any.

Existing models with fixed intermediate technology are also known to generate larger trade impacts.
However, this is not all that our model captures. Using (21) we obtain a gain under fixed specialization
of ∆ lnW FS = 1

1−αe
∆ ln L̃
σ−1

= 6.0, so it is about 3.3 times larger than without specialization—reflecting
the fixed input multiplier 1

1−αe evaluated at the initial ᾱ in the data. The endogenous specialization gain

36Specifically any other model that falls in the Arkolakis et al. (2012) class where trade elasticity and trade share growth are
sufficient statistics to compute trade gains, these are captured by σ − 1 and ∆ ln L̃ respectively in our setting without export
selection and no specialization.
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is still almost 1.4 times higher than what we obtain in the comparable fixed specialization calibration.37

In addition to the quantitative importance of endogenous specialization, the table also highlights the
fact that similar models without that feature can’t explain any changes in input shares, and thus, any
changes to labor productivity in those models reflect only overall productivity.

7.3.2 Endogenous Multiplier and Size Elasticity

We use the model to compute the size elasticities for key outcomes, as derived in section 5.2. The re-
sulting first order effects closely approximate the full model impacts.
The income and factor share size elasticities depend on the multiplier elasticity, δ d ln ᾱ

d ln s1
, 0.27 in the cali-

brated initial equilibrium. Using this value and the formulas in (25) and (30), we obtain the elasticities
listed in each column of Table 5.

Table 5: Size elasticity of real income, cost shares, and productivity

Model
Real

income (εLW )
Intermediate

share (εLᾱ)
Labor VA
share (εLlsv )

Labor VA
productivity (εLϕ̄V A)

Endogenous Specialization 1.16 0.32 -0.33 1.50
Fixed Specialization 0.83 0 0 0.83
No Specialization 0.25 N.A. N.A. 0.25

Notes: Size elasticity of real income, cost shares, and productivity in the initial equilibrium.

In the second and third row we provide the elasticities for alternative models and note two points.
First, we verify these are smaller in absolute value, as shown in section 5.2. Second, in the fixed or
no specialization models the size elasticity is constant so when multiplied by the relevant size shock
they reproduce the outcomes in the last rows of Table 4. For example, the 14 lp reduction in trade
costs is equivalent to a size shock of 7.3 lp and thus a real income effect of around 6 lp using the fixed
specialization elasticity. Under endogenous specialization the elasticity is variable but the same shock
implies an income effect of 8.5 lp—very close to the 8.3 in the full model. This approximation is also
close to the full effects for the factor shares and productivity.
In sum, armed with a multiplier elasticity, a value of σ, and an initial average intermediate share we
can obtain close approximations of various impacts of size (or trade) shocks that, conditional on these
sufficient statistics, are independent of productivity distribution and technology parameters. This suggests
a high value to obtaining empirical estimates of the multiplier elasticity across countries as an alternative
approach to quantifying these effects.

37In the working paper version Limão and Xu (2021) we show how we can calibrate this fixed specialization model to yield
the same initial equilibrium welfare and all other endogenous variables while having all firms with the same intermediate
intensity αe = ᾱ as in our model but different TFP technology φi.
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7.3.3 Selection, Entry and Adoption

The counterfactual of 14 lp reductions in trade costs also confirms and quantifies two of the insights in
proposition 8. First, there is a selection effect with a 33.4 lp reduction in the fraction of active firms.
Second, there is a 2.5 lp increase in entry, as predicted under Pareto. Moreover, in this calibration the
selection is sufficiently large that the mass of active firms falls by 30.8 lp. The fraction of active firms
adopting intermediates at α/2 and α intensity increase by 13.3 and 39.2 lp, respectively.

As noted in section 5.2.3 a similar change in trade costs has zero effect on all these outcomes in the
fixed and no specialization models.

7.3.4 Profits and Sales

Figure 9: Sales and profit Lorenz
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Notes: Productivity distributions are truncated pareto with minimum productivity set to the initial level of the
entry cutoff. Source: Authors’ calculations.

Finally, we examine the calibration impact of trade costs on profit and sales distributions derived in
propositions 9 and 10. Figure 9 shows the Lorenz curves. The dashed curves represent the equilibrium
with lower trade costs and are below those of the initial equilibrium. Thus, we confirm that the increase
in market size causes a MPS of sales and profits under a Pareto. Recall from the theory that this shock
has no effect on distributions if there is no change in specialization.
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7.4 Robustness

We check robustness to three alternative calibrations. First, we lower the elasticity of substitution from
σ = 5 to 4. Second, instead of pre-assigning the Pareto shape parameter, k, we calibrate it by utilizing
an additional moment: top 4 firms sales share. Lastly, we use capital expenditures from the EU KLEMS
database to measure intermediates cost share. The conclusion is that the basic quantitative implications
of the baseline calibration are robust to each alternative, and we provide them in detail in the working
paper version Limão and Xu (2021).

7.5 Policy Experiments

We now examine counterfactual policy changes that can affect market size and efficiency.

7.5.1 Trade Taxes and Market Size

Since 2007 there has been increased trade protectionism, most recently characterized by Trump’s trade
war. In Table 6 we illustrate its implications for real income and intermediates if it applied to all U.S.
partners and they retaliated symmetrically. We also compare it to going to autarky; which provides a
benchmark number for gains from trade commonly used in the literature. All of the shocks are applied to
the 2007 equilibrium.

Table 6: Real income and intermediates share under trade war and autarky

Policy scenario
Trade war

(∆ ln τ =16 lp)
Autarky

(∆ ln τ =∞)
Market size (L̃) −8.02 −17.8
Intermediate share (ᾱ) −0.46 −1.28
Real income: End. specialization (W ) −8.40 −18.8
Real income: No specialization (W ns) −2.00 −4.45

Autarky entails a market size reduction of about 18 lp, which lowers the intermediate share by 1.3
lp. It reduces real income by almost 19 lp—over 4 times the amount it would in a setting without
specialization.

For comparison with the rest of the quantification we model the trade war as a symmetric trade cost
increase of 16 lp.38 This magnitude reflects the increase in the U.S. average tariff rate factor on Chinese
imports from about 1.03 to 1.21 between early 2018 and the end of 2019.39 The implied market size
reduction is almost half that of autarky and therefore so is the income reduction under no specialization.
Under endogenous specialization the intermediate share falls by 0.5 lp and real income by 8 lp.

38We abstract from the fact that the tariff has revenue and its elasticity is slightly different from a pure export cost.
39This also uses the fact that US tariffs are applied to the cost at the border so the growth in the overall trade cost factor is

ln 1.21
1.03 , independent of the initial value of other costs.

40



7.5.2 Specialization Taxes and Market Inefficiency

In the qualitative section we note that a market inefficiency caused by a specialization externality is
possible. We now show it is present in the initial calibrated equilibrium and can be eliminated by a
simple government policy that yields a large income gain if specialization is as low as in 1987.

We consider a proportional tax on the operational cost of the less specialized technologies,

f ′0 = (1 + tax)f0, f ′1 = (1 + tax)f0(fa)
δ, f ′2 = f0(fa)

2δ,

which increases the incentive to adopt the most specialized one.
A particularly simple policy is a prohibitive tax rate. This policy ensures that all firms optimally fully

specialize and thus no tax revenues are collected.40 We compute the required rate for this behavior in the
1987 equilibrium to be 118%. Since the policy is not optimally chosen there is no a priori reason that it
must increase real income as shown in section 5.1. However, we find that it does generate a 5.2 lp gain—
indicating a sizeable specialization externality. This differs from the standard input-output externality,
which is captured in the fixed specialization framework. In fact, in the latter case the calibration shows
that a similar prohibitive tax generates a 3.1 lp income loss.41 This divergence in outcomes further high-
lights the importance of understanding endogenous specialization and the role for government policies to
minimize the associated market inefficiencies.

We perform a similar experiment starting in 2007 and find it has a negligible income impact, 0.5 lp.
This suggests that trade and productivity improvements induced sufficient specialization to eliminate the
under-adoption inefficiency.

8 Conclusion

We provide a tractable framework to analyze the implications of the classical ideas that larger markets
allow for a finer division of labor and this division feeds back into larger market size. By focusing on the
adoption of intermediates by firms with heterogeneous productivity we capture key features of modern
economies and provide new insights on the impacts of market size and technology on the structure of
production, firm concentration and income gains. International trade is a key determinant of size and
thus of these outcomes, as the quantification illustrates.

Market size affects specialization due to firm-level increasing returns to scale arising from adopting
intermediate-intensive technologies. The impacts are magnified in general equilibrium by an endogenous
multiplier and a selection effect. We show analytically that increases in market size or a trade liberaliza-

40To determine the optimal rate we can distribute any tax revenue (TR) to consumers so the goods’ market clearing condi-
tion would become X = L+TR

1−σ−1
σ ᾱ

.
41Under fixed specialization all three technologies have the same intermediates share but different unit costs, so we imple-

ment the tax on the fixed operational costs of two technologies with higher unit costs as in the baseline, as we detail in the
working paper.
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tion imply (i) larger real income gains than alternative models with fixed specialization; (ii) an increase in
the aggregate variable cost share for intermediates and a decrease for labor; (iii) increased firm selection;
(iv) increased concentration in the profit and sales distributions; (v) a FOSD shift of TFPQ for surviving
firms and (vi) an increase in the intermediate trade share. The effects in (ii)-(vi) are absent in similar
models with exogenous specialization.

In the calibration we illustrate key analytical results; quantify the importance of trade and technology
shocks in the U.S. in 1987-2007 and the role of selection and multiplier effects; we also examine counter-
factual policy changes. The calibration yields reductions in trade costs and improvement in intermediate
productivity in this period that allow us to match key targeted moments, and is consistent with untargeted
moments of the data. A substantial fraction of the increase in specialization premium is due to the exoge-
nous intermediate productivity. But the trade cost reduction still corresponds to an effective market size
increase of over 7 lp and thus has significant effects including: (i) real income gains larger than without
specialization (4.6 times) or fixed specialization (1.4 times); (ii) an increase in the intermediate share in
production and trade of 2 lp and a reduction in the labor share of value added of similar magnitude—none
of which possible in alternative models; (iii) substantial increases in the fraction of firms specializing and
selection into production.

Two counterfactual experiments highlight the importance of trade and industrial policy. First, a tax
that induces firms to specialize would increase real income; so the initial equilibrium is inefficient. Se-
cond, the impact in the 2007 economy of an increase in trade costs of 16 lp—similar to the recent trade
war—reduces market size and real income substantially: almost half way to trade autarky.

