
Dynamics of Subjective Risk Premia *

Stefan Nagel�

University of Chicago,

NBER, CEPR, and CESifo

Zhengyang Xu�

City University of Hong Kong

November 5, 2021

Abstract

We examine subjective risk premia implied by return expectations of individual in-
vestors and professionals for aggregate portfolios of stocks, bonds, currencies, and com-
modity futures. While in-sample predictive regressions with realized excess returns sug-
gest that objective risk premia vary countercyclically with business cycle variables and
aggregate asset valuation measures, we find subjective risk premia extracted from survey
data do not comove much with these variables. This lack of cyclicality of subjective risk
premia is a pervasive property that holds in expectations of different groups of market
participants and in different asset classes. A similar lack of cyclicality appears in out-of-
sample forecasts of excess returns, which suggests that investors’ learning of forecasting
relationships in real time may explain much of the cyclicality gap. These findings cast
doubt on models that explain time-varying objective risk premia inferred from in-sample
regressions with countercyclical variation in perceived risk or risk aversion. We further
find a link between subjective perceptions of risk and subjective risk premia, which points
toward a positive risk-return tradeoff in subjective beliefs.

*We thank Ching-Tse Chen, Ian Martin, and seminar participants at the University of Utah and Boston
College for helpful comments.

�University of Chicago, Booth School of Business, 5807 South Woodlawn Avenue, Chicago, IL 60637,
e-mail: stefan.nagel@chicagobooth.edu

�City University of Hong Kong, Department of Economics and Finance, 83 Tat Chee Avenue, Kowloon,
Hong Kong, e-mail: zhengyxu@cityu.edu.hk



1 Introduction

Explaining the empirically observed time-variation of risk premia in asset markets has been

one of the main challenges in asset pricing research in recent decades. Evidence from in-

sample predictive regressions shows that excess returns of aggregate portfolios of equities,

bonds, currencies, and commodity futures are predictable with slow-moving predictors such

as the dividend-price ratio, yield spreads, or the futures basis. Broadly speaking, risk premia

are countercyclical, i.e., the excess returns implied by the predictive regression estimates—

which we refer to as objective risk premia—are higher in recessions than in booms.

These findings sparked a large literature of rational expectations (RE) asset pricing models

in which time-varying risk premia are generated via time-varying risk or time-varying risk

aversion (see Cochrane (2017) for a review). In these models, investors are endowed with

perfect knowledge of the underlying stochastic processes that generate payoffs, including

parameter values. As a consequence, the objective law of motion of returns that generates

the data observable to the econometrician ex post is the same as the law of motion that

investors perceive in real time.

Yet, if investors are not endowed with such perfect knowledge, the dynamics of subjective

risk premia they perceive in real time may differ systematically from the dynamics of the

objective risk premia that an econometrician’s predictive regressions extract from the data

ex post. For example, if investors are learning about stochastic process parameters, there

is a wedge between their real-time posterior beliefs about risk premia and the objective risk

premia estimated by an econometrician from return data ex post with in-sample regressions.

Fading memory, behavioral biases, and other imperfections can further magnify this wedge.

In the presence of these wedges, one cannot infer perceived risks and risk aversion from

objective risk premia estimates; subjective beliefs data is required.

In this paper, we present a pervasive stylized fact about subjective risk premia dynam-

ics that holds true for different surveys, for expectations of individuals and professionals,

for aggregate portfolios in different asset classes (stock market, Treasury bonds, currencies,
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commodity futures), and for a variety of state variables for the business cycle and asset-class

specific valuation cycles: Subjective risk premia are substantially less cyclical than objec-

tive risk premia inferred from in-sample predictive regressions. This calls into question the

common practice of equating time-variation in objective risk premia with time-varying risk

aversion or time-varying risk. Subjectively perceived risks or risk aversion appear to be sub-

stantially less sensitive to cyclical state variables than is assumed in RE models calibrated

to match time-variation in objective risk premia.

We use survey data from a variety of different sources to construct monthly or quarterly

subjective return expectations. For stock market return expectations, we use data on indi-

viduals, CFOs, and professional forecasters. For bonds, currencies, and commodity futures,

we have professionals’ expectations only. To study the dynamics of subjective risk premia,

we focus on expected returns in excess of Treasury yields over a one-year forecast horizon in

all asset classes. We then project these subjective expected excess returns on state variables.

By projecting realized excess returns on the same state variables in predictive regressions, we

can then compare the cyclicality of subjective and objective risk premia.

In the first part of our analysis for each asset class, we focus on state variables that the

prior literature has found to be good predictors of excess returns, for example, the dividend-

price ratio for stock market returns, interest-rate cycles for bonds, interest rate spreads for

currencies, and the futures basis for commodity futures. In virtually all combinations of state

variables and different types of surveys, we find that projections of subjective risk premia on

state variables yield coefficients that are substantially smaller in magnitude than projections

of realized excess returns on the same state variables. In some cases, the point estimate for

subjective risk premia has the opposite sign as for objective risk premia, but the overarching

main regularity is that subjective risk premia vary a lot less with the state variables than the

predictable component of realized excess returns does.

