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1 Introduction

An important function of macroeconomics is to predict the consequences of changes in pol-

icy. In response to the Lucas (1976) critique of macroeconometric policy evaluation, two

dominant methodological approaches emerged. In the Lucas (1980) program, the task of the

researcher is to assess the consequences of a change in the systematic policy rule, with that

change fully understood by the private sector. This assessment is conducted through fully-

specified, parametric structural models with deep microfoundations. Empirical evidence on

the transmission of policy shocks, say a surprise tightening of the monetary stance, here often

plays the role of estimation target for the model (Rotemberg & Woodford, 1997; Christiano

et al., 1999). Alternatively, in the Sims (1980, 1982, 1987) program, the researcher instead

studies changes in the policy stance that are not perceived as corresponding to a change in

the systematic rule. For this more modest objective, purely statistical estimates of the effects

of policy shocks suffice: researchers can form policy counterfactuals through vector autore-

gressions or local projections, without needing to rely on a particular parametric structural

model (Leeper & Zha, 2003; Sims & Zha, 2006).

In this paper, we propose a third, hybrid approach to forming policy counterfactuals. Like

the Lucas program, our goal is the ambitious one of studying changes in policy rules. Rather

than relying on a particular parametric structural model, however, our analysis instead

begins with a general, linear data-generating process. We then impose one key restriction:

that policy shapes private-sector behavior only through the current and future expected path

of the policy instrument (say, the nominal rate). Importantly, once linearized, many of the

structural models popular in the Lucas program—from simple real business cycle or New

Keynesian models (e.g., Baxter & King, 1993; Woodford, 2011) to those with rich consumer

and firm heterogeneity (e.g., Kaplan et al., 2018; Ottonello & Winberry, 2020)—fit into this

environment. We then prove that, conditional on this structure, purely statistical estimates

of the causal effects of contemporaneous and news policy shocks are sufficient to construct

the desired policy counterfactuals. This identification result offers a bridge between the two

existing approaches: it reveals that impulse responses for many policy shocks (as in the Sims

program) are sufficient statistics for the effects of changes in systematic policy rules (as in

the Lucas program). The cost of this generality are large informational requirements: our

result requires empirical evidence not just on a single policy shock, but on many different

ones. Our second contribution is to offer two ways of operationalizing our identification

result in the empirically relevant case of limited evidence on policy shock transmission.
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The first part of the paper establishes the identification result. We consider an econo-

metrician living in an economy consistent with our structural assumptions. The economy is

closed with some fixed, baseline policy rule, and the econometrician would like to a) predict

the behavior of the economy under alternative rules and b) find the optimal rule correspond-

ing to some externally set loss function.1 We further assume that the prevailing policy rule

is subject to random shocks. Using standard semi-structural time-series methods, the econo-

metrician can estimate the dynamic causal effects of such policy shocks (see Ramey, 2016,

for a survey). Our identification result states that, if the econometrician has successfully es-

timated the effects of all possible contemporaneous and news shocks to the policy rule, then

she can in fact construct her desired counterfactuals: she can predict the effects of a change

in rule, and she can recover optimal rules in the form of a forecast targeting criterion for a

given loss function. Key to the proof is our assumption on how policy rules are allowed to

shape private-sector behavior. Since only the expected future path of the policy instrument

matters, any given rule—characterized by the instrument path that it implies—can equiva-

lently be synthesized by adding well-chosen shocks to the baseline policy rule. For example,

a prevailing dovish monetary policy rule can be mapped into an alternative hawkish rule

by adding a suitable sequence of contractionary interest rate shocks. Importantly, and dif-

ferently from the standard Sims program, our identification result requires estimates of the

effects of policy news shocks in order to account for changes in private-sector expectations.

It is only this full set of policy shock impulse responses that serve as valid sufficient statistics

for the effects of a change in the systematic policy rule.

How general is the setting of our identification result? As already emphasized, in addition

to linearity, our key restriction is that the policy rule affects private sector behavior only

through the current and expected future path of the policy instrument. To illustrate this

assumption, consider for example a simple linearized Euler equation,

ct = −σ (it − Etπt+1) + Etct+1, (1)

where ct is consumption, it is the nominal rate of interest, πt is inflation, and σ is the in-

tertemporal elasticity of substitution. Policy decisions affect households through the implied

movements of the nominal rate it; conditional on the dynamics of it, any further properties of

1To be clear, our identification results are silent on the shape of the objective function. Explicit, fully
specified structural models are one way to arrive at such objective functions. However, given that objective
functions in practice are often derived from a legislated mandate rather than economic theory, we believe it
is useful to have a method of calculating optimal policy for an objective function that is taken as given.
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the policy rule determining it—for example the extent to which the central bank leans against

inflation—are irrelevant.2 This sufficiency of the policy instrument is a property shared by

many of the linearized models used in the Lucas program, from simple analytical business-

cycle models to those with many frictions and shocks (e.g., Christiano et al., 2005; Smets

& Wouters, 2007) and rich microeconomic heterogeneity.3 Perhaps the most popular class

of models violating our restriction is those featuring an asymmetry of information between

the policymaker and the private sector, as in Lucas (1972). In such models, private-sector

agents solve a filtering problem, and the policy rule affects both the dynamics of the policy

instrument as well as the information contained in that policy choice. In addition to this

restriction on models, our structural assumptions also limit the set of policy counterfactuals

to which our method can be applied. Our approach can be used compare different cyclical

stabilization policies (e.g., monetary or fiscal policy rules for business-cycle policy), but due

to linearity it is less well-suited to study policies that alter the economy’s steady state (e.g.,

changes in the inflation target or in the long-run fiscal system).

The main challenge to implementing our approach is that existing empirical evidence on

policy shocks is limited. Recall that our identification result requires the econometrician to

estimate the causal effects of the full menu of possible contemporaneous and news shocks to

the prevailing policy rule. For example, in the context of monetary policy, she would need

to know the effects of shocks to interest rates at every single point along the yield curve.

Such fine-grained, maturity-by-maturity evidence is not available. In the second part of the

paper we present two alternative strategies for dealing with this lack of data.

Our first strategy is to focus on a narrower set of counterfactuals—those for which we

have sufficient evidence. Suppose that the econometrician can estimate the causal effects

of some (small) set of policy shocks. Then, by our identification result, we can construct

counterfactuals for all alternative policy rules that deviate from the prevailing rule in a way

consistent with the empirically identified shocks. The more shocks we observe, the richer

the deviations from the prevailing rule that we can entertain, and so the richer the set of

nested counterfactuals. By the same token, we can find the optimal policy rule within this

2More precisely, the policy rule is allowed to matter only through (i) the path of the instrument and (ii)
equilibrium selection. Our assumptions on equilibrium existence and uniqueness for the different rules that
we consider address equilibrium selection.

3Note that all of these models still feature cross-equation restrictions in the style of Hansen & Sargent
(1980). The decision rules estimated by Hansen & Sargent relate outcomes at date t to data available at
t, and so are generally shaped by the policy rule. We instead allow the entire expected future path of the
policy instrument to appear in decision rules. This way of writing the equilibrium relations gives us the
separation of policy and non-policy blocks at the heart of our results.
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spanned set of policy shock causal effects. The more evidence is available, the closer is this

restricted optimal rule to the full optimal rule.

We provide a practical illustration of these insights with an application to monetary policy

counterfactuals. Our starting point is the causal effect of a contractionary investment-specific

technology shock under the actually observed monetary policy reaction function, estimated

using the shock series of Ben Zeev & Khan (2015). This shock resembles a classic supply

shock, with inflation rising, output falling, and the central bank leaning against the increase

in inflation. We would then like to learn about the counterfactual propagation of this shock

under a) an alternative policy rule that aggressively stabilizes output and b) the optimal

policy rule corresponding to a “dual mandate”-type loss function with policymaker prefer-

ences over average inflation, consistent with the recent review of the Federal Reserve’s policy

framework.4 To construct the two desired counterfactuals, we follow Christiano et al. (1999)

and Gertler & Karadi (2015) to learn about the dynamic causal effects of persistent and

short-lived changes in the federal funds rate, respectively. We then leverage our theoretical

results to explore the counterfactuals a) and b) in this identified subspace.

Our second strategy is to impose additional structure in order to extrapolate from the

causal effects of the policy shocks that we did observe to those that we did not. Mathemati-

cally, we face a matrix completion problem: we require the full set of policy causal effects (an

infinite-dimensional linear map), yet only have evidence on some specific shocks (i.e., some

weighted averages of columns of the map). Our solution is to parameterize the causal effect

maps using theory-guided structural assumptions, and then estimate the parameters of these

maps from the policy shocks that we do observe. This procedure is quite similar in spirit to

estimation via impulse-response matching (as in Christiano et al., 2005), but with one crucial

difference—we show that, for the purposes of completing our impulse response maps, it may

well suffice to specify partial model blocks rather than entire general equilibrium models. For

example, for our monetary policy application, it suffices to assume that output and inflation

are linked through a dynamic Phillips curve relationship. This restriction narrows the class

of models to which our results apply, but still leaves much structure unspecified, including

in particular the entire demand block of the economy.

Returning to the application, we use our restrictions to estimate the implementable space

of inflation-output pairs, and from there construct counterfactuals for a) an alternative rule

4We use a flexible average inflation targeting loss function, similar to the one used by Svensson (2020).
Our loss function is quadratic in deviations of output from trend and deviations of a 5-year average of
inflation from target, with equal weights on the two components.
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that completely stabilizes output and b) the optimal average inflation targeting policy rule.

As expected, the results are similar to the identified subspace analysis, if somewhat smoother

and more accurately estimated, due to the additional structure that we impose.

