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Abstract: We identify novel technologies using textual analysis of patents, job postings, and 

earnings calls. Our approach enables us to identify and document the diffusion of 29 disruptive 

technologies across firms and labor markets in the U.S. Five stylized facts emerge from our data. 

First, the locations where technologies are developed that later disrupt businesses are 

geographically highly concentrated, even more so than overall patenting. Second, as the 

technologies mature and the number of new jobs related to them grows, they gradually spread 

geographically. While initial hiring is concentrated in high-skilled jobs, over time the mean skill 

level in new positions associated with the technologies declines, broadening the types of jobs that 

adopt a given technology. At the same time, the geographic diffusion of low-skilled positions is 

significantly faster than higher-skilled ones, so that the locations where initial discoveries were 

made retain their leading positions among high-paying positions for decades. Finally, these pioneer 

locations are more likely to arise in areas with universities and high skilled labor pools. 
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1. Introduction 

The development of novel technologies, the degree to which they affect jobs, and the speed with 

which they spread across regions, firms, and industries are key elements in the study of economic 

growth, economic inequality, entrepreneurship, and firm dynamics. Many authors have sought to 

understand whether the benefits from the adoption of new technologies accrue primarily to 

inventors, early investors, highly skilled users, or to society more widely through, for instance, 

employment growth.2 Other studies, as discussed below, have explored the geography of the 

development and diffusion of new technologies. 

One key obstacle to resolving these questions is that it has proven difficult to measure the 

development and spread of multiple technological advances in a single framework, and to separate 

those innovations that affect jobs and businesses from those that do not.  

In this paper, we make use of the full text of millions of patents and job postings and hundreds of 

thousands of earnings conference calls over the past two decades to make progress on this 

challenge. In particular, we develop a flexible methodology that allows us to determine which 

innovations or sets of innovations (“technologies”) affect businesses, trace these back to the 

locations and firms where they emerged, and track their diffusion through regions, occupations, 

and industries over time. We then use our newly created data to establish five novel stylized facts 

about the development and diffusion of disruptive technologies across space, skill levels, and other 

dimensions. 

The first step of our analysis is to develop a methodology for systematically identifying two-word 

phrases associated with rapidly diffusing technologies (“technical bigrams”) through a series of 

systematic rules, whose robustness we verify through various diagnostic tests. To this end, we 

intersect information from two large corpora of text. First, we use the full text of U.S. patents 

awarded between 1976 and 2016 to isolate two-word combinations that appear in influential 

patents but were not commonly used before 1970. That is, we isolate language specific to recent 

influential innovations. Second, we search for these bigrams in the full text of earnings conference 

calls held by more than 8,000 listed firms between 2002 and 2020, and identify those technical 

bigrams that have increased by at least a factor of ten in discussions between firm executives and 

                                                            
2 See, for example, Katz and Murphy (1992), Goldin and Katz (2009), Autor, Katz, and Kearney (2008), Piketty and 
Saez (2003), and Song et al. (2019). 
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investors during our sample period. This procedure highlights a small set of 305 technical bigrams 

that describe recent technological advances that have disrupted businesses, in the sense that they 

have become prominent topics of discussion between the firm’s management and its investors in 

the last two decades. The top three of these are “mobile devices,” “machine learning,” and “cloud 

computing.”  

To aid interpretation, we then group our technical bigrams into sets of technologies, recognizing 

the fact that, for example, “cloud computing” and “cloud services” refer to closely-related 

innovations. This approach partly relies on human judgment, aided by machine learning 

methodologies. Using this “supervised” process, we identify 29 disruptive technologies, which we 

use for the main analyses in the paper.3 Taken together, 42.4% of all citation-weighted patents 

granted by the U.S. Patent and Trademark Office (USPTO) between 2002 and 2016 are involved 

with the development of at least one of our 305 bigrams, and 28.8% with one of the 29 

technologies. In this sense, our disruptive technologies cover a significant part of recent innovative 

activity. While we make no claim of completeness, we argue that each of these 29 advances had 

significant implications for businesses and jobs in the United States in the past two decades.  

After establishing our list of new technologies, we then identify patents, earnings calls, and job 

postings that mention these new technologies. We use patents to identify the locations where each 

of the technologies was developed and earnings calls to identify exposed firms and the year in 

which the technology started to feature prominently in the conversations between executives and 

investors (its commercial breakthrough). We then cross-reference our list of technical bigrams 

with the full text of online job postings to identify 13 million jobs advertised between 2007 and 

2020 that use, produce, or develop our disruptive technologies. These granular data uniquely allow 

us to track the spread of disruptive technologies along a dimension of crucial importance to 

policymakers: employment. In particular, we examine the evolution of the number, location, and 

quality of job postings associated with these new technologies.  

The key results of this analysis are as follows. 

First, the locations where disruptive technologies are developed are geographically highly 

concentrated, both within and across technologies. Based on patenting activity ten years prior to 

                                                            
3 In a second, “unsupervised” approach we use all technical bigrams “as is”—i.e., with no human processing. This 
alternative approach yields qualitatively identical results. 
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each technology’s commercial breakthrough, we show that the typical disruptive technology in 

our data emerged from only a handful of urban areas, which housed the majority of early patenting 

in the technology and the vast majority of its early employment up to the year in which it has its 

commercial breakthrough. We term these specific urban areas the technology’s “pioneer 

locations.”  

Although 23 of the 50 U.S. states host at least one pioneer location according to this definition, 

their distribution across technologies is also remarkably skewed: a few super-clusters are the 

birthplace of a surprising number of disruptive technologies in our data.  Collectively, locations in 

California alone host a remarkable 40.2% of our technology-pioneer location pairs. Another super-

cluster along the Northeast Corridor from Washington to Boston accounts for additional 21.2%. 

More broadly, we find that the geographic distribution of patenting related to our 29 disruptive 

technologies is even more skewed than that of patenting in general. 

Second, despite this highly skewed initial distribution, as technologies mature and the number of 

new jobs related to them grows, they gradually spread geographically. On average, the coefficient 

of variation of the share of local jobs associated with a given disruptive technology across the 917 

core-based statistical areas (CBSAs) in the United States drops by 24% in the first decade after a 

technology emerges. We see this pattern of “region broadening” in virtually every technology that 

we examine.  

Third, while initial hiring is concentrated on high-skilled jobs, over time, the mean required skill 

level of the jobs associated with the technologies declines, reflecting a broadening of the types of 

jobs that adopt a given technology. For example, the average earnings associated with job postings 

in a given new technology drop by about 15% within the first decade, falling from $70,468 per 

year to $60,608 per year on average, a drop of about one thousand dollars per year (all figures in 

2015 dollars). This pattern of an increasing share of low-skilled jobs that begin to use or produce 

a given technology holds within most (though not all) of our disruptive technologies.  

Fourth, region and skill broadening interact: Low-skill jobs associated with a given technology 

spread out across space significantly faster than high-skill jobs. Our estimates suggest low-skilled 

jobs that use or produce new technologies are almost fully dispersed geographically within 20 

years. For example, as technologies like the smart phone, cloud computing, and electric cars 
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mature, the lower-skilled jobs associated with these – salespeople, technicians, repair specialists, 

etc. – spread across the United States at a fast clip.  

Fifth, despite region and skill broadening, disruptive technologies appear to yield long-lasting 

benefits for their pioneer locations, particularly when it comes to high-skill employment. Our 

estimates imply it takes almost 40 years for high-skilled job postings to fully disperse from their 

original pioneer locations. Perhaps not surprisingly, these pioneer locations tend to be located 

around universities and in areas with more educated populations. Thus, regions with strong local 

education, research institutions, and universities appear to benefit from successful disruptive 

innovation for substantial periods of time. 

While the focus of our analysis is on documenting the major stylized facts about the spread of 

technologies, the granularity of our data also allows us to study the employment dynamics 

associated with disruptive technologies for individual locations and firms. As an example of such 

a more micro-focused analysis, we document a case study of the geographic footprints of two large 

Detroit-based car manufacturers, and how they evolve after the emergence of technologies relating 

to self-driving cars. In this instance, we show that both large incumbents shifted significant 

numbers of job postings relating to self-driving cars towards the technology’s pioneer locations 

(particularly Silicon Valley) and away from their traditional hub in Detroit. We speculate that this 

kind of “re-homing” of established firms may form part of the reason for the long-lasting hiring 

advantages of pioneer locations. 

In the final part of the paper, we look at the generality of our results by studying the diffusion of 

disruptive technologies across firms, industries, and occupations. We show that similar patterns as 

discussed before predominate. While technology-related job postings spread out over time, the 

original firms, industries, and occupations associated with the development and early employment 

in the technology retain an advantage over time. Generally, we find a faster spread across locations 

and firms than industries and occupations. 

We note two main caveats to our interpretation. First, all of our results regarding jobs rely on the 

analysis of job postings. In this sense, they measure the characteristics of open positions, but not 

necessarily the characteristics of those jobs that get filled ex post (hiring). Second, by its very 

nature, our data speaks to job openings relating to novel technologies, but not the possible 

destruction of existing positions as a result of the diffusion of these technologies.   
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Our work builds on a large literature that studies the relationship between technology and labor 

markets. One strand of this literature studies the diffusion of technology. This literature has 

focused on patterns in a single specific (though important) new technology, from computers 

(Autor, Levy, and Murnane, 2003) to broadband (Akerman, Gaarder, and Mogstad, 2015) to robots 

(Acemoglu and Restrepo, 2020) to artificial intelligence (Agrawal, Gans, and Goldfarb, 2019; 

Webb, 2020).4 A second strand focuses on specific innovations during important historical 

episodes. Examples include studies of hybrid corn (Griliches, 1957), electrification (Goldin and 

Katz, 1998), threshing machines (Caprettini and Voth, 2020) and encyclopedias (Squicciarini and 

Voigtlander, 2015). Mokyr (1992) and Gordon (2016) trace out the impact on economic 

development and the standard of living of a range of great inventions. Both of these classes of 

studies use technology- and industry-specific approaches to measure the diffusion and impact of 

individual technologies. A third strand examines the impact of technological progress more 

generally on the labor market, including inputs like research and development spending (e.g., 

Berman, Bound, and Griliches, 1994; Machin and Van Reenen, 1998; and Aghion et al., 2019) and 

outputs like computerization (e.g., Krueger, 1993; Autor, Katz, and Krueger, 1998; Michaels, 

Natraj, and Van Reenen, 2014). We contribute to this literature by providing a flexible 

methodology to systematically isolate those innovations that have a large impact on firms and 

labor markets, and to track their spread across firms, industries, occupations, and jobs requiring 

different skill levels. Aside from the 29 disruptive technologies we identify in this paper, variants 

of our approach could also be used to study the adoption and spread of some of the other specific 

innovations highlighted by this literature. 

A second broad literature examines regional development, in particular questions relating to the 

mechanisms behind the continued advantage of pioneer locations. A number of papers have 

highlighted persistent advantages in entrepreneurship (Glaeser, Kerr, and Kerr, 2015), and 

innovation (Moretti, 2019) that certain urban areas enjoy, and highlighted mechanisms such as 

employee mobility across new ventures (Gompers, Lerner, and Scharfstein, 2005) and localized 

knowledge spillovers (e.g. Jaffe, Trajtenberg, and Henderson, 1993). We contribute to this 

literature by providing a systematic approach to identifying and studying pioneer locations. We 

                                                            
4 This work is related to Comin and Hobijn (2004, 2010) and their associated work. Their 2010 paper, for instance, 
looks at the diffusion of 15 technologies across 166 countries, employing a variety of measures of technological 
utilization. The rich data that we are able to exploit allow us to analyze (albeit for one nation and a much shorter time 
period) the interactions between innovation and employment at the firm level on a temporal and regional basis.  
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characterize their distribution across the United States and over time, and show there is a general 

relationship between successful innovation, early employment in a given new technology, and the 

long-term advantage that these locations preserve in high-skill employment. We hope that future 

work will use our granular data to study in detail the anatomy and evolution of technology hubs. 

Third, our work relates to a broader literature on the diffusion of new technologies. Since the 

pioneering work of Griliches (1957), the diffusion process has long been understood by economists 

to be a gradual one. While broader sociological and organizational literature has examined the 

barriers to innovation, recent work in economics has focused on understanding the importance of 

supply and demand factors on the speed of diffusion (e.g., Popp, 2002; Acemoglu and Linn, 2004; 

Greenstone, Hornbeck and Moretti, 2010; Moser, Voena, and Waldinger, 2014; Moscona, 2020; 

Arora, Belenzon, and Sheer, 2021). Despite this interesting work, Hall’s (2004) characterization 

of the study of diffusion as “a somewhat neglected one in the economics of innovation” still 

remains a fair observation. Our contribution is to provide a first assessment of the rate at which 

disruptive technologies spread across locations, firms, occupations, and industries. 

Finally, our work adds to a growing literature in macroeconomics and related fields using text as 

data. In particular, a number of recent papers have used newspapers, patents, and firm-level texts 

to measure concepts that are otherwise hard to quantify using conventional data sources. 

(Examples include Baker et al., 2016; Hassan et al., 2019, 2021; Handley and Li, 2020; Sautner et 

al., 2020; Bybee et al., 2019; and Kelly et al, 2021. By contrast, the full text of job postings has 

received relatively less attention.5) Our work adds to this literature by introducing a methodology 

to jointly analyze the full text of patents, earnings calls, and job postings.  

The remainder of this paper is structured as follows. In Section 2, we describe the construction of 

our data. In Section 3, we present our region-broadening and skill-broadening results. In addition, 

we examine the differential patterns across geographic regions.  In Section 4, we examine the 

diffusion of disruptive technologies across three other dimensions: industries, occupations, and 

firms. In Section 5, we investigate a potential mechanism for region broadening: firm rehoming 

towards pioneer locations. Section 6 shows a number of additional robustness checks. 

2. Data Construction 

                                                            
5 A notable exception is the work by Veldkamp and Abis (2021) who use job descriptions to identify financial analysis 
positions that leverage machine learning. 
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In this section, we describe our text-based approach to identifying and tracking the spread of 

disruptive technologies. We first intersect the full text of patents with that of earnings conference 

calls to identify those keywords describing new technologies that have increasingly appeared in 

conversations between investors and executives at listed firms. We then audit and group these 

keywords into 29 distinct disruptive technologies and track their use across patents, earnings calls, 

and job postings. Our objective is to (a) build a firm-quarter level measure of technology exposure, 

(b) use this measure to pinpoint when a given technology starts affecting businesses; (c) identify 

which locations and firms pioneered early patents in a given disruptive technology; (d) create a 

measure of technology adoption at the job-posting level, and (e) aggregate this measure to track 

the spread of disruptive technologies across jobs posted in different regions, occupations, firms, 

and industries.  

2.1. Phrases unique to novel and influential patents 

As a first step, we want to identify influential technologies in as systematic a manner as possible. 

We begin by examining U.S. patent filings. Patents are an attractive starting point for our analysis 

for two reasons. First, they are by definition novel, particularly when we focus on the most 

influential patents. Second, they must describe their technology and (at least some) key ways in 

which it is applied.6 We focus solely on patent awards by the USPTO: because of the importance 

of the U.S. market, inventors worldwide typically file important discoveries with the USPTO.7 

In order to obtain set of bigrams associated with novel technologies, we collect all utility patents 

awarded by the USPTO to either U.S. assignees or inventors between 1976 and 2016, a total of 

approximately three million awards. From the text of these patents (abstract, summary, claims, and 

background description), we remove stop words (such as “of,” “the,” and “from”) and decompose 

the remaining text into about 17 million unique two-word combinations (“bigrams”). We focus on 

bigrams because they are less ambiguous than single-word keywords. For example, while words 

like “autopilot” or “cloud” could have a variety of colloquial meanings, “autonomous vehicle” and 

                                                            
6 This requirement is stipulated is stipulated in the legal concept of “reduction to practice,” 35 U.S.C. 112(a). 
7 About half of all patent applications to the USPTO are filed by residents of foreign countries (USPTO, 2020). This 
pattern reflects the fact that patent protection in a given nation depends critically on having a patent issued in that 
specific nation. Important discoveries (the focus of our analysis) are therefore disproportionately likely to be filed in 
major patent offices world-wide (Lanjouw, Pakes, and Putnam, 1998).  
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“cloud computing” are much less ambiguous (e.g., Tan, Wang, and Lee, 2002; Bekkerman and 

Allan, 2004). 

To reduce the 17 million bigrams appearing in patents to a more manageable number, we next take 

steps to isolate those bigrams that are associated with novel and influential inventions. First, we 

focus our attention on bigrams associated exclusively with novel inventions by dropping “non-

technical” bigrams that were in common use long before the emergence of our disruptive 

technologies. To this end, we select all text dating prior to 1970 from the Corpus of Historical 

American English (COHA), a representative sample of text constructed by linguists from 

prominent fiction and non-fiction sources (Davies, 2009) that reflects everyday use of English up 

to 1970. We then remove any bigram appearing in this source (for instance, “of the” or “equipment 

used”) from our list of bigrams obtained from patents, leaving us with 1.5 million exclusively 

“technical” bigrams.  

Second, to identify bigrams associated with influential inventions in the remaining list, we collect 

patent citations for all the patents that mention these bigrams between 1976 and 2016 and 

normalize the citations to each patent by the mean within each technology class and application 

year.8 We then retain only those technical bigrams that cumulatively obtain at least 1000 

normalized citations. After these eliminations, we have a list of 35,063 “technical” bigrams 

associated with influential patents between 1976 and 2016.  

Next, we focus on which of our technical bigrams figured increasingly into the business 

discussions of firms, to gauge the extent to which each innovation changed or disrupted how firms 

operated. Here we use earnings conference calls from publicly listed firms. 

2.2. Use of technical bigrams in earnings calls 

Quarterly earnings call transcripts consist of two sections: a presentation by management (typically 

the chief executive and/or financial officer(s)) and then questions posed by investors and analysts 

with answers provided by the executives. These calls have been shown to be indicators of some of 

the most important issues facing these organizations (Bushee, Matsumoto, and Miller, 2003; 

Matsumoto, Prank, and Roelofsen, 2011; Hassan et al., 2019, 2021). 

                                                            
8Citation rates vary considerably over time and across technology classes. Lerner and Seru (forthcoming) document 
this heterogeneity and the biases that can result from failing to correct properly for these differences. 
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We tabulate the bigrams in 321,373 conference calls held by 11,905 publicly held companies and 

compiled by Refinitiv EIKON (formerly Thomson Reuters) between 2002 and 2019. Through this 

examination, we eliminate about 43% of our technical bigrams from the patents that are never 

mentioned in these calls. 

We then trim the remaining bigrams in two ways. First, we require that they appear in more than 

100 transcripts, to focus only on economically important bigrams associated with innovations that 

became major topics in earnings discussions. Second, we require these are increasing in their 

incidence in earnings calls over time, to focus on technologies that disrupt businesses, in the sense 

that they become a growing topic of conversation between executives and investors during our 

sample period. We thus define a “disruptive” technology simply as one that takes up an increasing 

amount of airtime in the earnings conference calls of listed firms. In our baseline specification, we 

keep technical bigrams which appear at least ten times as frequently in their peak year as in the 

first year of the earnings call data in 2002.9 After these steps, we end up with a short list of only 

305 technical bigrams describing technologies which are widely used and rising in importance, 

which we label as disruptive technologies.  

Table 1 shows the 30 technical bigrams most frequently appearing in earnings calls. It shows that 

our simple two-step approach of cross-referencing bigrams from influential patents with those 

featuring increasingly in business discussions clearly identifies some of the major disruptive 

technological advances of the past two decades. The first four bigrams on the list are “mobile 

devices,” “machine learning,” “cloud computing,” and “cloud services.” Other top-ranking 

bigrams on the list include “social networking” and “smart grid.”  

In order to obtain a coherent set of technologies from our 305 bigrams, we take two approaches. 

In the first, described in detail below, we manually group the 305 bigrams into a set of 

technologies, recognizing the fact that, for example, “cloud computing” and “cloud services” refer 

to closely related innovations. We apply a number of further refinements, allowing us to quantify 

the spread of specific technologies along a variety of dimensions. This approach inevitably relies 

on human judgment, aided by machine learning methodologies. This “supervised” approach is the 

basis for the analyses presented in the main body of the paper. We describe it in detail below.  

                                                            
9 Bigrams that do not appear at all in any call held during the 2002 calendar year automatically meet this criteria. 
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An alternative “unsupervised” approach is to use all 305 bigrams “as is”—i.e., with no human 

processing. We show in Section 6 that all of our main results are robust to this approach, both 

qualitatively and quantitatively. In this sense, all human intervention from this point on serves the 

purpose of measuring the spread of specific technologies and making our results more easily 

interpretable, but has no bearing on the validity of our main stylized facts about disruptive 

technologies as a whole. 

Before describing our supervised approach in detail, it is worth commenting on our perhaps 

remarkable finding that of the 35,063 “technical” bigrams that are unique to novel and influential 

inventions only a few hundred go on to “disrupt” a large number of conversations between 

executives and investors. Appendix Figure 2 shows a histogram of the 35,063 technical bigrams 

by the number of times the bigram is mentioned in earnings calls. The distribution is highly skewed 

(the median bigram is mentioned in only one call), so that only 2,181 technical bigrams feature in 

more than 100 earnings calls – our threshold for our notion of economically important innovations. 

Of these, only our 305 technical bigrams increase in frequency of use by factor ten during our 

sample period – our threshold for considering it “disruptive.” Interestingly, most of these bigrams 

(235) also increase by a factor of 100, so that varying this threshold has only a very modest effect 

on the bigrams selected. For example, under this more stringent notion of “disruptive” 

technologies, the three most frequent technical bigrams are “machine learning,” “cloud 

computing,” and “cloud services.” Appendix Tables 18 and 19 show more systematically how the 

top and bottom technical bigrams change with other reasonable choices for both cutoffs (requiring 

a minimum of 80 to 120 mentions or an increase in frequency by factor 5 to 100).  