The state variables in this first part are asset-class specific, chosen based on earlier research

that emphasized their role as significant excess return predictor for the specific asset class. On
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the other hand, many macro-finance models generate time-varying risk premia for different

asset classes that are all tied to the state of the business cycle (Cochrane 2017). Could there

be better alignment between subjective and objective risk premia if we focus on projections of

subjective expected excess returns and realized excess returns for the different asset classes

on a common set of business cycle variables? Perhaps the misalignment is due to factors

idiosyncratic to the asset classes, not due to the common business-cycle component?

We find that this is not the case. We consider a number of commonly used business

cycle state variables, including term and default spreads, industrial production growth, a

volatility index, and a real activity factor extracted from a large number of macroeconomic

time series. Consistent with prior literature, these cyclical variables forecast excess returns

in predictive regressions in several asset classes. But for these business cycle variables, too,

we find that their association with subjective expected excess returns is much weaker than

in the in-sample predictive regressions using empirically realized returns.

Overall, combining the evidence from asset-specific predictors and the common cyclical

predictors and all asset classes and surveys, we find that the average absolute magnitude by

which a one standard deviation change in a predictor moves the subjective expected excess

return is only about one quarter to one third of the average absolute magnitude by which it

moves the objective expected excess return according to the in-sample predictive regression

evidence using realized returns. This pervasive lack of cyclical movements in subjective risk

premia casts doubt on the time-varying risk or risk aversion mechanisms that have been used

in many macro-finance models to explain cyclical fluctuations in asset prices.

Does the lack of cyclicality evident in subjective excess return expectations indicate gross

mistakes on the part of investors and forecasters, or is there a plausible belief formation

mechanism that does not imply easily detectable prediction errors that could be exploited

by sophisticated investors? To shed light on this, we examine the cyclicality of out-of-sample

(OOS) excess return forecasts. At every point in time, these OOS forecasts are constructed

based on regression coefficients that are estimated using only past data. Moreover, at every
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point in time, the forecaster evaluates which linear combination of the predictive regression

forecast and a simple trailing mean of excess returns would have done best in the past in

forecasting OOS. The OOS forecast of excess returns is then based on this optimal linear

combination. We find that these OOS forecasts are substantially less cyclical than in-sample

forecasts. Moreover, if we construct the OOS forecasts with exponential weighting of past

data to reflect fading memory as in Nagel and Xu (2021), or as combination forecasts of single-

predictor forecasts as in Rapach et al. (2010), much of the cyclicality gap to the subjective

risk premia in survey data disappears. Thus, while it is not our goal in this paper to provide

evidence on a specific belief-formation mechanism, the OOS forecast evidence shows that the

lack of cyclicality in subjective risk premia does not mean that the subjective forecasts are

unreasonable or unsophisticated.

That subjective risk premia are largely unrelated to standard business cycle indicators and

standard return predictors does not necessarily imply that subjective risk premia are constant.

Indeed, we find that time-varying subjective risk perceptions appear to have some explanatory

power for time-variation in subjective risk premia. This is in stark contrast to the literature

on time-varying objective risk premia where researchers have not had much success linking

them to time-varying risk. Due to data availability constraints, in this analysis we focus

only on stock market expectations. For all three groups of market participants (individuals,

CFOs, and professional forecasters) we find a positive link between the level of subjective

perceived stock market risk and their subjective risk premia. In other words, in terms of

subjective beliefs, there is a positive risk-return tradeoff. The dynamics of perceived risks

are heterogeneous between different groups of market participants, though. For example,

professional investors’ subjectively perceived stock market risk is more closely related to the

VIX index than the risk perceived by respondents in the CFO survey. As documented recently

by Lochstoer and Muir (2019), the CFO survey respondents seem to put substantially more

weight on realized variance during the past year than the VIX does.

Our work connects to a number of areas in the literature. Our findings are most closely
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related to earlier work by Piazzesi et al. (2015) who show that subjective bond risk premia

of professional forecasters are less cyclical than predictive regression forecasts.1 We show

that this relative lack of cyclicality result holds for a much broader range of state variables,

not only for bonds but also for return expectations in stock market, for currencies, and for

commodity futures, and in surveys of individual investors and CFOs. We further show OOS

forecasts of excess return exhibit a similar lack of cyclicality.