The model nests the special cases of no specialization or homogeneous specialization technology; it
also shows that increases in size or technology can explain how an economy can develop by endogenous
specialization. Future research can extend this simple framework along interesting directions, e.g. adding
capital owners to study redistribution; allowing variable markups so increases in concentration become a
source of increasing market power; modelling multiple sectors and export selection to better match the
data.
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A Cross Country Evidence on Production Specialization: 1997-
2007

In the following, we use data from the Global Trade Analysis Project (GTAP) to provide some evidence
on production specialization between 1997 and 2007. We define production specialization in a country c
as any increase in the intermediates’ share in production costs, i.e. ∆αc > 0.42 We denote the aggregate
change over a set of countries as

∆α =
∑
c

[wc,07αc,07 − wc,97αc,97] , (A.1)

where the wc,t represent production cost shares used to weight across countries. For the 67 countries
available in the GTAP data we obtain an increase of 6.3 percentage points between 1997-2007 using ma-
nufacturing industries. We then decompose it into within and between country specialization as follows

∆α =
∑
c

w̄c [αc,07 − αc,97]︸ ︷︷ ︸
within

+
∑
c

ᾱc [wc,07 − wc,97]︸ ︷︷ ︸
between

= 3.7 + 2.6,

where w̄c = (wc,07 + wc,97) /2, ᾱc = (αc,07 + αc97) /2 denote the average weights. The within change
accounts for nearly 60% and the remaining reflects production re-allocation towards countries with higher
intermediate shares. The simple average of ∆αc across countries is only 0.4 percentage points. Thus
larger countries had larger increases in the intermediate share—suggesting a positive correlation between
size and production specialization. International trade is one channel in our model that expands market
size and access to inputs leading to increased specialization. Increases in specialization in this data are
strongly correlated with imported intermediates. To see this we run a panel regression of ∆αmc (the share
change within country and each of the 9 GTAP manufacturing industries, indexed by m) on ∆mm

c (the
change of the imported fraction of intermediates at the same level) and obtain:

∆αmc = 0.49
(0.04)

·∆mm
c + ac + am.

This evidence rejects a constant intermediate share production function, and suggests that share is incre-
asing as imported intermediates are adopted.43

42Intermediates share is defined as expenditure on intermediates over total production cost, which in GTAP includes pro-
duction costs on labor, capital, land, and intermediates.

43To address the concern that some of the correlation is mechanical we also instrument ∆mm
i with changes in tariffs and

find a similar result.
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B Two Stage Production
Our framework can be interpreted as a reduced form representation of alternative models of firm speci-
alization. Here we provide one where increases in market size or trade integration induce within firm
specialization in the sense of shifting its workers towards production of inputs (intermediates or tasks)
in which they are more productive. The production has two stages. In the first stage, labor produces
firm-specific inputs with the following technology

xt = ztlt ; t ∈ Ω0 (B.1)

where zt is the productivity of each of the lt units of labor and, Ω0 denotes the set of n firm-specific inputs
that an unspecialized firm must produce. In the second stage, the unspecialized firm produces the final
good by aggregating labor and all n inputs with a constant returns to scale production:

y(ϕ) = ϕl1−nd
∏
t∈Ω0

(xt)
d, (B.2)

where nd ≤ 1. Firms are homogeneous in the production of first stage intermediates, but have heteroge-
neous assembly productivity in the second stage, captured by ϕ. We continue to assume a single type of
worker with wage w. Normalizing the units of the inputs such that

∏
t∈Ω0(zt)

d = 1 we see that the unit
cost of production for the unspecialized firm is w/ϕ, as in the baseline model. Now allow a fixed cost of
f0(fa)

rd units of labor to replace r ≤ n of the firm-specific inputs with the market bundle. This bundle
is similar to the baseline model: a CES aggregate of stage two goods in the economy with price equal to
P . Denoting the set of intermediates the firm remains specialized in by Ωr, we can write the unit cost of
the firm as

cr(ϕ) =
w1−rdP rd

ϕ
∏

t∈Ωr(zt)
d
, r = {0, . . . , n} (B.3)

Thus the unit cost structure is the same as in the baseline model with the following interpretations. The
cost share of intermediates in the baseline model, αr, is interpreted as the cost share of first stage inputs
no longer performed internally, rd. The “productivity boost” parameter φαr =

∏
t∈Ωr(zt)

d, captures the
productivity change from re-allocating workers in the first stage. We now summarize this and show how
firms re-allocate labor focusing on the case where firms can choose a single arbitrary r. Without loss of
generality we re-index inputs to be increasing in productivity, z1 < ... < zn.

Proposition B.1. The baseline model is equivalent to a production process where firms can adopt a
technology allowing them to outsource some first stage inputs. Firms that are sufficiently productive in
assembly, ϕ ≥ ϕ̄, specialize in inputs t ∈ Ωr = {t ∈ Ω0|t > r} resulting in

1. a re-allocation of labor away from the r least productive inputs and increase in productivity:∏
t∈Ωr(zt)

d >
∏

t∈Ω0(zt)
d;

2. a cost share reduction of labor in production equal to rd;

3. a specialization premium: sr ≡ c0(ϕ)/cr(ϕ) =
(∏

t∈Ωr(zt)
d
) (

w
P

)rd .
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C Proof of Propositions

C.1 Proof of proposition 1
1. Under costly specialization fI > f0 so firms specialize iff

π̃I > π̃0 ⇔ cI < c0 ⇔ sI > 1⇔ s1 > 1,

where the first equivalence uses the definition of profits, the second one the definition of sI , and
the third the constant increments assumption, which implies that sI = (s1)I for any I ≥ 1.

2. Using (9) we have that ϕ̄i+1 > ϕ̄i for all i iff

fi+1

fi
·
(
s−1

1

)σ−1
> 1 ⇔ (s1)σ−1 <

fi+1

fi
⇔ (s1)σ−1 ≤ fi+1 − fi

fi
+ 1 ⇔ sσ−1

1 < f̂ + 1

If s1 > 1 then at least some firms specialize (part 1), so for heterogeneous specialization we
further require that the marginal producer to have lower profits under the most specialized available
technology, n, relative to whatever other technology i < n the entrant choses. The condition is the
same as that for sorting:

π̃n (ϕ̄i,e)− π̃i (ϕ̄i,e) < w (fn − fi) (C.1)
π̃n (ϕ̄i,e)

π̃i (ϕ̄i,e)
− 1 <

(
fn
fi
− 1

)(
wfi

π̃i (ϕ̄i,e)

)
π̃n (ϕ̄i,e)

π̃i (ϕ̄i,e)
<
fn
fi(

cn (ϕ̄i,e)

ci (ϕ̄i,e)

)1−σ

<

(
fn
fn−1

)
...

(
fi+1

fi

)
(sn−i)

σ−1 <
(

1 + f̂
)n−i

(
sσ−1

1

1 + f̂

)n−i
< 1

The second line divides both sides by π̃i (ϕ̄i,e) and re-arranges the terms, the third uses the marginal
entry condition,wfi = π̃i (ϕ̄i,e), the fourth uses the profit expressions, the fifth uses the definition of
sI and the technology assumption for fi, the last one uses the constant share increment assumption
and re-arranges. solving for s1 yields the condition in the proposition.

3. From part 2 we see the entrant is indifferent or prefers n to any i iff the inequality is reversed in
equation (C.1) and thus iff sσ−1

1 ≥ 1 + f̂ where under equality we use the convention that n is
adopted.
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C.2 Proof of Proposition 2
C.2.1 α̃ in (12)

To obtain α̃ we first derive an expression for Yi
Y

and replace in ᾱ at expression (11). The aggregate sales
of technology i firms is

Yi = M

∫ ϕ̄i+1

ϕ̄i

σπ̃i(ϕ)dG(ϕ)

= Mσπ̃e(ϕ̄e)

∫ ϕ̄i+1

ϕ̄i

π̃i(ϕ)

π̃e(ϕ̄e)
dG(ϕ)

= Mσfe

∫ ϕ̄i+1

ϕ̄i

(
ci(ϕ)

ce(ϕ̄e)

)1−σ

dG(ϕ)

where the first line uses the definition Yi ≡ M
∫ ϕ̄i+1

ϕ̄i
yi(ϕ)dG(ϕ) and yi = σπ̃i under monopolistic

competition and CES. The second multiplies and divides by marginal entrant’s profit. The third uses the
entry cutoff in (7) for π̃e(ϕ̄e) and the profit expression in (5), which implies that relative operating profits

depend only on relative unit costs. We then use the definition of unit cost in (2), definition s1 =
(
w/P

φ

)δ
,

and the technology assumption that αi − αe = δ (i− e) to obtain

Yi = Mσfe

∫ ϕ̄i+1

ϕ̄i

(
s

(i−e)
1

ϕ

ϕ̄e

)σ−1

dG(ϕ). (C.2)

Replacing this and Y =
∑n

i=0 Yi in (11), and cancelling common terms we have

ᾱ =
n∑
i=0

αi
s

(i−e)(σ−1)
1

∫ ϕ̄i+1

ϕ̄i
ϕσ−1dG(ϕ)∑n

i=0 s
(i−e)(σ−1)
1

∫ ϕ̄i+1

ϕ̄i
ϕσ−1dG(ϕ)

,

We then divide both the numerator and denominator by
∑n

i=0

∫ ϕ̄i+1

ϕ̄i
ϕσ−1dG (ϕ), and defining ϕ̂i

ϕ̂
≡[∫ ϕ̄i+1

ϕ̄i
ϕσ−1dG (ϕ) /

∑n
i=0

∫ ϕ̄i+1

ϕ̄i
ϕσ−1dG (ϕ)

] 1
σ−1

we obtain (12).

C.2.2 dᾱ
ds1

> 0 iff s1 ∈ s

1. Necessity. If s1 /∈ s there is homogeneous specialization (Proposition 1) and thus e = i for all i
and thus ᾱ = αe. If sσ−1

1 ≥ 1 + f̂ then αe = αn (Proposition 1) and is already at the maximum
and can’t increase with s1. If s1 < 1 there is no adoption. Alternatively, we see from (13), derived
below, that d ln α̃

d ln s1
= 0 if αi = αe for all i.

2. Sufficiency. We show that both the intensive and extensive margin impacts in (13), derived below,
are positive.
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C.2.3 Deriving Multiplier Effect in (13)

We define the elasticity components in terms of each of the margins as follows:

d ln ᾱ

d ln s1

=
∂ ln ᾱ

∂ ln s1

∣∣∣∣
ϕ̄i≥e︸ ︷︷ ︸

intensive

+
n∑
i=e

∂ ln ᾱ

∂ ln ϕ̄i

d ln ϕ̄i
d ln s1︸ ︷︷ ︸

extensive

. (C.3)

First, we express the intermediate cost share as

ᾱ ≡
n∑
i=e

λiαi =
n∑
i=e

λi [αe + (i− e)δ] = αe + δ

n∑
i=e

(i− e)λi, (C.4)

where for the last equality we use
∑n

i=e λi = 1. Using (C.2), we re-express λi as

λi ≡
Yi∑n
r=e Yr

=
Yi (ϕ̄e)

σ−1 /(MσFe)∑n
r=e Yr (ϕ̄e)

σ−1 /(MσFe)
≡ Ỹi∑n

r=e Ỹr
,

where Ỹi ≡ Yi(ϕ̄e)
σ−1

MσFe
= (s1)(i−e)(σ−1) ∫ ϕ̄i+1

ϕ̄i
ϕσ−1dG(ϕ). Using expression (C.4), we can simplify the

multiplier effect to
d ln ᾱ

d ln s1

=
1

ᾱ

n∑
i=e

λi (αi − ᾱ)
d ln Ỹi
d ln s1

, (C.5)

and we provide the details in the online appendix. We further decompose the effects on sales into the
intensive and extensive margins:

d ln Ỹi
d ln s1

=
∂ ln Ỹi
∂ ln s1

∣∣∣∣∣
ϕ̄i≥e

+
n∑
j=e

∂ ln Ỹi
∂ ln ϕ̄j

d ln ϕ̄j
d ln s1

= (σ − 1)(i− e) +
n∑
j=e

∂ ln Ỹi
∂ ln ϕ̄j

d ln ϕ̄j
d ln s1

.