Generally, as both cutoffs become more stringent, our procedure isolates technologies that are 

more broadly impactful and disruptive. As we loosen the cutoffs, we pick up a moderate number 

of additional technologies (such as laser welding), but also additional noise. More importantly, as 

we show below, all of our main stylized facts remain unchanged with these alternative sets of 

“unsupervised” keywords. 

2.3. A “supervised” approach to defining specific technologies 

In our “supervised” approach, we take four additional steps to ensure we accurately track the 

spread of specific technologies. First, we eliminate those bigrams (from the list of 305 bigrams) 

that, in our reading, do not clearly and unambiguously reflect specific technological advances. This 
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approach allows us to eliminate bigrams that refer to problems that have recently become more 

salient for both inventors and executives, but are not technological solutions, such as “carbon 

footprint” or “power outage.” Similarly, we drop bigrams referring to older technologies, such as 

“smart grid,” which refers to a technology that has been available since the 1980s but is enjoying 

renewed interest in recent years, and “nand flash” (flash memory), which had a surge of references 

when a global supply issue occurred. We also drop any bigram that is vague or refers to multiple 

innovations, such as “flow profile,” which may refer interchangeably to a genomic flow or firms’ 

cash flows, and “digital channel,” which can refer to interchangeably to digital marketing or digital 

transmission. At the end of these eliminations, we retain 105 bigrams that, in our reading, clearly 

and unambiguously reflect specific disruptive technological advances.  

We then manually pair each of the remaining bigrams with a definition sourced from Wikipedia 

and form 29 groups of bigrams (“technologies”) that each refer to a specific technological advance 

defined in this source. For example, the bigrams “mobile devices,” “smart phones,” and “mobile 

platform” all refer to “smart devices,” which Wikipedia defines as “an electronic device, generally 

connected to other devices or networks via different wireless protocols.” Appendix Table 12 lists 

the definition used for each of our 29 technologies.10  

A general concern with our approach of intersecting different corpora of text to measure the spread 

of technologies is that the phrases used by executives to characterize new technologies may never 

appear in patent awards, leading us to under-count mentions of some technologies relative to 

others. To explore this possibility, we use an embedding vector algorithm (word2vec, developed 

by Mikolov et al., 2013 and used previously by Hansen et al., 2021 and Atalay et al., 2020), which 

we trained specifically on our set of earnings calls. This algorithm trains a neural network to map 

each bigram as an embedded vector into a multidimensional space, such that bigrams which are 

used in common contexts are located closer in this space. We use the trained algorithm to derive a 

set of bigrams closest in terms of cosine distance to a given group of technical bigrams. For each 

of our 29 groupings, the algorithm suggests a list of “proximate” (similar) bigrams. For example, 

                                                            
10 We explored automating this grouping procedure. For instance, we experimented with clustering two bigrams into 
a group if the average similarity from the patent and EC embedding vectors were more than 70%. This gave a similar 
grouping as when using our human judgement. However, when differences arose between the automated and human 
approaches, we generally preferred the results using our human judgement, so we used the latter as our preferred 
approach. For example, in the automated approach, “virtual reality” and “augmented reality” were clustered together 
with “machine learning” and “neural network,” while in our human approach we split these into two technologies: 
“virtual reality” for the first two and “machine learning/AI” for the second two.  
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the most proximate bigrams to those in the technology grouping “artificial intelligence” are 

“machine learning” and “deep learning.” From this list, we then add to the bigrams forming each 

technology those that, in our reading, also clearly and unambiguously describe the technology in 

question.  

At the end of the process, we also wish to ensure that our audited list of bigrams correctly identifies 

postings of jobs involved with using or producing a given technology. To this end, we performed 

an iterative human audit where a team member went through 3,460 randomly sampled excerpts of 

the text from job postings (covering at least 10 unique postings per bigram). He or she classified 

the snippet into true positive and false positive categories, along with suggestions regarding new 

keywords discovered and how the accuracy of the existing keywords could be improved.11 We 

retained only bigrams that, according to our reading, unambiguously reflected discussion of the 

technology in question at least 80% of the time. For example, we find that the bigram “automated 

car” rarely refers to the “Autonomous Car” technology but instead to automated car washes. 

Appendix Table 1 shows this human audit process in detail for an example.  

Following these additions and subtractions, we obtain a list of 221 audited technical bigrams 

associated with our 29 disruptive technologies.  

Table 2 lists the 29 disruptive technologies from our supervised approach and the associated 

number of Burning Glass job postings in which associated bigrams appear (see the discussion in 

the next section). In addition to the major innovations already mentioned above, they include well-

known green technologies (“Solar Power,” “Hybrid Vehicle/Electric Car”) and process 

innovations, such as “3D Printing,” “Fracking,” and “Machine Learning,” but also less well-known 

technical and medical advances (e.g., “Millimeter Wave,” a novel band of radio frequency, and 

“Antibody Drug Conjugates,” a class of drugs used for the treatment of cancer).  

Taken together, they cover a broad range of new methods and consumer applications. While we 

make no claim of completeness -- other methods might well yield different groupings and 

                                                            
11 As an example of a false positive, an ad for a truck driver asked “do you hold a current Class A or B commercial 
driver’s license with an air brake endorsement? … do you enjoy playing video games or computer games with a joy 
stick? are you good at backing up in tight spaces?” The second question led the job to be (incorrectly) classified under 
“electronic gaming.” 
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definitions of technologies – we show below that each of these 29 advancements had significant 

implications for businesses and jobs in the United States.  

Table 3 lists keywords used for 10 out of 29 technologies. Appendix Table 2 provides the full set 

of bigrams used for all technologies. 

2.4. Burning Glass Job Postings 

Burning Glass (BG) aggregates online job postings using “spider bots” from online job boards 

(such as indeed.com), employer websites (such as stanford.edu), and other sources into a machine 

readable, de-duplicated database. From Burning Glass, we employ two datasets. The first is a 

standardized dataset (used recently by Hershbein and Kahn, 2018; Demming, 2020; and Atalay et 

al., 2020) where each de-duplicated job posting is geo-coded and assigned to a Standard 

Occupational Classification (SOC) code, a United States government system of classifying 

occupations, and a North American Industry Classification (NAICS) code.12 The second dataset 

has thus far received less attention by researchers. It contains the raw unprocessed text of the job 

postings, which we use to assign exposure to our technologies.  

We use these data from BG for all available years, 2007 and 2010-2020, a total of roughly 200 

million job postings. We show below that all of our main results are robust to dropping the 2007 

vintage from the sample.13 

We associate each posting with a skill level, location, industry, and firm as follows (for details, 

see Appendix 1.4): 

 Skill level: We construct a skill level for each six-digit SOC code (the most detailed level) 

from BG by measuring the share of persons with a college degree, the share of persons 

with a PhD, the average wage, and the average years of schooling in the American 

Communities Survey (ACS 2015 release), using respondents reporting their occupation as 

in that six-digit SOC code.14  

                                                            
12 We make extensive use of the former, which are available for 80% of all postings. Industry classifications are 
available for a more limited 41% of postings. We use these only in our calculations in Section 5. The strings with firm 
names are available for 66% of all postings. 
13 BG’s efforts to compile job postings data were interrupted by the 2008-09 recession. 
14 For SOC codes in job postings where we do not find any persons surveyed in the ACS, we match them to the closest 
available SOC code in the ACS. For example, data for SOC Code 38-1967 was not available, so we match it to 38-
1960. In total, the dataset includes 837 SOC codes. 
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 Location: We use the county names provided by BG to assign job postings to a core-based 

statistical area (CBSA), a U.S. government-defined geographic area that consists of one or 

more counties (or equivalents) with an urban center of at least 10,000 people, plus adjacent 

counties that are socioeconomically tied to the urban center. In total, the dataset includes 

917 CBSAs.  

 Industry: We allocate a job posting to an industry using the four-digit NAICS code 

provided by BG.15  

 Firm: BG reports an employer string for about 60% of their job postings. In order to match 

these employer strings to firms, we extend the methodology of Autor et. al. (2020) as 

follows: We search for the employer string (lower case and only letters a-z) on Bing.com, 

and collect the top five search results. We identify pairs of employer strings as the same 

firm if they share at least two out of top five search results. We then cluster together all 

employer strings that have at least two results for the same firm, and associate them with 

that firm.  

2.5. Constructing the Exposure Measures 

Using these data, we then construct measures of exposure to the set of technologies for job 

postings, earnings calls, and patents using the following rule: 

௜,ఛ,௧݁ݎݑݏ݋݌ݔ݁ ൌ 1൛ܾఛ߳	ܦ௜,ఛൟ, ሺ1ሻ 

where ܦ௜,ఛ is the set of bigrams contained in a job posting/earnings call/patent that was 

posted/held/filed at time ݐ and ܾఛ is a bigram associated with a technology ߬. A document is thus 

classified as exposed to a technology if it contains a bigram associated with the technology.  

Though we use the same terminology to refer to exposed job postings, earnings calls, and patents, 

it is worth emphasizing that these three types of exposures naturally have different interpretations. 

Patents that mention one of our technologies are, of course, in some way related to the development 

of the technology. Appendix Figure 1 provides an example of a patent concerned with object 

recognition, which mentions the bigram “object recognition” (a keyword associated with our 

“Computer Vision” technology) 52 times. Similarly, firms exposed to a given technology might 

                                                            
15 NAICS codes typically have six nested levels; the four-digit level is referred to as “industry group.” 
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be involved in producing or using a given technology, but they may also compete with or be 

disrupted by the technology. Appendix Table 3 gives text-based examples of these different kinds 

of firm-level exposures measured from earnings calls. 

Most importantly, the vast majority of job postings that mention a given technology advertise jobs 

that either produce or use a given technology. Figure 1 and Figure 2 provide examples of two 

illustrative Burning Glass job postings exposed to AI and solar technology, respectively. The first 

is for an applied research scientist and requires “knowledge of machine learning, neural networks, 

and deep learning” – all bigrams we associate with the “Artificial Intelligence” technology. The 

second is for a solar panel installer, and lists as part of the job’s responsibilities “install the racking 

system and solar panels.” Further down, this posting also contains another, more problematic 

mention of the same technology in the context of the company description, not the job itself. 

To investigate the context of technology exposure in job postings more systematically, one of our 

team members went through 100 randomly sampled job postings for each of our 29 technologies. 

He or she classified them into two sets of categories, whether technology exposure in the posting 

referred to 1) either the overall company description or the specific task of the job in the posting, 

and 2) either the use or the production of the technology. 

Appendix Table 4 summarizes the findings from this analysis. In Panel A, we report that in 80% 

of the postings, the technology mentions refer specifically to the job task (as in Figures 1 and 2). 

These are split about half and half into the use and the production of the technology. An example 

of produce would be “You will be designing the graphics module for our virtual reality training 

system” while an example of use would be “The role will involve assisting customers and selling 

tickets from your smart tablet in the entrance of the cinema”. During the audit, we also noted that 

company descriptions are usually in the beginning or towards the end of job postings. For this 

reason, we disregard any technology mentions in the top and bottom 50 words of each job posting. 

This procedure increased the rate of capturing specific job-related tasks associated with the 

technology to 91% in our human audit. An additional 4% of mentions were unspecific (for 

example, mentions of these technologies being available in the workspace), and only 5% referred 

to the company but not the job. 

In total, we find our 221 technical bigrams mentioned in 13 million job postings, where on average 

each bigram appears in 59,013 postings. To put this number into perspective, it is useful to compare 
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this frequency with the frequency of other “non-technical” bigrams often used by investors and 

executives in earnings conference calls. As documented in Appendix Tables 5 and 6, we here 

reverse our methodology and, instead of selecting bigrams that appear in both patents and earnings 

calls, select those that appear in earnings calls but not in patents. We find that the top 221 most 

frequent non-technical bigrams from earnings calls are on average mentioned in only 142 job 

postings. That is, our technical bigrams are four hundred times more frequent in job postings than 

other language frequently used by investors and executives, already suggesting that our 29 

disruptive technologies indeed had a large impact on the U.S. labor market.   

Having constructed our document-level exposure measures, we next aggregate over various 

documents D (job postings, earnings calls, and patents) to construct measures at the region, sector, 

occupation, and firm levels: 

௔,ఛ,௧݀݁ݏ݋݌ݔ݁	݁ݎ݄ܽݏ ൌ
∑ 1൛ܾఛ߳	ܦ௜,௧ൟ௜	ఢ	௔,௧

∑ 1൛	ܦ௜,௧ൟ௜	ఢ	௔,௧
	 ሺ2ሻ 

where ܽ may be a region sector, region, occupation, or firm and ݐ is time. To illustrate, Appendix 

Table 7 shows a list of top occupations exposed to one of our technologies, virtual reality. 

Appendix Tables 8, 9, and 10 provide a shorter list of the most exposed regions, occupations, and 

industries for each technology.  

3. Diffusion across Regions and Skill-levels 

We first seek to understand the overall patterns in the diffusion of these 29 technologies. The 

analysis suggests that job postings referring to given technologies grow in tandem with references 

in earning calls; and that over time, hiring moves from a sharp focus on high-skilled jobs to a much 

broader intake of workers with lower skills. 

Figure 3 takes a first look at the diffusion of disruptive technologies. The 29 images plot measures 

of activity in job postings and in earnings calls on an annual basis for each technology. The red 

line denotes the percentage of firms in earnings calls that mention the given technology. In some 

cases, such as touchscreen and RFID, the number of mentions climb and then fade, presumably 

reflecting the increasing ubiquity, and hence the declining competitive relevance, of the 

technologies for firms. In others, such as 3-D printing and artificial intelligence, there is a steady 

climb over time.  
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In each plot, we mark the year in which the technology became economically significant, which 

we henceforth refer to as the “emergence year.” To compute this, for each of our technologies, we 

calculate the maximum of the “percentage of earnings calls” time series graphed in Figure 3. We 

define the emergence date to be the year in which the time series first attains at least 10% of this 

value. Appendix Table 11 lists the emergence date for each technology, along with an alternative 

definition using the time series of the share of patents exposed to the technology. All of our main 

results are unchanged when we use this alternative definition.16 Appendix Table 12 lists each 

technology, its definition as discussed above, and a suggested contemporaneous event around the 

year of emergence of the technology.  

The second series in Figure 3, denoted with gray dots, indicates the share of positions in Burning 

Glass that mention a given technology (the size of the dots scale with the number of jobs posted). 

While in some cases a given technology continues to be important in hiring even after its mentions 

in earning calls drop off (e.g., GPS technology), in general, the two series are quite closely 

correlated. The correlation coefficient between them across the figures is 0.81. The close tie 

between these series helps validate the reasonableness of our empirical methodology: when a 

technology becomes more commercially relevant for firms, it also becomes more relevant for jobs. 

Consistent with this pattern, we also find that more extensive discussions of a technology in 

earnings calls correlate strongly with more patenting activity in that technology. Appendix Figure 

3 shows the share of firms exposed to each technology (in red-solid), and the share of citation-

weighted patents (normalized by the average number of citations within each technology class and 

year) associated with each of our 29 technologies (in black-dashes). Again, the series are highly 

correlated: the correlation coefficient is 0.80. 

Region Broadening 

Figure 3 already shows that there is an increase the number of job postings that mention disruptive 

technologies over time. Figure 4 highlights a related feature: this increasing use in job 

announcements over time is associated with greater geographic diffusion. To show this, we 

compute the coefficient of variation in the years after the emergence of a technology (defined as 

                                                            
16 This alternative definition instead uses the year in which the cumulative number of USPTO patents in that 
technology attains 50% of its sample maximum. See Appendix Tables 16 and 17. 
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above) measured across locations. More specifically, we create the normalized share of job 

postings in technology τ and year t for each CBSA-technology-year triple by calculating: 

௖௕௦௔,ఛ,௧݁ݎ݄ܽݏ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൌ
௖௕௦௔,ఛ,௧݀݁ݏ݋݌ݔ݁	݁ݎ݄ܽݏ
ఛ,௧݀݁ݏ݋݌ݔ݁	݁ݎ݄ܽݏ

, ሺ3ሻ 

where the numerator is defined as in (2) and the denominator is the average share of jobs exposed 

to technology ߬ across CBSAs.  ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௖௕௦௔,ఛ,௧ thus measures the regional over or 

underrepresentation of job postings associated with each technology relative to the overall 

distribution. This normalization allows us to control for the facts that, for instance, Los Angeles, 

the largest CBSA, will have a large share of job postings of nearly every type and that different 

technologies may be implemented at very different scales at a given point in time. Appendix Table 

13 summarizes the data used in the analysis. 

Figure 4 depicts, for each technology and year since emergence, the ratio of the standard deviation 

and the mean of this measure across CBSAs, also known as the coefficient of variation. The 

analysis reveals an intriguing pattern: 28 of 29 technologies exhibit a decline in the coefficient of 

variation over time (the only exception being job postings associated with the “Search Engine” 

technology). Put another way, although job postings in a given technology are highly regionally 

concentrated in the early years after their emergence, the geographic distribution of adoption over 

time becomes more homogeneous.  

Figure 4 is corroborated by Table 4, which examines these patterns using a regression framework.  

Column 1 presents the results of a regression of the coefficient of variation on the years since 

emergence for an annual panel of technologies, with technology and year fixed effects (column 1). 

Observations are weighted by the square root of the number of job postings associated with a given 

technology in the year, in order to give more weight to coefficients of variation that are measured 

more accurately.17 

Our preferred estimate in Column 1 shows that the coefficient of variation declines by 0.105 (s.e.= 

0.027) per year. The mean coefficient of variation across technologies and years is 4.74. Thus, this 

                                                            
17 This weighting scheme is for accuracy of our estimates and has no impact on the qualitative results. See Appendix 
Table 18 for details.  
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estimate implies that the regional concentration of technology job postings declines by 22.1% of 

the sample average in the ten years after the emergence of the technology.  

The remaining columns show the same pattern, using alternative measures of concentration. 

Column 2 uses the ratio of the normalized share of technology jobs of the top five CBSAs relative 

to all CBSAs. Column 3 uses the share of CBSAs with a (negligible) normalized share of 

technology employment of less than 1%. Both variations show concentration significantly 

decreasing over time. 

Pioneer Locations 

We next examine the hiring advantage of pioneer locations that excel in initial technology-related 

inventions. More specifically, we define pioneer locations as those which collectively accounted 

for 50% of the cite-weighted patent grants associated with a given technology in the ten years 

before its emergence year.18 For example, the CBSAs surrounding Trenton (NJ, 21.7%), New York 

(NY, 11.5%), Rochester (NY, 9.9%), and Los Angeles (CA, 9.3%) are pioneer locations for OLED 

Display technology because they together accounted for 52.2% of total OLED Display patenting 

in the U.S. Appendix Table 14 shows the top pioneer location for each of our 29 technologies. 

Panel A of Figure 5 shows the geographical distribution of pioneer locations across the United 

States, where the size of the blue circles is proportional to the share of the 189 technology-pioneer 

location pairs situated in a given CBSA. Although 23 of the 50 states host at least one pioneer 

location, the map shows remarkable concentration in this kind of successful innovative activity. 

Silicon Valley (the San Jose Jose-Sunnyvale-Santa Clara CBSA) and San Francisco were each 

involved in the development of 23 of our disruptive technologies, followed by New York (21), 

Boston (18), and Los Angeles (17). Collectively, locations in California alone host a remarkable 

40.2% of our pioneer locations.19 Another cluster along the northeast corridor from Washington to 

Boston accounts for an additional 21.2%. 

The geographic distribution of patenting related to our 29 disruptive technologies is even more 

skewed than that of general patenting, which, as discussed by Moretti (2019), is unevenly 

                                                            
18 An alternative approach is to define pioneer locations using the regional distribution of a given technology’s job 
postings prior to the technology’s emergence year. This approach yields a very similar allocation, as can be seen from 
comparing the figures in Panels A and B.  
19 This fact notwithstanding, all of our main results are robust to removing California from the sample. 
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distributed geographically. Figure 6 depicts the population-normalized share for the top 20 CBSAs 

of patents linked to disruptive technologies, and the population-normalized share for all patents 

over the same period.  

These differences can also be shown through summary statistics, The coefficient of variation of 

the geographic distribution of overall cite-weighted patenting is 1.21, while that of patents exposed 

to our 29 disruptive technologies is 1.42. Similarly, for overall patenting, it takes 12 CBSAs to 

account for 50% of all patents, while the top five urban regions produce 33.8% of all patents. By 

contrast, it takes only 7 CBSAs to account for 50% of all disruptive patents, and the top five urban 

regions alone represent 42.2%. When we look at the 189 technology-pioneer location pairs 

discussed above, the corresponding numbers are 5 and 54.5%. 

Panels B through E continue to mark pioneer locations with hollow blue circles, but now also add 

the location of technology job postings in the start year of the technology (the average 

ݐ ௜,ఛ,଴ across technologies at݁ݎ݄ܽݏ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൌ 0), where darker dots correspond to a higher 

normalized share of jobs.20 The figure shows a remarkable alignment between innovation and early 

employment. Even after accounting for differences in the size of the local labor market, early 

employment is strongly concentrated in the same places where the technology was developed.  

The remaining panels (C-E) show the evolution of this relationship as the technology matures (in 

years 1-2, 3-4, and 5-6, respectively). Although pioneer locations retain a higher share of 

technology employment throughout this period, we see a gradual diffusion of technology job 

postings, away from the pioneer locations and spreading out across the country.   

 In Table 5, we explore this relationship more formally using the specification:  

ݐ,߬,݅݁ݎ݄ܽݏ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൌ ௜,ఛݎ݁݁݊݋݅ܲ	1ߚ		 ൅	2ߚ	ݎ݁݁݊݋݅ܲ௜,ఛ൫ݐ െ ଴,ఛ൯ݐ ൅	ߜ௜ ൅	ߜఛ ൅	ߜ௧ ൅	ߝ௜,ఛ,௧	 ሺ4ሻ 

where ݅ denotes a CBSA, ߬ denotes one of our 29 technologies, t denotes year, and ݐ଴ denotes year 

of emergence for the technology. 	ܲ݅ݎ݁݁݊݋௜,ఛ is a dummy which denotes the pioneer status of a 

CBSA-technology pair. In all specifications in Table 5, we control for technology, CBSA, and 

year fixed effects.  