Much of the earlier literature on subjective return expectations has focused on whether

the sign lines up with predictive regressions. For example, for stock market return expec-

tations, Greenwood and Shleifer (2014) emphasize the procyclicality of individual investor

return expectations. In contrast, Dahlquist and Ibert (2021) find that professional forecasters

in the Livingston survey as well as asset managers issue countercyclical forecasts (see, also,

Wu (2018), Wang (2021)). Our results show that these differences between surveys are over-

shadowed by an economically much bigger common regularity: the general lack of sensitivity

of subjective risk premia to variables that forecast returns in predictive regressions (and in

rational expectations models built to match the predictive regression evidence).

The lack of cyclical movements in subjective risk premia is consistent with models that

generate volatile asset prices through time-varying subjective expectations of fundamentals

growth rather than time-varying risk aversion or time-varying perceptions of risk. Examples

include models of perpetual learning (Collin-Dufresne et al. (2017), Nagel and Xu (2021))

or diagnostic expectations (Bordalo et al. (2021)). In a similar vein, our evidence supports

models that generate bond price and exchange rate variation through subjective beliefs about

1 Other papers provide evidence that is related, but does not quite pin down the time-variation in the sub-
jective risk premium for aggregate asset classes. Bacchetta et al. (2009) show that country-level, professional
forecasters’ subjective expectations errors for currency excess are predictable with the interest-rate differential,
with the same sign and often similar magnitude as realized excess returns. However, from these country-level
results it is not clear how objective and subjective risk premia for the aggregate currency portfolio would vary
over time because the country-level results could be driven by country-specific components of the interest-rate
differential and currency excess returns. From the viewpoint of macro-finance modeling, the properties of
risk premia for aggregate strategy are arguably the most relevant. De La O and Myers (2021) find a small
positive covariance between the price-dividend ratio and total return expectations from several surveys, but
since the risk-free rate is correlated with the price-dividend ratio, their results are not directly informative
about comovement of the price-dividend ratio with the subjective risk premium.
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future interest rates, as in Piazzesi et al. (2015) and Gourinchas and Tornell (2004), respec-

tively, and commodity futures price variation through subjective beliefs about future spot

prices.

Price-growth extrapolation mechanisms as in Adam et al. (2017) and Jin and Sui (2021)

are not consistent with a complete lack of comovement between state variables that predict

realized excess returns and subjective risk premia. In these models, a positive correlation

between past returns and future subjectively expected returns is sustained in equilibrium

by a subjective risk premium that is increasing in past price growth. As a consequence, the

price level, as captured, say, by the price-dividend ratio, is positively related to the subjective

equity premium. However, as Jin and Sui (2021) show, this positive relationship can be quite

weak in a calibrated version of their model, which could be broadly consistent with the lack

of cyclicality in subjective risk premia that we find in this paper. With such a weak link

between past price growth and subjective risk premia, asset price movements largely reflect

changing expectations about future fundamentals growth, similar to models that directly

target time-varying subjective expectations of fundamentals growth.

The paper is organized as follows. Section 2 introduces the data. Section 3 presents the

main results on the cyclicality of subjective and objective risk premia. Section 4 compares

the cyclicality of subjective risk premia and OOS forecasts. Section 5 looks at the subjective

risk-return tradeoff. Section 6 concludes.

2 Data

In this section we describe the survey data and how we construct subjective return expecta-

tions in each asset market. We also describe the return predictors and business cycle variables.

Appendix A provides more detailed information on the data sources and the exact timing

assumptions that we use to match data on returns, predictor variables, and survey data.
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2.1 Subjective expectations and returns data

Table 1 below reports the sample periods and moments of subjective return expectations

in excess of risk-free rates. For comparison, we also report the moments of realized excess

returns for the full sample period. We construct these measures as follows.

2.1.1 Stock market

For aggregate stock market return expectations we use a series of individual investor ex-

pectations, CFO expectations, and a series of professional forecaster expectations from the

Livingston survey. The individual investor series is from Nagel and Xu (2021). It covers

several surveys in the period 1972 to 1977 and has continuous quarterly coverage from 1987

onwards. The series is constructed by combining information from the UBS/Gallup survey,

the Conference Board survey, and the Michigan Survey of Consumers, plus several smaller

surveys of brokerage and investment firm customers. The second source of stock return ex-

pectations is the Graham-Harvey CFO survey (Ben-David et al. 2013) which asks about the

expectations of annual S&P 500 returns. The series is available from 2000 Q3 at quarterly

frequency (with gaps) and we directly use the mean respondents’ expected return each pe-

riod. The third source is the Livingston Survey maintained by the Federal Reserve Bank of

Philadelphia. The series provides semi-annual forecasts starting in June 1952. From June

1992 onwards, we use the ratio of twelve-month to zero-month mean level forecasts of the

S&P500 stock index (or its predecessors) to measure price growth expectations. In earlier

periods, where the zero-month nowcast is not available, we use the annualized ratio of twelve-

month to six-month forecasts. We adjust these price growth expectations with the dividend

yield to arrive at return expectations.2

2 We use the following decomposition:

ẼtRt+1 =
ẼtPt+1

Pt
+

Dt

Pt
Ẽt

(
Dt+1

Dt

)
− 1.