Literature. Our emphasis on policy shock impulse responses as sufficient statistics con-

nects with previous approaches to policy counterfactual analysis. Relative to standard pol-

icy shock impulse-response matching in the Lucas program (e.g. Christiano et al., 2005),

we emphasize that evidence on many policy shocks obviates the need to specify a particular

parametric structural model. Relative to the Sims program, we show that policy news shocks

provide the missing link to form systematic policy rule counterfactuals without running afoul

of the Lucas critique. Within the Sims program, counterfactuals are usually constructed us-

ing a sequence of unanticipated policy shocks that enforce an alternative policy rule along the

equilibrium path (Sims & Zha, 2006; Bernanke et al., 1997; Eberly et al., 2019; Antolin-Diaz

et al., 2021). This approach will be credible if the private sector is unlikely to detect the

change in regime (Leeper & Zha, 2003), but it is less appropriate to analyze the effects of

announced changes in regime such as the Federal Reserve’s recent change in the systematic

policy framework (Powell, 2020).5

Our work also relates to more recent contributions to policy counterfactual analysis. Be-

raja (2020) similarly forms counterfactuals without relying on particular parametric struc-

tural models. His approach relies on stronger exclusion restrictions in the non-policy block

of the economy, but given those restrictions requires less empirical evidence on policy news

shock propagation. Barnichon & Mesters (2021) use policy shock impulse responses to test

the optimality of a given policy rule. We show that under mild structural assumptions

such policy shock impulse responses can in fact be used to a) form valid counterfactuals for

changes in rules and b) fully characterize optimal policy rules.

Finally, we build on recent advances in solution methods for dynamic general equilibrium

models. At the heart of our analysis lies the fact that equilibria in such models can be char-

acterized by matrices of impulse response functions (see Auclert et al., 2021). As in Guren

et al. (2021) and Wolf (2020), we connect this sequence-space representation to empirically

estimable objects. In contemporaneous and independent work, De Groot et al. (2021) and

Hebden & Winker (2021) show how to use the same arguments as in our identification re-

5Kocherlakota (2019) similarly considers the problem of a policymaker trying to make the optimal decision
conditional on a given policy regime. His game-theoretic analysis considers a private sector that does not
change its strategy, thus providing a theoretical rationalization of the Sims program.
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sults to efficiently compute policy counterfactuals by generating impulse responses to policy

shocks from a structural model. Our focus is not computational—we aim to calculate policy

counterfactuals directly from empirical evidence, thus forcing us to confront the fact that

such evidence is limited.

Outline. The remainder of the paper proceeds as follows. Section 2 presents our main

identification results. Sections 3 and 4 then discuss two approaches to dealing with realistic

data limitations, and apply our results to construct monetary policy counterfactuals for

investment-specific technology shocks. Section 5 concludes.

2 Dynamic causal effects & policy counterfactuals

This section contains our core identification results. We begin by presenting a simple static

version of our argument in the context of a standard small-scale New Keynesian model, and

then extend the argument to a general class of linearized dynamic models.

Throughout the paper, we formulate our analysis in linearized perfect-foresight economies.

Due to certainty equivalence, the equilibrium dynamics of a linear model with uncertainty

will coincide with the solution to such a linearized perfect-foresight economy. We thus em-

phasize that all results presented below extend without any change to models with aggregate

risk solved using conventional first-order perturbation techniques.6

2.1 A simple example

We begin with an illustration of our identification argument in the context of a particular

structural model—the linearized three-equation New Keynesian model (see Gaĺı, 2015).

For t = 0, 1, 2, . . . , the perfect-foresight model is described by the following equations:

yt = −σ(it − πt+1) + yt+1 (2)

πt = κyt + βπt+1 + εst (3)

it = φππt + νt, (4)

where yt is output, πt is inflation, it is the nominal interest rate, εst is a cost-push shock,

6For example see Fernández-Villaverde et al. (2016), Boppart et al. (2018) or Auclert et al. (2021) for a
detailed discussion of this point.
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and νt is a policy shock. The first two equations describe the behavior of the private sector,

while the last equation is the monetary policy rule. Underlying this linear model is a set

of structural assumptions that micro-found the parameters of the linearized economy. For

our purposes, the crucial property of these micro-foundations is that the coefficients in the

private-sector equations are independent of the policy rule—σ, κ and β as well as the cost-

push shock process are all unaffected by changes in the policy rule (i.e., φπ). Equivalently,

private-sector behavior—that is, the two relations (2) and (3)—is affected by policy only

through the current and expected future path of the policy instrument it.

To simplify the analysis as much as possible, we assume that shocks are perfectly tran-

sitory, so the system (2) - (4) becomes static, with yt = πt = it = 0 for t ≥ 1.7

Objects of interest. We wish to characterize the behavior of the economy in response

to the cost-push shock εst under policy rules different from (4). For this example we will

focus on the following two counterfactuals. First, we would like to know the behavior of

{yt, πt, it} in response to the cost-push shock under the alternative policy rule

it = φ̃ππt (5)

where φ̃π 6= φπ. Second, for a policymaker with a known loss function of the form

λππ
2
t + λyy

2
t , (6)

we would like to recover the optimal policy rule and characterize optimal output, inflation

and interest rate responses to the cost-push shock εst . In particular, we would like to recover

these counterfactuals for a private sector understanding the change in rule—that is, we would

like to answer the ambitious question of the Lucas program.

Empirical evidence. Consider an econometrician who observes data generated from

the model (2) - (4) under the baseline monetary policy rule (4). Using conventional semi-

structural methods (Ramey, 2016), and with enough data, she can perfectly recover the

impulse response matrices Θx,ε,φπ and Θx,ν,φπ—i.e., the impulse responses of x = {y, π, i} to

7We furthermore as usual assume that the Taylor principle holds for all policy rules considered here, so
the system has a unique bounded solution with the claimed properties.
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shocks ε and ν under the baseline rule φπ. They are given asytπt
it

 =

−
σφπ

1+κσφπ
1

1+κσφπ
φπ

1+κσφπ


︸ ︷︷ ︸
≡Θx,ε,φπ

× εst +

−
σ

1+κσφπ

− κσ
1+κσφπ

1
1+κσφπ


︸ ︷︷ ︸
≡Θx,ν,φπ

× νt. (7)

Our main result is that knowledge of {Θx,ε,φπ ,Θx,ν,φπ} is in fact sufficient to construct the

two desired counterfactuals. That is, knowledge of the causal effects of the cost-push and

policy shocks, εst and νt, under some baseline policy rule is actually enough to construct

counterfactual impulse responses to εst under either the alternative rule (5) or optimal policy

for the loss function (6).

a) Alternative policy rules. We begin with our first counterfactual. To construct the coun-

terfactual, we are going to design a monetary shock νt that maps the baseline rule (4) into

the alternative rule (5). By definition of Θx,ε,φπ and Θx,ν,φπ , such a shock—together with

the equilibrium aggregates {ỹt, π̃t, ĩt} that it implies—must satisfy the following system:

ỹt = Θy,ε,φπ × εst + Θy,ν,φπ × νt (8)

π̃t = Θπ,ε,φπ × εst + Θπ,ν,φπ × νt (9)

ĩt = Θi,ε,φπ × εst + Θi,ν,φπ × νt (10)

ĩt = φ̃ππ̃t (11)

(8) - (10) are the impulse responses to the shock tuple {εst , νt} under the baseline rule,

and (11) states that the new policy rule (5) holds. In words, we set the shock νt to enforce

the new policy rule, imposing that the mapping from shocks to equilibrium aggregates is

consistent with the impulse response coefficients under the old rule in Θx,ε,φπ and Θx,ν,φπ .

The key result for our purposes is that the solution to our system (8) - (11) is exactly the

same as the solution one would obtain by solving the model’s structural equations (2) - (3)

together with the new rule (5). This claim is easily verified. First, the structural solution

is π̃t = (1 + κσφ̃π)−1εst , which we obtain by replacing φπ with φ̃π in (7). Alternatively,

solving (8) - (11) for νt gives

νt = −

(
φ̃π − φπ

)
Θπ,ε,φπ(

φ̃π − φπ
)

Θπ,ν,φπ − 1
× εst
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and substituting into (9) and rearranging yields

π̃t = − Θπ,ε,φπ(
φ̃π − φπ

)
Θπ,ν,φπ − 1

× εst =
(1 + κσφπ)−1(

φ̃π − φπ
)

(1 + κσφπ)−1κσ + 1
× εst

=
1

1 + κσφ̃π
× εst ,

exactly as claimed, and similarly for output ỹt. The intuition is simple. By construction,

the policy shock νt is selected so that, in equilibrium, the new policy rule (5) holds.

Private sector behavior, however, depends on the policy rule only to the extent that it

affects the value of the policy instrument it. With it set exactly as in the equilibrium

under the new policy rule, it is immediate that all other equilibrium aggregates will also

take the same values as in that counterfactual equilibrium.

b) Optimal policy. Next we consider optimal policy for a policymaker with preferences

described by (6). The conventional, fully structural approach of treating the behavioral

relations (2) - (3) as constraints yields the optimal implicit policy rule

πt +
λy
κλπ

yt = 0. (12)

Equation (12) together with the Phillips curve (3) pins down optimal inflation-output

pairs. To derive the same rule and optimal outcomes using the measured causal effects,

consider the alternative problem of choosing the best deviation νt from the baseline rule

to minimize the policymaker loss. The solution to this problem is characterized by the

first-order condition

λππtΘπ,ν,φπ + λyytΘy,ν,φπ = 0 (13)

Substituting the definitions of Θπ,ν,φπ and Θy,ν,φπ , we find that (13) reduces to (12), as

claimed. Finally, combining this rule with the shock impulse responses Θπ,ε,φπ and Θy,ε,φπ ,

it is straightforward to verify that we obtain the same optimal output-inflation pairs as

those computed via the standard optimal policy problem.

As above, the key insight is that—because only the level of the policy instrument matters—

we can equivalently think of counterfactual policy rules as shocks to the baseline rule. By

observing these shocks, the econometrician recovers the implementable space of targets

(here y-π pairs). Given a loss function, knowledge of this implementable space is enough

to recover the optimal policy rule and response to εst .
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Summary & outlook. We have seen that, in the particular structural environment (2)

- (4), estimates of the causal effects of policy shocks are sufficient to predict the behavior of

the economy under a change in policy rule. The next subsections investigate the generality

of this result. We will see that some assumptions can be relaxed—notably, neither the

restriction of a one-period economy nor the particular structure of the three-equation model

are at all necessary—while others have to be maintained—both linearity and our restrictions

on policy rule feedback to private-sector expectations are central.