                                                            
20 To facilitate comparison between panels, we calculate this average of normalized shares only for the 13 technologies 
that emerge during our Burning Glass sample and for which we have at least six years of data, that is, those emerging 
between 2007 and 2014. 
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In Column 1, we see that while there is diffusion over time, the initial CBSAs where the new 

technology was invented retain their privileged positions. More specifically, the 

 ௜,ఛ,௧ of a technology’s job postings is about 92 percentage points higher in its݁ݎ݄ܽݏ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ

pioneer locations on average throughout the lifecycle of the technology. Table 5, Column 2, 

however, shows that the initial advantage of pioneer locations in job postings (231 percentage 

points at the year of emergence) decreases significantly over time, at a rate of about 6% per year 

ଵߚ/ଶߚ) ൌ 0.063	, s.e.=0.063). The initial advantage thus fully dissipates in about 15.8 years. 

Column 3 shows that this pattern is unchanged when we add CBSA x Year fixed effects. 

Skill Broadening 

We next turn to examining the skill component of technology job postings over time. Figure 7 

plots a measure of skill requirements of these job postings (the red circles). We compute for each 

SOC code, as reported by Burning Glass, the corresponding skill level as reported in the U.S. 

Census Bureau’s American Community Survey for 2015. When multiple SOC codes are associated 

with a given technology τ in year t, we compute a weighted average of the skill measure as follows: 

݈݈ܵ݇݅௧
ఛ ൌ 	

∑ ௢ܰ;௧
ఛ 	χ୭;ଶ଴ଵହ௢

∑ ௢ܰ;௧
ఛ

௢
 

where o is a Census SOC code, ௢ܰ;௧
ఛ  is the number of Burning Glass job postings exposed to 

technology τ and SOC code o at time t, and 	χ୭;ଶ଴ଵହ is the average skill level for SOC o, as 

measured by the 2015 ACS sample. We consider four different measures of skill at the SOC level: 

the share of college educated persons (baseline), the share of persons with post-graduate 

qualifications, the average wage of persons, and the average years of schooling for persons in the 

SOC.21  

Figure 7 plots the percentage of college-educated persons associated with job postings against the 

year since emergence on a technology-by-technology basis. The figure suggests that for the vast 

majority of technologies, there is a sharp decline in the skill level required for the positions 

associated with new technologies over time. Even in cases where demand for positions is sharply 

accelerating (such as AI and virtual reality), the share of skilled positions subsides over time. These 

                                                            
21 The BG data also includes an indicator for college requirement for a subset of observations. However, since this 
subset is quite limited we prefer using SOC codes to generate this variable. 
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results are consistent with the view that new technologies typically start with high-skill 

occupations and then involve larger parts of the workforce over time. The figure also shows a few 

notable exceptions to this general pattern: positions exposed to the Online Streaming, Cloud 

Computing, Search Engine, and Software Defined Radio technologies show no evidence of a 

declining average skill level over time (in fact, the trend for Online Streaming appears significantly 

positive).  

We summarize this information by presenting a binned scatterplot in Figure 8. This depiction 

shows the relationship across all 29 technologies between time elapsed after the emergence year 

and the mean share of the postings for college-educated persons. It shows, on average, a strong 

negative linear trend, implying a declining requirement for a college-trained workforce as 

technologies mature.  

Table 6 looks at this relationship formally. The sample consists of annual observations of each 

technology between 2007 and 2019. Here, we use the alternative measures of the skills required in 

the job postings associated with a given technology: the dependent variables include the share of 

the weighted SOC classes that are college educated (as in the figures above), the share with 

graduate degrees, mean wages, and the mean years of schooling. Each regression uses as the key 

independent variable the years since the emergence date and controls for technology and calendar 

year fixed effects. The specification again follows Table 4 regarding the criteria for inclusion in 

the analysis and weighting.  

Using each measure, there is a strong negative relationship between the maturity of the technology 

and the reliance on a highly educated workforce. For instance, Columns 1 and 3 show that each 

additional year since the emergence of the technology is associated with a fall of about 0.96 

percentage points in the share of job postings requiring a college education (an annual decline of 

-1.71%) and a decline of $1,023 in annual wages (measured in 2015 constant dollars) for the job 

postings associated with the technology. Similarly, the share of job postings in occupations 

requiring a post-graduate degree declines by a rate of 1.80% per year on average. 

This skill-broadening effect sheds an interesting light on how high-skilled labor is complementary 

with low-skilled work. While there is an important body of work highlighting the way in which 

technological change has favored high-skilled occupations and contributed to wage inequality 

(Acemoglu, 2002; Goldin and Katz, 2009; Acemoglu and Autor, 2011 are examples), the way in 
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which the hiring associated with new technologies can transition over time highlights the dynamics 

in this relationship.22  

Differential Region-broadening by Skill Level 

We next explore the heterogeneity of our region-broadening and pioneer persistence facts across 

skill categories. We use the SOC codes to divide our sample of job postings into three categories 

using the share of college-educated persons in each SOC code. (Again, using information from the 

2015 ACS.) We term these high (job postings for occupations with at least 60% college educated), 

medium (with 30% to 59% college educated), and low skilled (less than 30% college educated). 

For instance, almost all optometrists in the ACS are college educated: thus, all job postings for 

optometrists are allocated to the high-skill category. We then examine how the decline in the 

coefficient of variation described above changes after the emergence year, and how these shifts 

differ across different skill levels. 

Figure 9 takes a first look at these patterns. It again is a binned scatterplot of the coefficient of 

variation by year, but with the two extremes (low and high skill) of this three-fold division. It 

shows that the decline in the coefficient of variation across regions is substantially steeper for low-

skilled jobs than that for high-skilled ones. While the low-skilled job postings rapidly disperse 

across the country, the higher-end ones remain more bunched together. 

Table 7 studies these patterns in more detail, emulating the structure of the specification in Table 

4, but now breaking the observations of technologies into high and low-skill buckets (omitting the 

medium-skill bucket) and adding an interaction between the years since emergence variable and a 

dummy for low-skill occupations. All specifications show a significantly larger decline in 

concentration for lower-skill occupations. In terms of magnitudes, the annual decline in the 

coefficient of variation for low-skill job postings is more than three times larger than that for high-

skill jobs, declining by 3.7% annually for low-skill jobs and only by 1.1% for high-skill jobs. 

Appendix Table 15 shows this specification separately for job postings in the three skill buckets. 

Again, high-skill professions show a less steep decline in geographic concentration, although the 

coefficient of variation declines significantly for all three groupings over time.  

                                                            
22 In particular, our findings provide support for key assumptions in the literature on automation – that high-skill 
workers have a comparative advantage in new tasks, and that this advantage erodes as technologies mature (Acemoglu 
and Restrepo, 2020). 
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We obtain similar results for the persistence of pioneer advantage result in Table 8. This table 

repeats the analysis of Table 5, column 2 separately for each bucket (low, medium, and high skill) 

of job postings. Rather than looking at dispersion, however, it focuses on the related concept of 

the persistence of the pioneer region. Consistent with the earlier results, we find the decline in 

initial pioneer advantage is greater in the case of low-skilled than high-skilled positions. The 

degradation in geographic concentration is about 6.7% per year for low-skill job postings, which 

is about twice the magnitude for high-skill job postings (3.5%). That is, pioneer locations where 

disruptive technologies were developed retain a long-term advantage in attracting job postings in 

that technology, particularly in high-skill occupations. The estimates in column 3 suggest this high-

skill advantage dissipates fully only after 28.6 years. 

Properties of Pioneer Locations 

Before turning to the diffusion of disruptive in other dimensions, we explore the characteristics of 

pioneer locations where disruptive technologies were developed (and also did the bulk of their 

hiring at the time of the emergence date). In particular, we highlight that there is a strong 

relationship between academic centers and the pioneer locations where nascent disruptive 

technologies originate.  

To this end, we calculate for each CBSA-technology pair the number of patents exposed to that 

technology ten years prior to the technology’s emergence year. (Recall our definition of pioneer 

locations is based on this variable: a dummy that is one for locations that account for 50% of a 

technology’s patents in that year). We normalize this number by CBSA population in the 

emergence year and then regress this ratio (patents in technology per 1000 inhabitants) on region 

characteristics in 2015 (using data from the ACS). 

The key independent variables, which measure the presence of research universities and skilled 

persons in a CBSA, are the logarithm of the volume of university assets (standardized by 

population), the university enrollment (standardized by population), the share of the population in 

the CBSA that is college educated or has a post-graduate degree, and the log average wage in the 

CBSA.23 All specifications control for technology-specific fixed effects.  

                                                            
23 We obtain university data for 642 research universities from the U.S. National Science Foundation’s Higher 
Education Research and Development Survey (HERD) and from the Integrated Postsecondary Education Data System 
(IPEDS) surveys provided by the U.S. Department of Education’s National Center for Education Statistics (NCES), 
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Panel A of Table 9 shows a strong cross-sectional pattern. Regions with a greater academic or skill 

presence—whether manifested by greater research university presence or a more educated 

workforce—were more likely to be involved in the early development of disruptive technologies. 

These patterns are illustrated graphically in Appendix Figure 3. 

Perhaps more importantly, and consistent with our results above, Panel B shows that these same 

variables also account for higher per capita technology job postings in the emergence year. That 

is, the same variables that account for the location of innovative activity also account for early 

employment in that technology. 

4. Diffusion across Occupations, Industries, and Firms 

In this section, we characterize the spread of disruptive technologies across industries, occupations, 

and firms. First, we compare the region-broadening result against broadening across industries, 

occupations, and firms; second, similar to Table 5, we also study initial advantage of pioneers, 

separately defined across the four segments, and the degradation in this advantage over time.  

To that end, we extend the definition of ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧ in Section 3 to NAICS four-digit 

industries, SOC six-digit occupations, and firms for each technology (߬ሻ and time (ݐሻ. While the 

former two variables are included in the BG data (in each case, we use the finest level of 

disaggregation available from BG), the latter relies on our own matching algorithm described in 

Section 2.  

We then measure the coefficient of variation of ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧ across the segments.  

Because the number of firms posting job advertisements online expands over time (with more and 

more small firms appearing in the BG data over time), we stratify our firm-technology-year sample 

by including only firms that post at least one job in each of our sample-years, before calculating 

the coefficient of variation.24 This step focuses attention on 10,231 larger firms which on average 

                                                            
and map these universities to CBSAs. Research universities are defined as “public and private nonprofit postsecondary 
institutions in the United States, Guam, Puerto Rico, and the U.S. Virgin Islands that granted a bachelor’s degree or 
higher in any field; expended at least $150,000 in separately budgeted R&D in FY 2015; and were geographically 
separate campuses headed by a president, chancellor, or equivalent.” We normalize university assets and the university 
enrollment by CBSA population from the ACS at the time of the year of emergence. We obtain skill level variables 
for a particular CBSA from the ACS, by normalizing the share of graduate and post graduate persons in a CBSA by 
the total number of persons in the CBSA. For further details, refer to Appendix 3.2.  
24 Hershbein and Kahn (2018) discuss this fact in some detail. The general increase in coverage of the BG data over 
time should not affect any of our main results. We discuss robustness to various weighting schemes in detail in Section 
7. 
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post 1,628 jobs per year, effectively excluding variation coming from small and medium-sized 

businesses.  

Table 10, Panel A shows the results of a regression of the coefficient of variation calculated for 

each technology (߬ሻ and time (ݐሻ on year since emergence. Column 1 shows our already 

established results for pioneer locations for comparison.25 We find that while there is a decline in 

concentration as measured by coefficient of variation for all four segments, there appears to be a 

larger decline across locations and firms (Columns 1 and 4) than across industries and occupations 

(Columns 2 and 3). While the coefficient of variation declines on average by 2.48% and 2.32% for 

CBSAs and firms, respectively, the corresponding declines are 1.06% and 0.81% for (four-digit 

NAICS) industries and (six-digit SOC) occupations, respectively. Figure 10 illustrates these 

patterns graphically, and appendix figures 6, 7, and 8 illustrate them technology by technology. 

While it is perhaps natural to expect disruptive technologies to spread faster across firms and space 

than they do across industries and occupations, any quantitative comparison of course depends on 

the classifications of industries and occupations used. Appendix Figures 6 through 8 shows some 

differences across technologies in diffusion across industries and occupations. For example, the 

3D Printing, Computer Vision, and Wi-Fi technologies show a clear decrease in concentration 

across industries over time.  

In Table 10, Panel B, we estimate specification (1) for all four dimensions to examine the initial 

hiring advantage of pioneer cells in the four segments. The pioneer cells, as defined before, are 

ones that excel in initial technology-related inventions. More specifically, we define pioneer cells 

(occupations, industries, and firms) as those which collectively accounted for 50% of the patent 

grants associated with a given technology in the ten years before its emergence.  

To determine the pioneer cells, we merge various public-use datasets to assign patents to our three 

additional segments of industries, occupations and firms: For industries, we allocate patents to 

individual NAICS four-digit industries by mapping patents to Compustat firms (since patents 

themselves do not contain industry codes), and then from firms to industries. To obtain the patent-

to-Compustat match, we use the crosswalk provided by Autor et al. (2020), who use the Bing 

                                                            
25 In order to avoid calculating coefficients of variation for unreasonably sparse data, we only keep technology x year 
observations with at least 100 postings with industry coverage. This issue arises because BG provides NAICS codes 
for only 41% of all postings, as noted above.  
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search engine to match assignee names from patents to Compustat firms. A total of 44% of all 

patents exposed to any one of our 29 technologies match to a Compustat firms, so that this 

procedure implicitly assumes that the distribution of patents across industries is similar for 

Compustat firms as for all firms.26 Once patents are matched to firms, we then link to industries 

using the Compustat Segments dataset, which gives firms’ breakdown of sales across NAICS four-

digit industries. So, for example, if a patent is owned by “Apple North America,” it is matched by 

Bing to “Apple Inc.,” and then allocated proportionally to Apple’s NAICS four-digit industries by 

its sales breakdowns (83% to “Computer and peripheral equipment manufacturing” and 17% to 

“Electronics and Appliance Stores”). 

For occupations, we further construct an industry-to-occupation crosswalk from employment data 

within an occupation-industry cell from the Occupational Employment Statistics. We assume that 

the share of patenting in an industry allocated to an occupation is the same as the share of 

employment allocated to an occupation. We can, thus, calculate the share of patents for a particular 

technology allocated to an occupation27.  

Finally, for firms, we string match patent assignees from USPTO to firm names in job postings. 

(See Appendix 1.4 for details.) Using this procedure, we are able to match 36% of all patents 

assigned to U.S. inventors between 1976 and 2016 to 30,123 unique firms in our sample.  

Following our procedure for pioneer locations, we define pioneer industries, occupations, and 

firms for each technology as those with the most assigned patents in the ten years prior to the 

technology’s emergence year that collectively account for 50% of the matched patents in a given 

disruptive technology. Appendix Table 16 shows the top pioneer industry and occupation for each 

technology. For example, the top pioneer industry for 3D Printing is “Computer and Peripheral 

Equipment Manufacturing” (accounting for 41.9% of early patents) and its top occupation is 

“Mechanical Engineers,” while that of Fracking is “Oil and Gas Extraction” (accounting for 88.1% 

of early patents) and “Geoscientists,” respectively. 

                                                            
26 In order to compare patents by Compustat and non-Compustat firms, we analyze the share of patents by Compustat-
firms across technology classes. We find that for the median technology class, about 50% of patents are produced by 
Compustat firms, and that the distribution is quite homogenous: the 25th percentile is 39.0% and 75th percentile is 
58.8%.   
27 We reweigh technology jobs in an occupation to match hiring in the U.S. economy for each two-digit occupation. 
Hiring in a two-digit occupation in the US economy is calculated using hiring in an industry in the Longitudinal 
Employer-Household Dynamics Census survey and then constructing a crosswalk between industry employment and 
occupation employment. For more details refer to Appendix 3.3. 
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The analysis in Table 10, Panel B shows that pioneering cells have a strong initial advantage in 

job postings for all four segments. Over time, these again degrade significantly. The estimated 

degradation in the advantage (ߚଶ/ߚଵ	from equation (4)) for locations is 6.2%, compared to 4.4% 

for firms, 4.0% for industries, and 3.4% for occupations.  

Taken together, this evidence suggests disruptive technologies initially generate hiring that is 

highly localized by location, firm, industry and occupation. Over time, this hiring disperses, 

particularly across locations and across firms.  

5. Firm Rehoming towards Pioneer Locations 

As a final analysis, we explore one of the mechanisms behind the region-broadening results: the 

rehoming of firms towards pioneer locations using a case study.  

More specifically, we consider geographical footprint of Ford Motor Company and General Motor 

Corporation before and after the emergence year of the autonomous cars technology (2014). In 

Figure 11, we plot these firms’ job postings in three groups of places: (a) the three autonomous car 

pioneer locations, San Jose (CA), San Francisco (CA), and Boston (MA) (but excluding Detroit 

(MI)); (b) their headquarters, Detroit (MI), and (c) all other locations. Postings in red are before 

the emergence year of autonomous car technology, and postings in blue are post-emergence year. 

Black crosses in the picture denote the share of job postings exposed to autonomous cars post 

emergence year.  

The figure shows that both firms, traditionally concentrated in Detroit, shifted their geographic 

footprint towards the autonomous cars pioneer locations, particularly in Silicon Valley (San Jose 

and San Francisco). A large share of new job postings in the pioneer locations involved 

autonomous car technologies, accounting for 22% and 65% of Ford and GM postings respectively 

(compared to less than 5% in all other locations). The data thus suggest that the purpose of both 

firms’ expanding presence in autonomous cars’ pioneer locations related to this new technology.  

6. Additional Robustness Checks 

Before concluding, we perform a number of additional robustness checks for our primary results: 

“region broadening,” “pioneer-location persistence,” “skill broadening,” and “differential region-

broadening by skill level.” 
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First, we replicate our results using our “unsupervised” approach to defining technologies. That is, 

we treat each of the original 305 technical bigrams we obtained from our algorithm intersecting 

the texts of patents and earnings calls as a separate technology, without attempting to group or 

otherwise audit these bigrams. The goal of this exercise is to replicate our main findings in a dataset 

created without any human intervention.   

In Table 11, columns 1 through 4 of Panel A replicate the main specifications of Tables 4 through 

8, respectively. We find that all the coefficients of interest are qualitatively and quantitatively 

similar to our main specification. Column 1 shows our region-broadening result, regressing each 

technology-year’s coefficient of variation across locations on the number of years since the 

emergence of the technology. The estimated coefficient (-0.140, s.e.=0.017) implies a 2.54% 

reduction in concentration in technology job postings per year, comparted to 2.21% in our baseline 

specification (Table 4, column 1). Similarly, the estimates in column 2 imply a large advantage of 

pioneer locations in job postings that decreases at a rate of 6.0% per year, compared to 6.6% in 

Table 5, column 3.  Column 3 also shows significant skill broadening over time, with a decreasing 

share of job postings that require a college education over the life-cycle of the technology. 

However, the estimate here (-0.325, s.e.=0.099) is only one third the size of that in Table 6, column 

1. Finally, column 4 shows that the geographic concentration of low-skill jobs exposed to 

disruptive technologies decays significantly faster than that of high-skill jobs, though the 

coefficient of interest is again somewhat smaller (-0.108, s.e.=0.028 vs. -0.167, s.e.=0.048 in our 

baseline specification). 

Panel B of Table 11 replicates the results of Table 10, estimating the spread of disruptive 

technologies across industries, occupations, and firms. The results are again similar, although this 

unsupervised approach yields somewhat faster spread across occupations than in our baseline 

specification.  

We conclude that the human judgement that we exerted to enable us to measure the spread of 

specific technologies has no bearing on the validity of our main stylized facts about disruptive 

technologies as a whole. 

Second, in Appendix Table 17, we check for robustness with respect to our methodology for 

calculating the year of emergence for our technologies, with respect to the missing years (2008 

and 2009) in the BG sample, and with respect to standard errors: 
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In Panel A, we find that our results are robust to calculating years of emergence exclusively from 

patents instead of earnings calls. To calculate this alternative measure, we use our patent data, 

which extends back to 1975. The year of emergence for each technology is here calculated as the 

year in which the share of U.S. patents exposed to the technology reached 50% of their maximum 

value between 1976 and 2015.  

In Panel B, we find that our results are robust to excluding 2007, the first year of availability of 

Burning Glass job postings and immediately before the missing BG job postings in 2008 and 2009.  

In Panel C, we check for robustness of standard errors and find that if anything the statistical 

significance is stronger with robust standard errors (vs. clustered standard errors in the baseline 

specification).  

Third, we deal with the potential concern that some of our analyses may reflect changes in the 

composition of the job announcements in Burning Glass, not hiring overall. Appendix Figure 9a 

shows that the number of job postings in the BG dataset began increasing sharply in the mid-2010s 

(the blue line), which could reflect an increase in the share of jobs posted online. We note, 

however, that this trend also parallels the increase in overall U.S. job openings after the 2008-09 

recession, as reported by the Job Openings and Labor Turnover Survey (the red line).  

A more substantive compositional concern is raised by Appendix Figure 9b. The figure shows that 

much of the growth in Burning Glass online job postings was driven by job postings in low-skill 

occupations. It is natural to speculate that many of these jobs may have previously not been posted 

online. Thus, the increase in BG postings shown in Appendix Figure 9a may reflect both increasing 

overall U.S. hiring and a growing tendency for lower-skill job announcements to be posted online. 

It is thus natural to wonder whether the changing composition of BG job announcements may have 

impacted the results above. 