Similar to Adam et al. (2017), we set the expected dividend growth ẼtDt+1/Dt equal to the sample average
of S&P annual dividend growth over the post-WWII sample period 1946–2020, which is 1.064.
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For each subjective one-year expected equity return series, ẼtRt+1, we then construct the

subjective risk premium by subtracting the one-year Treasury yield Rf,t that prevailed at the

time of the survey,

ẼtRet+1 = ẼtRt+1 −Rf,t (1)

For comparison, we also examine realized equity returns on the CRSP value-weighted index

over the one-year forecast period that are also expressed as excess return over and above the

one-year Treasury yield.

2.1.2 Treasury bond market

For bond return expectations of professional forecasters, we use the Blue Chip Financial

Forecasts (BCFF) survey. Par yield forecasts are available for 6-month, 1-year, 2-year, 5-

year, and 10-year bond maturities starting from January 1988. We take the average across

forecasters in each survey month. The forecasts are forecasts of the quarterly average of yields

of a particular maturity for the current quarter, next quarter, and up to several quarters

ahead. We follow Kim and Orphanides (2012) and treat these forecast as approximately

equal to a mid-quarter forecast. We interpolate linearly between these mid-quarter forecasts

to obtain forecasts at a one-year horizon. To estimate a full expected par yield curve, we fit a

Nelson-Siegel model to these forecasts period-by-period, as in Diebold and Li (2006). We then

bootstrap zero-coupon yield forecasts from these par yield forecasts. The final step for each

maturity is then to construct implied return expectations by relying on the approximation

ẼtRnt+1 ≡ Ẽt

[
(1 + Y n

t )n(
1 + Y n−1

t+1

)n−1 − 1

]
≈ (1 + Y n

t )n(
1 + ẼtY n−1

t+1

)n−1 − 1. (2)

Given the time-t one-year ahead forecast of the (n − 1)-year zero-coupon yield ẼtY n−1
t+1 and

the current n-year zero-coupon yield, we can then calculate ẼtRnt+1 for n ∈ {2, 5, 7, 10}

and aggregate by taking an equal-weighted average across maturities. Finally, we construct

subjective expected excess returns, ẼtRet+1, by subtracting the one-year Treasury yield from
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Table 1
Moments of Excess Returns and Excess Return Expectations

This table reports the frequencies, sample periods, means (%), and standard deviations (%) of realized one-
year excess returns and survey-implied excess return expectations in each asset market. For stock market, we
report the excess returns on the aggregate stock market. For Treasury bonds, we report the equal-weighted
average excess returns with maturities of two, five, seven, and ten years. For foreign exchange, we report the
average excess returns on the basket of developed currencies. For commodities, we report the buy-and-hold
excess returns on metals and the crude oil, respectively. Sample periods of survey expectations are reported
in terms of survey time.

Frequency Sample Period Mean S.D.

A. Stock

Realized Monthly 1926/12–2020/12 8.15 21.15

NX Quarterly 1972Q3–2021Q2 5.95 1.98

CFO Quarterly 2000Q3–2021Q2 3.98 1.75

Livingston Semi-annually 1952Q2–2020Q4 4.09 5.86

B. Treasury bond

Realized Monthly 1952/03–2020/12 1.32 5.08

BCFF Monthly 1988/01–2020/12 -0.76 1.70

C. Foreign exchange

Realized Monthly 1984/10–2021/06 1.78 9.76

CE Monthly 1986/08–2021/06 0.50 3.16

D. Commodity

Realized, Metals Monthly 1978/09–2021/06 1.53 25.54

CE, Metals Monthly 1995/08–2021/06 0.70 5.67

Realized, Oil Monthly 1984/12–2021/06 8.49 33.68

CE, Oil Monthly 1995/08–2021/06 2.46 9.70
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ẼtRt+1.

To compare subjective risk premium with realized excess returns, we use the CRSP Trea-

sury Index returns for maturities n ∈ {2, 5, 7, 10}. As for subjective expected excess return,

we form an equal-weighted average of these returns and subtract the one-year Treasury yield

to obtain excess returns.