The analysis will proceed exactly in parallel to the simple example of this section. The

key addition relative to the intuition from the simple model will be that, in a general dynamic

environment, our identification arguments will require information on impulse response paths

for both contemporaneous policy shocks as well as policy news shocks.

2.2 Model & objects of interest

We consider a linearized perfect foresight model economy. Throughout, boldface denotes

time paths for t = 0, 1, 2, . . . , and all variables are expressed in deviations from the model’s

deterministic steady state.

The model economy is summarized by the equilibrium system

Hwwww +Hxxxx+Hzzzz +Hεεεε = 000 (14)

Axxxx+Azzzz + ννν = 000 (15)

w and x are nw- and nx-dimensional vectors of endogenous variables, z is a nz-dimensional

vector of policy instruments, ε is a nε-dimensional vector of exogenous structural shocks, and

ν is an nz-dimensional vector of policy shocks. The distinction between w and x is that all

variables in x are observable to the policymaker and econometrician alike, while the variables

in w are not. The infinite-dimensional linear maps {Hw,Hx,Hz,Hε} summarize the non-

policy block of the economy, yielding nw +nx restrictions for each t.8 Our key assumption is

that the maps {Hw,Hx,Hz,Hε} do not depend in any way on the coefficients of the policy

rule {Ax,Az}; instead, policy only matters through the path of the instrument z, with the

rule (15) giving nz restrictions on the policy instruments for each t. Note in particular that

the policy shock sequence ννν contains the full menu of possible contemporaneous (t = 0) and

8The boldface vectors {www,xxx,zzz,εεε,ννν} stack the time paths for all variables (e.g., xxx = (xxx′1, . . . ,xxx
′
nx

)′), and
the linear maps {Hw,Hx,Hz,Hε} are conformable.
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news (t > 0) shocks to the policy rule (15).

Given {εεε,ννν}, an equilibrium is a set {www,xxx,zzz} that solves (14) - (15). We assume that the

baseline policy rule {Ax,Az} is such that an equilibrium exists and is unique for any {εεε,ννν}.

Assumption 1. The policy rule in (15) induces a unique and determinate equilibrium. That

is, the infinite-dimensional linear map

B ≡

(
Hw Hx Hz

000 Ax Az

)

is invertible.

Given {εεε,ννν}, we write that unique solution as {wwwA(εεε,ννν),xxxA(εεε,ννν), zzzA(εεε,ννν)}. Most interest

will center on impulse responses to exogenous shocks εεε when the policy rule is followed

perfectly (ννν = 000); with some slight abuse of notation we will simply write those impulse

responses as {wwwA(εεε),xxxA(εεε), zzzA(εεε)}.

Discussion & scope. Our results in the remainder of this paper will apply to any struc-

tural model that can be written in the general form (14) - (15). As emphasized before, in

addition to linearity, the key property of the model for our purposes is that policy matters

for the non-policy block only through the realized path of the policy variables zzz; equivalently,

in the linearized economy with aggregate risk, policy matters only through its effects on the

expected future path of the instrument z. How restrictive are those assumptions?

Our first observation is that many of the explicit, parametric structural models used for

counterfactual and optimal policy analysis in the Lucas program fit into our framework.

Such models are routinely linearized, and their linear representation features the separation

between policy rule and non-policy block that our results require. We illustrate this point by

giving several examples of well-known models consistent with our assumptions. The three-

equation model of Section 2.1 is an obvious case: Euler equation (2) and Phillips curve (3) are

the policy-invariant private-sector block (14), and (4) is the policy rule (15). Appendix B.1

shows the specific linear maps that translate the model into the form of (14)-(15). For a

slightly richer example, consider the heterogeneous-agent New Keynesian (HANK) model of

Wolf (2021). That model consists of New Keynesian Phillips Curve (NKPC),

πππ = κyyy + βπππ+1 + εεεs, (16)
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a consumer demand block (or IS relation),

yyy = Cyyyy + Cππππ + Ciiii+ Cττττ + εεεd, (17)

a government budget constraint,

000 = τ̄τττ + b̄(1 + ī)(iii−1 − πππ) (18)

and a monetary policy rule,

iii = φiiii−1 + (1− φi)(φππππ + φyyyy) + ννν, (19)

where π is inflation, y is output, i is the nominal rate of interest, τ denotes transfers (which

by (18) adjust to balance the government budget), (εs, εd) are supply and demand shocks,

and ν is the monetary policy shock.9 The NKPC is as in the three-equation model, while the

coefficient matrices in (17) are derived from aggregating the partial equilibrium household

consumption decisions and thus again do not depend on policy rules. This HANK model fits

into our structure with w = τ , x = (π, y), z = i and ε = (εs, εd), (16) - (18) as the block (14),

and (19) as the policy rule (15).10 With only slightly more elaborate versions of the same

line of reasoning, it is straightforward to see that, once linearized, even workhorse estimated

business-cycle models—such as Christiano et al. (2005) or Smets & Wouters (2007)—as well

as recent quantitative HANK models—such as Auclert et al. (2020) or McKay & Wieland

(2021)—fit into our structure. Finally, as we discuss in Appendix B.2, several interesting

behavioral models (such as those of Gabaix (2020) or Carroll et al. (2018)) are also consistent

with our assumptions.

While thus clearly quite general, our framework also has important limitations. First,

since we leverage certainty equivalence of the linearized model economy, our identification

results will generally not yield globally valid policy counterfactuals. Second, the policy

invariance assumption embedded in the equilibrium system (14) - (15) is not plausible for all

kinds of policy rules: it generally holds for rules that only respond to aggregate perturbations

of the macro-economy (such as Taylor rules), but will be violated by policies that change

the model’s steady state. For example, in the HANK model of Wolf (2021) sketched above,

9The subscripts +1 and −1 denote time paths shifted forward or backward one period, respectively.
10The only actual policy choice here is the nominal rate i. Lump-sum taxes—which passively adjust to

balance the budget—are thus part of the policy-invariant block (14).
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changes in the long-run tax-and-transfer system will affect the coefficient matrices in (17), so

such policies are necessarily outside the purview of our analysis.11 Third, some models—even

after linearization—do not feature a separation of policy and non-policy blocks as in (14)

- (15). An important example are models featuring an asymmetry of information between

the policymaker and the private sector (like Lucas, 1972). Here, private-sector agents solve

a filtering problem, and in general the coefficients of the policy rule matter for this filtering

problem both through the induced movements of the policy instrument and through the

information contained in those movements. In particular, as we show in Appendix B.3, the

standard Lucas island model induces an aggregate supply relation of the form

yt = θ [pt − Et−1(pt)]

where yt denotes output and pt is the price level. Here, the response coefficient θ depends

on the the policy rule for nominal demand growth as it affects the interpretation of changes

in the island-level price, thus breaking our separation between the two model blocks.

In the remainder of this paper we will throughout impose the structural assumptions

embedded in our framework (14) - (15).

Objects of interest. We want to learn about two sets of policy rule counterfactuals.

a) Arbitrary alternative rules. Consider an alternative policy rule

Ãxxxx+ Ãzzzz = 000 (20)

Just like the baseline rule, this alternative policy rule is also assumed to induce a unique,

determinate equilibrium.

Assumption 2. The policy rule in (20) induces a unique and determinate equilibrium.

That is, the infinite-dimensional linear map

B̃ ≡

(
Hw Hx Hz

000 Ãx Ãz

)

is invertible.

11Formally, the coefficient matrices in (17) are derivative matrices for an aggregate consumption function
evaluated at the model’s steady state. Changes in the tax-and-transfer function change the steady state and
so also the coefficient matrices.
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Given this alternative rule Ã, we ask: what are the dynamic response paths xxxÃ(εεε) and

zzzÃ(εεε) to the exogenous shock path εεε?

b) Optimal policy. Consider a policymaker with a quadratic loss function of the form

L =
nx∑
i=1

λixxx
′
iWxxxi (21)

where i indexes the nx distinct (observable) macroeconomic aggregates collected in x, λi

denotes policy weights, and W is a symmetric positive-definite matrix.12 We assume that

the optimal policy problem has a unique solution.

Assumption 3. Given any vector of exogenous shocks εεε, the problem of choosing the

policy variable zzz to minimize the loss function (21) subject to the non-policy constraint

(14) has a unique solution.

We are interested in two questions. First, what policy rule is optimal for such a policy-

maker? Second, given that optimal rule (A∗x,A∗z), what are the corresponding dynamic

response paths xxxA∗(εεε) and zzzA∗(εεε)?

The objective of the remainder of this section is to characterize the information required

to recover these desired policy counterfactuals. The key insight is that all of the required

information can in principle be recovered from data generated under the baseline policy rule.

2.3 Identification: impulse responses as sufficient statistics

We begin by defining the dynamic causal effects that lie at the heart of our identification

results. By Assumption 1, we can write the solution to the system (14) - (15) aswwwxxx
zzz

 = −B−1 ×

(
Hε 000

000 I

)
︸ ︷︷ ︸

≡ΘA

×

(
εεε

ννν

)

12Our focus on a separable quadratic loss functions is in line with standard optimal policy analysis, but
not essential. As shown in Appendix A.1, our results extend to the non-separable quadratic case, where the
loss is now given by xxx′Qxxx for a weighting matrix Q. While our approach in principle also applies to even
richer loss functions, the resulting optimal policy rule will generally not fit into the form (15).
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The linear map ΘA collects the impulse responses of www, xxx and zzz to the non-policy and policy

shocks (εεε,ννν) under the prevailing, baseline policy rule (15) with parameters A. We will

partition it as

ΘA ≡

Θw,ε,A Θw,ν,A

Θx,ε,A Θx,ν,A

Θz,ε,A Θz,ν,A

 . (22)

All of our identification results will require knowledge of {Θx,ν,A,Θz,ν,A}—the full sets

of dynamic causal effects of the policy shocks ννν. That is, the econometrician needs to know

the effects of every possible current and future (announced) deviation from the prevailing

policy rule onto the policy instruments z as well as the (observable) endogenous variables x

(i.e., all of the arguments of the policy function and the policymaker loss). Furthermore, to

construct counterfactual paths that correspond to a given shock sequence εεε, the researcher

also needs to know the dynamic causal effects of that shock sequence under the baseline

policy rule, {xxxA(εεε), zzzA(εεε)}.
These informational requirements are the natural dynamic generalization of those for the

simple model in Section 2.1. First, since the model is now dynamic, a given policy shock now

generates entire paths of impulse responses, corresponding to the rows of the Θ’s. Second,

rather than a single shock, we now need to know causal effects corresponding to the full

menu of possible contemporaneous and news shocks ννν—the columns of the Θ’s.

a) Alternative Policy Rules. We begin with the first object of interest—policy counterfac-

tuals after a shock sequence εεε under an alternative policy rule.