After three additional robustness checks, we do not believe these changes affect the results in our 

analyses. First, it is important to note, as demonstrated in Appendix Figure 9c, that the 

compositional patterns documented in Appendix Figure 9b are much less pronounced among job 

announcements associated with our 29 technologies. Second, our entire analysis uses the 

normalized share of job postings (except skill broadening), and controls throughout for year fixed 

effects. The normalization and year controls should address many of these compositional concerns. 

As a final check for our skill broadening result, we reweight the occupations in our sample to 
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match hiring in that occupation in the U.S. economy. We compute hiring in each occupation by 

using hiring in each industry in the Longitudinal Employer-Household Dynamics Census survey 

and then constructing a crosswalk between industry employment and occupation employment 

using the Occupational Employment Statistics Census survey. In Appendix Table 18, we find that 

our skill-broadening results are robust to this reweighting exercise.  

We also check our primary results for sensitivity with respect to our “rising” cut off in earnings 

calls. To get to our list of 305 unsupervised bigrams, we keep bigrams which appear at least ten 

times as frequently in their peak year as in the first year of the earnings call data in 2002. In 

Appendix Table 19, we vary this to keep bigrams which appear at least 100 times, 20 times, 10 

times, 6 times and 5 times as frequently in their peak year as in the first year of the earnings call 

data in 2002. In Appendix Table 20, we find that our primary results are fully robust to changes in 

varying these cut-offs. 

As a final check of our broadening results, we check their sensitivity to technology selection: in 

other words, could the results be driven by a handful of industries out of our 29? To do this, we 

exclude three technologies at a time and recalculate the degradation in coefficient of variation, this 

provides us with 7,308 permutation estimates. In Appendix Figure 11, we plot the 10th and 90th 

percentile of these jackknife estimates, and show that the results are robust to randomly removing 

a subset of technologies.  

7. Conclusion 

Policymakers in many parts of the world devote enormous energy to fostering nascent 

technologies, ranging from efforts to support academic research to luring start-ups from other cities 

and nations. Such infant industry strategies are often predicated on the notion that early advantages 

in innovation and employment will yield lasting benefits for regions, particularly in the form of 

high-quality employment. 

Using the full text of millions of patents, job postings, and earnings conference calls over the past 

two decades, we introduce in this paper an approach to understand which new technologies affect 

businesses and to trace their diffusion across regions, industries, occupations, and firms. We can 

then map the spread of disruptive technologies in these dimensions, focusing on the hiring 

associated with each important innovation.  
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We highlight five main conclusions. First, the locations where disruptive technologies are 

developed are geographically highly concentrated, with a handful of urban areas contributing the 

bulk of the early patenting and early employment within each technology. Second, despite this 

initial concentration, jobs relating to use or production of the new technologies gradually spread 

out geographically. Third, while initial jobs associated with a given technology are typically high-

skilled, over time the mean required skill levels of the new jobs declines. Fourth, these trends 

towards region and skill broadening are related: low-skill jobs associated with a given technology 

spread out geographically significantly faster than high-skill ones. Finally, because of the slower 

spread of high-skill jobs, disruptive technologies continue to offer long-lasting benefits for their 

pioneer locations, which retain a long-term advantage in these high-quality jobs for multiple 

decades.  

Beyond these core results of our analysis, the development and spread of disruptive technologies 

are key objects of interest in multiple fields of economics. We therefore hope that the data we 

provide as part of this paper may prove useful to address a range of additional research questions 

in the study of economic growth, inequality, entrepreneurship, and firm dynamics.  

One additional avenue for future research relates to the microeconomic dynamics of pioneer 

locations. To what extent is their persistent advantage in high-skill job openings driven by re-

homing of established firms as opposed to the initial developers of the technology? How much of 

this effect is the consequence of knowledge spillovers or the continuing positive impact of 

universities?   

Another avenue would investigate the determinants and consequences of success: Why do some 

regions appear to develop a disproportionate share of disruptive innovations, and how does such 

serial success affect the local markets for labor and housing? 

A related question is around the spread of technologies across firms and locations. To what extent 

is this spread the result of firms in the pioneering locations expanding geographically or new 

entrants? What types of firms outside these regions are particularly prescient in identifying and 

responding to the new technologies?  
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Tables and Figures 

Table 1 - Top bigrams from patenting and ECs 

Bigram # transcripts Technology group 

mobile devices 6597 Smart devices 
machine learning 2860 Machine learning/AI 
cloud computing 2781 Cloud computing 
cloud services 2450 Cloud computing 
quality metrics 2029 NA 
flow profile 1966 NA 
smart phones 1957 Smart devices 
mobile platform 1605 Smart devices 
public cloud 1569 Cloud computing 
social networking 1548 Social networks 
smart grid 1441 NA 
cloud service 1393 Cloud computing 
connected devices 1304 Smart devices 
cloud infrastructure 1136 Cloud computing 
carbon footprint 1071 NA 
nand flash 1002 NA 
virtual reality 903 Virtual reality 
digital channel 896 NA 
delivery network 887 NA 
social networks 883 Social networks 
autonomous driving 839 Autonomous cars 
smart devices 765 Smart devices 
active user 735 Social networks 
augmented reality 730 Virtual reality 
mobile payment 717 Mobile payment 
cloud environment 668 Cloud computing 
production site 664 NA 
ethanol production 662 NA 
power outage 643 NA 
multiple segments 595 NA 

Notes: This table list top 30 out of the total initial 305 bigrams (in 
Column 1) that appear frequently in patents and earnings calls, and 
increase in their mentions between 2002 and 2019. The bigrams are 
sorted by the number of earnings calls that they are mentioned in 
(Column 2). The table also reports the technology group that they are 
classified in (Column 3). Note that some of the bigrams are not classified 
in any technology group because they do not refer to a recent disruptive 
technology.  

 



Table 2 - Technologies by total job postings 

Technology Postings 
Cloud computing 3684901
Social networking 3457390
Smart devices 2376510
Machine learning/AI 679776
Search engine 535784
Online streaming 487731
Wi-Fi 388844
Electronic gaming 247201
Solar power 201296
Injection molding 190538
Hybrid vehicle/Electric car 118550
Touch screen 109538
RFID 80894
Computer vision 76350
GPS 65922
Mobile payment 65482
Virtual reality 61102
3D printing 57904
Autonomous cars 52974
Lane departure warning 32107
Lithium battery 16926
Software defined radio 14187
Drug conjugates 10603
Fracking 8966
Millimeter wave 6161
OLED display 5528
Bispecific monoclonal antibody 2702
Inkjet printing 2583
Wireless charging 1649
Stent graft 1270
Fingerprint sensor 711
  

Notes: This table lists our 29 technologies (in Column 1) 
and the number of job postings that they appear in Burning 
Glass during 2007-2019 (in Column 2).  

 

 

 



Table 3 - Top keywords for sample technologies by number of online job postings 

Technology Keywords 
3D printing 3d printer; 3d printing; additive manufacturing; 3d printed 
Autonomous cars Self-driving car; robot car; autonomous vehicles; autonomous car; 

autonomous cars; automated driving; driverless car; autonomous 
driving; autonomous vehicle; driverless truck 

Bispecific 
monoclonal 
antibody 

bispecific monoclonal; the bispecific; bispecific antibody 

Cloud computing paas; cloud infrastructure; distributed cloud; cloud provider; cloud 
offerings; cloud service; cloud applications; community cloud; 
private cloud; public cloud; cloud deployments; cloud 
environments; cloud management; cloud services; cloud security; 
enterprise class; iaas; hybrid cloud; cloud platform; cloud 
providers; cloud hosting; personal cloud; enterprise network; cloud 
computing; cloud based; saas; cloud storage; enterprise 
applications; cloud solution; enterprise cloud; cloud solutions; 
cloud deployment 

Computer vision pose estimation; motion estimation; visual servoing; facial 
recognition; gesture recognition; computer vision; image 
recognition; sensor fusion; object recognition 

Drug conjugates kinase inhibitor; drug conjugate; antibody drug; drug conjugates 
Electronic gaming social game; video games; social games; video game; game 

content; electronic gaming; gaming products 
Millimeter wave millimeter wave 
Fingerprint sensor fingerprint sensor; fingerprint scanner 
Fracking fracking; fraccing; hydrofracking; hydrofracturing; hydraulic 

fracturing; 
Notes: The table lists 10 of our technologies in alphabetical order (in Column 1) and the keywords used to 
identify them in text of earnings calls, patents, and job postings (in column 2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
   



Table 4 - Region broadening and persistence 

 Coefficient of 
Variation 

ହ	ሺܰܵሻ்௢௣݊ܽ݁ܯ
ሺܰܵሻ஺௟௟݊ܽ݁ܯ

 
Share CBSAs 

with (ܰܵ ൏ 1%) 

 (1) (2) (3) 
 ***ఛ,௧ --0.105*** --1.078*** --0.028݁ܿ݊݁݃ݎ݁݉݁	݁ܿ݊݅ݏ	ݏݎܻܽ݁
 (0.027) (0.338) (0.006) 
R2 0.861 0.776 0.927 
N 287 287 287 
Tech FE YES YES YES 
Year FE YES YES YES 
Mean 4.74 53.33 0.67 
% Mean per year 2.21% 2.02% 4.18% 

Notes: This table reports results from a regression of three separate measures of geographic concentration of technology 

hiring, calculated over ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧ሺܰܵሻ ൌ
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗ೔,ഓ,೟
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗഓ,೟

 , where i is a location (CBSA), technology ߬, and 

time	ݐ. The three measures are: coefficient of variation, normalized share of hiring at top 5 CBSAs relative to all CBSAs, and 
share of CBSAs with normalized share more than 1%. The regression is weighted by square root of total technology postings 
in a year. The normalized share is capped at 99th percentile of non-zero observations. Standard errors are clustered by 
technology. The last row specifies the magnitude of the coefficient of ܻ݁ܽݏݎ	݁ܿ݊݅ݏ	݁ܿ݊݁݃ݎ݁݉݁ఛ,௧ as a percentage of the 
sample mean per year. 
 
 
 
 

Table 5 - Persistence of pioneer locations 

 Normalized Share 
 (1) (2) (3) 
 ***௜,ఛ 0.918*** 2.313*** 2.474ݎ݁݁݊݋݅ܲ	
 (0.285) (0.580) (0.699) 
௜,ఛݎ݁݁݊݋݅ܲ ∗  ***ఛ,௧  -0.146*** -0.163݁ܿ݊݁݃ݎ݁݉݁	݁ܿ݊݅ݏ	ݏݎܻܽ݁
  (0.042) (0.057) 
R2 0.074 0.075 0.104 
N 266,467 266,467 266,467 
߬,݅ݎ݁݁݊݋ሺܲ݅ߚ ∗ ሺݐ െ  ***௜,ఛሻ  -0.063*** -0.066ݎ݁݁݊݋ሺܲ݅ߚ	/0ሻሻݐ
  (0.007) (0.009) 
Tech FE YES YES YES 
Year FE YES YES YES 
CBSA FE YES YES YES 
CBSA x Year FE NO NO YES 

Notes: This table reports results from a regression of the ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧ (for each CBSA, technology, and year) on 
pioneer status of the CBSA and its interaction with year since technology emergence. The normalized share is capped at 99th 
percentile of non-zero observations.  Standard errors are clustered by CBSA.  
 
 



Table 6 - Skill measure of technology job postings and years since emergence 

  (1) (2) (3) (4) 

 
Share of college 
educated * 100 

Share of post 
graduate * 100 

Average wage 
Average 
schooling 

Years since emergence -0.954*** -0.361*** -1,022.929*** -0.050*** 
 (0.260) (0.121) (241.521) (0.014) 

R2 0.847 0.878 0.845 0.859 
N 287 287 287 287 
Tech FE YES YES YES YES 
Year FE YES YES YES YES 
Mean 55.90 19.95 64,463 15.07 
%Mean/year -1.71% -1.80% -1.59% -.33% 

Notes: This table reports the results from a regression of approximate skill composition of technology jobs as the dependent 

variable, ݈݈ܵ݇݅௧
చ ൌ 	

∑ ே೚;೟
ഓ 	஧౥;మబభఱ೚

∑ ே೚;೟
ഓ

೚
 where 	χ୭;ଶ଴ଵହ is the skill measure of interest from the 2015 American Community Survey at the 

occupation level, on the years since inception of the technology as the independent variable. Occupation in the sample is at the 
six-digit SOC code. These results exclude observations before the start year of a technology. The regression is weighted by 
square root of technology job postings in a year. Standard errors are clustered by technology.  

 
Table 7 – Concentration across locations during the life cycle - High vs low skill 

 
Coefficient of 

Variation 
ሺܰܵሻ்௢௣݊ܽ݁ܯ ହ
ሺܰܵሻ஺௟௟݊ܽ݁ܯ

 
Share CBSAs with 

(ܰܵ ൏ 1%) 

  (1) (2) (3) 
        
(Years since t0) * 1{Low skill} -0.167*** -2.218*** -0.022*** 

 (0.048) (0.621) (0.006) 
(Year since t0) -0.074** -0.657 -0.017*** 

 (0.036) (0.464) (0.005) 
R2 0.773 0.653 0.827 
N 567 567 567 
Skill FE YES YES YES 
Tech FE YES YES YES 
Year FE YES YES YES 
Mean 6.53 16.85 0.78 
% Mean/year 2.56% 13.16% 2.82% 
    

Notes: This table reports the results from regressions of the coefficient of variation during lifecycle of a technology by 
occupation skill level and year since technology emergence. The interaction term (year since t0) * 1{low skill} tests for 
differential concentration trends between low- and high-skill jobs. To calculate the coefficient of variation by skill x 
technology x year, we aggregate the job postings data over occupation, CBSA, and year, separately for high-skill 
occupations (with share of college educated people > 60 %) and low-skill occupations (with share of college educated 
people < 30 %). Finally, coefficient of variation is calculated over ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧,௦௞௜௟௟ ൌ
௦௛௔௥௘	௝௢௕௦	௘௫௣௢௦௘ௗ೔,ഓ,೟,ೞೖ೔೗೗
௦௛௔௥௘	௝௢௕௦	௘௫௣௢௦௘ௗഓ,೟,௦௞௜௟௟

	across CBSAs by skill group, technology, and time. These results exclude observations before the 

start year of a technology and occupations categorized under medium skill. Regressions are weighted by technology hiring 
in the skill-technology-year observation. Regression controls for skill, technology, and year fixed effects. Standard errors 
are clustered by technology.  



Table 8 - Differential hiring for locations by skill 

݀݁ݖ݈݅ܽ݉ݎ݋ܰ   ௜,ఛ,௧݁ݎ݄ܽݏ
 (1) (2) (3) 
 Low Skill Medium Skill High Skill 
 **௜,ఛ 1.607*** 1.193*** 1.108ݎ݁݁݊݋݅ܲ
 (0.403) (0.453) (0.484) 
௜,ఛݎ݁݁݊݋݅ܲ ∗ ሺݐ െ  *଴ሻ -0.108*** -0.057** -0.039ݐ
 (0.030) (0.025) (0.020) 
R2 0.053 0.044 0.049 
N 181,598 181,598 181,598 
௜,ఛݎ݁݁݊݋ሺܲ݅ߚ ∗ ሺݐ െ  **௜,ఛሻ -0.067*** -0.048** -0.035ݎ݁݁݊݋ሺܲ݅ߚ	/଴ሻሻݐ
 (0.007) (0.016) (0.014) 
    

Notes: This table reports the results from regressions of	ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧,௦௞௜௟௟ on pioneer status dummy for the 
CBSA i, separately for low skill (Column 1), medium skill (Column 2) and high skill (Column 3). To construct the 
sample at skill x CBSA x year level, we aggregate the job postings data over occupation, CBSA, and year, separately 
for high-skill occupations (with share of college educated people > 60%), medium-skill occupations (with share of 
college educated people > 30%), and low-skill occupations (with share of college educated people < 30%). These 
results exclude observations before the start year of a technology. Standard errors are clustered by CBSA. Standard 
errors for βሺPioneer୧,த ∗ ሺt െ t଴ሻሻ/	βሺPioneer୧,தሻ are calculated using delta method.  

 

  



Table 9 - Technology patenting before technology emergence versus skill composition 

 Panel A: (1) (2) (3) (4) (5) 
ݏݐ݊݁ݐܽܲ  ݎ݁݌ 1000  ௜,்,଴݈݁݌݋݁݌
log(1 + university assets (in $1,000 per capita)) 0.129***   

 (0.022)   
University enrollment per capita 0.346***   

 (0.085)   
Share College Educated (in pct.) 0.0178***   

 (0.0017)   
Share post graduate (in pct.) 0.0421***  

 (0.0041)  
Log(wage)     1.004*** 

     (0.117) 

   
Observations 24,731 24,731 24,731 24,731 24,731 
R-squared 0.107 0.093 0.158 0.162 0.133 
      
Panel B: (1) (2) (3) (4) (5) 
ݏ݃݊݅ݐݏ݋ܲ  ݎ݁݌  ௜,ఛ,଴݈݁݌݋݁݌	1000
      
log(1 + university assets (in $1,000 per capita)) 0.0595***     
 (0.0075)     
university enrollment per capita  0.217***    
  (0.0313)    
Share College Educated   0.00657***   
   (0.00063)   
Share post graduate    0.0149***  
    (0.0015)  
Log(wage)     0.426*** 
     (0.045) 
      
Observations 24,759 24,759 24,759 24,759 24,759 
R-squared 0.179 0.172 0.197 0.196 0.192 
Tech FE YES YES YES YES YES 
      

Notes: The table presents results from a regression of patents per capita (in Panel A) and postings per capita (in panel B) in a CBSA 
associated with a technology (during 10 years before year of emergence for the technology) on values of various measures of skill 
and income for the CBSA. University measures in row 1 and row 2 are calculated by aggregating university assets and enrollment 
over all universities in a CBSA, and share of college educated/post graduate in row 3 and row 4 are calculated as the share of people 
holding a college/postgraduate degree in a CBSA. Income measure in row 5 is log of wage, where wage for a CBSA is calculated as 
the average yearly income of a working person. The university data is from the U.S. National Science Foundation’s Higher Education 
Research and Development Survey (HERD) and from the Integrated Postsecondary Education Data System (IPEDS) surveys 
provided by the U.S. Department of Education’s National Center for Education Statistics (NCES), and income data is from American 
Communities Survey 2015. All specifications control for technology fixed effects. Standard errors are clustered by CBSA. 

  



Table 10 – Dispersion and pioneer persistence: Comparison across different dimensions  

Panel A: Coefficient of Variation  
(1) (2) (3) (4)  

Locations Industries Occupations Large Firms 
Years since emergence -0.092*** -0.052 -0.054 -0.360*** 
 (0.026) (0.037) (0.049) (0.093) 
R2 0.888 0.904 0.806 0.917 
N 249 249 249 249 
Mean 3.71 4.89 6.65 15.48 
% Mean/year -2.48% -1.06% -0.81% -2.32% 
Tech FE YES YES YES YES 
Year FE YES YES YES YES 
     
Panel B: ܰ݀݁ݖ݈݅ܽ݉ݎ݋  ௜,ఛ,௧݁ݎ݄ܽݏ
 (1) (2) (3) (4) 
 Locations Industries Occupations Large Firms 
 ***௜,ఛ 2.393*** 13.550*** 10.746** 142.036ݎ݁݁݊݋݅ܲ	
 (0.528) (3.204) (4.675) (35.866) 
௜,ఛݎ݁݁݊݋݅ܲ
∗ ఛ݁ܿ݊݁݃ݎ݁݉݁	݁ܿ݊݅ݏ	ݏݎܻܽ݁

-0.149*** -0.547** -0.367 -6.215** 

 (0.039) (0.224) (0.269) (2.990) 
     
R2 0.076 0.137 0.033 0.026 
N 266,467 26,883 204,041 38,990,627 
௜,ఛݎ݁݁݊݋ሺܲ݅ߚ ∗ ሺݐ
െ  ௜,ఛሻݎ݁݁݊݋ሺܲ݅ߚ	/଴ሻሻݐ

-0.062*** -0.040*** -0.034*** -0.044*** 

 (0.007) (0.011) (0.013) (0.013) 
Tech FE YES YES YES YES 
Year FE YES YES YES YES 
Cell FE YES YES YES YES 
     
     

Notes: This table reports in Panel A, the results from a regression of the coefficient of variation calculated across 

௜,ఛ,௧݁ݎ݄ܽݏ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൌ
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗ೔,ഓ,೟
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗഓ,೟

 (where i is a location (Column 1), industry (Column 2), occupation (Column 

3) or firm (Column 4)) for each technology ߬ and time	ݐ. Location refers to a CBSA, industry is at NAICS 4-digit level, 
and occupation is at SOC 6-digit level. The coefficient of variation in Column (4) is calculated across 10,231 firms which 
have at least one job posting in each of the eleven years of Burning Glass. The results only include observations at the 
time of and after the start year of a technology, and observations with more than 100 technology jobs which have an 
industry associated with them. The regression is weighted by square root of total technology postings in a year. The 
normalized share is capped at 99th percentile of non-zero observations. Standard errors are clustered by technology. In 

Panel B, the results ate from a regression of ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧ ൌ
௦௛௔௥௘	௝௢௕௦	௘௫௣௢௦௘ௗ೔,ഓ,೟
௦௛௔௥௘	௝௢௕௦	௘௫௣௢௦௘ௗഓ,೟

 on pioneer status of each cell 

for a panel of technologies (߬) across time	ݐ. Pioneer status is given to cells which account for more than 50% of patents 
in the 10 years before the year of emergence for the technology. These results exclude observations before the start year 
of a technology. The normalized share is capped at 99th percentile of non-zero observations.  Standard errors are clustered 
by cell. βሺPioneer୧,த ∗ ሺt െ t଴ሻሻ/	βሺPioneer୧,தሻ denotes the decrease in advantage for a pioneer cell every year. We 
calculate its standard error using the delta method.  