2.1.3 Foreign exchange market

In our analysis of currencies we focus on the expected returns on a portfolio of developed

market currencies from the perspective of a US investor. We use professional forecasts of

exchange rates from FX4casts and Consensus Economics (CE) to construct subjective ex-

pected returns on this currency portfolio. We primarily use CE forecasts and supplement

with FX4casts when CE forecasts are unavailable. Consensus forecasts in CE are arithmetic

averages of individual forecasts; FX4casts uses a geometric average. With the time-t mean

forecast ẼtSit+1 of the one-year ahead spot exchange rate Sit+1 of country i (in units of foreign

currency per dollar), we approximate the subjective expected excess return on a US investor’s

position in an individual country’s currency

ẼtRet+1 ≡ Ẽt
[
Ft
St+1

− 1

]
≈ F it

ẼtSit+1

− 1, (3)

where F it is the one-year forward rate at time t. Developed market currencies in our sample

include Australia, Canada, Denmark, Germany (replaced by the Euro from 1999 onward),

Japan, New Zealand, Norway, Sweden, Switzerland, and United Kingdom. To avoid a shift

in sample composition at the Euro introduction in 1999, we use the German Mark as the

only representative from the Eurozone currencies prior to Euro introduction. We calculate

the expected return on the developed market currency portfolio as an equal-weighted average

of the individual currencies’ ẼtRet+1.

The realized excess returns that we compare with subjective risk premia are constructed

in similar fashion from forward and spot rates as Ret+1 = Ft/St+1 − 1.
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2.1.4 Commodity futures market

We use commodity spot price forecasts to compute subjective expected returns on buy-and-

hold futures positions. We obtain consensus spot price forecasts from CE that cover major

commodities in metals and energy. The publication was quarterly before 2012, bi-monthly

until 2015, and switched to a monthly release cycle since February 2016.3 We use the set

of commodities with the longest history and highest coverage in CE: the oil market uses

Crude Oil (WTI); the metals sector includes Gold, Silver, Aluminum, and Copper. These

commodities cover the major components of the S&P GSCI index. Since CE commodity

forecasts are also for quarterly average, we use the same linear interpolation as before to

obtain one-year forecasts.

Using these spot price forecasts, we then calculate the expected excess return from entering

a one-year futures position at time t, with one-year futures price Ft, and holding it gets settled

at maturity at t+1 at the spot price St+1 (or the futures position exited very close to maturity

at a futures price very close to the spot price):

ẼtRet,t+1 ≡
ẼtSt+1

Ft
− 1. (4)

We obtain spot price and futures data from Datastream and Bloomberg. When spot price

data is not available for a commodity, we follow Koijen et al. (2018) and extrapolate spot

prices from Bloomberg generic futures data. We construct a sector-level subjective risk

premium series for metals by taking equal-weighted average of individual subjective expected

excess returns.

We construct realized excess returns along similar lines as Ret+1 = St+1/Ft, with equal-

weighted average within the metals sector.

3 During the period of August 2002 to March 2004, and the third quarter of 2007, there are no forecasts
available as no surveys were undertaken by the previous owners of the publication.
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2.2 Return Predictors and Cyclical Indicators

In this section we introduce the main return predictors and cyclical indicators that will be

used in later analysis. For each asset class, we examine several asset class-specific return

predictors that have appeared in the prior literature. We also examine a common set of

business cycle indicators. Table 2 below reports the correlations of return predictors and

cyclical indicators.

2.2.1 Asset-class specific predictors

The stock market return predictors are the log consumption-wealth ratio (CAY, quarterly,

starting in 1951Q1) from Lettau and Ludvigson (2001), the repurchase-adjusted dividend

price ratio of the CRSP value-weighted index (D/P, monthly, starting end of 1926) and

a long-run exponential average of past per-capita real aggregate dividend growth (EXPD,

quarterly, starting end of 1926) from Nagel and Xu (2021), as well as net equity expansion

(NTIS, monthly, starting from end of 1926) from Welch and Goyal (2008), calculated as the

ratio of twelve-month moving sums of net issues by NYSE-listed stocks divided by the total

market capitalization of NYSE stocks at the end of the twelve-month window.

For Treasury bonds, we use two asset-class specific predictors. The first predictor is the

macro factor from Ludvigson and Ng (2009) (“LN”). It is constructed as the fitted value from

regressing the equal-weighted average bond excess returns on lagged principle components

of a broad set of macro variables. We use the six-factor version of their model. The second

predictor is the cycle factor from Cieslak and Povala (2015) (“Cycle”). To construct this

factor, we first regress zero-coupon yields of maturities between one to fifteen years from

Liu and Wu (2021) on trend inflation to obtain the short-maturity cycle and the average

longer-maturity cycles. The fitted value from regressing the equal-weighted average bond

excess returns on these two cycle components is then the cycle factor.

In our analysis of foreign exchange, we consider a US investor’s position in a portfolio of

currencies as in Lustig et al. (2014). Following their analysis of excess return predictability,
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we use the average one-year forward discount as predictor. For each currency we construct

the forward discount,

FDt ≡
Ft
St
− 1, (5)

from one-year forward rates Ft and spot rates St. We then average these currency-level

forward discount across all currencies in the portfolio.