Substituting the above expression into (C.5) and further simplifying the multiplier effect we obtain (13)
in the last equality:

d ln ᾱ

d ln s1

=
σ − 1

δᾱ

n∑
i=e

λi (αi − ᾱ)2 +
1

ᾱ

n∑
i=e

λi (αi − ᾱ)

(
n∑
j=e

∂ ln Ỹi
∂ ln ϕ̄j

d ln ϕ̄j
d ln s1

)
,

and we provide the details of the derivation in the online appendix.

C.2.4 Positive Intensive Margin in (13):
σ−1
δᾱ

∑n
i=e λi (αi − ᾱ)2 > 0 from inspection since σ > 1.
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C.2.5 Positive Extensive Margin in (13):

We use sales Ỹi from (C.2) to simplify the extensive margin as

n∑
i=e

(αi − ᾱ)λi

n∑
j=e

∂ ln Ỹi
∂ ln ϕ̄j

d ln ϕ̄j
d ln s1

=− (αe − ᾱ) (ϕ̄e)
σ g (ϕ̄e)∑n

i=e(s1)(i−e)(σ−1)
∫ ϕ̄i+1

ϕ̄i
ϕσ−1dG(ϕ)

d ln ϕ̄e
d ln s1

+
n∑

i=e+1

(αi−1 − ᾱ) (s1)(i−e−1)(σ−1) − (αi − ᾱ) (s1)(i−e)(σ−1)∑n
i=e(s1)(i−e)(σ−1)

∫ ϕ̄i+1

ϕ̄i
ϕσ−1dG(ϕ)

(ϕ̄i)
σ g (ϕ̄i)

d ln ϕ̄i
d ln s1

,

and we provide the details of derivation in the online appendix. Observe that the first term is positive as
αe < ᾱ and ∂ ln ϕ̄e

∂ ln s1
> 0. The second term can be expressed as

n∑
i=e+1

(s1)(i−e−1)(σ−1) (ϕ̄i)
σ g (ϕ̄i)∑n

i=e(s1)(σ−1)
∫ ϕ̄i+1

ϕ̄i
ϕσ−1dG(ϕ)

[
(αi−1 − ᾱ)− (αi − ᾱ) (s1)(σ−1)

] d ln ϕ̄i
d ln s1

=
n∑

i=e+1

δ(s1)(i−e−1)(σ−1) (ϕ̄i)
σ g (ϕ̄i)∑n

i=e(s1)(σ−1)
∫ ϕ̄i+1

ϕ̄i
ϕσ−1dG(ϕ)

[(
i− 1− ᾱ

δ

)
−
(
i− ᾱ

δ

)
(s1)(σ−1)

] d ln ϕ̄i
d ln s1

=
n∑

i=e+1

δ(s1)(i−e−1)(σ−1) (ϕ̄i)
σ g (ϕ̄i)∑n

i=e(s1)(σ−1)
∫ ϕ̄i+1

ϕ̄i
ϕσ−1dG(ϕ)

[( ᾱ
δ
− i+ 1

)
−
( ᾱ
δ
− i
)

(s1)(σ−1)
](
−d ln ϕ̄i
d ln s1

)
Next, we show that for each i ≥ e+ 1,[( ᾱ

δ
− i+ 1

)
−
( ᾱ
δ
− i
)

(s1)σ−1
](
−d ln ϕ̄i
d ln s1

)
> 0. (C.6)

Using the expression for productivity thresholds, the effect of premium on cutoff is

d ln ϕ̄i
d ln s1

= − (s1)σ−1

(s1)σ−1 − 1
− (i− e− 1) +

ᾱ− αe
δ

, i ≥ e+ 1,

showing that d ln ϕ̄i
d ln s1

is decreasing in i and d ln ϕ̄n
d ln s1

< 0. Thus, there exists some b ∈ [e, n − 1] such that
d ln ϕ̄b
d ln s1

> 0 and d ln ϕ̄b+1

d ln s1
< 0. This implies that

d ln ϕ̄i
d ln s1

{
> 0 if i ≤ b
< 0 if i ≥ b+ 1

. (C.7)

We derive in the online appendix that the definition of b implies the following two expressions:

d ln ϕ̄b
d ln s1

> 0 ⇒ (s1)σ−1 >
ᾱ
δ
− b+ 1
ᾱ
δ
− b

;

d ln ϕ̄b+1

d ln s1

< 0 ⇒
( ᾱ
δ
− b− 1

)
(s1)σ−1 <

ᾱ

δ
− b.

51

http://www.nber.org/data-appendix/w28969
http://www.nber.org/data-appendix/w28969


last, we divide into two cases to show that (C.6) holds. Case 1: If i ≤ b, then ∂ ln ϕ̄i
∂ ln s1

> 0. Moreover,

( ᾱ
δ
− i+ 1

)
−
( ᾱ
δ
− i
)

(s1)σ−1 <
( ᾱ
δ
− i+ 1

)
−
( ᾱ
δ
− i
)( ᾱ

δ
− i+ 1
ᾱ
δ
− i

)
= 0,

where the inequality uses ᾱ
δ
− i ≥ ᾱ

δ
− b > 0 and (s1)σ−1 >

ᾱ
δ
−b+1
ᾱ
δ
−b ≥

ᾱ
δ
−i+1
ᾱ
δ
−i for i ≤ b. Thus,

[( ᾱ
δ
− i+ 1

)
−
( ᾱ
δ
− i
)

(s1)σ−1
]

︸ ︷︷ ︸
<0

(
−d ln ϕ̄i
d ln s1

)
︸ ︷︷ ︸

<0

> 0.

Case 2: If i ≥ b+ 1, then ∂ ln ϕ̄i
∂ ln s1

< 0. We divide this scenario into two subcases: (a) If ᾱ
δ
− i < 0, then( ᾱ

δ
− i+ 1

)
−
( ᾱ
δ
− i
)

(s1)σ−1 = −
( ᾱ
δ
− i
) [

(s1)σ−1 − 1
]

+ 1 > 0

as s1 > 1. (b) Else if ᾱ
δ
− i ≥ 0, then( ᾱ

δ
− i+ 1

)
−
( ᾱ
δ
− i
)

(s1)σ−1 >
( ᾱ
δ
− i+ 1

)
−
( ᾱ
δ
− i
)( ᾱ

δ
− i+ 1
ᾱ
δ
− i

)
= 0,

where the inequality uses ᾱ
δ
− i ≥ 0 and (s1)σ−1 <

ᾱ
δ
−b

ᾱ
δ
−b−1

≤
ᾱ
δ
−i+1
ᾱ
δ
−i for i ≥ b+ 1. Thus,

[( ᾱ
δ
− i+ 1

)
−
( ᾱ
δ
− i
)

(s1)σ−1
]

︸ ︷︷ ︸
>0

(
−d ln ϕ̄i
d ln s1

)
︸ ︷︷ ︸

>0

> 0

for both subcases.

C.3 Proof of Proposition 3
C.3.1 Derivation of ϕ̄e in (16)

Recall that π̃(ϕ) = π̃i(ϕ) − fi for ϕ ≥ ϕe so we rewrite each of these terms in (14) starting with the
average profits in each i technology.∫ ϕ̄i+1

ϕ̄i

π̃i(ϕ)dG(ϕ) = π̃e(ϕ̄e)

∫ ϕ̄i+1

ϕ̄i

π̃i(ϕ)

π̃e(ϕ̄e)
dG(ϕ) (C.8)

= fe

∫ ϕ̄i+1

ϕ̄i

(
ci(ϕ)

ce(ϕ̄e)

)1−σ

dG(ϕ)

= fe

∫ ϕ̄i+1

ϕ̄i

(
ϕ

ϕ̄e
s

(i−e)
1

)σ−1

dG(ϕ)

= fe(s1)(i−e)(σ−1)

∫ ϕ̄i+1

ϕ̄i

(
ϕ

ϕ̄e

)σ−1

dG(ϕ)
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The first line multiplies and divides by marginal entrant’s profit. The second uses the entry cutoff in (7) for
π̃e(ϕ̄e), the profit expression in (5), which implies relative operating profits depend only on relative unit

costs. The third uses the definition of unit cost in (2), of s1 =
(
w/P

φ

)δ
and the technology assumption

that αi − αe = δ (i− e). The last line factors out s1. Second, using part 2 of technology assumption
1, ∆fi+1

fi
= f̂ for all i, we have fi = fe(1 + f̂)i−e. Thus, replacing this expression for fi and substitute

expression (C.8) in (14) we obtain

e+I∑
i=e

[
(s1)(i−e)(σ−1)

∫ ϕ̄i+1

ϕ̄i

(
ϕ

ϕ̄e

)σ−1

dG(ϕ)−
∫ ϕ̄i+1

ϕ̄i

(1 + f̂)i−edG(ϕ)

]
= fE/fe (C.9)

Further replacing ϕ̄i>e ≡ ϕ̄i>e(ϕ̄e, f̂ , s1) in the above expression we obtain the implicit solution for the
entry cutoff in (16).

C.3.2 Proof of dϕ̄e
ds1

> 0 iff s1 ∈ s

1. Necessity. If s1 /∈ s there is homogeneous specialization (proposition 1) and thus e = i for all i.

Expression (C.9) reduces to
∫∞
ϕ̄e

[(
ϕ
ϕ̄e

)σ−1

− 1

]
dG(ϕ) = fE

fe
, which is independent of s1.

2. Sufficiency. We can apply the implicit function theorem to (C.9) along with the equilibrium adop-
tion cutoffs to establish dϕ̄e

ds1
> 0 for s1 ∈ s. We take an alternative approach below: to derive and

differentiate the equivalent expression, (15).

C.3.3 Derivation of (15) and elasticity d ln ϕ̄e
d ln s1

in (17)

We proceed in three steps:

1. Rewrite free entry in (14) as a function of ϕ̄i to obtain (15);

2. Take the derivative of (15) with respect to ϕ̄i.

3. Use the solutions for ϕ̄i and their change in terms of s1 and ϕ̄e, then simplify to obtain d ln ϕ̄e
d ln s1

.