Proposition 1. Suppose that {Θx,ν,A,Θz,ν,A} and {xxxA(εεε), zzzA(εεε)} are known. Then, for

any alternative policy rule {Ãx, Ãz} that induces a unique, determinate equilibrium, we

can recover the policy counterfactuals xxxÃ(εεε) and zzzÃ(εεε) as the unique solution to the system I 000 −Θx,ν,A

000 I −Θz,ν,A

Ãx Ãz 000


xxxzzz
ννν

 =

xxxA(εεε)

zzzA(εεε)

000

 . (23)

Proof. The equilibrium system under the new policy rule can be written as

(
Hw Hx Hz

000 Ãx Ãz

)wwwxxx
zzz

 =

(
−Hε

000

)
εεε (24)
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By Assumption 2 we know that (24) has a unique solution {xxxÃ(εεε), zzzÃ(εεε)}. To characterize

this solution as a function of observables, consider instead the alternative system (23).

Since (14) also holds under the initial policy rule, and since the last line of (23) imposes

the new policy rule, it follows that any (xxx,zzz) that are part of a solution of (23) are also

part of a solution of (24). Since by assumption (24) has a unique solution, it follows that

the system (23) is solved by at most one set of paths (xxx,zzz).

It remains to establish that the system (23) has a solution. For this consider the can-

didate tuple {xxxÃ(εεε), zzzÃ(εεε), ννν = (Ãx − Ax)xxxÃ(εεε) + (Ãz − Az)zzzÃ(εεε)}. Since the paths

{wwwÃ(εεε),xxxÃ(εεε), zzzÃ(εεε)} solve (24), it follows that they are also a solution to the system

(
Hw Hx Hz

000 Ax Az

)wwwxxx
zzz

 = −

(
Hεεεε

(Ãx −Ax)xxxÃ(εεε) + (Ãz −Az)zzzÃ(εεε)

)
(25)

But by Assumption 1 we know that the system (25) has a unique solution, so indeed the

paths {wwwÃ(εεε),xxxÃ(εεε), zzzÃ(εεε)} are that solution. It then follows from the definition of ΘA

in (22) that the candidate tuple also solves (23), completing the argument.

(23) is the dynamic generalization of the simple static system (8) - (11). The intuition is

exactly the same: since we know the effects of all possible perturbations ννν of the baseline

rule, we can always construct a perturbation that mimics the equilibrium instrument

path under the new instrument rule. But since the first model block (14) depends on

the policy rule only via the expected instrument path, the equilibrium allocations under

the new counterfactual rule and the perturbed prevailing rule are the same. The only

difference relative to the simple model is that, because the full system is dynamic, we

need contemporaneous and news shocks to the baseline rule in order to be able to mimic

an arbitrary alternative rule.

b) Optimal policy. The second identification result concerns optimal policy.

Proposition 2. Consider a policymaker loss function (21), and suppose that {Θx,ν,A,Θz,ν,A}
are known. Then we can recover the optimal policy rule {A∗x,A∗z} as

A∗x =
(
λ1Θ′x1,ν,AW,λ2Θ′x2,ν,AW, . . . , λnxΘ

′
xnx ,ν,AW

)
, (26)

A∗z = 000. (27)

17



If {xxxA(εεε), zzzA(εεε)} are also known, then we can furthermore recover counterfactuals for the

shock path εεε under the optimal policy rule, xxxA∗(εεε) and zzzA∗(εεε), through Proposition 1.

Proof. The solution to the optimal policy problem is characterized by the following first-

order conditions:

H′w(I ⊗W )ϕϕϕ = 000 (28)

(Λ⊗W )xxx+H′x(I ⊗W )ϕϕϕ = 000 (29)

H′zWϕϕϕ = 000 (30)

where Λ = diag(λ1, λ2, . . . ) and ϕ is the multiplier on (14). By Assumption 3 we know

that the system (28) - (30) together with (14) has a unique solution {xxx∗(εεε), zzz∗(εεε),ϕϕϕ∗(εεε)}.

Now consider the alternative problem of choosing deviations ννν from the prevailing rule to

minimize (21) subject to (14) - (15). This second problem gives the first-order conditions

H′w(I ⊗W )ϕϕϕ = 000 (31)

(Λ⊗W )xxx+H′x(I ⊗W )ϕϕϕ+A′xWϕϕϕz = 000 (32)

H′z(I ⊗W )ϕϕϕ+A′zWϕϕϕz = 000 (33)

Wϕϕϕz = 000 (34)

where ϕz is the multiplier on (15). It follows from (34) that ϕϕϕz = 000. But then (31) - (33)

together with (14) determine the same unique solution as before, and ννν adjusts residually

to satisfy (15). The original problem and the alternative problem are thus equivalent.

Next note that, by Assumption 1, we can re-write the alternative problem’s constraint

set as wwwxxx
zzz

 = ΘA ×

(
εεε

ννν

)
(35)

The problem of minimizing (21) subject to (35) gives the optimality condition

nx∑
i=1

λiΘ
′
xi,ν,AWxxxi = 0 (36)

By the equivalence of the policy problems, it follows that (36) is an optimal policy rule,

taking the form (26) - (27). Finally, the second part of the result follows from Proposi-
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tion 1 since (36) is just a special example of a policy rule {Ãx, Ãz}.

The optimal policy rule in (26)-(27) is the dynamic analogue of the static rule in (13).13

The intuition is as before: since we know the (now dynamic) causal effects of every

possible policy perturbation ννν on the policymaker targets xxx, we in fact know the space

of those targets that is implementable through policy actions. At an optimum, we must

be at the point of this space that minimizes the policymaker loss.

The identification results in Propositions 1 and 2 offer a bridge between the Lucas and

Sims programs: they show that, under our structural assumptions, impulse responses to

contemporaneous and news policy shocks—objects estimable using the techniques of the

Sims program—are sufficient statistics for the Lucas program objective of predicting the

effects of changes in systematic policy rules.

Aside: relative impulse responses. Our statements of Propositions 1 and 2 rely on

the absolute impulse responses {Θx,ν,A,Θz,ν,A}. Both results, however, in fact only really

require information on relative dynamic causal effects: if, for example, the first impulse

response map Θx1,ν,A is invertible, then the proofs of both results apply without any change

using the weaker informational requirement {Θ̃x,ν,A, Θ̃z,ν,A}, where Θ̃xi,ν,A ≡ Θxi,ν,A×Θ−1
x1,ν,A

and Θ̃zi,ν,A ≡ Θzi,ν,A × Θ−1
x1,ν,A. Intuitively, both for counterfactual rules of the form (20)

as well as for optimal policy, the only information required by the econometrician are the

relative (or normalized) implementable spaces of policy targets and instruments x and z. Our

connection of theory and measurement in Section 4.2 will heavily leverage this observation.

2.4 Quantitative illustration

We complement our theoretical discussion of the sufficiency of impulse response functions

with a numerical illustration in the context of a quantitative HANK model. The purpose of

13Note that, by mapping our perfect foresight economy to a linearized economy with aggregate risk, we
can re-write that optimal policy rule as a forecasting targeting rule (Svensson, 1997):

nx∑
i=1

λiΘ
′
xi,ν,AWEt [xxxi] = 0 (37)

where now xxxi = (xit, xit+1, . . . )
′. In words, expectations of future targets must always minimize the pol-

icymaker loss within the space of (expected) allocations that are implementable via changes in the policy
stance. For a timeless perspective, (37) must apply to revisions of policymaker expectations at each t.
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this section is to provide a visual representation of our results in the context of a model that

is—unlike the simple case of Section 2.1—neither static nor solvable in closed-form.

We use the HANK model of Wolf (2021), sketched in Section 2.2 and with details of the

model parameterization relegated to Appendix B.4. We first of all solve the model with a

baseline policy rule of

it = φππt (38)

for φπ = 1.5. Using this solution we compute the policy causal effects {Θx,ν,A,Θz,ν,A} and

the impulse responses {xxxA(εεε), zzzA(εεε)} to a contractionary cost-push shock εs. Then, following

Propositions 1 and 2, we use those impulse responses to construct policy counterfactuals.

a) Alternative policy rules. For our first experiment, we would like to learn about the

behavior of output and inflation under an alternative policy rule

it = φiit−1 + (1− φi)(φππt + φyyt) (39)

for φi = 0.9, φπ = 2 and φy = 0.5. We will perform this calculation in two ways.

First, we make use of the structural equations of the model: we simply replace the baseline

policy rule with the alternative rule and then re-solve the model. The cost-push shock

impulse responses under the baseline rule and the counterfactual new rule are displayed

as the grey and orange lines in Figure 1.

Next, we use Proposition 1 to equivalently construct the desired counterfactual without

knowledge of the structural equations of the model. We do so using {xxxA(εεε), zzzA(εεε)} and

{Θx,ν,A,Θz,ν,A}—the dynamic causal effects of the fundamental shock and of policy shocks

generated under the prevailing baseline rule (38). We feed these inputs into (23) to solve

for xxx, zzz and ννν. The dark blue lines in the left and middle panels of Figure 1 show that,

as expected, the solution is identical to the one from the structural solution of the model.