Finally, for commodities we use two asset-class specific predictors. The first predictor, as

in Hong and Yogo (2012), is the one-year futures basis defined as

Basist ≡
Ft
St
− 1, (6)

where Ft is the one-year futures price and St is the spot price (approximated by extrapolating

from generic futures if not available, as discussed above). We average the commodity-specific

bases within metals futures. The second predictor is open interest growth following Hong

and Yogo (2012). Using data from Commitments of Traders, we multiply open interests in

terms of number of outstanding contracts by the number of units per contract and the spot

price per unit to get dollar open interest.4 We then sum up dollar open interests within each

sector. As a final step, we calculate percentage growth rates over one-year periods.

2.2.2 Business-cycle indicators

The first business-cycle indicator is industrial production growth constructed as the year-

over-year log growth using data from FRED database at the Federal Reserve Bank of St.

Louis. For ease of interpretation, we take the negative of industrial production growth (N-

IP) so that the series is countercyclical. The second indicator is the term spread (TERM)

between long- and short-maturity yields. For long-maturity yields, we use the long interest

rates from Robert Shiller’s website. For short-maturity yields, we use the annualized three-

month Treasury bill yields. The third indicator is the default spread (DEFAULT) between

4 For Aluminum, we use open interest data from London Metal Exchange instead given the limited coverage
of Aluminum from Commitments of Traders.
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the Moody’s Seasoned Baa and Aaa yields, obtained from FRED. The fourth indicator is

the real factor (F1) from Ludvigson and Ng (2009) which is the first principal component of

a broad set of macroeconomic variables. The last indicator we use is the square of CBOE

Volatility Index (VIX2).5 Given its relatively short history, we supplement the series with

the news-implied volatility index (“NVIX”) from Manela and Moreira (2017). We estimate

the relation between VIX and NVIX in the overlapping samples and impute VIX before 1990

with the fitted values from this regression.6 All cyclical indicators are available at a monthly

frequency. We lag N-IP and F1 by one-month to account for publication lags.

5 We use VIX2 instead of VIX because asset pricing theories typically relate risk premium to variance, not
standard deviation.

6 The regression uses monthly data from January 1990 to March 2016 and yields:

V IX = −2.940 + 0.919×NV IX,

with an R2 of 0.59.
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Table 2
Correlations of Return Predictors and Cyclical Indicators

This table reports the unconditional correlations of return predictors and cyclical indicators. For cyclical
indicators, “N-IP” is the negative of 12-month log change in U.S. industrial production index; “Term” is
the spread between long interest rates from Robert Shiller’s website and 3-month Treasury yields; “Default”
is the spread between Moody’s Seasoned Baa and Aaa Corporate Bond yields; “F1” is the real factor from
Ludvigson and Ng (2009); “VIX2” is the CBOE volatility index. All indicators are countercyclical. For equity,
“CAY” is the aggregate log consumption-wealth ratio from Lettau and Ludvigson (2001); “D/P” and “EXPD”
are the repurchase-adjusted log dividend-price ratio and the experienced payout growth from Nagel and Xu
(2021); “NTIS” is the net equity expansion from Welch and Goyal (2008). For Treasury bond, “LN” is the
macro factor from Ludvigson and Ng (2009); “Cycle” is the cycle factor from Cieslak and Povala (2015). For
currency, “Avg. FD” is the average forward discount on the basket of developed currencies. For commodity,
“Basis” is the percentage difference between futures and spot prices; “OI” is the open interest growth. “M”
and “E” in the last block denote metals and energy, respectively.

N-IP Term Default F1 VIX2 CAY D/P EXPD NTIS LN Cycle Avg. FD Basis (M) OI (M) Basis (E) OI (E)

N-IP 1.00

Term 0.05 1.00

Default 0.26 0.20 1.00

F1 0.63 0.15 0.51 1.00

VIX2 0.08 -0.00 0.31 0.31 1.00

CAY -0.17 0.22 -0.05 0.08 -0.04 1.00

D/P 0.17 0.10 0.50 0.31 0.15 -0.04 1.00

EXPD 0.15 -0.39 -0.13 -0.05 0.06 -0.11 -0.04 1.00

NTIS 0.01 -0.16 -0.18 -0.29 -0.02 0.02 -0.14 0.04 1.00

LN 0.48 0.54 0.21 0.50 0.18 1.00

Cycle -0.19 0.50 -0.13 -0.02 -0.01 0.18 1.00

Avg. FD 0.22 0.43 0.12 0.29 0.02 1.00

Basis (M) 0.02 -0.31 0.47 -0.00 -0.10 1.00

OI (M) -0.03 0.17 -0.14 -0.16 -0.17 -0.14 1.00

Basis (E) 0.25 -0.04 0.28 0.20 0.28 -0.03 0.00 1.00

OI (E) -0.30 0.04 -0.19 -0.31 -0.20 -0.00 0.34 -0.43 1.00

15



3 Dynamics of Subjective and Objective Risk Premia

We now examine how much variation in subjective and objective expectations is associated

with movements in the asset-class specific predictors and the cyclical indicators. We regress

subjective expected excess returns from surveys on the predictor variables and compare the

results to regressions in which future realized excess returns are the dependent variable. For

ease of interpretation, we standardize all predictor variables to have unit standard deviations

in the full sample that we use in the predictive regressions to estimate objective risk premium

dynamics. With standardized predictors we can compare amount of variation in objective

and subjective risk premia by comparing the magnitudes of slope coefficients in regressions

with subjective expected excess returns as dependent variable and those with realized excess

returns as dependent variable. For parsimony, while all regressions include an intercept, we

omit the intercept estimates from all tables.