Table 11 - Robustness - Dispersion with individual bigrams as technologies 

Panel A 

Dependent Variable: 
CV Normalized 

Share 
Share College 

Educated 
CV 

Result: 
Region 

Broadening 
Pioneer 

Persistence 
Skill 

Broadening 
Region Broadening 

by Skill 
 (1) (2) (3) (4) 
Years since emergence --0.149***  --0.368*** --0.231*** 
 (0.018)  (0.100) (0.025) 
Pioneer location  1.428***   
  (0.351)   
Pioneer location * (Years 
since emergence) 

 --0.086***   
 (0.028)   

(Years since emergence) * 
1{Low skill} 

   --0.120*** 
   (0.029) 

     
R2 0.843 0.023 0.865 0.721 
N 2,247 2,135,310 2,247 5,467 
Estimate (per year) -2.64% -6.04%  -0.70%  -2.17% 
Mean 5.64 NA 52.73 10.64 
     

Panel B 
 Coefficient of Variation 
 (1) (2) (3) (4) 
 Locations Industries Occupations Firms 
Years since emergence --0.149*** --0.017 --0.118*** --0.358*** 
 (0.018) (0.019) (0.018) (0.070) 
R2 0.843 0.882 0.738 0.896 
N 2,247 2,247 2,247 2,247 
Mean(CV) 6.28 5.94 6.98 27.77 
% Mean(CV)/year -2.64% -0.29% -1.69% -1.29% 
     

Notes: This table reports our primary results replicated by treating each bigram as a separate technology. In Panel A, we replicate 
our primary results in Table 4, column 1, Table 5, column 2,  Table 6, column 1, and Table 7, column 3. In Panel B, we replicate 
results from Table 10, Panel A, again treating each of the 305 bigrams as a technology. The regression is weighted by square root of 
total technology postings in a year. The normalized share is capped at 99th percentile of non-zero observations. Standard errors are 
clustered by technology for columns 1, 3, and 4 in Panel A, and for all columns in Panel B. Standard errors are clustered by CBSA 
in column 2 in Panel A.  

 
 
 
 
 
 
 
 



Notes: The picture is a sample job posting, which mentions AI technology related keywords, with a
standardized job title, processed by Burning Glass, and the text of the job advertisement posted
online on glassdoor.com.

Figure 1 – Sample job for Machine Learning/AI Technology

Notes: The picture is a sample job posting, which mentions solar technology related keywords, with a
standardized job title, processed by Burning Glass, and the text of the job advertisement posted online
on glassdoor.com.

Figure 2– Sample job for Solar Technology
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Figure 3 – Technology exposure in earnings calls and jobs postings – Time series

Notes: The pictures plot (year by year) the percentage of firms (red line) that mention technology-related keywords in earnings calls, and the percentage of job postings (grey circles) in Burning Glass that
mention technology-related keywords. Size of the grey circles denotes the level of hiring for the technology x year observation. The vertical grey line highlights the year of emergence of the technology,
which is defined as the year in which earning call time series (red line) attains at least 10% of sample maximum. The overall correlation between these two time series is 81%.
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Figure 4 – Coefficient of variation across geographic locations by year since emergence

Notes: The figure plots coefficient of variation, measured using the normalized share of technology jobs for each of 29 technologies by year from 2007 to 2019, and the years since emergence of the 

technology, where ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧ ൌ
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗ೔,ഓ,೟
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗഓ,೟

, where i is a CBSA. Only observations after the year of emergence are included.



Figure 5 – Technology diffusion from hubs

Notes: This figures shows in Figure (a), the Core based Statistical Areas (CBSAs) that are technology hubs for at least one technology, where the size of the circles is proportional to the share of technologies 
for which the CBSA is a hub and in Figure (b), the share of technologies for which the ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧ of technology hiring at the CBSA in the year of emergence is greater than 1% (t=0). In Figures 
(c), (d), and (e),  we repeat the mapping in (b) for years since emergence 1-2, 3-4, and 5-6, respectively. We plot these pictures only for 13 out of our 29 technologies that have a year of emergence after 2007 
for a complete panel of each technology. 

Panel A: Location of Tech Hubs Panel B: Technology Employment at t = 0 Panel C: Technology Employment at t = 1-2

Panel E: Technology Employment at t = 5-6Panel D: Technology Employment at t = 3-4



Figure 6 – Disruptive vs. overall patents, by top CBSAs. 

Notes: The figure shows, for disruptive patents (in red) and overall patents (in blue), the normalized share of patenting for the top 20 CBSAs. The normalized share of patents for a CBSA is defined as the 
share of total patents filed by US inventors in the CBSA (between 1992 and 2016) divided by the share of U.S. population in the CBSA (as of 2015). The figure is sorted by largest to smallest normalized share 
of disruptive patenting.
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Notes: The figure plots the approximate share of technology job postings that require a college education (red circles, where the size of the circle represents the total number of technology job postings) 

and the year since emergence for the technology. The approximate share technology job postings that require a college education is calculated using  ݈݈ܵ݇݅௧
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Figure 7 - Share of college educated by year since emergence



Notes: The figure plots a bin scatter of the approximate share of technology job postings requiring a college education for each technology and calendar year and the years since the emergence of the 
technology. We weight observations by the square root of hiring in that technology-year pair. The approximate share of job postings requiring a college education for a technology is measured as  ݈݈ܵ݇݅௧
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observations post the year of emergence are included. The figure controls for technology fixed effects.
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Figure 8 - Share of college educated by year since emergence



Figure 9 – Coefficient of Variation by year since emergence of technology

Notes: This figure plots a binned scatter plot of the coefficient of variation by technology and time and the years since the emergence of the technology for high-skill and low-skill occupations. The picture
controls for technology fixed effects. We weigh observations by square root of hiring in the technology-year pair. To calculate the coefficient of variation by skill, we aggregate the job postings data over
occupation, CBSA and year, and then separately for high-skill occupations (with share of college-educated people > 60%), and low-skill occupations (with share of college-educated people < 30%).
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Figure 10 – Coefficient of Variation across Locations, Industries, Occupations, Firms 

Notes: The figure is a binned scatter plot of the coefficient of variation and the years since emergence for our panel of 29 technologies. The coefficient of variation is calculated across 

௜,ఛ,௧݁ݎ݄ܽݏ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൌ
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗ೔,ഓ,೟
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗഓ,೟

(where i is a location (4a), industry (4b), occupation (4c), or firm (4d)) for each technology ߬ and time	ݐ. Location refers to a CBSA, industry is at the 

NAICS 4-digit level, and occupation is at the SOC 6-digit level. The coefficient of variation in Figure (4d) is calculated across 10,231 firms that have at least one job posting in each of the 11 years of 
Burning Glass. The results only include observations at the time of and after the emergence year of a technology, and observations with more than 100 technology jobs that have an industry associated 
with them. The binscatter is weighted by the square root of total technology postings in a year. The normalized share is capped at the 99th percentile of non-zero observations. 
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Ford Motor Company General Motors Corp.

Notes: The above figure plots decomposition of footprint between technology pioneers (HQ – when HQ coincide with pioneer), technology pioneers, and other locations. This 
decomposition is done for Ford Motor Company (on the left) and General Motor Corporation (on the right). There are 4 pioneer locations for Autonomus car technology: San Jose-
Sunnyvale-Santa Clara (CA), San Francisco-Oakland-Hayward (CA), Boston-Cambridge-Newton (MA-NH), Detroit-Warren-Dearborn (MI). Headquarter for Ford and GM are located in 
Detroit-Warren-Dearborn (MI), which is labeled as Hub-HQ. Pre/post-period means period before/after the year of emergence calculated for Autonomous Cars.

Figure 11 – Rehoming of firms to Technology hubs 



 
 
 

Appendix Tables and Figures 
 

Appendix Table 1 - Example of human audit – “Autonomous car” keywords 

Bigrams True Positive 
Rate 

Comments Status

autonomous vehicle* 100%
 

Keep 
autonomous vehicles* 100%

 
Keep 

autonomous driving* 100%
 

Keep 
self-driving car 90% Keep 
automated car 0% -automated car washes. Drop 
robotic car 0% - robotic car wash,  

- "robotics, car,"  
- Shelley the robotic car 
from a video 

Drop 

robot car 100% Keep 
driverless car 90% Keep 
driverless truck 100% Keep 
autonomous car 100% Keep 
driver assistance 0% - [role of a] senior living 

team members who is 
performing in a driver 
assistance role, spotter, 
or resident care. 

Drop 

automated driving 100%
 

Keep 
autonomous cars 100%

 
Keep 

Notes: The table presents results for human audit on keywords for “autonomous car” technology. For the 
audit, we go through each of the shortlisted bigrams (in column 1) and randomly sample 10 job postings 
from BG between 2007 and 2019. Column 2 presents the true positive rate and column 3 shows comments 
from auditor. Column 4 shows whether we keep or drop the bigram for the final list. * Bigrams are ones 
which we originally obtained from the intersection of patent corpus with earnings calls. 

  



Appendix Table 2 - Keywords by technology 

Technology Keywords 
3D printing 3d printer; 3d printing; additive manufacturing; 3d printed 
Autonomous cars Self-driving car; robot car; autonomous vehicles; autonomous car; autonomous cars; automated driving; driverless car; autonomous driving; autonomous 

vehicle; driverless truck 
Bispecific monoclonal antibody bispecific monoclonal; the bispecific; bispecific antibody 
Cloud computing paas; cloud infrastructure; distributed cloud; cloud provider; cloud offerings; cloud service; cloud applications; community cloud; private cloud; public 

cloud; cloud deployments; cloud environments; cloud management; cloud services; cloud security; enterprise class; iaas; hybrid cloud; cloud platform; 
cloud providers; cloud hosting; personal cloud; enterprise network; cloud computing; cloud based; saas; cloud storage; enterprise applications; cloud 
solution; enterprise cloud; cloud solutions; cloud deployment 

Computer vision pose estimation; motion estimation; visual servoing; facial recognition; gesture recognition; computer vision; image recognition; sensor fusion; object 
recognition 

Drug conjugates kinase inhibitor; drug conjugate; antibody drug; drug conjugates 
Electronic gaming social game; video games; social games; video game; game content; electronic gaming; gaming products 
Millimeter wave millimeter wave 
Fingerprint sensor fingerprint sensor; fingerprint scanner 
Fracking fracking; fraccing; hydrofracking; hydrofracturing; hydraulic fracturing 
GPS gps systems; global positioning; navigation devices 
Hybrid vehicle/Electric car hybrid vehicle; electric vehicle; electric motorcycle; vehicle charging; hybrid electric; plugin hybrids; electric buses; electrical vehicles; electric car; 

electric vehicles 
Lane departure warning lane departure; departure warning 
Lithium battery ion battery; lithium ion battery; lithium ion batteries; lithium batteries; ion batteries; lithium polymer; lithium ion; lithium battery 
Machine Learning/AI neural network; deep learning; language processing; machine learning; machine intelligence; natural language; artificial intelligence; AI technology; 

supervised learning; learning algorithms; unsupervised learning; reinforcement learning; AI machine 
Mobile payment mobile transfer; mobile commerce; mobile payment; mobile wallet; mobile money 
OLED display oled 
Online streaming streaming content; music streaming; interactive tv; live stream; digital video; video conferencing; online streaming; online video; mobile video; streaming 

services; streaming media; live video; video ondemand; live streaming; video ad; internet radio; video streaming; streaming video 
RFID  frequency identification; keyless entry; rfid tags; rfid 
Search Engine search engine; search engines 
Smart devices mobile devices; tablet computers; wearable devices; tablet pcs; smartphone tablet; android phones; media devices; smart phones; smart devices; smart tvs; 

smart speaker; smart watch; smart car; smart phone; iphone ipad; portable media; smart tablets; connected devices; smartphones tablets; android 
smartphones; phones tablets; android devices; smart refrigerator; smartcar; smartphone; smart tv; smart band 

Social networking user generated; user generated content; social platforms; networking sites; social channels; social media; social networking; social networks; social 
network 

Software defined radio defined radio 
Solar Power solar wafer; rooftop solar; solar modules; solar cells; crystalline silicon; silicon solar; solar panel; solar power; solar wafers; solar energy; solar 

applications; solar module; solar cell; solar pv; solar grade; solar panels; photovoltaic; solar thermal 
Stent graft stent graft 
Touch screen touch controller; touch panel; capacitive touch; touchscreen; touch screens; touch sensor 
Virtual reality virtual reality; augmented reality; mixed reality; extended reality 
Wi-Fi wifi hotspots; wifi network; wifi; broadband connectivity; wireless networks 
Wireless charging wireless charging; inductive charging 

Notes: This table shows, for each of our 29 technologies (in column 1), the full set of 221 final keywords used to associate earnings calls, patents and job postings with the 
technology. 



Appendix Table 3 - Technology Excerpts from Earnings Calls 

Company EC month Excerpt 

Ambarella Inc 4/2018 

results that are many times higher in terms of processing performance per watt In March we successfully 
demonstrated to customer and investors our fully| AUTONOMOUS VEHICLE or embedded vehicle 
autonomy on Silicon Valley Road EVA navigated various traffic scenarios presented by Silicon Valleys 
challenging urban environment The fully autonomous 

General Motors Co 7/2017 

safely deploy our selfdriving electric vehicles in commercial ridesharing networks Last month GM 
became the first company to use mass production methods to build| AUTONOMOUS VEHICLES 
|growing our test fleet to We plan to deploy these vehicles in the challenging driving environment of San 
Francisco as well as Scottsdale Arizona 

Agenus Inc 10/2019 

differentiated proof of mechanism of our potentially first or bestinclass agents These discoveries include 
Our nextgeneration CTLA AGEN our differentiated CD agonist AGEN our firstinclass Tregdepleting| 
BISPECIFIC ANTIBODY |AGEN and of course GS a bifunctional molecule now exclusively licensed to 
Gilead and being developed by them In summary this year we generated 

Cloudera Inc 4/2019 

combined company road map which we rolled out in March of this year During this period of uncertainty 
we saw increased competition from the| PUBLIC CLOUD |vendors Second the announcement in March 
of Cloudera Data Platform our new hybrid and multicloud offering created significant excitement within 
our customer base CDP 

NVIDIA Corp 7/2015 
lot of very exciting development And were working with a lot of them because we have a platform that 
was really designed to fuse| COMPUTER VISION |cameras from all around the car As well as radars and 
LIDARS and sonars and be able to do path planning and all of 

Proto Labs Inc 1/2015 

orders in addition we added capacity to our manufacturing facility in europe in we completed our first 
acquisition purchasing fineline an| ADDITIVE MANUFACTURING |or| 3D PRINTING |company based 
in raleigh north carolina the acquisition was completed last april and is highly complementary to proto 
labs roughly of our customers use 

Cellectar 
Biosciences Inc 

10/2017 

collaboration with Acunova Therapeutics each provide these types of strategic benefits Avicenna 
provides us with the unique opportunity to collaborate with experts in the antibody| DRUG 
CONJUGATE |or ADC field Not only does this provide the opportunity to work with a very promising 
small molecule payload but it also allows 

L-3 
Communications 
Holdings Inc 

10/2002 
metal detectors where they always make you take your shoes off This is a passive scanner as I told some 
of you It uses| MILLIMETER WAVE |It is nonintrusive and causes no harm or disease It will guarantee 
you won’t have a weapon on you of any kind or be 



Oasis Petroleum Inc 1/2011 
tell you is that the build in the backlog is really a function of the weather that we experienced and it is 
always difficult| FRACKING |wells in the winter but this year was particularly brutal So I think the build 
in the backlog was largely around the weather And then 

InvenSense Inc 7/2016 

as they strive to enable improved locationbased services and mapping user experience A significant 
opportunity for increasing our mobile content is UltraPrint our ultrasonic| FINGERPRINT SENSOR |I am 
very pleased to report that we are on track with the development of this gamechanging technology and 
have successfully passed several technology 

Tesla Inc 4/2011 
with our store opening in Santana Row in San Jose in April The goal here is really to engage and inform 
potential customers about| ELECTRIC VEHICLES |in general and the advantages of Tesla in particular 
and really to try to catch people before they have actually made a buying decision 

SunPower Corp 10/2006 
then be able to participate in the global electricity market which is measured in the form of trillion We 
have direct control over the| SOLAR CELL |and| SOLAR PANEL |portions of the value chain the 
technology core of the value chain that represents to of total installed costs In these 

Vocus Inc 1/2011 

content distribution along with our expansion into| SOCIAL MEDIA |Vocus is uniquely positioned to 
help organizations of all sizes reach and influence buyers across| SOCIAL NETWORKS |online and 
through the media While PR will remain a core element of the Vocus product suite we believe there is a 
new and 

Donnelley Financial 
Solutions Inc 

4/2018 

speed and improve both the quality and consistency of business results for our clients In capital markets 
through the introduction of| MACHINE LEARNING |and| ARTIFICIAL INTELLIGENCE |we will 
improve the efficiency of XBRL tagging and align with the efforts at the SEC to move from documents to 
data This investment 

Millennial Media 
LLC 

4/2013 

how We recently released our new Software Development Kit or SDK which is designed to enhance 
monetization of apps across| SMARTPHONES TABLETS |and other| CONNECTED DEVICES |SDK 
enhances our video advertising and rich media capabilities while adding new functionality like interactive 
voice ads and integration with iOSs Passbook for coupon 

Notes: This tables presents 15 earning calls excerpts (in column 3) with 25 words before and after technology keyword mention, with the firm (in column 1), the 
date of the earnings call (in column 2).  



Appendix Table 4 - Human audit of job postings 

Panel A: Audit Results 

Audit Use Produce Total 
Describes company  6% 10% 16% 
Describes Task 46% 34% 80% 
Neither NA NA 4% 
Panel B: Audit Results after clipping top 50 and bottom 50 words 
Audit Use Produce Total 
Describes company  2% 2% 4% 
Describes Task 55% 36% 91% 
Neither NA NA 5% 

Panel C: Examples Excerpts 

Describes company - Produce 

“[Company’s] systems offer a unique combination of technology 
linking RFID tags and sensors with displays which permit users to 
track locate and observe movement of equipment and people in real 
time currently locates millions of patient’s staff visitors and assets in 
healthcare facilities all over the world.” 

Describes task - Use 

“passion for learning about new technology including low power RF 
technologies voice command systems motion control and capacitive 
touch ability to learn other non-electrical related topics mechanical and 
design considerations” 

Neither 

“our super cool office space which doesn’t feel like an office is 
designed with our employees in mind techy surroundings a great 
outdoor space with Wi-Fi hookups for your laptop plus Bluetooth 
capabilities for music streaming we enjoy cultivating a supportive and 
all around positive culture that keeps our employees happy this will be 
a place you will want to come to everyday” 

Notes: This table presents results from a human audit of Burning Glass technology job postings. As a part of the human audit, 
we classify each of randomly sampled 100 job postings into two types of categories 1) whether the technology keyword describes 
the company in the job posting or the task content of the job posting, 2) whether the job describes use or production of the 
technology. See text for details. In Panel A, we perform the audit on original text of job postings. In Panel B, we clip the text of 
job postings by 50 words at the top and bottom, resample 1000 postings, and then repeat the audit.   

  



Appendix Table 5 - Posting summary statistics for technical and non-technical bigrams 

Statistic 
Supervised 

bigrams 
Non-technical 

bigrams 
(top 221) 

Technical 
bigrams 

(Unsupervised) 

Non-technical 
bigrams* 
(top 305) 

Non-technical 
bigrams (ext)* 

(top 4000) 

# bigrams 221 221 305 305 4000 

Avg. postings/bigram 59,013 142 49,677 157 474 

Bigrams w/ more than 100 
postings 

88.3% 10.0% 92.4% 9.2% 8.1% 

Notes: The table presents summary statistics (number of bigrams, average job postings per bigram, and bigrams with 
more than 100 job postings) for our list of supervised bigrams for 29 technologies (in column 2), the top 221 non-technical 
bigrams (in column 3), unsupervised technical bigrams (in column 4), the top 305 non-technical bigrams (in column 5), 
and the top 4000 non-technical bigrams (in column 6). Technical bigrams are as described in section 2; we get to the list 
by intersecting bigrams in patents with bigrams in earnings calls. Non-technical bigrams are ones in earnings calls but not 
in patents. For both sets of bigrams, we restrict to the sample to bigrams for which the share increases in earnings calls 
(2002-2019).   

*Through the aforementioned process, we obtained many more non-technical (104,627) bigrams than supervised bigrams 
(221) and technical bigrams (305). We restrict the sample to the top (by frequency in earnings calls) 221 (in column 3), 
305 non-technical bigrams (in column 5) and 4,000 non-technical bigrams (in column 6). 

 

Appendix Table 6 - Top technical and non-technical bigrams 

Top technical bigrams  Top non-technical bigrams 

bigram # earnings  # job postings 
 

bigram  # earnings  # job postings 

mobile devices 6597 1078049  bofa merrill 34490 221 

machine learning 2860 525286  stifel nicolaus 28877 256 

cloud computing 2781 485333  division associate12472 4237 

cloud services 2450 380980  keefe bruyette 11682 16 

quality metrics 2029 196497  bruyette woods 11498 14 

Notes: The table presents the top five technical and non-technical bigrams. Technical bigrams are as described in section 2; 
we get the list by intersecting bigrams in patents with bigrams in earnings calls. Non-technical bigrams are ones in earnings 
calls but not in patents. For both sets of bigrams, we restrict to the sample to bigrams for which share increases in earnings 
calls (2002-2019). 