The right panel then shows the sequence of shocks ννν that maps the baseline prevailing

rule into the new rule. Since the new rule is more accommodating, the sequence of shocks

is persistently negative (i.e., the shocks are expansionary).

b) Optimal policy. Our second experiment studies optimal policy under a dual mandate loss

function

L = λππππ
′πππ + λyyyy

′yyy (40)

with λπ = λy = 1. We again start by solving for the optimal policy using conventional

methods: we derive the policy rule corresponding to the first-order conditions (28) - (30),
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Alternative Policy Rule, HANK Model

Figure 1: Output and inflation impulse responses together with the equivalence shock wedge ννν
(see (23)) for the HANK model with policy rules (38) and (39). The impact output contraction
under the prevailing baseline rule is normalized to −1%.

solve the model given that policy rule, and report the result as the orange lines in the left

and middle panels of Figure 2. We see that, at the optimum, the cost-push shock moves

inflation by much more than output, consistent with the assumed policy weights and the

relatively flat Phillips curve. Compared to this optimal policy, the simple baseline rule

of the form (38) tightens too much.

We then instead use Proposition 2 to equivalently recover the optimal policy rule and the

corresponding cost-push shock impulse responses. We begin with the optimal rule itself.

By (36), the optimal rule is given as

λπΘ′π,ν,Aπππ + λyΘ
′
y,ν,Ayyy = 0

A researcher with knowledge of the dynamic causal effects of monetary policy shocks

on inflation and output, {Θπ,ν,A,Θy,ν,A}, is able to construct this optimal policy rule.

We can then create a counterfactual response to the cost-push shock using (23), again

requiring only knowledge of the causal effects of policy. As expected, the resulting impulse

responses—the dark blue lines—are identical to those obtained by explicitly solving the

optimal policy problem. Finally, the right panel of Figure 2 shows the optimal policy
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Optimal Policy, HANK Model

Figure 2: Output and inflation impulse responses together with the equivalence shock wedge ννν
(see (23)) for the HANK model with policy rules (38) and the optimal policy given by (40). The
impact output contraction under the prevailing baseline rule is normalized to −1%.

as a deviation ννν from the prevailing baseline rule. The optimal rule leans less against

the inflationary cost-push shock than the baseline rule (38), so again the required policy

“shock” is persistently negative (i.e., expansionary).

2.5 Discussion

We have demonstrated that, in a quite general family of linearized structural macroeconomic

models, impulse responses to policy shocks can serve as sufficient statistics for the effects

of changes in policy rules. Put differently, our results imply that—under our maintained

structural assumptions—the Lucas critique can in principle be circumvented purely through

empirical measurement.

In the remainder of this paper we present ways to operationalize this insight. The essen-

tial hurdle faced by our approach is that its informational requirements are extremely high:

we would need evidence on the dynamic causal effects of the full menu of all possible con-

temporaneous and news policy shocks—evidence that is clearly not available, for any policy

instrument. We will present two ways of dealing with this challenge. First, in Section 3,

we show that, if a researcher was able to estimate the dynamic causal effects of a limited
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number of policy shocks, then she can still construct counterfactuals and find optimal rules

in the subspace of changes to the policy rule spanned by those observed shocks. Second, in

Section 4, we discuss strategies that use restrictions coming from economic theory to map the

available partial evidence into the required full menu of dynamic causal effects. Throughout,

we apply our results to analyze the aggregate effects of investment-specific technology shocks

under counterfactual monetary policy rules.

3 Counterfactuals in identified subspaces

In this section we consider the empirically relevant case of a researcher that is only able to

estimate the causal effects of a finite (small) number of particular shocks to the policy rule.

Any single empirically identified shock s corresponds to some particular path νννs of de-

partures from the baseline policy rule. Figure 3 depicts two cases: the first identified shock

induces a persistent, gradually decaying deviation from the baseline rule, while for the sec-

ond shock the largest departures from the rule occur not immediately but at some future

time (here at t = 5). We suppose that a researcher has access to ns distinct identified policy

shocks and their causal effects, and we denote those causal effects by {Ωx,A,Ωz,A}, where the

columns of the Ω’s correspond to weighted averages of the full dynamic causal effect maps

Θ, with weights for the sth identified shock given by νννs.
14 Anticipating our main empirical

application, and in line with Figure 3, we may think of the researcher as knowing the effects

of particular persistent and delayed anticipated interest rate movements, but not those for

any possible pattern of interest rate adjustments.15

The remainder of this section proceeds as follows. First, in Section 3.1, we show that the

estimated causal effects can still be used to construct counterfactuals for some alternative

policy rules—rules that can be written as the prevailing baseline rule plus linear combinations

of the ns distinct identified shocks. Second, in Section 3.2, we find the optimal rule within the

policy space spanned by the identified shocks. We illustrate both sets of counterfactuals with

applications to monetary policy transmission, leveraging dynamic causal effect estimates for

14Our discussion in this section focusses on the finite-shock case, so {Ωx,A,Ωz,A} have a small number
of columns. In any empirical application, those linear maps of course also have a finite number T of rows.
We do not pay much attention to this limitation since we consider shocks and counterfactual policies with
sufficiently short-lived dynamics, making the maximal truncation horizon immaterial.

15Figure 3 in fact shows the mean estimated interest rate response paths for the two monetary policy
shocks in our empirical application. We can interpret these paths as giving shock weights νννs after pre-
multiplication by Θ−1z,ν,A—i.e., we rotate the shocks so that they correspond one-to-one to movements in the
policy instrument z. As long as Θz,ν,A is invertible, this rotation is without loss of generality.
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Identified Policy Shock Paths, Illustration

Figure 3: Two possible shock paths νννs: a gradual, persistent departure from the rule (orange, left
panel), and a news shock (purple, right panel), with bars indicating the shock weights νννs.

two particular, distinct monetary policy shocks: those of Christiano et al. (1999) and Gertler

& Karadi (2015).

3.1 Counterfactual rules

With the researcher observing {Ωx,A,Ωz,A}, the proof of Proposition 1 now only works for

particular alternative policy rules—those that satisfy the restriction

Ãx(xxxA(εεε) + Ωx,A × sss) + Ãz(zzzA(εεε) + Ωz,A × sss) = 0 (41)

for some linear combination of the identified shocks sss ∈ Rns . That is, we must be able to

replicate the alternative rule as the prevailing baseline rule plus some linear combination of

the ns particular observed shocks, with the weights given by sss. Equivalently, the new rule

must deviate from the prevailing one in response to shocks εεε in a direction that is consistent

with the causal effects identified by the available policy shocks. Naturally, the larger ns, the

larger this identified subspace, and so the more policies satisfy (41).

If a researcher is interested in a rule outside of the spanned subspace, then one way

forward is to find the best possible fit using the actually empirically observed shocks. For

example, under a simple quadratic loss function for deviations from the (unattainable) target
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Policy Counterfactual for Investment Shocks, Identified Subspace

Figure 4: Output, inflation and interest rate impulse responses to a contractionary investment-
specific technology shock under the prevailing baseline rule (grey) and the best feasible approxi-
mation to a rule that stabilizes output (orange). The shaded areas correspond to 16th and 84th
percentile confidence bands.

counterfactual policy rule, the best-fitting shock vector would be given as

sss = −
[(
ÃqΩq,A

)′
×
(
ÃqΩq,A

)]−1

×
[(
ÃqΩq,A

)′
× Ãq × qqqA(εεε)

]
(42)

where qqq = (xxx′, zzz′)′. Whether or not any given desired counterfactual rule is (at least ap-

proximately) contained within the space spanned by the empirically observed shocks is an

inherently application-dependent question.

Application. We illustrate this approach with an application to investment-specific tech-

nology shocks. Our object of interest is the behavior of output and inflation following such a

technology shock and under a counterfactual monetary policy rule that aggressively stabilizes

output fluctuations. We present the main results here, and relegate empirical implementation

details to Appendix C.1.

Our approach requires two inputs. First, we need to know the effects of the shock of inter-

est under the prevailing baseline policy rule. To estimate these effects we use the investment-

specific technology shock identified by Ben Zeev & Khan (2015). This shock corresponds

to a short-lived, unanticipated change in the relative price of investment goods. Second, we

need the effects of some (ideally rich) menu of different monetary policy shocks. We consider
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two of the most popular examples of such monetary policy shocks: the recursively identified

shock of Christiano et al. (1999), and the high-frequency identification of Gertler & Karadi

(2015). The dynamic response of nominal interest rates differs quite substantially across

those two identifications schemes: gradual and long-lived for Christiano et al., and relatively

transitory for Gertler & Karadi. Indeed, in our illustrative figure from before (Figure 3), the

left panel shows the interest rate path corresponding to the Christiano et al. shock, while

the right panel gives the difference between the two rate paths, corresponding to a monetary

policy news shock. With these two estimates in hand, we can then follow (42) to construct

the best possible approximation to a rule that aims to perfectly stabilize aggregate output.

Figure 4 presents our results. Under the prevailing baseline rule (grey), the policymaker

leans against the inflationary effects of the shock, further pushing down aggregate real ac-

tivity. Overall, the shock resembles a classic supply shock with inflation rising and output

falling. Under our counterfactual rule (orange), monetary policy is much more accommo-

dating, keeping output relatively close to trend throughout, but of course at the cost of

persistently elevated inflation. By our identification results, any structural model of the gen-

eral form (14) - (15) and consistent with our empirical estimates of monetary transmission

will invariably agree with those counterfactuals for a change in the systematic policy rule.

3.2 Optimal policy

For optimal policy, we follow the same steps as in the proof of Proposition 2 to now consider

the problem of minimizing the policymaker loss function (21) within the identified subspace

of policy changes. This problem gives the optimality condition

nx∑
i=1

λiΩ
′
xi,AWxxxi = 0 (43)

(43) can be interpreted in two ways. First, it gives ns restrictions that any solution to the

full optimal policy problem must satisfy.16 Second, it fully characterizes the optimal rule

in the ns-dimensional identified subspace of dynamic causal effects. The larger that space

is, the more meaningful is the derived constrained optimal policy rule. In particular we by

Proposition 2 know that, for ns →∞, (43) fully characterizes the optimal policy rule.