To derive (15), we first rewrite the aggregate fixed cost component in (14). Defining Fi+1 ≡ fi+1−fi,and
the operating cost for non-adopters as Fe = fe we have

n∑
i=e

∫ ϕ̄i+1

ϕ̄i

fidG(ϕ) =
n∑
i=e

∫ ϕ̄i+1

ϕ̄i

i∑
r=e

FrdG(ϕ) =
n∑
i=e

∫ ∞
ϕ̄i

FidG(ϕ), (C.10)

where the first equality uses fi =
∑i

r=e Fr and n = e + I . Using the expression for relative cutoffs, in
the online appendix we show that(

ϕ̄i
ϕ̄e

)σ−1

=
(
sσ−1

1 − 1
)−1

(s−1
1 )(i−e−1)(σ−1)

(
Fi
Fe

)
. (C.11)
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Replacing this in the average profit component derived in (C.8) for i > e and simplifying we obtain the
first equality below

fe

n∑
i=e

(s1)(i−e)(σ−1)

∫ ϕ̄i+1

ϕ̄i

(
ϕ

ϕ̄e

)σ−1

dG(ϕ) (C.12)

=fe

∫ ϕ̄e+1

ϕ̄e

(
ϕ

ϕ̄e

)σ−1

dG(ϕ) +
s1
σ−1

sσ−1
1 − 1

n∑
i=e+1

Fi

∫ ϕ̄i+1

ϕ̄i

(
ϕ

ϕ̄i

)σ−1

dG(ϕ)

=
n∑
i=e

Fi

∫ ∞
ϕ̄i

(
ϕ

ϕ̄i

)σ−1

dG(ϕ)

The second equality requires additional algebra (provided in the online appendix). It relies on rewriting
the expressions so that we compute the average incremental profits if all firms above a certain ϕ̄i upgrade

to the next technology, Fi
∫∞
ϕ̄i

(
ϕ
ϕ̄i

)σ−1

dG(ϕ). Subtracting (C.10) from (C.12) and equating to fE we
have the version of free entry in (15). Then we differentiate (15) with respect to each ϕ̄i and obtain

n∑
i=e

[
Fi
ϕ̄i

∫ ∞
ϕ̄i

(
ϕ

ϕ̄i

)σ−1

dG(ϕ)

]
dϕ̄i = 0, (C.13)

where we use the Leibniz integral rule for each technology i to obtain

d

[
Fi

∫ ∞
ϕ̄i

((
ϕ

ϕ̄i

)σ−1

− 1

)
dG(ϕ)

]

=Fi

[
−

((
ϕ̄i
ϕ̄i

)σ−1

− 1

)
g(ϕ̄i)−

σ − 1

ϕ̄i

∫ ∞
ϕ̄i

(
ϕ

ϕ̄i

)σ−1

dG(ϕ)

]
dϕ̄i

=−

[
Fi
σ − 1

ϕ̄i

∫ ∞
ϕ̄i

(
ϕ

ϕ̄i

)σ−1

dG(ϕ)

]
dϕ̄i.

After that, we obtain dϕ̄i by using
(
ϕ̄i
ϕ̄e

)σ−1

in (C.11):

dϕ̄i =
∂ϕ̄i
∂ϕ̄e

dϕ̄e +
∂ϕ̄i
∂s1

ds1 (C.14)

=
(
sσ−1

1 − 1
) 1

1−σ (s−1
1 )(i−e−1)

(
Fi
Fe

) 1
σ−1
[
dϕ̄e − ϕ̄es−1

1

(
sσ−1

1

sσ−1
1 − 1

+ (i− e− 1)

)
ds1

]
.

Substituting dϕ̄i into (C.13), and after some algebraic manipulation (provided in the online appendix),
we obtain

d ln ϕ̄e
d ln s1

=

∑n
i=e+1 Fe(i− e)(s1)(i−e)(σ−1)

∫ ϕ̄i+1

ϕ̄i

(
ϕ
ϕ̄e

)σ−1

dG(ϕ)∑n
i=e

[
Fi
∫∞
ϕ̄i

(
ϕ
ϕ̄i

)σ−1

dG(ϕ)

] . (C.15)
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Finally, to obtain the elasticity in (17) we use the expression for aggregate sales of technology i firms, Yi,
derived in (C.2). Substituting it into (C.15) we can further simplify the selection effect to

d ln ϕ̄e
d ln s1

=

∑n
i=e+1(i− e)Yi∑n

i=e Yi
=

1

δ

∑n
i=e δ(i− e)Yi∑n

i=e Yi

=
ᾱ− αe
δ

,

where the last equality uses technology assumption 1: αi − αe = (i− e)δ, and ᾱ ≡
∑n
i=e αiYi
Y

.

C.4 Proof of Proposition 4
1. Existence requires Ps (s1) = P̃ (s1) for some s1 and follows from (i) the continuity of Ps (guaran-

teed by its definition) and of P̃ (s1) over all s1 (proved in lemma C.4) (ii) Ps ∈ (0,∞) and steeper
than P̃ (s1) at both extremes of s1 i.e. for s1 /∈ s, which implies some s̃ s.t. P̃ (s̃, x) = Ps (s̃, x). If
there are multiple s̃ then define s̃min = min s̃ and s̃max = max s̃ and note that the slope condition
below implies that

P̃ (s, x) < Ps (s, x) if s < s̃min, (C.16)

P̃ (s, x) > Ps (s, x) if s > s̃max. (C.17)

We prove it by deriving the relationship between the slopes:

d lnPs
d ln s1

= −1

δ
< −αn

δ
≤ d ln P̃ (s1 /∈ s)

d ln s1

(C.18)

where the first equality uses (22), the second uses αn < 1. The third relies on the results in
lemma C.4 (below) showing that in the range of s1 with homogenous specialization there is no
selection or endogenous multiplier effect of s1. Thus, using (20) we obtain d ln P̃ (s1≤1)

d ln s1
= −e, the

marginal producer’s technology. Lemma C.4 (below) shows this is equal to the minimum available
technology share unless there is full specialization in which case it is d ln P̃ (s1 /∈s & s1>1)

d ln s1
= −n =

−αn
δ

. If the minimum share is zero then d ln P̃ (s1≤1)
d ln s1

= 0, as depicted in Figure 4.

2. (a) The argument is similar for either parameter x. An equilibrium with ᾱ = α0 exists if there is
some x such that

P̃ (s1, x) = Ps (s1, x) , s1 ≤ 1. (C.19)

If it exists then it must be unique since in part 1 expression (C.18) we have shown that Ps
is steeper in that range than P̃ , which implies stability, defined as starting from any other
s1 in that range of x and returning to the same equilibrium. If s1 ≤ 1 then ᾱ = α0, and
ϕ̄e (s1) = ϕ̄e is independent of s1, L, and φ (it depends only on fixed costs, productivity

distribution, and σ from the free entry condition fe
∫∞
ϕ̄e

[(
ϕ
ϕ̄e

)σ−1

− 1

]
dG(ϕ) = fE). Thus,
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we obtain a critical x̃0 (L or φ) below which an equilibrium exists.(
fe
σ̃L

) 1
σ−1
(

1− σ − 1

σ
ᾱ(s1)

) 1
σ−1

(se1ϕ̄e(s1))−1 = φs
− 1
δ

1(
fe
σ̃L

) 1
σ−1
(

1− σ − 1

σ
α0

) 1
σ−1

(se1ϕ̄e)
−1 = φs

− 1
δ

1(
fe
σ̃L

) 1
σ−1
(

1− σ − 1

σ
α0

) 1
σ−1

(φϕ̄e)
−1 = s

e− 1
δ

1(
fe
σ̃L

) 1
σ−1
(

1− σ − 1

σ
α0

) 1
σ−1

(φϕ̄e)
−1 ≥ 1

L̃0 ≡
fe
σ̃

(
1− σ − 1

σ
α0

)
(φϕ̄e)

1−σ ≥ L

where we use s1 ≤ 1 and e− 1
δ
< e− αn

δ
= e− n < 0. A similar definition can be obtained

for φ̃0 ≡
(
fe
σ̃L

) 1
σ−1
(
1− σ−1

σ
α0

) 1
σ−1 (ϕ̄e)

−1 and so we denote either by x̃0. If d ln P̃ (s1∈s)
d ln s1

> −1
δ

then the critical value in 2(a) is x0 = x̃0 since at s1 = 1 we have P̃ (1, x̃0) ≥ Ps (1, x̃0) and
the continuity along with this slope condition implies that

P̃ (s1, x̃0) > Ps (s1, x̃0) , s1 > 1. (C.20)

However, if d ln P̃ (s1∈s)
d ln s1

≤ −1
δ

then there may exist other equilibria with ᾱ > α0 and s1>1
such that

P̃ (s1, x̃0) = Ps (s1, x̃0) , s1 > 1.

We can then lower either x untill we satisfy expression (C.20) with equality and we denote
the value of either x as x̂0. Such x̂0 exists because (i) Decreases in L leave Ps schedule
unchanged but shift P̃ schedule up proportionally (∂ ln P̃ (s1,L)

∂ lnL
= 1

1−σ since neither ᾱ (s1)

nor ϕ̄e (s1) depends on L except via s) (ii) Decreases in φ leave P̃ schedule unchanged but
shift Ps schedule down proportionally (∂ lnPs

∂ lnφ
= 1) The above implies that x̂0 still satisfies

P̃ (s1, x̂0) = Ps (s1, x̂0) with s1 ≤ 1. Thus, we have x0 = min {x̂0, x̃0}.
(b) The argument is similar to 2(a) but the critical values are now defined by(

fe
σ̃L

) 1
σ−1
(

1− σ − 1

σ
ᾱ(s1)

) 1
σ−1

(se1ϕ̄e(s1))−1 = φs
− 1
δ

1(
fn
σ̃L

) 1
σ−1
(

1− σ − 1

σ
αn

) 1
σ−1

(sn1 ϕ̄n)−1 = φs
− 1
δ

1(
fn
σ̃L

) 1
σ−1
(

1− σ − 1

σ
αn

) 1
σ−1

(φϕ̄n)−1 = s
n− 1

δ
1(

fn
σ̃L

) 1
σ−1
(

1− σ − 1

σ
αn

) 1
σ−1

(φϕ̄n)−1 ≤
(

1 + f̂
)n−1/δ

σ−1

L̃n ≡
fn
σ̃

(
1− σ − 1

σ
αn

)
(φϕ̄n)1−σ

(
1 + f̂

) 1−αn
δ ≤ L,
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where ϕ̄n is from the free entry condition fn
∫∞
ϕ̄n

[(
ϕ
ϕ̄n

)σ−1

− 1

]
dG(ϕ) = fE , while the

inequality uses s1 ≥
(

1 + f̂
) 1
σ−1

under full specialization and n− 1
δ
< n− αn

δ
= n−n = 0.