 

 

 



Appendix Table 7 – Top occupations by normalized share of hiring 

Occupations 
Normalized 
Share 

Total Jobs 

Computer Hardware Engineers 36.56 8,486 

Fine Artists, Including Painters, Sculptors, and Illustrators 30.77 6,147 

Computer and Information Research Scientists 25.03 23,241 

Multimedia Artists and Animators 23.96 6,461 

Art Directors 23.69 7,641 

Computer Science Teachers, Postsecondary 16.66 3,626 

Communications Teachers, Postsecondary 16.32 1,994 

Aerospace Engineering and Operations Technicians 15.9 633 

Sound Engineering Technicians 14.9 2,804 

Social Science Research Assistants 13.92 5,605 

Biomedical Engineers 12.86 1,848 

Aircraft Mechanics and Service Technicians 10.75 11,360 

Producers and Directors 9.89 14,838 

Models 9.83 1,733 

Commercial and Industrial Designers 8.3 18,572 

Psychology Teachers, Postsecondary 7.96 3,430 

Interior Designers 7.77 9,449 

Health Specialties Teachers, Postsecondary 7.63 7,508 

Natural Sciences Managers 7.53 31,612 

Art, Drama, and Music Teachers, Postsecondary 6.8 2,415 
   

Notes:  This table lists the top occupations (in column 1), their normalized share of technology hiring (in column 2), 
and the total job postings for the occupation (in column 3).  The normalized share and total jobs in the table are 
calculated after excluding the years before the year of emergence of the technology. 



Appendix Table 8 - Top Occupations by Normalized Share of Technology Hiring 

Technology Top Exposed Occupations (Normalized Share) 

3D printing Materials Engineers(44.52);Materials Scientists(37.40); 

Autonomous cars Computer Hardware Engineers(39.15);Computer and Information Research Scientists(23.25); 

Bispecific monoclonal antibody Biological Technicians(51.82);Biological Scientists, All Other(46.54); 

Cloud computing Sales Engineers( 9.98);Computer Network Architects( 8.37); 

Computer vision Computer and Information Research Scientists(53.19);Computer Hardware Engineers(46.67); 

Drug conjugates Chemical Technicians(53.19);Biological Scientists, All Other(53.19); 

Electronic gaming Fine Artists, Including Painters, Sculptors, and Illustrators(46.59);Gaming Service Workers, All Other(39.11); 

Extremely high frequency Electronics Engineers, Except Computer(53.19);Computer Hardware Engineers(47.63); 

Fingerprint sensor Computer Hardware Engineers(41.31);Human Resources Assistants, Except Payroll and Timekeeping(36.20); 

Fracking Petroleum Engineers(53.19);Geoscientists, Except Hydrologists and Geographers(39.40); 

GPS Surveyors(53.19);Surveying and Mapping Technicians(53.19); 

Hybrid vehicle/Electric car Power Plant Operators(26.60);Solar Photovoltaic Installers(26.05); 

Lane departure warning Mechanical Engineers(22.66);Engineers, All Other(14.74); 

Lithium battery Materials Scientists(43.52);Materials Engineers(40.26); 

Machine learning/AI Computer and Information Research Scientists(53.19);Computer Science Teachers, Postsecondary(14.12); 

Mobile payment Food Scientists and Technologists(18.59);Marketing Managers(10.57); 

OLED display Materials Scientists(21.77);Computer Hardware Engineers(20.76); 

Online streaming Audio and Video Equipment Technicians(43.63);Film and Video Editors(38.82); 

RFID Locksmiths and Safe Repairers(20.75);Electronics Engineers, Except Computer(17.69); 

Search engine Writers and Authors(17.93);Advertising and Promotions Managers(15.31); 

Smart devices Electronic Equipment Installers and Repairers, Motor Vehicles(13.08);Automotive Glass Installers and Repairers(10.04); 

Social networking Reporters and Correspondents(20.26);Public Relations Specialists(16.62); 

Software defined radio Electronics Engineers, Except Computer(52.28);Computer Hardware Engineers(49.58); 

Solar power Solar Photovoltaic Installers(53.19);Wind Turbine Service Technicians(24.56); 

Stent graft Sales Representatives (Technical and Scientific Products) (38.01);Cardiovascular Technologists (34.56); 

Touch screen Audio and Video Equipment Technicians(28.19);Multimedia Artists and Animators(14.45); 

Virtual reality Computer Hardware Engineers(36.56);Fine Artists, Including Painters, Sculptors, and Illustrators(30.77); 

Wi-Fi Electronic Home Entertainment Equipment Installers and Repairers(40.58);Electronics Engineers, Except Computer(23.64); 

Wireless charging Computer Hardware Engineers(51.07);Electrical Engineers(42.92); 

Notes: This table lists the top exposed occupations (in column 2) for each of our 29 technologies (in column 1), and the normalized share (times 100) of online postings exposed 
to the technology (in parentheses alongside each occupation). 

  



Appendix Table 9 - Top CBSAs by Normalized Share of Technology Hiring 

Technology Top Exposed CBSAs (Normalized Share) 

3D printing Los Alamos, NM  (10.63);Corvallis, OR  ( 9.87); 

Autonomous cars San Jose-Sunnyvale-Santa Clara, CA  (13.66);Detroit-Warren-Dearborn, MI  (13.47); 

Bispecific monoclonal antibody Worcester, MA-CT  ( 8.80);San Francisco-Oakland-Hayward, CA  ( 8.26); 

Cloud computing San Jose-Sunnyvale-Santa Clara, CA  ( 4.95);San Francisco-Oakland-Hayward, CA  ( 3.28); 

Computer vision San Jose-Sunnyvale-Santa Clara, CA  (10.27);Trenton, NJ  ( 6.70); 

Drug conjugates Seattle-Tacoma-Bellevue, WA  ( 6.90);San Francisco-Oakland-Hayward, CA  ( 6.58); 

Electronic gaming Seattle-Tacoma-Bellevue, WA  ( 6.73);Reno, NV  ( 4.84); 

Extremely high frequency Atlantic City-Hammonton, NJ  (13.08);Manchester-Nashua, NH  (11.23); 

Fingerprint sensor San Jose-Sunnyvale-Santa Clara, CA  (11.97);Buffalo-Cheektowaga-Niagara Falls, NY  ( 6.87); 

Fracking Williston, ND  (17.33);Midland, TX  (17.33); 

GPS Butte-Silver Bow, MT  ( 9.37);Warner Robins, GA  ( 8.91); 

Hybrid vehicle/Electric car Milwaukee-Waukesha-West Allis, WI  ( 8.85);Detroit-Warren-Dearborn, MI  ( 7.90); 

Lane departure warning Detroit-Warren-Dearborn, MI  (11.39);Ann Arbor, MI  ( 6.38); 

Lithium battery Midland, MI  (16.64);Joplin, MO  (15.81); 

Machine learning/AI San Jose-Sunnyvale-Santa Clara, CA  ( 7.47);Los Alamos, NM  ( 7.44); 

Mobile payment San Jose-Sunnyvale-Santa Clara, CA  ( 5.09);Newton, IA  ( 4.41); 

OLED display San Jose-Sunnyvale-Santa Clara, CA  (13.63);Corning, NY  ( 6.50); 

Online streaming Athens, TX  ( 3.81);Green Bay, WI  ( 3.04); 

RFID Fond du Lac, WI  ( 7.60);Bellefontaine, OH  ( 3.90); 

Search engine Orangeburg, SC  ( 3.55);Oxford, NC  ( 2.94); 

Smart devices San Jose-Sunnyvale-Santa Clara, CA  ( 3.84);Scottsbluff, NE  ( 3.06); 

Social networking Ellensburg, WA  ( 3.41);Truckee-Grass Valley, CA  ( 3.00); 

Software defined radio Cedar Rapids, IA  (16.05);Rochester, NY  (12.22); 

Solar power San Luis Obispo-Paso Robles-Arroyo Grande, CA  ( 6.82);Toledo, OH  ( 6.78); 

Stent graft Santa Rosa, CA  (18.17);Tampa-St. Petersburg-Clearwater, FL  (12.50); 

Touch screen Edwards, CO  ( 9.09);Breckenridge, CO  ( 8.26); 

Virtual reality Marshalltown, IA  (11.96);Hinesville, GA  ( 8.33); 

Wi-Fi Berlin, NH-VT  ( 5.33);Athens, TX  ( 4.36); 

Wireless charging San Jose-Sunnyvale-Santa Clara, CA  (13.41);Youngstown-Warren-Boardman, OH-PA  (10.09); 

Notes: This table lists the top exposed Core-based Statistical Areas (in Column 2) for each of our 29 technologies (in column 1), and the normalized share (times 100)  of online 
postings exposed to the technology (in parentheses alongside each CBSA). 

  



Appendix Table 10 - Top Industries by Normalized Share of Technology Hiring 

Technology Top Exposed Industries (Normalized Share) 

3D printing Metalworking Machinery Manufacturing(17.44);Specialized Design Services(16.55); 

Autonomous cars Household Appliance Manufacturing(52.51);Motor Vehicle Parts Manufacturing(47.50); 

Bispecific monoclonal antibody Pharmaceutical and Medicine Manufacturing(53.77);Scientific Research and Development Services(20.14); 

Cloud computing Computer and Peripheral Equipment Manufacturing(14.76);Software Publishers(12.86); 

Computer vision Space Research and Technology (29.37);Semiconductor and Other Electronic Component Manufacturing(25.07); 

Drug conjugates Pharmaceutical and Medicine Manufacturing(48.77);Scientific Research and Development Services(29.37); 

Electronic gaming Motion Picture and Video Industries(20.48);Electronic Shopping and Mail-Order Houses (19.47); 

Extremely high frequency Satellite Telecommunications (41.25); Navigational, Measuring, Electromedical .. Manufacturing(40.43); 

Fingerprint sensor Semiconductor and Other Electronic Component Manufacturing(35.78);Junior Colleges(17.08); 

Fracking Oil and Gas Extraction(60.02);Support Activities for Mining(60.02); 

GPS Grocery and Related Product Merchant Wholesalers (46.28);Support Activities for Forestry(39.57); 

Hybrid vehicle/Electric car Motor Vehicle Manufacturing(45.86);Electric Power Generation, Transmission and Distribution (43.00); 

Lane departure warning Motor Vehicle Parts Manufacturing(44.42);Household Appliance Manufacturing(24.01); 

Lithium battery Other Electrical Equipment and Component Manufacturing(54.57);Plastics Product Manufacturing(31.80); 

Machine learning/AI Electronic Shopping and Mail-Order Houses (19.03);Other Information Services(13.30); 

Mobile payment Activities Related to Credit Intermediation (43.72);Electronic Shopping and Mail-Order Houses (23.04); 

OLED display Audio and Video Equipment Manufacturing(37.30);Semiconductor and Other Electronic Component Manufacturing(19.30); 

Online streaming Motion Picture and Video Industries(19.69);Radio and Television Broadcasting(19.57); 

RFID Industrial Machinery Manufacturing(42.11);Converted Paper Product Manufacturing(21.87); 

Search engine Other Information Services(53.81);Newspaper, Periodical, Book, and Directory Publishers( 8.26); 

Smart devices Electronics and Appliance Stores (19.77);Audio and Video Equipment Manufacturing(13.41); 

Social networking Motion Picture and Video Industries(10.91);Radio and Television Broadcasting( 9.93); 

Software defined radio Communications Equipment Manufacturing(40.49);Aerospace Product and Parts Manufacturing(39.00); 

Solar power Electric Power Generation, Transmission and Distribution (55.57);Hardware, and Plumbing and Heating Equipment Wholesalers (54.57); 

Stent graft Navigational, Measuring, Electromedical ..Instruments Manufacturing (52.42); Resin, .. and Artificial Fibers and Filaments Manfcn(16.37); 

Touch screen Printing and Related Support Activities (14.51); Resin, Synthetic Rubber, and Artificial .. Fibers and Filaments Manufacturing(13.82); 

Virtual reality Other Information Services(25.88);Audio and Video Equipment Manufacturing(22.77); 

Wi-Fi Wireless Telecommunications Carriers(21.63);Cable and Other Subscription Programming(18.68); 

Wireless charging Semiconductor and Other Electronic Component Manufacturing(59.42);Motor Vehicle Parts Manufacturing(20.20); 

Notes: This table lists the top exposed industries (in column 2) for each of our 29 technologies (in column 1), and the normalized share (times 100) of online postings exposed to 
the technology (in parentheses alongside each industry). 



Appendix Table 11 - Year of emergence by technology 

 Year of Emergence 
Technology EC (baseline) Patents 
3D printing 2011 2013 
Autonomous cars 2014 2012 
Bispecific antibody 2012 1999 
Cloud computing 2008 2011 
Computer vision 2008 2006 
Drug conjugates 2002* 2002 
Electronic gaming 2002* 1995 
Millimeter wave 2014 2012 
Fingerprint sensor 2011 2005 
Fracking 2007 2005 
GPS 2002* 1999 
Hybrid vehicle/Electric car 2007 2006 
Lane departure warning 2002* 2004 
Lithium battery 2002* 1994 
Machine learning/AI 2015 2005 
Mobile payment 2007 2007 
OLED display 2002* 2005 
Online streaming 2002* 1997 
RFID 2002* 2004 
Search engine 2002* 1997 
Smart devices 2005 2010 
Social networking 2006 2009 
Software defined radio 2002* 2005 
Solar power 2002* 1975 
Stent graft 2003 1995 
Touch screen 2002* 2010 
Virtual reality 2013 2012 
Wi-Fi 2002* 2007 
Wireless charging 2012 2012 

Notes: The table provides our set of technologies (in column 1), their year of emergence 
from earnings calls (column 2), and their emergence year from patents (column 3). The 
year of emergence is calculated as the first year that the share of firms mentioning the 
technology in earnings calls reaches 10% of its maximum between 2002 and 2019. Years 
of emergence marked with * are technologies for which share of firms mentioning them 
in 2002 is already more than 10% of the maximum share of firms mentioning them over 
the sample period 2002-19 . For these technologies, we impute the year to be 2002. In 
column 3, the year of emergence as the year in which the share of U.S. patents for a 
technology reaches 50% of their maximum value between 1976 and 2015. 



Appendix Table 12 - Technology descriptions and contemporaneous events around emergence  

Technology Description Emergence 
year 

Contemporaneous Event 

Smart devices A smart device is an electronic device, generally connected to 
other devices or networks via different wireless protocols such 
as Bluetooth, Zigbee, NFC, Wi-Fi, LiFi, 5G, etc., that can 
operate to some extent interactively and autonomously.  

2005 Apple announces first iPad. – Apple (2005) 

Cloud computing Cloud computing is the on-demand availability of computer 
system resources, especially data storage and computing power, 
without direct active management by the user.  

2008 Microsoft and Google announced their cloud platforms. – 
Google and Microsoft blogs (2008) 

Social networking The use of dedicated websites and applications to interact with 
other users, or to find people with similar interests to oneself. 

2006 Mark Zuckerberg leaves Harvard. – Harvard Crimson (2005) 
Facebook receives $25 mill venture funding, and valued at half 
a billion. – Market Watch (2006) 

Machine learning/AI Machine learning focuses on the development of computer 
programs that can access data and use it to learn for themselves. 

2015 Tesla's Elon Musk and venture capitalist Peter Thiel dedicated 
$1 billion to found Open AI, a non-profit for artificial 
intelligence research. – USA Today (2015) 

Solar power Solar power is the conversion of energy from sunlight into 
electricity, either directly using photovoltaics (PV), indirectly 
using concentrated solar power, or a combination. 

2002 Gov. Arnold Schwarzenegger announces plans for solar power 
subsidies. – Sacramento Bee (2005)  

Autonomous cars A self-driving car, also known as an autonomous vehicle (AV), 
connected and autonomous vehicle (CAV), full self-driving car 
or driverless car, or robo-car or robotic car, (automated vehicles 
and fully automated vehicles in the European Union) is a 
vehicle that is capable of sensing its environment and moving 
safely with little or no human input. 

2014 Google unveiled its first "fully functional" prototype for a self-
driving car Monday and plans to test it on Bay Area public 
roads in the new year. – Mercury News, The (2014) 

Virtual reality Virtual reality (VR) refers to a computer-generated simulation 
in which a person can interact within an artificial three-
dimensional environment using electronic devices, such as 
special goggles with a screen or gloves fitted with sensors. 

2013 Oculus raises $16 million in venture funding for virtual reality 
headset. – The Verge (2013) 

Search engine A search engine is a software system that is designed to carry 
out web searches (Internet searches), which means to search the 
World Wide Web in a systematic way for particular information 
specified in a textual web search query.  

2002 Sausalito start-up Groxis released a new search tool that 
categorizes search results in a more visually friendly way. - 
Mercury News, The (2003) 

Hybrid 
vehicle/Electric car 

Any land-based automobile which uses electricity as one of the 
power sources. 

2007 Toyota announces its plans for a plug-in hybrid car. – New 
York Times (2008). The Obama Administration lends Tesla 
Motors $465 million to build an electric sedan and the battery 
packs needed to propel it. – Wired (2009) 

Wireless charging Inductive charging (also known as wireless charging or cordless 
charging) is a type of wireless power transfer. It uses 

2012 General Motors invest $5 million in wireless charging start-up 
Powermat. – Reuters (2012) 



electromagnetic induction to provide electricity to portable 
devices. 

Touch screen The touchscreen enables the user to interact directly with what 
is displayed, rather than using a mouse, touchpad, or other such 
devices (other than a stylus, which is optional for most modern 
touchscreens). 

2003 Santa Clara county uses touch machines for voting. 
San Jose Mercury News (2003)  

Drug conjugates Antibody-drug conjugates or ADCs are a class of 
biopharmaceutical drugs designed as a targeted therapy for 
treating cancer. 

2002 Seattle Genetics signed a licensing deal granting MedImmune 
rights to use its antibody-drug-linking technology in research 
against a single biological marker of cancer. – Seattle Times, 
The (2005) 

Fracking Hydraulic fracturing, also called fracking, fracing, 
hydrofracking, fraccing, frac'ing, and hydrofracturing, is a well 
stimulation technique involving the fracturing of bedrock 
formations by a pressurized liquid. 

2007 Congress signs fracking as an exemption from the Safe 
Drinking Water Act. - Denver Post, The (CO) (2003) 

Software defined 
radio 

Software-defined radio (SDR) is a radio communication system 
where components that have been traditionally implemented in 
hardware (e.g. mixers, filters, amplifiers, 
modulators/demodulators, detectors, etc.) are instead 
implemented by means of software on a personal computer or 
embedded system. 

2002 Boeing was awarded a $220 million subcontract to Northrop 
Grumman's Radio Systems business in San Diego to expand 
development of the communications, navigation and 
identification system specializing in software-defined radios 
for the Army's Comanche helicopter.  San Diego Union-
Tribune, The (2003) 

Wi-Fi Wi-Fi is a family of wireless network protocols, based on the 
IEEE 802.11 family of standards, which are commonly used for 
local area networking of devices and Internet access.  

2002 San Francisco officials invited responses from 17 companies - 
including Google - that are interested in bringing affordable 
wireless Internet connections to the entire city. – Mercury 
News, The (2005) 

3D printing 3D printing, or additive manufacturing, is the construction of a 
three-dimensional object from a CAD model or a digital 3D 
model. 

2011 Federal government released plans to spend $45 million to 
help fund a planned additive manufacturing institute. - USA 
Today (2012) 

Millimeter wave Extremely high frequency (EHF) or Millimeter Wave is the 
International Telecommunication Union (ITU) designation for 
the band of radio frequencies in the electromagnetic spectrum 
from 30 to 300 gigahertz (GHz). 

2014 Facebook develops millimeter-wave networks for Internet.org. 
– The Verge (2016) 

GPS The Global Positioning System (GPS), originally NAVSTAR 
GPS,[1] is a satellite-based radionavigation system owned by 
the United States government and operated by the United States 
Space Force.[2] 

2002 The Clinton administration removes “Selective Availability” 
of civilian GPS in order to make it more useful worldwide. – 
GPS.gov (2000)  

Lithium-ion battery A lithium-ion battery or Li-ion battery is a type of rechargeable 
battery. 

2002 Sion Power Corp. starts production of a new lithium-sulfur 
battery that can last twice as long as the previous model 
commonly used in laptops, cell phones and digital cameras. - 
Arizona Daily Star, The (2004) 



OLED display An organic light-emitting diode (OLED or organic LED), also 
known as organic electroluminescent (organic EL) diode, is a 
light-emitting diode (LED) in which the emissive 
electroluminescent layer is a film of organic compound that 
emits light in response to an electric current. 

2002 Kodak announced the first consumer product to include a full-
color, active-matrix organic light-emitting diode (OLED) 
display on the Kodak EasyShare LS633 digital camera. - 
Mercury News, The (2003) 

Stent graft In medicine, a stent is a metal or plastic tube inserted into the 
lumen of an anatomic vessel or duct to keep the passageway 
open, and stenting is the placement of a stent. 

2003 A stent graft system designed to correct life-threatening 
thoracic aortic aneurysms is fast track approved by the Food 
and Drug Administration. - Houston Chronicle (2003) 

RFID Radio-frequency identification (RFID) uses electromagnetic 
fields to automatically identify and track tags attached to 
objects. An RFID tag consists of a tiny radio transponder; a 
radio receiver and transmitter.  

2002 Wal-Mart Stores ordered its 100 top suppliers to begin using 
RFID tags on shipments beginning in January 2005. - Mercury 
News, The (2003) 

Electronic gaming An electronic game is a game that employs electronics to create 
an interactive system with which a player can play.  

2002 Sony launches PlayStation 2 capable of playing video games 
from DVDs. Gamespy.com (1999) 
Microsoft launches Xbox, first mainstream device with online 
capabilities. Xbox.com (2000) 

Computer vision Computer vision is an interdisciplinary scientific field that deals 
with how computers can gain high-level understanding from 
digital images or videos.  

2003 The state of Illinois processes 10 million driver’s license 
images using facial recognition.  Chicago Sun-Times (2002)  

Lane departure 
warning 

In road-transport terminology, a lane departure warning system 
(LDWS) is a mechanism designed to warn the driver when the 
vehicle begins to move out of its lane (unless a turn signal is on 
in that direction) on freeways and arterial roads.  