16Equation (43) is related to Barnichon & Mesters (2021), who propose to use a condition of this form to
test the optimality of a given policy. Since their analysis relies on fixed private sector expectations, they do
not draw any implications for optimal policy rules, unlike our approach.
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Optimal Policy for Investment Shocks, Identified Subspace

Figure 5: Output, inflation and interest rate impulse responses to a contractionary investment-
specific technology shock under the prevailing baseline rule (grey) and the optimal policy rule for a
policymaker with preferences over current output and averaged past inflation (see Appendix A.2)
within the identified subspace (purple). The shaded areas correspond to 16th and 84th percentile
confidence bands.

Application. We illustrate our conclusions for optimal policy rules with another appli-

cation to the investment-specific technology shocks discussed in Section 3.1. As before, our

analysis leverages estimates of the causal effects of monetary policy based on Christiano et al.

(1999) and Gertler & Karadi (2015). We now consider a policymaker whose loss function

puts equal weight on the deviations of aggregate output from trend and the deviations of a

weighted average of current and lagged inflation from target. This loss function is one inter-

pretation of a flexible average inflation targeting framework.17 We then use (43) to recover

the constrained optimal policy rule in the identified subspace as well as the corresponding

counterfactual paths of the policy instrument and the two targets.

Figure 5 presents our results. Our analysis reveals that the (constrained) optimal policy

rule increases interest rates somewhat less than the observed baseline policy response. As a

result, the path for output is somewhat closer to trend than in the baseline and the deviation

in inflation is somewhat smaller at longer horizons. On the whole, however, the differences

between the implied optimal policy and the baseline policy are fairly small, suggesting that

the observed policy response was close to optimal for a policymaker with these preferences.

17See Appendix A.2 for a detailed discussion of the corresponding loss function.
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4 Imposing additional structure

The second approach to implementing our identification result in the face of limited empirical

evidence imposes additional structure to extrapolate from the dynamic causal effects of the

policy shocks that we do observe—the finite-shock maps {Ωx,A,Ωz,A}—to those that we did

not observe—the full maps {Θx,ν,A,Θz,ν,A}. Mathematically, we face a matrix completion

problem: we know (or at least can estimate) certain linear combinations of the columns of

the dynamic causal effect maps, and would like to fill in the remaining columns.

One natural solution is to impose parametric structure on the full causal effect maps—

that is, write Θ = Θ(ϑ) for some parameter vector ϑ—and then estimate ϑ through estimates

of the individual shock impulse responses {Ωx,A,Ωz,A}, which themselves are known functions

of Θ and so ϑ. If Θ is parameterized through a particular fully-specified structural model,

then this approach simply amounts to model estimation via impulse response matching, as

done routinely in the Lucas program (Christiano et al., 2005). The Sims program on the other

hand constructs its counterfactuals only using empirical evidence on a single policy shock, and

nothing else (Sims & Zha, 2006). We will show that, under certain structural assumptions on

Θ, these traditional Sims program counterfactuals in fact can also be interpreted as achieving

the Lucas program objective of studying a change in the policy rule. Section 4.1 elaborates

on this connection between familiar approaches and our perspective on impulse response

extrapolation. Our novel contribution will then follow in Section 4.2: we will show that, for

several interesting counterfactuals, the specification of partial model blocks—rather than an

entire general equilibrium model—may well suffice to give the structure on Θ required to

operationalize our theoretical identification result.

4.1 Two familiar special cases

We begin by re-interpreting two popular existing approaches to policy counterfactuals as

two particular strategies of completing the causal effect maps Θ from evidence on individual

identified policy shocks.

Impulse response matching. The Lucas program constructs counterfactuals using micro-

founded general equilibrium models. One popular technique for estimating such a model is

impulse response matching (e.g. Rotemberg & Woodford, 1997; Christiano et al., 2005)—the

researcher chooses the parameters of the model to match the estimated impulse response

functions {Ωx,A,Ωz,A} for an individual identified policy shock as closely as possible.
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Through the lens of this paper, such model estimation via impulse response matching

may be interpreted as a particular approach of mapping causal evidence on a single identified

shock into the effects of all other (unobserved) shocks. The parametric model provides

structure on Θ that is indexed by the model parameters ϑ, and those model parameters are

chosen to ensure agreement with the empirically estimated dynamic causal effects of policy

shocks. Thus, in this context of policy counterfactual analysis, the only purpose of the model

is to extrapolate from (estimated) individual columns into the rest of Θ.

Counterfactuals as repeated surprises. Researchers in the Sims program begin by

estimating the dynamic causal effects of a contemporaneous policy shock ν0 to the prevailing

policy rule. That is, the researcher knows the first column of the maps in {Θx,ν,A,Θz,ν,A}.
To predict the behavior of the economy under an alternative path of the policy instrument,

Sims & Zha (2006) propose to subject the economy to a sequence of contemporaneous pol-

icy shocks that enforce the desired instrument path in equilibrium. This approach answers

the traditional Sims program question of predicting counterfactuals without the public per-

ceiving a change in policy regime. Alternatively, however, this approach may also be inter-

preted as answering the more ambitious Lucas program question under auxiliary structural

assumptions—assumptions that put further structure on Θ. In particular, when translated

to our notation, the implied structure is that the maps {Θx,ν,A,Θz,ν,A} are lower-triangular,

with the columns j ≥ 2 equal to a time-shifted version of the first column:

Θq,ν,A =


Θq,ν,A(1, 1) 0 0 . . .

Θq,ν,A(2, 1) Θq,ν,A(1, 1) 0 . . .

Θq,ν,A(3, 1) Θq,ν,A(2, 1) Θq,ν,A(1, 1) . . .
...

...
...

. . .

 , q ∈ {x, z} (44)

where Θ•(i, j) denotes the (i, j)th entry of a map Θ•. This assumed structure implies that

the first column parameterizes the full map—but of course that first column is exactly the

impulse response estimated using the VAR. Intuitively, with this structure, surprising the

economy with a suitable new shock each period is the same as announcing a sequence of

contemporaneous and news shocks at t = 0 (i.e., our identification result).

A structure like that in (44) is consistent with models populated by fully myopic agents.

For example, in a variant of the behavioral New Keynesian model of Gabaix (2020) with full

discounting in both the consumer Euler equation and the firm-side Phillips curve, news shocks

have no effect prior to their realization, so (44) holds. In such environments, the conventional
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Sims program also correctly answers the more ambitious question of predicting the effects of

changes in systematic policy rules.18 Typical (rational-expectations) macroeconomic models

with forward-looking agents, on the other hand, allow for an important role of news shocks

(e.g. Schmitt-Grohé & Uribe, 2012) and so are inconsistent with (44). In such environments,

using the structure in (44) to predict the effects of changes in systematic policy rules will

invariably run afoul of the Lucas critique.

4.2 Putting structure on the output-inflation trade-off

The special cases we have just discussed reflect two extremes: one branch uses a fully spec-

ified, parametric structural model to analyze a change in policy rule, while the other is ap-

pealingly agnostic about the detailed structure of the economy, but is either uninformative

about systematic rule changes or requires strong restrictions on private sector expectations.

We now demonstrate a different, hybrid approach to imposing structure on Θ: we will show

that, for several interesting policy counterfactuals, it is sufficient to impose structure that,

on the one hand, leaves many aspects of the model economy unspecified, yet on the other

hand does not need to assume the absence of private sector anticipation effects.19

Objects of interest. We consider an econometrician interested in the behavior of ag-

gregate output and inflation under policy rules of the form

Aππππ +Ayyyy = 000 (45)

Note that (45) nests contemporaneous as well as average inflation targeting, nominal GDP

targeting, as well as strict output and inflation stabilization. Thus, knowledge of counterfac-

tual outcomes under (45) will in particular pin down our two desired policy counterfactuals

in Sections 3.1 and 3.2.

By our results in Section 2, knowledge of Θπ,ν,A and Θy,ν,A is sufficient to construct

counterfactuals for rules like (45). Our key insight is that, for structural models that feature

a Phillips curve relationship, that Phillips curve provides all the structure we need.

18Furthermore, if agents are quite but not perfectly inattentive (as for example in Auclert et al., 2020),
then this approach may deliver a reasonably accurate approximation to correct policy counterfactuals.

19We present yet another example of possible structure on Θ in Appendix A.4.
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Structure via dynamic Phillips curves. Using our perfect-foresight notation of Sec-

tion 2, we can write a general Phillips curve relationship as

πππ = Πy × yyy + Πε × εεε. (46)

Here Πy is the linear map summarizing the structural relationship between inflation and

leads and lags of output, up to (non-policy) shocks Πε × εεε. For example, in the very simple

New Keynesian model of Section 2.1, Πy would take the form

Πy =


κ κβ κβ2 . . .

0 κ κβ . . .

0 0 κ . . .
...

...
...

. . .

 (47)

The crucial implication of (46) is that, conditional on policy shocks ννν, the co-movements of

output and inflation are fully characterized by the map Πy:

Θπ,ν,A = Πy ×Θy,ν,A.

In words, we can map output impulse responses into inflation impulse responses (and vice-

versa) using only Πy. It then follows from our discussion of relative impulse responses in

Section 2.3 that knowledge of Πy is sufficient to construct counterfactuals for alternative

policy rules of the general form (45), as required.20 We have thus reduced the problem of

extrapolating across columns of the two maps Θπ,ν,A and Θy,ν,A to the simpler one of learning

only about the single map Πy.

We now proceed in analogy with standard impulse response matching exercises. Given

some theory-guided, parametric structure on Πy, we propose to estimate those parameters

(and thus all of Πy) through empirical evidence on identified policy shocks—that is Ωπ,A and

Ωy,A. Rather than requiring a full structural general equilibrium model to match all absolute

impulse responses, however, here we only require one part of a model to be consistent with

empirically observed relative impulse responses. Importantly, the implied counterfactuals

will be valid independently of any further model details, including preferences, technology,

20Strictly speaking, we additionally require the assumption of invertibility of Θπ,ν,A—that is, the poli-
cymaker can implement any possible path of inflation. This assumption is generally satisfied in standard
business-cycle models. For example, in the simple model of Section 2.1, it is straightforward to verify that
Θπ,ν,A is an upper-triangular, invertible matrix. We provide further details in Appendix A.3.
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the nature of expectation formation, and so on—as long as two structural models agree on

the Phillips curve map Πy they also agree on the desired policy counterfactuals.