Similarly, we obtain φ̃n ≡
(
fn
σ̃L

) 1
σ−1
(
1− σ−1

σ
αn
) 1
σ−1 (ϕ̄n)−1

(
1 + f̂

) 1−αn
δ(σ−1)

and so we denote

either by x̃n. If d ln P̃ (s1∈s)
d ln s1

> −1
δ

then the critical value in 2(b) is xn = x̃n since P̃ (s1, x̃n) ≤

Ps (s1, x̃n) when s1 =
(

1 + f̂
) 1
σ−1

and the continuity along with this slope condition implies

that P̃ schedule remains below Ps schedule for all s1 <
(

1 + f̂
) 1
σ−1

.

P̃ (s1, x̃n) < Ps (s1, x̃n) , s1 <
(

1 + f̂
) 1
σ−1

. (C.21)

However, if d ln P̃ (s1∈s)
d ln s1

≤ −1
δ

then there may exist other equilibria with ᾱ < αn. Suppose that
is the case, so we have some s1 such that

P̃ (s1, x̃n) = Ps (s1, x̃n) , s1 <
(

1 + f̂
) 1
σ−1

.

Following similar reasoning as in part 2(a), we can then increase either x until we satisfy
(C.21) with equality and we let x̂n denote the value of either x that does so. Thus, we have
xn = max {x̂n, x̃n}.

3. Start with an economy where x = x̃n as defined in 2(b) so we have an equilibrium with ᾱ = αn,

s̃1 =
(

1 + f̂
) 1
σ−1

. If as s−1 →
(

1 + f̂
) 1
σ−1

we have

(a) d ln P̃ (x,s1)
d ln s1

> (<)− 1
δ

then a decrease (increase) in x generates an equilibrium with s1 ∈ s by
shifting P̃ schedule up (down) or Ps schedule down (up).

(b) d ln P̃ (x,s1)
d ln s1

= −1
δ

then at x = x̃n there are multiple equilibria with s1 ∈ s since P̃ and Ps
overlap over some range

A similar argument applies if we start at x = x̃0, where now the slope is evaluated at s+
1 → 1:

if d ln P̃ (x,s1)
d ln s1

> (<) − 1
δ
, then an increase (decrease) in x yields a heterogeneous specialization

equilibrium. To show the range where it exists is x ∈ [x0, xn] we first define the two endpoints.
Let x0 be the point such that there is a unique no specialization equilibrium for x ≤ x0, and xn
be the point such that there is a unique full specialization equilibrium for x ≥ xn. The knife edge
cases with d ln P̃ (x,s1)

d ln s1
= −1

δ
at x = x̃n are in this range. To see that there exists a heterogeneous

specialization equilibrium under d ln P̃ (x,s1)
d ln s1

< −1
δ
: If d ln P̃ (x,s1)

d ln s1
< −1

δ
at s+

1 → 1 then from 2(a)

there is some other equilibrium with s > 1 for x ∈ [x0, x̃0). On the other hand if d ln P̃ (x,s1)
d ln s1

< −1
δ

at s−1 →
(

1 + f̂
) 1
σ−1

then from 2(b) there is some other equilibrium with s <
(

1 + f̂
) 1
σ−1

for x ∈

(x̃n, xn]. Finally if d ln P̃ (x,s1)
d ln s1

> −1
δ

at both limits then a heterogeneous specialization equilibrium
exists for some x ∈ (x0, xn)

4. In part 1 we have shown that d ln P̃
d ln s1

> −1
δ

for s1 /∈ s and in 2(a) and 2(b) that ᾱ is independent
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of x and thus non-decreasing in it. If d ln P̃
d ln s1

> −1
δ

for s1 ∈ s then from part 2 we have x0 = x̃0

and xn = x̃n and the equilibrium starting at either value is unique. We now show that is also the
case for values in between. Suppose we start at x̃n, then reductions in x reduce s̃1 (part 3) and thus
ᾱ locally, we can apply same argument at new equilibrium as long as d ln P̃

d ln s1

∣∣∣
s̃1
> −1

δ
and thus ᾱ

continues to fall until x̃0.

The price schedule is continuous for all s1 ∈ (0,∞).

Proof. We show first that the price schedule is continuous under homogenous specialization: s1 /∈ s. We
can express the price schedule as

P̃ (s1) =


[
L σ̃
fe

(
1− σ−1

σ
αe
)−1
]1/(1−σ)

· (se1ϕ̄e (s1))−1 if s1 ∈ (0, 1)[
L σ̃
fn

(
1− σ−1

σ
α
)−1
]1/(1−σ)

· (sn1 ϕ̄e (s1))−1 if s1 ∈
((

1 + f̂
) 1
σ−1

,∞
)

The derivative with respect to specialization premium is

d ln P̃ (s1)

d ln s1

=

 −e−
d ln ϕ̄e(s1)
d ln s1

if s1 ∈ (0, 1)

−n− d ln ϕ̄e(s1)
d ln s1

if s1 ∈
((

1 + f̂
) 1
σ−1

,∞
)

d ln P̃ (s1)

d ln s1

=


−e if s1 ∈ (0, 1)

−n if s1 ∈
((

1 + f̂
) 1
σ−1

,∞
)

,

where the last step observes that under both no specialization and full specialization there are no selection
effect so that d ln ϕ̄e(s1)

d ln s1
= 0. Thus, P̃ (s1) is continuous under homogeneous specialization. Under hete-

rogeneous specialization s1 ∈
(

1,
(

1 + f̂
) 1
σ−1

)
, differentiate the price index expression with respect to

s1 we have

d ln P̃ (s1)

d ln s1

=
d ln

d ln s1

[(
1− σ − 1

σ
ᾱ

) 1
σ−1

]
− e− d ln ϕ̄e (s1)

d ln s1

d ln P̃ (s1)

d ln s1

= − 1

σ − 1

σ−1
σ
ᾱ

1− σ−1
σ
ᾱ

d ln ᾱ

d ln s1

− e− ᾱ− αe
δ

d ln P̃ (s1)

d ln s1

= − ᾱ

σ − (σ − 1)ᾱ

d ln ᾱ

d ln s1

− ᾱ

δ
, (C.22)

where the second step uses d ln ϕ̄e(s1)
d ln s1

= ᾱ−αe
δ

. Because the intermediate cost share is increasing in
specialization premium, d ln ᾱ

d ln s1
> 0, the price schedule is decreasing in s1 and continuous over s1 ∈ s.

Last, the price schedule is continuous at s1 = 1 (from no specialization to heterogeneous specialization)

and s1 =
(

1 + f̂
) 1
σ−1

(from heterogeneous specialization to full specialization). The intuition is that

when s+
1 → 1, all firms use the least specialized technology as no firms have incentive to adopt, so it

collapses to the no specialization equilibrium. Conversely, when s−1 →
(

1 + f̂
) 1
σ−1

, all firms adopt the
most specialized technology so that it becomes the full specialization equilibrium. To prove this it is
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sufficient to show that both ᾱ(s1) and ϕ̄e(s1) are continuous at those points.

Continuity of ᾱ(s1) at s1 = 1 and s1 =
(

1 + f̂
) 1
σ−1

First note that lims−1 →1 ᾱ(s1) = αe and lim
s+1→(1+f̂)

1
σ−1

ᾱ(s1) = α. Under heterogeneous specialization,

(
ϕ̄i
ϕ̄e

)σ−1

=
f̂

(s1)σ−1 − 1

[
1 + f̂

(s1)σ−1

]i−e−1

, i > e.

Therefore, lims+1→1
ϕ̄i
ϕ̄e

= ∞ so that no firms adopt more specialized technology. This implies that
lims+1→1 λi(s1) = 0 for i > e and lims+1→1 λe(s1) = 1 so that lims+1→1 ᾱ(s1) = lims+1→1

∑n
i=e λi(s1)αi =

αe. Thus, lims+1→1 ᾱ(s1) = lims−1 →1 ᾱ(s1) = αe so that ᾱ(s1) is continuous at s1 = 1.
Similarly, lim

s−1 →(1+f̂)
1

σ−1

ϕ̄i
ϕ̄e

= 1 so that all firms adopt the most specialized technology. This

implies that lim
s−1 →(1+f̂)

1
σ−1

λi(s1) = 0 for i < n and lim
s−1 →(1+f̂)

1
σ−1

λn(s1) = 1 so that

lim
s−1 →(1+f̂)

1
σ−1

ᾱ(s1) = lim
s−1 →(1+f̂)

1
σ−1

∑n
i=e λi(s1)αi = αn. Thus, lim

s−1 →(1+f̂)
1

σ−1
ᾱ(s1) =

lim
s+1→(1+f̂)

1
σ−1

ᾱ(s1) = αn so that ᾱ(s1) is continuous at s1 =
(

1 + f̂
) 1
σ−1

.

Continuity of ϕ̄e(s1) at s1 = 1 and s1 =
(

1 + f̂
) 1
σ−1

.

First note that lims−1 →1
d ln ϕ̄e(s1)
d ln s1

= 0 and under heterogeneous specialization, we have shown that
d ln ϕ̄e(s1)
d ln s1

= ᾱ(s1)−αe
δ

. Applying the continuity of ᾱ(s1) we get differentiability of ϕ̄e(s1) at s1 = 1,

therefore, ϕ̄e(s1) is continuous at s1 = 1. For the continuity of ϕ̄e(s1) at s1 =
(

1 + f̂
) 1
σ−1

we use the

free entry condition. First note that for s+
1 →

(
1 + f̂

) 1
σ−1

the free entry condition is the full specializa-
tion case

fn

∫ ∞
ϕ̄n

[(
ϕ

ϕ̄n

)σ−1

− 1

]
dG(ϕ) = fE,

and for s−1 →
(

1 + f̂
) 1
σ−1

the free entry condition is the heterogeneous specialization case

n∑
i=e

Fi

∫ ∞
ϕ̄i

[(
ϕ

ϕ̄i

)σ−1

− 1

]
dG(ϕ) = fE.

We have shown that lim
s−1 →(1+f̂)

1
σ−1

ϕ̄i = ϕ̄n for i < n. Therefore, taking the limit of the free entry
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condition we have

lim
s−1 →(1+f̂)

1
σ−1

n∑
i=e

Fi

∫ ∞
ϕ̄i

[(
ϕ

ϕ̄i

)σ−1

− 1

]
dG(ϕ) = fE

∫ ∞
ϕ̄n

[(
ϕ

ϕ̄n

)σ−1

− 1

]
dG(ϕ)

n∑
i=e

Fi = fE

fn

∫ ∞
ϕ̄n

[(
ϕ

ϕ̄n

)σ−1

− 1

]
dG(ϕ) = fE,

so the two free entry conditions with s−1 →
(

1 + f̂
) 1
σ−1

and s+
1 →

(
1 + f̂

) 1
σ−1

are the same and

therefore yield the same ϕ̄n, indicating that ϕ̄n is continuous at s1 =
(

1 + f̂
) 1
σ−1

.