The realized returns regressions are run with monthly or quarterly data depending on

data availability for the predictor variable. To match realized return measurement with the

one-year forecast horizon in our subjective expected return data, we use realized excess re-

turns cumulated over one-year periods as the dependent variable. We use a stationary block

bootstrap to account for the autocorrelations in residuals induced by the overlapping return

windows in the dependent variable. We also use a bootstrap approach to get coefficients ad-

justed for the predictive regression bias discussed in Stambaugh (1999). Appendix B provides

more details of the bootstrap approach. In regressions where subjective expected returns are

the dependent variable, we adjust p-values for heteroskedasticity and autocorrelation in re-

gression residuals using the equal-weighted cosine (EWC) test from Lazarus et al. (2018).
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Table 3
Regressing Realized Equity Excess Returns on Predictors and Cyclical Indicators

Dependent variable is the one-year cumulative excess returns on the CRSP index. The full sample period
is from December 1926 to December 2020. Column variables are described in Section 2.2. Re

past denotes the
past one-year excess returns. All independent variables are standardized to have unit standard deviations in
the full sample period starting from December 1925. In each block, the first row reports the OLS estimates
multiplied by 100; the second row reports the bias-adjusted coefficients from bootstrap; the third row reports
the EWC t-statistics (without bias adjustment) following Lazarus et al. (2018); the fourth row reports the
bootstrapped p-values. A stationary bootstrap is used with an optimal block length determined by Politis
and White (2004).

Asset-Specific Predictors Business-Cycle Indicators

CAY D/P EXPD NTIS N-IP Term Default F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

Coeff 4.78 5.34 6.40 6.68 -6.48 -7.29 -5.23 -5.23 1.74 1.53 4.13 4.30 3.32 3.24 4.24 3.92 1.49 1.22

{bias-adj.} {3.24} {3.71} {6.01} {5.83} {-6.44} {-7.19} {-4.87} {-4.93} {1.55} {1.26} {4.40} {4.62} {2.84} {2.51} {4.54} {4.16} {1.82} {1.48}
[t-stat] [2.49] [2.44] [3.02] [3.52] [-2.82] [-2.65] [-1.81] [-1.75] [0.62] [0.69] [2.94] [2.87] [1.53] [1.78] [3.17] [2.49] [0.96] [0.83]

(p-value) (0.08) (0.10) (0.00) (0.00) (0.03) (0.04) (0.16) (0.16) (0.51) (0.49) (0.00) (0.01) (0.12) (0.13) (0.00) (0.04) (0.31) (0.39)

Re
past -3.52 0.87 -3.51 -1.25 -0.70 -1.28 -0.24 -1.07 -1.01

{bias-adj.} {-3.32} {0.36} {-3.70} {-1.47} {-1.23} {-1.39} {-0.55} {-0.65} {-1.24}
[t-stat] [-1.90] [0.37] [-1.84] [-0.61] [-0.35] [-0.54] [-0.11] [-0.45] [-0.44]

(p-value) (0.12) (0.71) (0.09) (0.51) (0.74) (0.55) (0.91) (0.69) (0.62)

Adj. R2 0.03 0.06 0.09 0.09 0.08 0.11 0.06 0.06 0.01 0.01 0.04 0.04 0.02 0.02 0.06 0.06 0.00 0.00

N 272 272 1117 1117 377 373 1117 1117 1129 1117 1129 1117 1129 1117 717 717 1129 1117
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3.1 Stock market

To provide basis for comparison, Table 3 first reports the results of predicting future one-year

realized excess returns. All asset-class specific predictors except NTIS are at least marginally

significant (p < 0.10) when used as sole predictor variable. The magnitude of slope coefficient

point estimates are similar and quite large for all of them. One standard deviation move in

the predictor variable is associated with a substantial change in objective expected returns

of 3.24 to 6.44 percentage points over a one-year forecast horizon after bias adjustment.

For cyclical indicators, TERM and F1 are the only ones that are individually at least

marginally significant. The magnitudes of point estimates are also much more mixed than for

the asset-class specific predictors, ranging from 1.55 for N-IP to 4.54 for F1. However, without

exception, for all predictors in both groups, the point estimates indicate a countercyclical

pattern of objective risk premia: low after following booms, high following downturns in

asset prices or the business cycle.