2002 Iteris and DaimlerChrysler develop a first Lane Departure 
Warning System. The device is mounted on a truck's 
windshield. It houses a tiny camera, computer and software 
that tracks the difference between the road and visible lane 
markings. Seattle Times, The (2003) 

Bispecific 
monoclonal 
antibody 

A bispecific monoclonal antibody (BsMAb, BsAb) is an 
artificial protein that can simultaneously bind to two different 
types of antigen. BsMabs can be manufactured in several 
structural formats, and current applications have been explored 
for cancer immunotherapy and drug delivery. 

2012 Novartis Pays Genmab $2M to research into Bispecific 
Antibody Technology - Genetic Engineering and 
Biotechnology News (June 2012) 

Fingerprint sensor A fingerprint sensor is an electronic device used to capture a 
digital image of the fingerprint pattern. 

2011 Apple buys fingerprint sensor firm AuthenTec for $356 
million. - ZDNet (July 2012) 

Mobile payment Mobile payment (also referred to as mobile money, mobile 
money transfer, and mobile wallet) generally refer to payment 
services operated under financial regulation and performed from 
or via a mobile device. 

2007 Bank of America, Citibank, Wachovia, Washington Mutual, 
Wells Fargo, and ING Direct announce mobile banking 
services, including mobile payment services. - CNBC (June 
2007) 

Online streaming Streaming media is multimedia that is constantly received by 
and presented to an end-user while being delivered by a 
provider.  

2002 Apple invested $12.5 million in Akamai, a content delivery 
company, with the aim to develop video streaming services for 
QuickTime TV. Akamai.com (1999) 

Notes: The table above lists our 29 technologies (in column 1), descriptions for each technology taken from Wikipedia (Column 2), emergence year (Column 3), and a 
suggested contemporaneous event around the year of emergence (Column 4).  



Appendix Table 13 - Summary statistics 

 Mean SD p25 p50 p75 N 

 (1) (2) (3) (4) (5) (6) 

Panel A: Location   

Normalized Share 0.533 3.801 0 0 0.301 266467 

University assets per capita 5670.065 12314.42 411.181 2234.962 5455.663 917 

University enrollment per capita 0.141 0.178 0.024 0.1 0.171 917 

Share of college educated 0.198 0.065 0.148 0.182 0.237 917 

Share of post-graduate 0.068 0.028 0.049 0.06 0.081 917 

Coefficient of Variation 3.716 2.471 1.729 3.033 5.181 249 

Panel B: Industry   

Normalized Share 1.4 18.267 0 0 0.253 88490 

Coefficient of Variation 4.885 2.315 3.433 4.429 5.867 249 

Panel C: Occupation   

Normalized Share 0.704 3.851 0 0 0.075 238777 

Share College Educated 54.774 13.125 47.462 56.785 63.325 249 

Share Post Graduate 19.098 7.054 14.825 18.18 22.309 249 

Wage 63044.66 11143.04 57776.79 64014.05 71611.97 249 

Years of Schooling 14.993 0.769 14.579 15.064 15.403 249 

Coefficient of Variation 6.654 3.32 3.914 5.853 8.909 249 

Panel D: Firm   

Normalized Share 0.591 14.258 0 0 0 38990627

Coefficient of Variation 34.515 25.759 16.342 29.253 44.908 249 

Notes: This tables shows summary statistics for variables used in the analysis of the paper. Summary statistics (columns 
2-6) are shown for the pooled sample of technologies including and after year since emergence. In our sample, location 
is one of 917 Core-based statistical areas (CBSA), industry is one of 311 4-digit North American Industry Classification 
System (NAICS) codes, occupation is one of 836 six-digit Standard Occupation Classification (SOC) codes, and a firm 
is one of over 300K string clusters in Burning Glass job postings data. The normalized Share of technology jobs in all 

panels is calculated as ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧ ൌ
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗ೔,೅,೟
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗ೅,೟

 , where i is a location, industry, occupation, or firm 

(cell). The coefficient of variation in all panels is calculated over normalized share of technology job postings over cells 
for technology x year observationz. Location variables (in Panel A, rows 2-5) are reported in the table for the cross-section 
of 917 CBSAs and calculated as following: university assets per capita is calculated as the total assets reported by 
universities in a CBSA in the Higher Education Research and Development Survey (HERD) and normalized by the 
population of the CBSA; enrollment per capital is calculated as the total enrollment reported by universities in a CBSA 
in HERD and normalized by the population of the CBSA. Skill level variables (in Panel C, rows 2-5) are calculated using  

݈݈ܵ݇݅௧
చ ൌ 	
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೚
, where  χ୭;ଶ଴ଵହ is the share of college-educated people in an occupation in the 2015 American 

Community Survey and ௢ܰ;௧
ఛ  is the number of technology job postings in technology	߬.



Appendix Table 14 - Top pioneer location by technology 

Technology Top CBSA pioneer State 
3D printing Boston-Cambridge-Newton  MA-NH 
Autonomous cars San Jose-Sunnyvale-Santa Clara  CA 
Bispecific antibody San Francisco-Oakland-Hayward  CA 
Cloud computing San Jose-Sunnyvale-Santa Clara  CA 
Computer vision San Jose-Sunnyvale-Santa Clara  CA 
Drug conjugates Boston-Cambridge-Newton  MA-NH 
Electronic gaming San Jose-Sunnyvale-Santa Clara  CA 
Millimeter wave New York-Newark-Jersey City  NY-NJ-PA 
Fingerprint sensor San Jose-Sunnyvale-Santa Clara  CA 
Fracking Houston-The Woodlands-Sugar Land  TX 
GPS San Jose-Sunnyvale-Santa Clara  CA 
Hybrid vehicle/Electric 
car Detroit-Warren-Dearborn  MI 
Lane departure warning Grand Rapids-Wyoming  MI 
Lithium battery Los Angeles-Long Beach-Anaheim  CA 
Machine learning/AI San Jose-Sunnyvale-Santa Clara  CA 
Mobile payment San Francisco-Oakland-Hayward  CA 
OLED display Trenton  NJ 
Online streaming San Jose-Sunnyvale-Santa Clara  CA 
RFID Grand Rapids-Wyoming  MI 
Search engine San Jose-Sunnyvale-Santa Clara  CA 
Smart devices San Jose-Sunnyvale-Santa Clara  CA 
Social networking San Jose-Sunnyvale-Santa Clara  CA 
Software defined radio Boulder  CO 
Solar power San Jose-Sunnyvale-Santa Clara  CA 
Stent graft San Francisco-Oakland-Hayward  CA 
Touch screen San Jose-Sunnyvale-Santa Clara  CA 
Virtual reality San Jose-Sunnyvale-Santa Clara  CA 
Wi-Fi New York-Newark-Jersey City  NY-NJ-PA 
Wireless charging Boston-Cambridge-Newton  MA-NH 

Notes: This table shows the top location hub (in column 2) for each of our 29 technologies (column 1), and its state(s) (column 3). 
We define pioneer locations as those which collectively accounted for 50% of the patent grants associated with a given technology 
applied for within ten years before its emergence. The top pioneer location is the one with most patents.  

  



Appendix Table 15 - Concentration during the life cycle - By skill level 

 Coefficient of Variation across Locations 
 (1) (2) (3) 
 Low Skill Medium Skill High Skill 
Years since 
emergence 

-0.154*** -0.169*** -0.097*** 
(0.049) (0.048) (0.033) 

R2 0.841 0.851 0.916 
N 231 231 231 

Notes: This table reports the results from regressions of coefficient of variation during lifecycle of a 
technology on year since inception of the technology, separately for low skill occupations (column 1), 
medium skill occupations (column 2), and high skill occupations (column 3). To calculate the coefficient 
of variation by skill, we aggregate the job postings data over occupation, CBSA, and year, and then 
separately for high-skill occupations (with the share of college educated people > 60%), medium-skill 
occupations (with the share of college educated people > 30% and <60%), and low skill occupations (with 
the share of college educated people < 30%). Finally, the coefficient of variation is calculated over 
 ௖௕௦௔,ఛ,௧,௦௞௜௟௟ across CBSAs by skill group, technology, and time. Standard errors are݁ݎ݄ܽݏ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ
clustered by technology. 

 

 

  



Appendix Table 16 - Pioneer Occupations and Industries by Technology 

Technology Top Pioneer Occupation  (share of jobs at t0) Top Pioneer Industry (share of jobs at t0) 

3D printing Mechanical Engineers (0.140) Computer and Peripheral Equipment Manufacturing (0.419) 
Autonomous cars Computer Occupations All Other (0.186) Motor Vehicle Manufacturing (0.370) 
Bispecific monoclonal 
antibody Operations Research Analysts (0.375) Pharmaceutical and Medicine Manufacturing (0.946) 
Cloud computing Software Developers Applications (0.228) Software Publishers (0.300) 
Computer vision Software Developers Applications (0.295) Semiconductor and Other Electronic Component Manufacturing (0.174) 
Drug conjugates Natural Sciences Managers (0.135) Pharmaceutical and Medicine Manufacturing (0.910) 
Electronic gaming Software Developers Applications (0.202) Software Publishers (0.202) 
Millimeter wave Electronics Engineers Except Computer (0.169) Semiconductor and Other Electronic Component Manufacturing (0.371) 
Fingerprint sensor Software Developers Applications (0.203) Semiconductor and Other Electronic Component Manufacturing (0.215) 
Fracking Geoscientists Except Hydrologists and Geographers (0.286) Oil and Gas Extraction (0.881) 
GPS Computer Occupations All Other (0.173) Communications Equipment Manufacturing (0.187) 
Hybrid vehicle/Electric car Mechanical Engineers (0.151) Motor Vehicle Manufacturing (0.681) 
Lane departure warning Mechanical Engineers (0.500) Motor Vehicle Manufacturing (0.393) 
Lithium battery Electrical Engineers (0.188) Commercial and Service Industry Machinery Manufacturing (0.115) 
Machine learning/AI Software Developers Applications (0.251) Other Information Services (0.225) 
Mobile payment Marketing Managers (0.154) Semiconductor and Other Electronic Component Manufacturing (0.227) 
OLED display Engineers All Other (0.400) Commercial and Service Industry Machinery Manufacturing (0.320) 
Online streaming Sales Representatives (0.095) Semiconductor and Other Electronic Component Manufacturing (0.188) 
RFID tags Architectural and Engineering Managers (0.098) Computer and Peripheral Equipment Manufacturing (0.191) 
Search engine Marketing Managers (0.124) Other Information Services (0.264) 
Smart devices Software Developers Applications (0.229) Software Publishers (0.243) 
Social networking Marketing Managers (0.128) Other Information Services (0.299) 
Software defined radio Software Developers Applications (0.489) Communications Equipment Manufacturing (0.353) 
Solar power Mechanical Engineers (0.099) Semiconductor and Other Electronic Component Manufacturing (0.243) 
Stent graft Physicians and Surgeons All Other (0.375) Medical Equipment and Supplies Manufacturing (0.628) 
Touch screen Sales Representatives Wholesale (0.134) Commercial and Service Industry Machinery Manufacturing (0.211) 
Virtual reality Software Developers Applications (0.198) Semiconductor and Other Electronic Component Manufacturing (0.214) 
Wi-Fi Retail Salespersons (0.255) Communications Equipment Manufacturing (0.314) 
Wireless charging Computer Occupations All Other (0.222) Semiconductor and Other Electronic Component Manufacturing (0.412) 

Notes: The table shows the top occupation pioneer (column 2) and top industry pioneer (column 3) for each of our 29 technologies (in column 1).  A pioneer is defined as the set of 
occupations and industries that account for more than 50% of patents associated with the technology during the ten years before year of emergence of the technology. The top pioneer 
is the one with most patents.  



Appendix Table 17 - Robustness: Primary results 

Panel A: Patent Emergence Year 
 (1) (2) (3) (4) 
 Region Broadening Pioneer Persistence Skill Broadening Region Broadening 

by Skill 
Years since emergence -0.070***  -0.727*** -0.121*** 
 (patents) (0.020)  (0.226) (0.040) 
Pioneer  1.369***   
  (0.410)   
Pioneer * Years since   -0.033**   
emergence (patents)  (0.014)   
Years since emergence     -0.046* 
(patents) * {skill = low}    (0.026) 
R2 0.893 0.077 0.880 0.750 
N 255 275,751 255 510 
     

Panel B: Without 2007 
 (1) (2) (3) (4) 
Years since emergence -0.100***  -0.877*** -0.089* 
 (patents) (0.036)  (0.272) (0.046) 
Pioneer  2.475***   
  (0.643)   
Pioneer * Years since   -0.157***   
emergence  (0.048)   
Years since emergence     -0.184*** 
* {skill = low}    (0.044) 
R2 0.891 0.079 0.880 0.780 
N 236 248,873 236 504 
     

Panel C: Robust Standard Errors 
 (1) (2) (3) (4) 
Years since emergence -0.092***  -0.919*** -0.110*** 
 (patents) (0.023)  (0.224) (0.027) 
Pioneer  2.313***   
  (0.202)   
Pioneer * Years since   -0.146***   
Emergence  (0.016)   
Years since emergence     -0.195*** 
* {skill = low}    (0.023) 
R2 0.888 0.075 0.873 0.772 
N 249 266,467 249 538 
     

Notes: This table reports results for robustness checks for our primary results. In column 1, we regress the coefficient of variation calculated across 
normalized share of technology hiring calculated for each CBSA x technology x time on year since emergence of the technology; in column 2, we regress 
the normalized share of technology hiring on pioneer status of the CBSA and an interaction term of the pioneer status and year since emergence; in column 
3, we regress the share of postings that require a college education on the year since emergence; in column 4, we regress the share of postings that require a 
college education on the year since emergence  and an interaction of that with a dummy for low-skill occupations.  In Panel A, we calculate the year of 
emergence as the year in which the share of US patents for a technology reaches 50% of their maximum value between 1976 and 2015; in Panel B, we 
exclude the year 2007; in Panel C, we use robust standard errors instead  of the clustered ones in the baseline specification. These results exclude observations 
before the start year of a technology. Standard errors are clustered in Panels A and B; they are robust in Panel C.  



Appendix Table 18 - Robustness: Skill broadening with sample reweighted to U.S. employment 

 (1) (2) (3) (4) 
 Share of college 

educated * 100 
Share of post 

graduate * 100 
Avg. wage Avg. schooling 

Year since -0.593** -0.180 -627.958** -0.035** 
emergence (0.272) (0.118) (241.790) (0.015) 
R2 0.902 0.915 0.907 0.905 
N 249 249 249 249 

Notes: This table explores the robustness of our skill-broadening result. We regress approximate skill composition of 

technology jobs, Skill୲
ண ൌ 	

∑ ୒౥;౪
ಜ 	஧౥;మబభఱ౥

∑ ୒౥;౪
ಜ

౥
, where 	χ୭;ଶ଴ଵହ is the skill measure of interest from the 2015 American Community 

Survey at the occupation level, on the years since the inception of the technology. In this case, the technology jobs in an 
occupation are reweighted according to hiring in the U.S. economy for each two-digit occupation. Hiring in a two-digit 
occupation is calculated using hiring in an industry in the Longitudinal Employer-Household Dynamics survey and then 
constructing a crosswalk between industry employment and occupation employment. These results exclude observations 
before the start year of a technology. Regressions are weighted by square root of technology job postings in a year. 
Standard errors are clustered by technology.  



Appendix Table 19 – Seed bigrams with varying disruption cut-offs 

(1) (2) (3) (4) (5) 
ଶ଴଴ଶܥܧ
௠௔௫ܥܧ

൑ 0.01 
ଶ଴଴ଶܥܧ
௠௔௫ܥܧ

൑ 0.05 
ଶ଴଴ଶܥܧ
௠௔௫ܥܧ

൑ 0.1 
ଶ଴଴ଶܥܧ
௠௔௫ܥܧ

൑ 0.15 
ଶ଴଴ଶܥܧ
௠௔௫ܥܧ

൑ 0.2 

total bigrams: 235 total bigrams: 243 total bigrams: 305 total bigrams: 401 total bigrams: 500 

machine learning machine learning mobile devices mobile devices mobile devices 

cloud computing cloud computing machine learning machine learning financial instruments 

cloud services cloud services cloud computing cloud computing machine learning 

public cloud public cloud cloud services solid organic cloud computing 

social networking social networking quality metrics cloud services elevated levels 

smart grid smart grid flow profile data usage solid organic 

cloud service cloud service smart phones quality metrics cloud services 

cloud infrastructure cloud infrastructure mobile platform flow profile data sets 

carbon footprint carbon footprint public cloud smart phones data usage 

virtual reality virtual reality social networking video content quality metrics 

autonomous driving social networks smart grid mobile platform flow profile 

augmented reality autonomous driving cloud service public cloud smart phones 

cloud environment augmented reality connected devices social networking video content 

autonomous vehicles cloud environment cloud infrastructure smart phone mobile platform 

cloud based autonomous vehicles carbon footprint lifecycle management public cloud 

hydraulic fracturing global warming nand flash smart grid social networking 

wifi network cloud based virtual reality cloud service smart phone 

results page hydraulic fracturing digital channel connected devices fleet management 

additive manufacturing optimization process delivery network mobile platforms lifecycle management 

relevant content software defined social networks cloud infrastructure smart grid 

Notes: For disruption cut-offs (mentioned in row 1), the table reports the number of bigrams in row 2 and the set of top 20 bigrams from row 3 onward.  The disruption level 
for each bigram is calculated as the ratio of the share of earnings calls mentioning the bigram in 2002 and the maximum between 2002 and 2019 of the share of earnings calls 
mentioning the bigram. In the successive columns, we keep only bigrams which have disruption level of 1%, 5%, 10%, 15% and 20% respectively, which implies that the 
bigrams in this list increased their exposure in earnings calls by at least 100, 20, 10, 6, and 5 times.  



Appendix Table 20 - Robustness: Primary results 

 (1) (2) (3) (4) (5) 
ଶ଴଴ଶܥܧ 

௠௔௫ܥܧ
൑ 0.01 

ଶ଴଴ଶܥܧ
௠௔௫ܥܧ

൑ 0.05 
ଶ଴଴ଶܥܧ
௠௔௫ܥܧ

൑ 0.1 
ଶ଴଴ଶܥܧ
௠௔௫ܥܧ

൑ 0.15 
ଶ଴଴ଶܥܧ
௠௔௫ܥܧ

൑ 0.2 

      
Panel A: Skill Broadening 
 Share College Educated 
 (1) (2) (3) (4) (5) 
Years since emergence --0.305*** --0.323*** --0.368*** --0.347*** --0.320*** 
  (0.115) (0.113) (0.100) (0.076) (0.064) 
R2 0.881 0.874 0.865 0.874 0.873 
N 1,773 1,836 2,247 2,965 3,850 
      
Panel B: Geographic Concentration  
 Coefficient of Variation 
 (1) (2) (3) (4) (5) 
Years since emergence --0.128*** --0.133*** --0.149*** --0.145*** --0.132*** 
 (0.021) (0.021) (0.018) (0.014) (0.011) 
 0.845 0.842 0.843 0.851 0.855 
 1,773 1,836 2,247 2,965 3,850 
      
Panel C: Tech-hub Persistence 
 Normalized Share of Technology Hiring 
 (1) (2) (3) (4) (5) 
Pioneer 1.428*** 1.399*** 1.410*** 1.355*** 1.352*** 
 (0.351) (0.334) (0.330) (0.330) (0.344) 
Pioneer * Years since  --0.086*** --0.084*** --0.085*** --0.082*** --0.083*** 
emergence (0.028) (0.026) (0.027) (0.026) (0.026) 
R2 0.023 0.022 0.023 0.023 0.023 
N 2,135,310 2,195,656 2,631,995 3,447,103 4,475,737 
      
Panel D: Differential decline in concentration by skill 
 Share College Educated (for low and high skill occupations) 
 (1) (2) (3) (4) (5) 
Years since emergence --0.119*** --0.112*** --0.120*** --0.076*** --0.065*** 
 (patents) (0.033) (0.032) (0.029) (0.024) (0.020) 
Years since emergence  --0.215*** --0.219*** --0.231*** --0.242*** --0.237*** 
* {skill = low} (0.029) (0.029) (0.025) (0.020) (0.016) 
R2 0.722 0.722 0.721 0.735 0.747 
N 4,420 4,550 5,467 7,181 9,320 
      

Notes: This table reports our primary results, replicated for varying disruption cut-offs (noted in row 1). The disruption level for 
each bigram is calculated as the ratio of the share of earnings calls mentioning the bigram in 2002 and the maximum between 2002 
and 2019 of the share of earnings calls mentioning the bigram. In the successive columns, we keep only bigrams which have 
disruption level of 1%, 5%, 10%, 15% and 20% respectively, which implies that the bigrams in this list increased their exposure in 
earnings calls by at least 100, 20, 10, 6, and 5 times. In Panel A, we replicate our primary results in Table 4, column 1; Panel B 
corresponds to Table 5, column 2: Panel C corresponds to Table 6, column 1: and Panel D corresponds to Table 7, column 3. The 
regression is weighted by square root of total technology postings in the year. The normalized share is capped at 99th percentile of 
non-zero observations.  