Application. We now use this method to analyze the same two counterfactual responses

to investment-specific technology shocks that we considered in Sections 3.1 and 3.2, but now

leveraging the extrapolated full impulse response map Πy rather than being restricted to the

identified subspaces of causal effects.

We assume that Πy is derived from a hybrid Phillips curve relationship:

πt = γbπ
4
t−1 + γfEt

[
π4
t+4

]
+ κyt + εt (48)

where π4
t−1 = 1

4
× (πt−1 + πt−2 + πt−3 + πt−4). Appendix A.3 shows the linear map Πy cor-

responding to this Phillips curve specification. We then estimate the parameters {γb, γf , κ}
(and so all of Πy) using evidence on identified monetary policy shocks. The econometric

challenge is that estimates of {Ωπ,A,Ωy,A} will not perfectly align with the parametric struc-

ture imposed by (48); thus, following Barnichon & Mesters (2020), we simply find the best

possible fit. Our estimation uses the identified monetary policy shocks of Gertler & Karadi

(2015), already discussed in Section 3.

Given an estimate of Πy, we can construct the two desired counterfactuals: output and

inflation responses to investment-specific technology shocks under counterfactual policy rules

that a) perfectly stabilize output and b) are optimal for a dual mandate policymaker with

equal weights on aggregate output and an average of current and lagged inflation. The

results, reported in Figure 6, closely echo those of Section 3.21 First, perfect output stabi-

lization implies persistently elevated inflation relative to the baseline rule outcome. Second,

the output and inflation impulse response paths under the optimal average inflation target-

ing policy are relatively close to observed outcomes, but with somewhat smoother output

dynamics. With a Phillips curve of the form (48), we can by Proposition 2 in fact explicitly

characterize the optimal policy rule as

λπΠ̄′π̄ππ + λy(Π
′
y)
−1yyy = 000 (49)

where π̄ denotes the targeted average of current and lagged inflation and Π̄ maps inflation into

this targeted average, with π̄̄π̄π ≡ Π̄×πππ (see Appendix A.2), and Πy displayed in Appendix A.3.

21Note that Πy is sufficient to characterize the (relative) implementable space of output and inflation, but
does not allow us to solve for the nominal interest rate path that is required to engineer those allocations.

32



Policy Counterfactuals for Investment Shocks, PC Extrapolation

Figure 6: Output and inflation impulse responses to a contractionary investment-specific technol-
ogy shock under the prevailing baseline rule (grey), a counterfactual rule that perfectly stabilizes
output (grey), and the optimal policy rule for a dual-mandate policymaker with preferences over
current output and averaged past inflation (see Appendix A.2) (purple). The shaded areas corre-
spond to 16th and 84th percentile confidence bands.

We note that (49) takes the form of an implicit targeting rule (Svensson, 1997): it imposes

a set of restrictions that current, lagged and expected future values of output and inflation

must satisfy at all times when policy is set optimally.

Overall, it follows from our analysis that any fully specified general equilibrium structural

model that (i) fits into the general form (14) - (15), (ii) features a Phillips curve relationship

of the form (48) and (iii) is consistent with the empirical monetary policy shock estimates

of Gertler & Karadi (2015) will produce the same counterfactuals as in Figure 6, and in

particular yield the optimal policy rule (49).

5 Conclusions

The standard approach to counterfactual analysis for changes in policy rules relies on fully-

specified, dynamic general equilibrium models. Our identification results instead point in a

different direction: for valid policy counterfactuals, researchers can estimate dynamic causal

effects of policy shocks and combine them to form policy counterfactuals and optimal policy

responses. These counterfactuals are valid in a large class of models that encompasses the
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majority of structural business-cycle models that are currently used for policy analysis.

The main challenge in implementing this strategy is that evidence on an infinitely large set

of policy perturbations is unattainable. One natural reaction is simply to try to get as close as

possible; viewed in this light, future empirical work should try to identify policy “shocks” that

correspond to as many different paths of the policy instrument as possible.22 Every additional

piece of empirical evidence will allow researchers to a) expand the space of alternative,

counterfactual policy rules that we can analyze and b) find further restrictions that help to

more tightly characterize optimal rules. A second response to the limited empirical evidence

is to impose more structure, as we do in Section 4. Further research exploring the sets of

counterfactuals that can be characterized with only partial model structure (like we do in

Section 4.2) would be particularly welcome.

22To this end, the “functional VAR” approach of Inoue et al. (2021) seems particularly promising.
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A Supplementary results

This appendix presents several supplementary theoretical results. Appendix A.1 begins by

extending Proposition 2 to a more general loss function, and Appendix A.2 considers the

special case of a loss function over averaged inflation. Appendix A.3 then provides additional

information for our Phillips curve structure used in Section 4.2. Finally in Appendix A.4 we

present another possible approach to the matrix completion problem.

A.1 More general loss functions

Proposition 2 can be generalized to allow for a non-separable quadratic loss function. Suppose

the policymaker’s loss function takes the form

L = xxx′Qxxx (A.1)

where Q is a weighting matrix. Following the same steps as the proof of Proposition 2, we

can formulate the policy problem as minimizing the loss function (A.1) subject to (35). The

first-order conditions of this problem are

Θ′ν,x,A(Q+Q′)xxx = 0

so we can recover the optimal policy rule as

A∗x = Θ′ν,x,A(Q+Q′)

A∗z = 000

Outside of the quadratic case, the causal effects of policy shocks on xxx are still enough

to formulate a set of necessary conditions for optimal policy, but in this general case the

resulting optimal policy rule will not fit into the linear form (15), so we do not consider this

case any further here.
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A.2 Average inflation targeting loss function

In the spirit of the recent change in the Federal Reserve’s strategy, we consider a policymaker

with preferences over output and average inflation π̄t, where

π̄t =
H∑
`=0

ω`πt−`

Here H denotes the maximal (lagged) horizon that enters the inflation averaging, and ω`

denotes the weight on the `th lag, with
∑

` ω` = 1 and ω` ≥ 0 ∀`. For our applications in

Sections 3 and 4 we set H = 20 and ω` ∝ exp(−0.1`). Suitably stacking the weights {ω`},
we can define a linear map Π̄ such that π̄̄π̄π = Π̄× πππ.

We represent the loss function of a dual mandate policymaker with preferences over

average inflation as

L = λππ̄ππ
′Wπ̄ππ + λyyyy

′Wyyy

For our applications we set λπ = λy = 1—an equal weighting of the two mandates. For such

a loss function (and setting W = I for simplicity), we find the optimal policy rule as

λπΘ′π̄,ν,Aπ̄̄π̄π + λyΘ
′
ȳ,ν,Aȳ̄ȳy = 000

Using the definition of Πy and simplifying, we recover (49).

A.3 Phillips curve & policy counterfactuals

Consider the augmented Phillips curve (48). Along a perfect foresight transition path, we

can write this relationship as
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︸ ︷︷ ︸

≡Ππ

× πππ = κ × yyy + εεεs
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We thus have

Πy ≡ Π−1
π × κ

Policy counterfactuals. Knowledge of Πy—together with the assumption that Θπ,ν,A

is invertible, i.e., any path of inflation is in principle implementable—is sufficient to construct

output and inflation counterfactuals corresponding to alternative rules of the general form

(45). Formally, we can recover the desired counterfactual outcomes by solving the system

Ãππππ + Ãyyyy = 0

πππ = πππA(εεε) + ννν

yyy = yyyA(εεε) + Π−1
y ννν

for the three unknowns {πππ,yyy,ννν}.

Invertibility of Θπ,ν,A. Strictly speaking, our results leveraging Πy impose the addi-

tional assumption that the monetary policymaker can in principle implement any desired

path of inflation. This assumption is routinely satisfied in standard business-cycle models.

For example, in our simple model of Section 2.1, it is straightforward to verify that Θπ,ν,A is

an upper-triangular matrix with

Θπ,ν,A(i, i) = − κσ

1 + κσφπ

and Θπ,ν,A(i, j) for i < j defined recursively via the system

Θy,ν,A(i, j) = −σ(φπΘπ,ν,A(i, j)−Θπ,ν,A(i+ 1, j)) + Θy,ν,A(i+ 1, j)

Θπ,ν,A(i, j) = κΘy,ν,A(i, j) + βΘπ,ν,A(i+ 1, j)

A.4 Leveraging time invariance

This section presents another possible approach to the matrix completion problem of Sec-

tion 4, based upon a property of the causal effect maps {Θx,ν,A,Θz,ν,A} that we refer to as

asymptotic time invariance.

Definition. Asymptotic time invariance formalizes the idea that the different columns

of the causal effect maps are not completely independent objects – for example, impulse
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Asymptotic Time Invariance of IRFs

Figure A.1: Output impulse responses to contemporaneous and forward guidance monetary policy
shocks in the HANK model of Appendix B.4.

responses to a forward guidance shock eight quarters out should be very similar to forward

guidance shocks nine quarters out, just shifted by one period. The precise definition is that,

for all s ∈ N,

lim
t→∞

Θx,ν,A(t+ s, t) = Θ̄x,ν,A(s), lim
t→∞

Θz,ν,A(t+ s, t) = Θ̄z,ν,A(s) (A.2)

where Θ̄x,ν,A and Θ̄z,ν,A are two sequences. Figure A.1 provides an illustration of this property

in the quantitative HANK model of Section 2.4, showing output impulse responses to various

different contemporaneous and forward guidance monetary shocks. We see that, for forward

guidance shocks far into the future (large shock horizon h), the output impulse responses

are left- and right-translations of each other, exactly as expected.