In an equilibrium with heterogeneous specialization the marginal producer uses the least intermediate
intensive technology available, i0.

Proof. From proposition 1 we have heterogeneous specialization iff sσ−1 ∈ (1, 1 + f̂). The marginal
producer has productivity threshold given by

(ϕ̄i,e)
σ−1 =

wfi
σ̃X
· P 1−σ ·

(
ws−i1

)σ−1

suppose that the producer is just indifferent between technology i and i− 1. This implies a full speciali-
zation equilibrium because

(ϕ̄i,e)
σ−1 = (ϕ̄i−1,e)

σ−1 ⇔ fi
(
s−i1

)σ−1
= fi−1

(
s−i−1

1

)σ−1 ⇔ (s1)σ−1 =
(

1 + f̂
)
.

We can continue applying this argument until we reach i = i0 + 1 to derive that under heterogeneous
specialization e = i0.

C.5 Inefficiency
We provide details on how Figure 6 is constructed. We first show that at s1 = smax the price schedule is
steeper at the left limit. Second, we derive the price schedule when only the most specialized technology
is available. In the proof of Lemma C.4 we show that the price schedule and aggregate intermediate share
(ᾱ) are continuous at s1 = smax, and the slope of the price schedule is

d ln P̃ (s1)

d ln s1

=

{
− ᾱ
σ−(σ−1)ᾱ

d ln ᾱ
d ln s1

− ᾱ
δ

if s1 ∈ (1, smax)

−n if s1 > smax.

Therefore,

lim
s1→s−max

d ln P̃ (s1)

d ln s1

= − α

σ − (σ − 1)α

d ln ᾱ

d ln s1

∣∣∣∣
s1=s−max

− α

δ
< −n = lim

s1→s+max

d ln P̃ (s1)

d ln s1

,

where the inequality uses the fact that the multiplier effect is positive under heterogeneous specialization
d ln ᾱ
d ln s1

> 0, and by definition α ≡ nδ. Thus, the slope of price schedule is steeper left of smax for some s1.
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Next we derive the price schedule when there is only the most specialized technology available and show
that it coincides with the one under endogeneous specialization with s1 > smax. Specifically, we express
the equilibrium of this single-technology economy in terms of the specialization premium defined in our
model. Note that all firms in this single-technology economy have the following unit cost function:

c(ϕ) =
w1−αPα

ϕφα
=

Pα

ϕφα
, (C.23)

with fixed cost fn and wage normalized to w = 1. The price schedule can be derived from the zero profit
condition for entrants (ϕ̄spec)

ϕ̄spec =
Pα

Pφα

(
fn

σ̃Y spec

) 1
σ−1

, (C.24)

where Y spec = L
(
1− σ−1

σ
α
)−1

= Lā is total sales. Thus, the price schedule is

(P̃ spec)1−α =
1

ϕ̄specφα

(
fn
σ̃Lā

) 1
σ−1

. (C.25)

Using the definition of specialization premium, s1 ≡
(
φ 1
P

)α/n, (C.25) becomes

P spec(s1) =
1

(s1)nϕ̄spec

(
fn
σ̃Lā

) 1
σ−1

, (C.26)

which is the same as the price schedule with full specialization, as shown in the proof of Lemma C.4.
Thus, P̃ spec(s1) coincides with P̃ (s1) as illustrated in Figure 6.

C.6 Proof of Proposition 5
To obtain (25) we first totally differentiate the equilibrium price expression (21) and noting that within an
heterogeneous equilibrium range the marginal entrant always adopts the minimum technology, αe = α0,
we have

(1− α0)
d ln P̄

d lnL
= − 1

σ − 1
+

d

d lnL

(
ln ā

(
s1

(
P̄
)) −1

σ−1 + ln
[
ϕ̄e
(
s1

(
P̄
)))−1

]
(C.27)

−d ln P̄

d lnL︸ ︷︷ ︸
εLW

= [(σ − 1) (1− α0)]−1︸ ︷︷ ︸
ε̄LW

+ (1− α0)−1 d

d ln s1

[
ln ā

(
s1

(
P̄
)) 1

σ−1 + ln ϕ̄e
(
s1

(
P̄
))]

︸ ︷︷ ︸
εsW

· d ln s1

d lnL
,

where we use the chain rule and the results that ϕ̄e in (16) and α̃ in (12) do not depend directly onL. Using
the definition of s1 we obtain d ln s1

d lnL
= −d ln P̄

d lnL
δ; replacing above and solving for −d ln P̄

d lnL
= d lnW

d lnL
yields
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the expression for εLW in (25). Applying a similar approach for φ

(1− α0)
d ln P̄

d lnφ
= −α0 −

d

d lnφ

[
ln ā

(
s1

(
P̄
)) 1

σ−1 + ln
(
ϕ̄e
(
s1

(
P̄
)))]

−d ln P̄

d lnφ︸ ︷︷ ︸
εφW

=
α0

1− α0︸ ︷︷ ︸
ε̄φW

+ εsW ·
d ln s1

d lnφ
,

where we use the chain rule and the results that ϕ̃e in (16) and α̃ in (12) do not depend directly on φ.
Using the definition of s1 we obtain d ln s1

d lnφ
= δ

(
1− d ln P̄

d lnφ

)
; replacing above and solving for εφW yields

the expression in (25).
Selection and multiplier decomposition in (26)
Using the definition of εsW in (C.27) and the assumption that the minimum is α0 = 0

εsW =
1

σ − 1

d ln ā
(
s1

(
P̄
))

d ln s1

+
d ln ϕ̄e

(
s1

(
P̄
))

d ln s1

=
ᾱ

σ − ᾱ (σ − 1)

d ln ᾱ

d ln s1

+
ᾱ

δ

and multiplying by δ we obtain (26). The second line uses the multiplier definition ā =[
1− σ−1

σ
ᾱ (s1)

]−1 and the expression for selection effect in (17) with αe = α0 = 0.
Positive elasticities
We have εLW > 0 since ε̄LW > 0 and 1− δεsW > 0 where the latter holds as

1− δεsW = 1− ᾱ−
(

δᾱ

σ − ᾱ (σ − 1)

d ln ᾱ

d ln s1

)
> 0

from the stability condition, which is equivalent to δᾱ
σ−ᾱ(σ−1)

d ln ᾱ
d ln s1

< (1 − ᾱ) by simplifying (23). We

have εφW > 0 since ε̄φW + δεsW > 0 and 1− δεsW > 0 under stability.
Comparing elasticities in (27) and (28)
The elasticity in an alternative model where firms must use a common technology ᾱe is obtained by
diferentiating (21), holding s1 fixed. So for L it is εLW |ᾱe≤ᾱ,s1 = [(σ − 1) (1− ᾱe)]−1. Comparing to
εLW |s1∈s and using the result that αe = α0 and setting the latter to 0 we have the inequality in (27), which
is satisfied if δεsW (ᾱ) > ᾱe. Since δεsW (ᾱ) ≥ ᾱ the inequality holds for any fixed intermediate share
model where ᾱe ≤ ᾱ. The result also applies to φ. Thus the welfare elasticity is higher and if we fix
ᾱe = ᾱ the difference is due to the multiplier effect.

C.7 Proof of Proposition 6
To derive (30) we use (24) to write the size elasticities as εLo = ε̄Lo + εso · d ln s

d lnL
and note that ε̄Lo = 0

since conditional on ᾱ all shares are independent of L and the same is true for ᾱ conditional on s1

(from α̃ in (12) and ϕ̄e in (16)). Also, εsᾱ ≡ d ln ᾱ
d ln s1

and εslsc = ∂ ln(1−ᾱ)
∂ ln ᾱ

d ln ᾱ
d ln s1

= − ᾱ
1−ᾱ

d ln ᾱ
d ln s1

and εslsv =
∂ ln(

(σ−1)(1−ᾱ)
1+(σ−1)(1−ᾱ)

)

∂ ln ᾱ
d ln ᾱ
d ln s1

= − ᾱ
1−ᾱ ·

1
1+(σ−1)(1−ᾱ)

d ln ᾱ
d ln s1

. Rewriting the latter two as functions of εLᾱ we obtain
(30). Under homogeneous specialization d ln ᾱ

d ln s1
= 0 (proposition 2) thus so are all elasticities given in

(30). Otherwise d ln ᾱ
d ln s1

> 0. In a stable equilibrium d ln s1
d lnL

≥ 0, with strict inequality under heterogeneous
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specialization (proposition 4),so εLᾱ > 0 and εLlsc , ε
L
lsv
< 0.

C.8 Proof of Proposition 7
By definition, the variable labor productivity in terms of output is

ϕ̄Q ≡ Y

PLv
=

Y

P σ−1
σ

(1− ᾱ)Y
=

1

P σ−1
σ

(1− ᾱ)

d ln ϕ̄Q
d lnL

=
d lnW

d lnL
− d ln lsc
d lnL

εLϕ̄Q = εLW − εLlsc ,

where Lv is variable labor in production and the first line uses the fact that wage is normalized so that Lv
equals variable labor cost. Similarly, the variable labor productivity in terms of value-added is

ϕ̄V A ≡
Y
(
1− σ−1

σ
ᾱ
)

PLv
=

Y
(
1− σ−1

σ
ᾱ
)

P σ−1
σ

(1− ᾱ)Y
=

1

Plsv
d ln ϕ̄V A
d lnL

=
d lnW

d lnL
− d ln lsv

d lnL
εLϕ̄V A = εLW − εLlsv .

C.9 Proof of Proposition 8
In parts 1–3, selection into production, Ma

M
, depends on L only via s (via ϕ̄e as shown in proposition 3),

hence ε̄LMa/M
= 0. We obtain

εsMa/M =
d ln [1−G(ϕ̄e)]

d ln s1

= − ϕ̄eg(ϕ̄e)

1−G(ϕ̄e)

d ln ϕ̄e
d ln s1

= − ϕ̄eg(ϕ̄e)

1−G(ϕ̄e)

ᾱ− αe
δ

,

where the first equality differentiates and second equality uses proposition 3. Under homogeneous speci-
alization then ᾱ = αe, otherwise εsMa/M

< 0 since ᾱ > αe. Moreover, in a stable equilibrium d ln s1
d lnL

≥ 0
iff under heterogeneous specialization (0 otherwise), so we need only show εsMa/M

< 0 for part 3. For
parts 1 and 2, using (18) we have ε̄LM = 1, same as under the fixed premium. To obtain εsM note that other
effects occur through ā and F̄

εsM =
∂ lnM

∂ ln ā

d ln ā

d ln s1

+
∂ lnM

∂ ln F̄

d ln F̄

d ln s1

=
∂ ln ā

∂ ln ᾱ

d ln ᾱ

d ln s1

− F̄

fE + F̄

d ln F̄

d ln s1

,

using expression for ā we have ∂ ln ā
∂ ln ᾱ

=(ā− 1), so we obtain εsM in (33). Using Ma ≡ [1−G(ϕ̄e)]M we
obtain εLMa

= εLMa/M
+ εLM .