  



Appendix Table 21 – Seed bigrams with varying earnings calls cut-off 

(1) (2) (3) (4) (5) 

௧௢௧௔௟ܥܧ ൒ ௧௢௧௔௟ܥܧ 80 ൒ ௧௢௧௔௟ܥܧ 90 ൒ ௧௢௧௔௟ܥܧ 100 ൒ ௧௢௧௔௟ܥܧ 110 ൒ 120 

Total bigrams: 406 Total bigrams: 347 Total bigrams: 305 Total bigrams: 279 Total bigrams:240 

Bigrams w/ 89 ൒ ௧௢௧௔௟ܥܧ ൒ 80 Bigrams w/ 99 ൒ ௧௢௧௔௟ܥܧ ൒ 90 Bigrams w/ 109 ൒ ௧௢௧௔௟ܥܧ ൒ 100 Bigrams w/ 119 ൒ ௧௢௧௔௟ܥܧ ൒ 110 Bigrams w/ 129 ൒ ௧௢௧௔௟ܥܧ ൒ 120 

software element cell activation digital color cloud server response based 

object storage retinal vein phase production injection molded virtual environment 

content creator mobile telephones nand memory sensor fusion keyless entry 

sense multiple pharmacokinetic properties impact analysis illustration purposes primary fuel 

recycled fibers docking station diesel fuels mobility management optimization system 

search algorithms optic fiber specific network activation process advertising messages 

communication modules tissue sarcoma system failures frequency identification touch sensor 

controlled process system enabling laser scanner neural network grinding media 

user activities receptor agonists launch system charging station lateral section 

bile acid vehicle components cancer stem conversion efficiencies fingerprint sensor 

expected data coated product resource pool virtual currency load management 

vehicle tires distillation unit lumbar spine direct fuel search result 

comparison results patient monitor whey protein purchase history tumor samples 

cell survival computed tomography treatment cycle fluid volumes gaming environment 

allergic conjunctivitis computing resources reverse circulation lupus nephritis brake pads 

networking site bispecific antibodies service layer electronic gaming esophageal cancer 

cancer melanoma network content resource intensive centralized data target volume 

flow measurement sustained delivery multiple mobile driving behavior imaging modalities 

network communication ethylene propylene inkjet printing search tool data connections 

physical channels target regions database technology thermal capacity primary storage 

Notes: For varying earnings calls cut-offs (mentioned in row 1), the table reports the number of bigrams in row 2 and the set of dropped 20 bigrams from row 3 onward. Dropped 
bigrams are ones which are the mentioned in list earnings calls in that category, and hence get dropped while switching from left to right. For example, “software element” is one 
of the bigrams mentioned in more than 80 earnings calls but less than 90.  We count each bigram in earnings calls from 2002 to 2019.  



Appendix Figure 1 – Microsoft Computer Vision Patent

Notes: This figure illustrates a Microsoft patent applied for in 2004 that is exposed to the technology Computer Vision.



Appendix Figure 2 – Distribution of technical bigrams

Notes: This figure plots the number of technical bigrams that increase at least 10-fold in our sample of earnings calls and the number of earnings calls that they are mentioned in. We cap the first
bar for number of bigrams which appear in 1-69 earnings calls at 200 for visual clarity. A total of 13,730 bigrams appear in 1-69 earnings calls.



Appendix Figure 3- Patent (in black-dashed) and Earnings Call (in red-solid) Time Series
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Notes: The figure plots the share of firms in earnings calls exposed to each technology (in red-solid), and the share of citation-weighted patents associated with each of our 29 technologies in (black-
dashed). The sample is of earnings calls between 2002 and 2019 and of patents between 1985 and 2015. The overall correlation between the two time series is 80.26%.



Appendix Figure 4 - Technology innovation vs local skill composition

Notes: The figure plots a binned scatter plot of patents associated with a technology per 1000 people in a CBSA for each of our 29 technologies and measures of skills and university presence in 
the CBSA. The patents associated with a technology are calculated 10 years before the year of emergence of the technology. The figure controls for technology fixed effects. 
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Appendix Figure 5 – Number of technology-hub pairs by CBSA

Notes: The figure plots the total number of technology-pioneer pairs by region for top 10 regions. The total number of technology-pioneer locations is calculated as the number of technologies 
for which CBSAs in the region are marked as hubs. We combine San Jose-Sunnyvale-Santa Clara, CA and San Francisco-Oakland-Hayward, CA, and jointly label the region as Silicon Valley. 
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Appendix Figure 6 – Coefficient of Variation across industries by year since emergence

Notes: The figure plots the coefficient of variation measured using the normalized share of technology jobs for each of 29 technologies by year from 2007-2019 and the years since emergence of the 

technology. ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧ ൌ
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗ೔,ഓ,೟
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗഓ,೟

, where i is an industry. 
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Appendix Figure 7 – Coefficient of Variation across occupations by year since emergence

Notes: The figure plots the coefficient of variation using normalized share of technology jobs for each of 29 technologies by year from 2007-2019 and the years since emergence of the 

technology.	ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧ ൌ
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗ೔,ഓ,೟
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗഓ,೟

, where i is an occupation. 



Appendix Figure 8 – Coefficient of Variation across firms by year since emergence

Notes: The figure plots coefficient of variation measured using the normalized share of technology jobs for each of 29 technologies by year from 2007-2019 and the years since emergence of the 

technology,. ܰ݀݁ݖ݈݅ܽ݉ݎ݋	݁ݎ݄ܽݏ௜,ఛ,௧ ൌ
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗ೔,ഓ,೟
௦௛௔௥௘	௝௢௕௦	௘௫௣௦௘ௗഓ,೟

, where i is a firm. 



Appendix Figure 9 – Overall Patterns of Burning Glass Job Postings

Notes: In this figure, we show aggregate patterns of Burning Glass (BG) online job postings. Figure (19a) shows the total number of job postings (in millions) by year in BG. Figure b and c share of total 
job postings by skill and share of total technology job postings (aggregated over 29 selected technologies) by skill, respectively. To calculate skill level for job postings, we aggregate the data over 
occupation, and then use share of college-educated workforce from the 2015 American Community Survey to assign them to high-skill occupations (with the share of college-educated people > 60%), 
medium-skill occupations (with the share of college-educated people > 30% and < 60%), and low-skill occupations (with the share of college-educated people < 30%).
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Appendix Figure 10 – Disruptive vs Overall patenting by Technology Class (1992-2016)

Notes: This figure plots the share of disruptive patents (on the left, in blue) against the overall number of patents (on the right, in red) for each of the major one-digit technology classes. In order to plot 
this figure, we use patent awards between 1992 and 2016.

Panel A: Share of disruptive patents by class Panel B: Overall number of patents by class.



Appendix Figure 11 – Coefficient of Variation across firms by year since emergence

Notes: This figure plots results from a jackknife estimate of regressions of the coefficient of variation of the normalized share of technology jobs calculated across locations, occupations, industries, and 
firms. For our jackknife estimates, we exclude three technologies at a time and recalculate the degradation in the coefficient of variation. This provides us with 7,308 permutation estimates. In this figure, we 
plot we plot the 10th and 90th percentile of these jackknife estimates 



Data Appendix 

We process four sources of text data, and then combine them with census and university data to 

conduct our analyses. In this section, we first describe the sources of text data and then the 

additional auxiliary datasets. 

1. Sources of text data 

1.1. Earnings conference call transcripts 

From Refinitiv EIKON, we collect the complete set of 321,189 English-language transcripts of 

earnings conference calls held from 2002 through 2019. Out of these, we drop 5,552 transcripts 

because we could not reliably match them to a company name in Compustat. We obtain a total of 

11,992 firms and 301,294 firm x quarter observations. For our analysis, we aggregate this data up 

to firm x year level. 

1.2. Patents 

We download two separate sets of patent award data for about six million utility patents applied 

for at the US Patent Office (USPTO) between 1976 and 2015. First, we download full patent text 

XML files from the USPTO website. Second, we download processed patent variables, such as 

assignee names, inventor names, location, application year, citations (through 2018), and 

technology classes from PatentsView.org. We map the FIPS county identifier provided for 

inventor of each patent to Core-Based Statistical Areas (CBSAs) using a crosswalk provided by 

the US Census Bureau. For patents with multiple inventor CBSAs, we assign the patent to each 

CBSA. We also standardize citation counts to control from truncation and time differences: we 

divide citations for each patent by the average number of citations for patents in the same three-

digit CPC technology class and application year.  

Furthermore, we map patents to Compustat firms and NAICS three-digit industries in three steps. 

First, we use the match between patent assignees and public firms in Compustat using the dataset 

provided by Autor et. al. (2020). Second, since patents themselves do not contain industry codes, 

we assign them the individual NAICS four-digit industries of the mapped Compustat firms. At the 

end of this step, we allocate these patents, which represent 45.31% of the original sample, to 

NAICS three-digit industries.  

1.3. Corpus of Historical American English 



Corpus of Historical American English (COHA) is a collection of about 116,759 documents 

published between 1880 and 1970. These include fiction and non-fiction books, as well as 

newspaper and magazine articles. As with patents and earnings calls, we decompose these 

documents into about 400 million unique bigrams.1 We call them “non-technical” bigrams.  

1.4. Burning glass job postings 

From Burning Glass (BG), we obtain about 200 million job postings posted online in the US. 

Similar to patents, job postings data is provided in two sets. The first contain the full text coded in 

XML files. We undertake minimal processing of these job postings’ textual data: (1) removing 

non-letter sections of job postings; (2) removing the top 50 and bottom 50 words from each job 

posting, as mentioned in Section 2; and (3) as a consequence of step (2), excluding any job posting 

with less than 100 words. We then perform word counts over the remaining text.   

Second, BG codes job postings into occupations (Standard Occupational Classification (SOC) 

codes), locations (counties), and industries (North American Industrial Classification Codes). BG 

also extracts an employer name with these job postings. Data Appendix Table 1 provides coverage 

of these variables in Burning Glass. 

There are 836 occupations with six-digit SOC codes and 312 industries with NAICS Codes in the 

sample. We map counties in the BG data to CBSAs, and use them as the unit for our geographical 

analysis. We do so by using the crosswalk made available by National Bureau of Economic 

Research (NBER). In this process, we lose about 2.8% of the job postings.  

In order to assign firms to job postings, we use the employer strings provided by BG, which are 

available for 42.1% of job postings. Furthermore, these employer strings are not standardized or 

cleaned. For example, there are employer strings of the form “Tesla Motors Gigafactory,” “About 

Tesla,” and “Tesla Incorporated.” Similar to the process for patents, we generate firm identifiers 

from these raw employer strings using a modification of the process in Autor et. al. (2020): 

1) We search the raw employer string on Bing.com and store the top five search result 

links. E.g., for the employer string “Tesla Incorporated,” we get https.www.tesla.com, 

https://en.wikipedia.org.wiki/tesla-inc, https://www.britannica.com/topic/tesla-

                                                            
1 COHA was downloaded from www.english‐corpora.org/coha. 



motors,https://www.bloomberg.com/quote/tsla/us, https://www.marketwatch.com/ 

investing/stock/tsla. 

2) We group two employer strings under a single identifier if they share at least two out 

of top five links in common with each other.    

Using this process, we group together 477,583 employer strings in BG into 329,158 unique firm 

identifiers. 

We also match these employers to patent assignees again using string matching. We implement 

the following modified Term Frequency — Inverse Document Frequency (tf-idf) algorithm. To do 

so, we: 

a. Decompose employer and assignee strings into 5 letter combinations. For example, 

“Alphabet” is broken into:  “alpha,” “lphab,” “phabe,” and “habet.” 

b. Calculate a term frequency, which is the frequency of the five letter combination in the 

string. In this case, each combination uniquely appears in the strings. We calculate an 

inverse document frequency (idf), which is inverse of the frequency with which the 

combination appears in all strings of assignees and BG employers  

c. We combine the term frequency (tf) with an inverse document frequency (idf) to obtain a 

vector of combinations for each string: 

௦,௖ݒ ൌ ݐ ௖݂,௦ ∗ ݅݀ ௖݂ 

where ݐ ௖݂,௦ is the term frequency of the combination c in string s is, ݅݀ ௖݂is the inverse 

document frequency of each combination, and ݒ௖,௦is an element attributed to each 

combination and for every string.  

d. Finally, we normalize each vector ݒ௦so that the norm is 1. We then calculate similarities 

between two strings ݏ and ݏᇱusing dot product of their respective normalized vectors. 

݀௦,௦ᇲ ൌ 	 .௦ݒ  ௦ᇲݒ

e. We match two strings if ݀௦,௦ᇲ ൒ 0.75. 

A human audit of these matches resulted in 86% accuracy rate. 

2. Processing text to obtain Disruptive Technologies 



As explained in the paper, we use patent text, the COHA, and earnings calls to get to our list of 

disruptive technical bigrams. The process is described here in detail.  

2.1. Patents to technical bigrams: 

A typical patent award has five text sections: (1) Title, (2) Abstract, (3) Background, (4) Detailed 

Descriptions, and (5) Claim. We combine text from all of these sections into one large text string, 

and then break it down into two-word combinations or bigrams. In this process, we read only those 

bigrams which are mentioned at least twice in a patent and are not mentioned in “non-technical” 

bigrams obtained from the COHA.  

We then sort these bigrams in terms of their importance to patents. To do so, we collect the 

(standardized) number of citations for each patent in our sample and allocate it to each bigram that 

is mentioned in these patents. As an example: if a patent 123 has bigrams “A” and “B” and is cited 

twice, then we attribute two citations to bigrams “A” and “B.” Through this process, we 

cumulatively add up all citations attributed to the “technical” bigrams mentioned in our sample of 

patents. We end up with cumulative citations for 1,509,306 technical bigrams.  

In order to focus our attention only on the most important bigrams, we only keep bigrams with at 

least 1,000 cumulative standardized citations. At the end of this process, we obtain 35,063 bigrams. 

2.2. Technical bigrams to disruptive technical bigrams using earnings calls: 

We use textual data from firms’ earnings calls to measure disruption in influential technical 

bigrams. To do so, we first count the mentions of the 35,063 bigrams identified in the last step in 

our sample of earnings calls transcripts, and keep those that are mentioned in at least 100 earnings 

calls. Out of these we find 19,897 bigrams which are mentioned at least once in earnings calls, and 

2,181 bigrams are mentioned in at least 100 transcripts. Second, for each year between 2002 and 

2019 and for each bigram, we calculate the percentage of firms in our earnings calls’ sample that 

mention a given bigram. Third, for each bigram, we compute the maximum of this percentage 

across all years and compute the ratio between the percentage in 2002 and the maximum. This 

provides us with a degree to which bigram mentions have changed in our sample of firms. Finally, 

we identify a list of 305 bigrams for which this ratio is 0.10 or less, which means that bigram 

mentions have increased in earnings calls by at least 10 times.  

2.3. Manual intervention:  



So far, our process of getting to the list of disruptive technical bigrams has been automated. 

However, to get to the desired list of technologies, we need to take a series of subjective decisions. 

This process is described as a supervised approach in the paper.  We start with our list of 305 

bigrams from the last step and process it into disruptive technologies: 

2.4. Removing non-technology keywords: 

 We manually remove bigrams which refer to (1) economic, engineering, and social problems 

(such as “carbon footprint” or “power outage”), (2) older technologies (“nand flash”), or (3) any 

bigram that is vague or refers to multiple innovations, such as “flow profile”. We classify bigrams 

into popular bigrams or older technologies by reading Wikipedia pages that mention these bigrams. 

We classify bigrams as vague by reading their excerpts in earnings calls transcripts and patents 

text. At the end of this process, we get a list of 105 bigrams.  

2.5. Grouping bigrams into technologies: 

We group the shortlisted bigrams into technologies by reading Wikipedia pages that mention these 

bigrams. If a Wikipedia page is not available, then we turn to the Wikipedia page to which we are 

redirected by search engines. For example, the bigrams “mobile devices,” “smart phones,” and 

“mobile platform” all refer to “smart devices,” which Wikipedia defines as “an electronic device, 

generally connected to other devices or networks via different wireless protocols”. This manual 

grouping of bigrams provides us with a list of 29 technologies.  

We tried automating our grouping exercise by clustering bigrams using search engine results and 

embedding vectors trained on earnings calls transcripts, patents, and Wikipedia pages. However, 

all of these automated approaches had a false positive rate of about 10-20%. 

2.6. Extending the list of bigrams: 

Finally, we extend the list of keywords for each technology in two steps. First, we use Wikipedia 

pages. In particular, the first paragraph of the Wikipedia pages associated to a given technology 

usually mentions a set of terminology used to refer to this technology. We take this set as is and 

add it to our existing list. Second, we use bigram embeddings trained on earnings calls transcripts, 

so that we capture words employed in similar context to that of earnings calls. Importantly, bigram 

embeddings are machine learning models that, after trained in a given sample, provide a similarity 

measure between two bigrams by using the context in which they are mentioned. In the context of 



this paper, we obtain a list of the top most similar bigrams to our 29 technologies by adding up 

similarity scores across all existing bigrams for the technology. For example, top five most similar 

bigrams (along with their similarity scores) to initial bigrams grouped into the “Smart Devices” 

technology in step b) are: “iot devices” (0.67), “smart tvs” (0.64), “handheld devices” (0.64), 

“portable devices” (0.63), and “smartphone tablets” (0.63). 

2.7. Counting bigrams in Burning Glass and patents: 

Having shortlisted a list of bigrams for each technology in step (3), above, we count these bigrams 

in more than 200 million BG job postings. We assign an exposure dummy of 1 if the posting 

mentions a particular technology. This gives us a dataset that contains a job identifier and whether 

the particular posting is exposed to any of the 29 technologies. As mentioned earlier, BG provides 

job text separately from job characteristics (such as occupation, location, and employer): the two 

files are linked via a unique job identifier.  Thus, we perform a merge over 200 million job 

identifiers and then aggregate technology exposure over occupation, location, firm, industry, 

technology, and time. At the end of this process, we have a dataset with i x technology x time 

dimensions, where i is one of occupation, location, firm, or industry. 

We use a similar process to count our shortlisted bigrams in the million US patents, and then use 

corresponding information on occupation, location, firm, and industry of a patent to aggregate 

upwards. After aggregating, we have a dataset with a total count of patents for i x technology x 

time cells, where i is one of occupation, location, firm, or industry. Finally, we use these patent 

counts to identify respective pioneers along each of the four dimensions, as explained in detail in 

the paper.  

3. Auxiliary Data 

We combine the above text data with the following sources of data for occupational, geographic, 

firm, and industry characteristics. 

3.1. American Community Survey (2015) 

We obtain occupation and location demographic variables from the 2015 American Community 

Survey (ACS), downloaded on March 9, 2020. We examine respondents who are at least 25 years 

old, and report at least one year of schooling and a non-zero annual wage. We calculate the “share 

of college-educated people” in a particular occupation by dividing the number of people who report 



a particular occupation and have at least three years of college education by the total number of 

people who report the occupation. We calculate the average wage in the occupation by taking an 

average over all annual incomes of people reporting a particular occupation. As for locations, we 

calculate skill levels using reported locations in the ACS and following the same methodology as 

for occupations. We also obtain population data for each CBSA from the ACS by performing a 

sample-weighted count of people who reported to live in a certain CBSA.  

We merge the occupation level data from the ACS with occupation level aggregates in BG using 

six-digit SOC codes. Data on some six-digit SOC codes are reported in aggregated form in the 

ACS: for example, data on the occupational code 17-2021 (agricultural engineers) are reported as 

17-20XX, along with class 17-2031 and others. In these cases, we map the six-digit SOC codes in 

BG to their aggregated values in the ACS.  

As we do for occupations, we calculate share of college educated people (and other skill measures) 

for CBSAs by dividing the number of people who report a particular CBSA as their residence in 

the ACS and have at least three years of college education by the total number of people who 

report their location in the CBSA.  

3.2. University Data 

We download data on US research universities from the U.S. National Science Foundation’s 

Higher Education Expenditure on R&D (HERD) survey, which collects detailed statistics on 

research expenditure by these universities, and from the Integrated Postsecondary Education Data 

System (IPEDS) surveys provided by the U.S. Department of Education’s National Center for 

Education Statistics (NCES). From these datasets, we construct the following variables: 

1) Number of research universities in a CBSA: HERD provides details of universities which 

spend more than $150,000 in research. We map university zip codes, provided as a part of 

university addresses, to CBSAs using a crosswalk provided by US Census Bureau. Finally, 

we count the number of research universities in a CBSA to construct our variable. 

2) University assets in a CBSA: IPEDS provides details of finances for most post-secondary 

educational institutions in the US. As with variable 1 above, we assign these universities 

to CBSAs and then aggregate their assets over CBSAs. 

3.3. Weighing scheme to match BG postings to US hiring 



In this section, we calculate a weighing scheme to match BG postings at the two-digit SOC-by-

year level to US hiring at the same level. To do this, we first calculate US hiring at the occupation 

level using a combination of US Census’ Longitudinal Employer Household Dynamics (LEHD) 

and U.S. Bureau of Labor Statistics’ Occupational Employment and Wage Statistics (OES) 

databases. We do this in two steps: 

a. From the LEHD, we download the number of new hires which retain full quarter 

employment, which is defined as “estimated number of workers who started a job that they 

had not held within the past year and the job turned into a job that lasted at least a full 

quarter with a given employer.” This is downloaded for NAICS three-digit industries in 

each year between 2007 and 2019. We aggregate these numbers up at NAICS three-digit 

industry-by-year level.  

b. From the OES, we download employment data at the NAICS three-digit-by-two-digit SOC 

code-by-year level. We calculate the share of employment in each occupation for workings 

in each three-digit NAICS industry in each year. 

c. We merge the two datasets and calculate hiring at the occupation using the following 

formula: 

௢.௧ܪ ൌ 	෍ߴ௜,௢,௧ܪ௜.௧
௜

 

where ܪ௜.௧is hiring for industry i at time t, ߴ௜,௢,௧is the share of employment in industry i at 

time t accounted for by occupation o, and ܪ௢.௧is the calculated hiring for occupation o at 

time t. This calculation assumes that hiring in an occupation within an industry is in 

proportion of its employment in the same industry.  

d. Finally, we reweigh BG job postings to US hiring using the following formula: 

௥௢.௧,఍ܬ ൌ  ௢.௧,఍ܬ	௢,௧ݓ	

 where ܬ௢.௧,఍denotes job postings for occupation o, technology ߞ at time t and ܬ௥௢.௧,఍ 

denotes the reweighted version of that, and; ݓ௢,௧ ൌ
ு೚.೟
௃೚.೟
	denotes the weights at the SOC 2-

digit x time level which are a ratio of US hiring (ܪ௢.௧) and BG job postings (ܬ௢.௧).  
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