Time invariance as explicit structure. Imposing (A.2) after some finite horizon H

reduces the problem of dynamic causal effect identification from an infinite-dimensional one

to an H + 1-dimensional one. For example, imposing time invariance from horizon H = 0
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onwards implies that the causal effect matrices have the following particular structure:

Θq,ν,A =


Θ̄q,ν,A(0) Θ̄q,ν,A(−1) Θ̄q,ν,A(−2) . . .

Θ̄q,ν,A(1) Θ̄q,ν,A(0) Θ̄q,ν,A(−1) . . .

Θ̄q,ν,A(2) Θ̄q,ν,A(1) Θ̄q,ν,A(0) . . .
...

...
...

. . .

 , q ∈ {x, z} (A.3)

The sequence Θ̄q,ν,A can be estimated using empirical evidence on a forward guidance shock

sufficiently far into the future. (A.3) then provides the mapping from the sequence Θ̄q,ν,A

into the entire causal effect map.
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B Model details

This appendix provides details on several of the structural models used in this paper. First,

in Appendix B.1, we show how to express the simple three-equation model in our general

linearized perfect foresight notation. Appendices B.2 and B.3 then discuss the extent to

which our identification results apply to general behavioral models and to models in which

the private sector solves a filtering problem. Finally Appendix B.4 gives further details for

the HANK model of Sections 2.2 and 2.4.

B.1 Linear maps for the canonical New Keynesian model

We begin with the non-policy block. The Phillips curve can be written as
1 −β 0 . . .

0 1 −β . . .

0 0 1 . . .
...

...
...

. . .

πππ − κyyy − εεεs = 0,

while the Euler equation can be written as

−σ


0 1 0 . . .

0 0 1 . . .

0 0 0 . . .
...

...
...

. . .

πππ +


1 −1 0 . . .

0 1 −1 . . .

0 0 1 . . .
...

...
...

. . .

yyy + σiii = 0.

Letting xxx ≡ (πππ′, yyy′)′, we can stack these linear maps into the form (14). Finally the policy

rule can be written as

φππππ − iii+ ννν = 0,

which fits into the form of (15).

B.2 Behavioral models

Our general framework (14) - (15) nests popular behavioral models such as the cognitive

discounting framework of Gabaix (2020) or the sticky information of Carroll et al. (2018) or

Auclert et al. (2020). We here provide a sketch of the argument for a particular example—the

consumption-savings decision of behavioral consumers.
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Let the linear map E summarize the informational structure of the consumption-savings

problem, with entry (t, s) giving the expectations of consumers at time t about shocks at

time s. Here an entry of 1 corresponds to full information and rational expectations, while

entries between 0 and 1 can capture behavioral discounting or incomplete information. For

example, cognitive discounting at rate θ would correspond to

E =


1 θ θ2 . . .

1 1 θ . . .

1 1 1 . . .
...

...
...

. . .


while sticky information with a fraction 1 − θ receiving the latest information could be

summarized as

E =


1 1− θ 1− θ . . .

1 1 1− θ2 . . .

1 1 1 . . .
...

...
...

. . .


Let p denote an input to the household consumption-savings problem (e.g., income or interest

rates). In sequence space, we can use the matrix E to map derivatives of the aggregate

consumption function with respect to p, denoted Cp, into their behavioral analogues C̃p via

C̃p(t, s) =

min(t,s)∑
q=1

[E(q, s)− E(q − 1, s)]Cp(t− q + 1, s− q + 1)

Behavioral frictions thus merely affect the matrices that enter our general non-policy block

(14), but do not affect the separation of policy- and non-policy blocks at the heart of our

identification result.

B.3 Filtering problems

To illustrate how an asymmetry in information between the private sector and the policy

authority can break our separation of the policy and non-policy blocks in (14) - (15), we

consider a standard Lucas (1972) island model with a slightly generalized policy rule. The

policy authority sets nominal demand xt according to the rule

xt = φyyt + xt−1 + εmt
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where yt denotes real aggregate output and εmt is a policy shock with volatility σm. The

private sector of the economy as usual yields an aggregate supply curve of the form

yt = θ(pt − Et−1pt)

where the response coefficient θ follows from a filtering problem and is given as

θ =
σ2
z

σ2
z + σ2

p

with σz denoting the (exogenous) volatility of idiosyncratic demand shocks and σp denoting

the (endogenous) volatility of the surprise component of prices, pt−Et−1pt. A straightforward

guess-and-verify solution of the model gives

pt =
1

1 + θ
xt +

θ

1 + θ
xt−1

and so

σ2
p =

(
1

1 + θ

)2

Var(φyyt + εmt )

But since

yt =
1

1− θ
1+θ

φy

θ

1 + θ
εmt

it follows that θ depends on the policy rule coefficient φy, breaking our separation assumption.

B.4 HANK model details & parameterization

The HANK model sketched in Section 2.2 and used for our quantitative illustration in Sec-

tion 2.4 is exactly the same as in Wolf (2021) (including the parameterization), with only

one change: rather than imposing uniform hours worked `it = `t for all households i, we

consider a labor rationing rule that ensures that

wt`iteit + dit = eityt

for all households i. That is, the sum of labor income wt`iteit and dividend income dit for

all households i just equals aggregate output scaled by household i’s productivity. This

rationing rule is feasible since
∫ 1

0
wt`iteit +

∫ 1

0
dit = wt`t + dt = yt, and it allows us to write
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the perfect foresight consumer demand block as

ccc = C
(
yyy,πππ, iii, τττ , εεεd

)
Linearizing, we recover (17).
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C Empirical appendix

This appendix elaborates on our empirical estimation. First, in Appendix C.1, we discuss

the causal effects estimated for the counterfactuals in Section 3. Second, in Appendix C.2,

we briefly review the approach of Barnichon & Mesters (2020) to Phillips curve estimation,

used for our counterfactuals in Section 4. Third, in Appendix C.3, we provide results for an

alternative specification of the Phillips curve.

C.1 Shock & policy dynamic causal effects

Our analysis of investment-specific technology shocks follows Ben Zeev & Khan (2015), while

our monetary policy shock identification mimics that of (i) Christiano et al. (1999) and (ii)

Gertler & Karadi (2015).

Outcomes. We are interested in impulse responses of three outcome variables: output,

inflation, and the policy rate. For output, we follow Ramey (2016) and deflate per-capita

nominal GDP by the GDP deflator. For inflation, we consider the annualized growth rate

of the GDP deflator. All series are obtained from the replication files for Ramey (2016).

Finally, we consider the federal funds rate as our measure of the policy rate, obtained from

the St. Louis Federal Reserve FRED database. All series are quarterly.

Shocks & identification. We take the investment-specific technology shock series from

Ben Zeev & Khan (2015) and the high-frequency monetary policy surprise series from Gertler

& Karadi (2015), aggregated to quarterly frequency through simple averaging. Recursive

shocks are identified through the estimated VAR itself.

Estimation details. For maximal consistency, we try to estimate all impulse responses

within a common empirical specification. For the investment-specific technology shocks,

we order the shock measure first in a recursive VAR containing our outcomes of interest

(following Plagborg-Møller & Wolf, 2021), estimated on a sample from 1969:Q1–2007:Q4.

Our estimation of the Gertler-Karadi shock is identical, except for the fact that—because

of constraints on when the shock is actually available—the sample runs from 1990:Q1 –

2012:Q4. Finally, for a recursive shock, we return to our baseline long sample period, and

now identify a monetary shock as the last recursively ordered shock in a system containing

output, inflation, and the nominal rate.
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Federal Funds Rate, Christiano et al. (1999) vs. Gertler & Karadi (2015)

Figure C.1: Federal funds rate impulses to the recursive (orange) and high-frequency (purple)
monetary policy shocks of Christiano et al. (1999) and Gertler & Karadi (2015), with the peak
impulse normalized to 1 per cent.

We estimate all VARs using four lags, a constant, and deterministic linear and quadratic

trends. For the baseline investment-specific technology shock we fix the OLS point estimates.

We then construct policy counterfactuals using our identified monetary policy shocks, taking

into account their estimation uncertainty. To do so we separately draw from the different

monetary policy model posteriors and then compute the counterfactuals for each draw, thus

effectively imposing independence across the estimated VARs.

Interest rate paths. Figure C.1 shows impulse responses of the federal funds rate to

the two estimated monetary policy shocks. Consistent with previous work, we find that the

recursively identified shock induces much more persistent interest rate movements than a

shock identified via high-frequency surprises.23 Figure 3 in fact uses the displayed mean

estimates of interest rate impulse responses to illustrate different possible shock paths: a

persistent change in interest rates (equal to the shock of Christiano et al.) in the left panel,

23The third well-known example of an identified monetary policy shock—that of Romer & Romer (2004)—
induces interest rate movements that are relatively similar to our recursively identified shock, so it adds little
to our construction of policy counterfactuals.
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Policy Counterfactuals for Investment Shocks, Simple PC Extrapolation

Figure C.2: Output and inflation impulse responses to a contractionary investment-specific tech-
nology shock under the prevailing baseline rule (grey), a counterfactual rule that perfectly stabilizes
output (grey), and the optimal policy rule for a dual-mandate policymaker with preferences over
current output and averaged past inflation (see Appendix A.2) (purple). The shaded areas corre-
spond to 16th and 84th percentile confidence bands.

and the difference between the two shocks—interpretable as an interest rate news shock—in

the right panel.

C.2 NKPC estimation

Barnichon & Mesters (2020) show how to use estimates of monetary policy impulse responses

to identify a Phillips curve relationship of the form (48). For our empirical analysis in

Section 4.2 we rely on the point estimates and the confidence region corresponding to their

Gertler & Karadi analysis (which imposes the additional constraint that γf + γb = 1),

reported in Table IV and Figure V of their paper.

C.3 Alternative NKPC

For comparison, we also repeat our analysis in Section 4.2 for the simple Phillips curve re-

lationship (47) replacing our general hybrid specification. Results are reported Figure C.2.

With this alternative structure inflation moves slightly more and the reversal is faster, re-

flecting the lack of smoothing due to the absence of backward-looking terms in (47).
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