Part 4: Existence of g(·) s.t. εsM > 0
From proposition 2, d ln ᾱ

d ln s1
> 0 iff under heterogeneous specialization and in that case ā > 1. Thus,

εsM > 0 for any g(·) s.t. d ln F̄
d ln s1

≤ 0. We show existence using a special but useful case. Under any gk(·)
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s.t. (ϕ̄i)
σgk(ϕ̄i)∫∞

ϕ̄i
ϕσ−1dGk(ϕ)

= K̃ (σ) for any ϕ̄i > 0, σ ≥ 1 and K̃ (σ) > 0 we have d ln F̄
d ln s1

= 0 and thus εsM > 0

under heterogeneous specialization.

Proof. See the online appendix.

An example of such gk(·) is the unbounded Pareto with G(ϕ) = 1 −
(
ϕmin

ϕ

)k
. In this case

(ϕ̄i)
σgk(ϕ̄i)∫∞

ϕ̄i
ϕσ−1dGk(ϕ)

= K̃ (σ) = k − (σ − 1), which represents the sales distribution dispersion parameter.

More generally, the result requires d
dϕ

(
ϕ̄σg(ϕ̄)∫∞

ϕ̄ ϕσ−1dG(ϕ)

)
= d

dϕ
K̃ (σ) = 0 for all ϕ, which we can solve for

g(·) and show it requires ln gk(ϕ) = −
(
K̃ (σ) + σ

)
lnϕ. Note also that since the condition above can

be applied to all σ ≥ 1, the result can be applied to other moments, e.g. if ϕ̄zgk(ϕ̄i)∫∞
ϕ̄i
ϕz−1dGk(ϕ)

= K̃ (z), so it

can be applied to z = 1 and in the case of Pareto K̃ (1) = k. Next we show that there exist g(·) satisfying
lemma C.9 that implies that εsM > 0 and εsM + εsMa/M

< 0 for an economy with sufficiently large L and
αn From (32) and (33) we see that the active firm elasticity due to specialization is simply εsM + εsMa/M

.

In lemma C.9 we show that εsM |gk > 0, so for existence we show when
(
εsM + εsMa/M

)
|gk < 0

(
εsM + εsMa/M

)
|gk = (ā− 1)

d ln ᾱ

d ln s1

− K̃ (1)
ᾱ− αe
δ

< (ā− 1)
σ
[
1− σ−1

σ
ᾱ
]

(1− ᾱ)

δᾱ
− K̃ (1)

ᾱ− αe
δ

=
[
(1− ᾱ) (σ − 1)− K̃ (1) (ᾱ− αe)

] 1

δ

where second line uses stability condition and simplifies. Thus, a sufficient condition for an equilibrium
with heterogeneous specialization (where αe = α0 = 0) is

1− ᾱ
ᾱ
≤ K̃ (1)

σ − 1
⇔ ᾱ ≥ 1

1 + K̃ (1) / (σ − 1)

Since 1
1+K̃(1)/(σ−1)

< 1 we know it is possible to have αn > 1
1+K̃(σ)/(σ−1)

and in that case there is some
large enough economy with heterogeneous specialization such that ᾱ ∈ [ 1

1+K̃(σ)/(σ−1)
, αn). If gk(·) is

Pareto then K̃ (1) = k, and the sufficient condition is αn ≥ 1/2 since k/ (σ − 1) > 1 for a finite first
moment of sales distribution.

C.10 Proof of Proposition 9
C.10.1 Necessity of Change in Specialization

If there is no change in specialization such that e = 0 (or e = n) before and after the shock then (15)
implies that ϕe is unchanged. Moreover, homogeneous specialization implies relative profits across any
two firms depend only on their fundamental productivity, so relative profits and the distribution Φ(·) of
π̃(·) remains unchanged.
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C.10.2 Sufficiency of Change in Specialization for Increase in Concentration

π̃(ϕ,L) is a continuous increasing function of ϕ and there is some x∗ s.t. π̃(ϕ∗, L) = x∗ = π̃(ϕ∗, L′) with
π̃(ϕ,L) ≤ π̃(ϕ,L′) for ϕ > ϕ∗ and π̃(ϕ,L) ≥ π̃(ϕ,L′) otherwise. Moreover, ϕ∗ is unique iff there is a
change in specialization, otherwise π̃(ϕ,L) = π̃(ϕ,L′) for all ϕ. Continuity is straightforward given the
continuum of productivities and the optimal choice of technology that maximizes π̃(·). The size increase
implies selection: ϕ̄′e > ϕ̄e and thus some ϕ∗ > ϕ̄′e such that π̃(ϕ,L) ≥ π̃(ϕ,L′) for ϕ ≤ ϕ∗, together
with continuity ensures at least one intersection from below. The free entry condition implies that there
is some ϕ∗∗ such that π̃(ϕ,L) ≤ π̃(ϕ,L′) for ϕ ≥ ϕ∗∗. If there is no change in specialization then
ϕ∗ = ϕ∗∗ and they are not unique since the profit distribution remains unchanged as shown in C.10.1. If
there is a change in specialization we show that ϕ∗ = ϕ∗∗ at a unique point. This is simple to illustrate
if the economy switches from no specialization to full specialization as shown in Figure 7. The proof for
heterogeneous specialization is provided in the online appendix. In the following we use lemma C.10.2
to show the sufficiency

1. Increase in concentration with respect to Π(·) under L′ > L: Π (ϕ̄, L) ≤ Π (ϕ̄, L′) for any ϕ̄
(strictly for some ϕ).

Proof. Trivially, the cumulative shares are Π (ϕ̄, L′) = Π (ϕ̄, L′) = 1 for ϕ̄ ∈ [0, ϕ̄Le ] where ϕ̄Le is
the lowest entry threshold, which occurs under L. Using lemma C.10.2 there is some ϕ∗ such that
π̃ (ϕ,L′) ≥ π̃ (ϕ,L) for all ϕ ≥ ϕ∗ with inequality above ϕ∗ when the latter is unique. Thus,

Π (ϕ̄, L′) =

∫∞
ϕ̄
π̃ (ϕ,L′) dG(ϕ)

fE
>

∫∞
ϕ̄
π̃ (ϕ,L) dG(ϕ)

fE
= Π (ϕ̄, L) for all ϕ̄ ≥ ϕ∗

Using lemma 9 π̃ (ϕ,L′) ≤ π̃ (ϕ,L) for all ϕ < ϕ∗ with strict inequality for ϕ ∈ (ϕ̄Le , ϕ
∗). Thus

Π (ϕ̄, L′) = 1−
∫ ϕ̄

0
π̃ (ϕ,L′) dG(ϕ)

fE
> 1−

∫ ϕ̄
0
π̃ (ϕ,L) dG(ϕ)

fE
= Π (ϕ̄, L)

for all ϕ̄ ∈ (ϕ̄Le , ϕ
∗), where the first equality uses the free entry condition:∫ ϕ̄

0

π̃ (ϕ,L′) dG(ϕ) +

∫ ∞
ϕ̄

π̃ (ϕ,L′) dG(ϕ) = fE.

2. Increase in concentration with respect to Φ(·): Φ (x, L) SSD Φ (x, L′).

Proof. Free entry in (14) implies equal mean profits, thus we show that Φ (x, L′) is a MPS of
Φ (x, L), which implies SSD. A sufficient condition is that Φ (x, L) intersects Φ (x, L′) only once
from below. Thus, we use lemma C.10.2 to show that there exists a x∗ such that Φ (x ≤ x∗, L) ≤
Φ (x ≤ x∗, L′) and Φ (x ≥ x∗, L) ≥ Φ (x ≥ x∗, L′). Under lemma C.10.2 we can invert π̃(ϕ,L) to
obtain

Φ (x, L) = Pr
(
ϕ ≤ π̃−1 (x, L)

)
= G

(
π̃−1 (x, L)

)
≤ G

(
π̃−1 (x, L′)

)
= Pr

(
ϕ ≤ π̃−1 (x, L′)

)
= Φ (x, L′) if x ≤ x∗,
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where the inequality in the second line is from evaluating the constant productivity distribution,
G (ϕ), and noting there is a higher proportion of firms under L′ with profits below a given level
implied by x ≤ x∗ (from lemma C.10.2). A similar argument implies that Φ (x, L) ≥ Φ (x, L′) if
x ≥ x∗. A continuous G(·) implies that Φ(·) is also continuous, and a unique x∗ implies a unique
intersection: Φ (x∗, L) = Φ (x∗, L′). Thus, Φ (x, L′) is a MPS of Φ (x, L). If there is no change in
specialization then π̃−1 (x, L) = π̃−1 (x, L′) for all x and so Φ (x, L) = Φ (x, L′).

C.11 Proof of Proposition 10
Necessity of change in specialization. If specialization is unchanged then F̄ is constant and so are mean
sales, Y/M = σ

(
fE + F̄

)
. Moreover, the cumulative shares are also unchanged for any ϕ̄: λ (ϕ̄, L) =∫∞

ϕ̄
ϕσ−1dG(ϕ)/

∫∞
ϕ̄e
ϕσ−1dG(ϕ) since ϕ̄e is unchanged as shown in section 4.1.2. Thus we require a

change in specialization Conditions for λ (ϕ̄, L′) ≥ λ (ϕ̄, L)

λ (ϕ̄, L′) =

∫∞
ϕ̄

[π̃(ϕ,L′) + f(ϕ,L′)] dG(ϕ)∫∞
ϕmin

[π̃(ϕ,L′) + f(ϕ,L′)] dG (ϕ)
(C.28)

=

∫∞
ϕ̄
π̃(ϕ,L′)dG(ϕ) + F̄ (ϕ̄, L′)

fE + F̄ (L′)

>

∫∞
ϕ̄
π̃(ϕ,L)dG(ϕ) + F̄ (ϕ̄, L′)

fE + F̄ (L′)

=

∫∞
ϕ̄
π̃(ϕ,L)dG(ϕ) + F̄ (ϕ̄, L) + F̄ (ϕ̄, L′)− F̄ (ϕ̄, L)

fE + F̄ (L) + F̄ (L′)− F̄ (L)

>

∫∞
ϕ̄
π̃(ϕ,L)dG(ϕ) + F̄ (ϕ̄, L) + F̄ (L′)− F̄ (L)

fE + F̄ (L) + F̄ (L′)− F̄ (L)

=

∫∞
ϕ̄
π̃(ϕ,L)dG(ϕ) + F̄ (ϕ̄, L)

fE + F̄ (L)

= λ (ϕ̄, L)

The first line uses the definition of λ in (37) and the relation of sales and profits ỹ(ϕ)/σ = π̃(ϕ)+f(ϕ,L′).
The second line uses the free entry condition and definition of integrals of f(ϕ,L′). The inequality in the
third line reflects the higher cumulative profits shown in proposition 9 for all ϕ̄ > ϕ̄Le . The fourth line
adds and subtracts similar terms. The inequality in line 5 is from

∆F̄ ≡ F̄ (ϕ̄, L′)− F̄ (ϕ̄, L)−
[
F̄ (L′)− F̄ (L)

]
> 0, (C.29)

which holds for all ϕ̄ > ϕ̄Le if dγ(ϕ̄)
dϕ̄

= 0, as we prove in the online appendix. Line 6 holds with equality

if dγ(ϕ̄)
dϕ̄

= 0 since in that case F̄ (L′) = F̄ (L). Moreover, if two distributions have the same mean and
λ (ϕ̄, L′) ≥ λ (ϕ̄, L) for all ϕ̄ (with some inequality) then the new distribution is Lorenz-dominated by
the original, which is equivalent to it being a mean-preserving spread (Atkinson, 1970); The last line in
(C.28) uses the same results for sales and profits in the first two lines.
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C.12 Alternative Productivity Measures
How are alternative weighted averages of TFPQ affected by size? We can weigh by relative quantities as
done in Melitz (2003) to define a harmonic mean of firm TFPQ. Doing so yields44

C̃−1 =

[
n∑
i=e

Λi

∫ ϕ̄i+1

ϕ̄i

ϕσ−1µ (ϕ,L) dϕ

]1/(σ−1)

. (C.30)

If Λi = 1 we obtain the expression in Melitz (2003). More generally, we have an adoption weight
increasing in i defined by

Λi ≡
[

(P/φ)αi

c̃/C̃

]−σ
,

which measures the relative unit cost of intermediates and labor in a segment i (recall w = 1) relative to
the average unit costs in the economy (c̃/C̃ is an index of input costs gross of productivity terms since it
aggregates all unit cost and divides by an aggregate index of the productivity terms). Under homogeneous
specialization Λi = 1 and L works only via selection so again a change in specialization is necessary.
Moreover, a large enough increases in L from no specialization to full specialization equilibria implies
an increase in C̃−1. Together with the fact that (C.30) is continuous in L implies that it increases TFP
average over some heterogeneous specialization range. Finally, we can consider a sales share average:∑n

i=e λi
∫ ϕ̄i+1

ϕ̄i
ϕµ (ϕ,L) dϕ. This changes iff specialization changes (otherwise λi is unchanged). The

measure increases with a shock to size that moves from no specialization to full specialization, because
of selection, thus a large enough increase in size eventually increases it. Moreover, under heterogeneous
specialization this measure is monotonically increasing in size whenever the sales cumulative shares
behave as in proposition 10, e.g. in case G is Pareto.

D Quantification

D.1 Measurement of Data Moments
Moments from NBER CES database, sic classification

• Intermediates cost share: measured as

ᾱ =
matcost− energy

matcost + payroll + invest
(D.1)

at the industry level from NBERCES sic data. We then aggregate to the whole US manufacturing
using year 1997 industry total cost as fixed weights. The reason we do not use yearly variable
weights is that our framework captures within-industry adoption so we want to tease out effects
from between-industry reallocations.

• Log relative factor price: measured as

ln
(w
P

)
= ln

(
payroll/employment
material price index

)
,

44Specifically, c̃ ≡
∑n
i=e

∫ ϕ̄i+1

ϕ̄i
ci
q(c)
q(c̃)µ (ϕ,L) dϕ so c̃ =

[∑n
i=e ((P/φ)

αi)
1−σ ∫ ϕ̄i+1

ϕ̄i
ϕσ−1µ (ϕ,L) dϕ

]1/(1−σ)
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at the industry level, and we measure wage rate as payroll/employment. We then aggregate to the
whole US manufacturing using year 1997 industry total cost as fixed weights.

As our calibration procedure captures long-run change, we take the geometric average of the above
moments between year 1987 and 1989 as the initial period, and the geometric average of the year 2005
to 2007 as the final period, in order to smooth out data fluctuations. This gives us ᾱ0 = 0.699, ᾱT =
0.743, and log relative factor growth during the period as ∆ ln

(
w
P

)
= 0.383. Moments from Census of

Manufacturing: year 1987 and 2007

• Trade targets: this is the same as the literature

Export intenstity =
value of exports

total sales of exporters
.

From Census data, we have Intenstity0 = 10.0% and IntenstityT = 16.3%. Year 1987 Census
moments come from Bernard et al. (1995).

• Sales share targets: we use the census data on sales share of top 20 firms in each naics industry
to compute the sales share of top 20V largest firms at the aggregate US manufacturing in year
1987 using industry sales as weights, where V is the number of naics industries with more than
100 firms. The value is 64.5%. The implicit assumption here is that the top 20 sales firm in each
industry still remains top 20V firms in the aggregate. We can interpret the measure as some sort of
the industry average. Furthermore, with data on number of firms in each industry, we can calculate
the fraction of those 20V firms relative to whole manufacturing, χ20V = 2.27%.

D.2 Calibration Procedure
In the following we discuss in detail the steps to calibrate the endogenous specialization framework to
the US manufacturing between the initial and final periods. The first step is to solve for the variable trade
cost τ0 and τT by using data on export intensity. The model implies that Intenstityt = (N−1)(τt)1−σ

1+(N−1)(τt)1−σ

so we can invert the expression to get τ by using the trade targets directly. We calibrate the rest of the
model parameters while solving the equilibria for both periods. The calibration procedure consists of
two loops. In the outer loop, we guess the maximum intensity α so that the resulting sales share of top
20V firms matches the data moments, 64.5%. In the inner loop, we calibrate the technology and trade
cost parameters by matching the intermediates cost share in both periods, and the log relative factor price
growth during the period. Specifically, by assuming the equilibrium is of the heterogeneous specialization
type, we start with a guess for the specialization premium for both periods, s1,0 and s1,T , as well as the
value of f̂ . First, given the value of specialization premium, the relative adoption cost, and variable trade

cost, and the preassigned parameters, we calculate the fractions of two types of adopters, χ1 =
(
ϕ̄1

ϕ̄0

)−k
and χ2 =

(
ϕ̄2

ϕ̄0

)−k
, which we know are functions of specialization premium and adoption cost only from

expressions of relative cutoffs. Second, given fractions of adopters and the initial guess, we calculate the
implied value of maximum intermediates intensity αt in both periods using data on intermediates cost
share:

ᾱt =
F1χ1,t + 2F2χ2,t + 1

(s1,t)σ−1−1
(F1χ1,t + F2χ2,t)

F0 + F1χ1,t + F2χ2,t

(αt
2

)
, (D.2)
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where F0 = f0 = 1, F1 = f̂F0, and F2 = f̂(1 + f̂)F0. Third, given the fractions of adopters, we use the
free entry condition to calculate the entry cutoff ϕ̄0:

(σ − 1)ϕkmin

k − σ + 1
(ϕ̄0)−k (F0 + F1χ1 + F2χ2) = fE. (D.3)

Fourth, we use the goods market clearing condition to calculate total expenditure X , and then use the en-
try cutoff expression to calculate the price index. Finally, we use the definition of specialization premium
to calculate the value of intermediates technology φt for both periods.

φt = (s1,t)
2
αPt. (D.4)

Fifth, we calculate the model-implied change in log relative factor price:

∆ ln
(w
P

)m
=

∆ ln s1,t

α0

−∆ lnφt. (D.5)

We also calculate the model-implied sales share of top 20V firms in the initial period, λ20V,0. In the inner
loop, if the model-implied maximum intermediates intensity equals the initial guess and the changes in
relative factor price equal the observed change

α0 = αT = α, ∆ ln
(w
P

)m
= ∆ ln

(w
P

)data
, (D.6)

we retrieve the values of technology parameters, φ0, φT , and f̂ , and go to the outer loop. If not, we go
back to the first step with a new guess. In the outer loop, if the model-implied sales share of top 20V
firms equal the observed sales share, we get the maximum intermediates intensity α. If not, we go back
with a new guess of α and start the inner loop again.

D.3 Model Versus Data Regressions: Specialization and Concentration
We provide details for the validation exercise in section 7.2.5. To obtain variation in initial sales con-
centration, we shock the cost of adoption, f̂ , in the initial equilibrium while holding all other parameters
constant. We draw lognormal shocks such that the mean of ln f̂V reflects the aggregate calibrated value
(ln (11.3)) and its standard deviation is 0.1.45 We compute the model sales share of the percentile x of
operating firms in the model, λ

(
x, f̂V

)
. We employ x = 2.27% since in the initial calibration this ensures

the model accounts for the (aggregated) top 20 firm sales share in the data (i.e. λdata = λ (2.27%, 11.3)).
If we observed the full sales distribution then we could compute the share using the same percentile for
each industry in the data. What we observe is a proxy with some measurement error: the top 20 sales
given by λdata (20/NV ) = λ

(
x, f̂V

)
+ eV , which suggests the elasticity using the data will be attenuated

relative to the one using the model. We then take the new initial equilibrium for a given f̂V and apply a
log normal trade cost shock: ∆t ln τ˜N (−0.14, 0.23). The shock distribution reflects the aggregate mean
decrease in the calibration and its standard deviation reflects industry variation in observed changes in

45The small variation in f̂V allows us to remain close to the original calibration; it also generates smaller variation in top-20
sales share than in the data but we can account for this by comparing the impact of a standard deviation in that share in the
data vs. the model.
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trade costs.46 In the data, the correlation between the log trade cost shock and initial top 20 firms sales
share is only 0.04 so we assume the two distributions of shocks are independent. After applying the
trade shock we compute the log change in intermediate cost share and relative factor price (our measure
of specialization premium in the empirical exercise). We take 500 draws to approximately match the
number of industries in the data and use the model generated data to run a regression similar to Table 1
but in changes instead of a panel. As noted section 7.2.5 the differential elasticity using the empirical
estimation is similar to but smaller than the model’s, possibly due to the attenuation error mentioned
above. We find some support for this attenuation by re-computing shares in the model to try to capture
the different percentiles in the data. Specifically we use percentiles xm = x∗um where lnuV is normally
distributed with mean zero and consider alternative standard deviations. The elasticity differentials for
the model is 0.10 when the standard deviation is 1/4 and 0.04 when it is 2/3.47

46Specifically, we first compute the initial and final trade share as the geometric avarage of import penetration and export

sales share for 1990–1992 and 2005–2007, respectively. Then we use the mapping in the model that trade share is
τ1−σ
i,t

1+τ1−σ
i,t

to

get the changes in trade cost, τi,t, and compute the standard deviation of the log change.
47Higher standard deviations induce more error and attenuation. We chose values lower than the observed sd( ln 20/NV )

in the data, which is about unity for the industries used.
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