When past one-year realized excess returns are included as predictor in the regression,

past returns are never statistically significant except marginally when used along with EXPD

(p = 0.09).

Table 4 shows the results of regressing subjective excess return expectations from different

surveys on in-sample return predictors as well as past one-year excess returns. Panel A

presents the results for individual investor expectations. Results for CFO expectations are

shown in Panel B. Looking across all regressions, a striking commonality is that the magnitude

of slope coefficients is generally much smaller than in the realized excess return regressions in

Table 3. For example, in the single-predictor regressions, the biggest coefficient is 1.12 with

TERM in Panel B. In contrast, the largest coefficient estimate in absolute magnitude is 6.44

for EXPD in in Table 3 (for TERM it is 4.40). Therefore, subjective expected excess returns

of individual investors and CFOs vary much less with these standard predictor variables than

objective risk premia do.
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Table 4
Regressing Survey Equity Excess Return Expectations on Predictors and Cyclical Indicators

Dependent variables are the one-year-ahead excess return expectations from Nagel and Xu (2021), the CFO
survey, and the Livingston survey, respectively. Column variables are described in Section 2.2. Re

past denotes
the past one-year excess returns. All predictors are standardized to have unit standard deviations in the full
sample period starting from December 1925. The first row in each block reports the OLS estimates multiplied
by 100. EWC p-values following Lazarus et al. (2018) are reported in parentheses.

Asset-Specific Predictors Business-Cycle Indicators

CAY D/P EXPD NTIS N-IP Term Default F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)

A. NX

Coeff -0.75 -0.75 -0.24 -0.00 0.17 0.20 -0.36 -0.55 0.98 1.57 0.44 0.46 -0.30 0.57 0.15 0.63 -0.01 0.27

(p-value) (0.04) (0.03) (0.52) (1.00) (0.63) (0.54) (0.48) (0.23) (0.17) (0.01) (0.20) (0.18) (0.35) (0.13) (0.68) (0.08) (0.95) (0.14)

Re
past 0.87 0.87 0.88 0.98 1.16 0.88 1.07 1.13 1.13

(p-value) (0.01) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

Adj. R2 0.21 0.33 0.00 0.11 0.00 0.12 0.01 0.16 0.04 0.23 0.04 0.16 -0.00 0.13 -0.00 0.16 -0.01 0.15

N 142 142 142 142 142 142 142 142 143 142 143 142 143 142 142 142 143 142

B. CFO

Coeff -0.23 -0.15 -0.47 -0.41 -0.94 -0.92 0.74 0.67 0.32 1.64 1.12 1.15 -0.15 0.47 0.08 0.59 0.01 0.23

(p-value) (0.64) (0.76) (0.32) (0.31) (0.01) (0.02) (0.01) (0.03) (0.55) (0.02) (0.00) (0.00) (0.60) (0.18) (0.68) (0.07) (0.92) (0.16)

Re
past 0.35 0.30 0.16 0.20 0.89 0.39 0.63 0.85 0.73

(p-value) (0.18) (0.29) (0.60) (0.48) (0.01) (0.08) (0.08) (0.03) (0.05)

Adj. R2 -0.00 0.01 0.04 0.05 0.35 0.34 0.08 0.07 -0.01 0.12 0.37 0.44 -0.01 0.03 -0.01 0.06 -0.01 0.04

N 77 77 77 77 77 77 77 77 79 77 79 77 79 77 77 77 79 77

C. Livingston

Coeff -1.70 -1.42 1.01 0.42 -0.37 -0.59 -1.05 -0.88 5.62 5.08 1.06 1.03 4.18 3.41 2.67 2.23 1.65 1.23

(p-value) (0.08) (0.09) (0.48) (0.73) (0.40) (0.17) (0.43) (0.34) (0.00) (0.00) (0.38) (0.37) (0.03) (0.04) (0.00) (0.00) (0.00) (0.02)

Re
past -2.70 -2.78 -2.94 -2.83 -2.28 -2.87 -1.79 -1.67 -2.23

(p-value) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.05) (0.08) (0.06)

Adj. R2 0.06 0.17 0.01 0.13 -0.00 0.14 0.01 0.14 0.27 0.35 0.03 0.16 0.22 0.26 0.23 0.26 0.13 0.20

N 138 138 138 138 138 138 138 138 138 138 138 138 138 138 122 122 138 138
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With subjective expected excess returns from the Livingston survey in Panel C, the mag-

nitudes of estimated slope coefficients for the asset-class specific predictors are also fairly

small. Only for the cyclical indicators, we obtain coefficients (5.62 for N-IP, 4.18 for DE-

FAULT) that are in the ballpark of the magnitudes that we obtained in the realized return

regressions. However, for these two predictors, the coefficients in the realized returns regres-

sion in Table 3 are actually quite small (1.55 and 2.84, respectively), so there is not a great

match between subjective and objective risk premia in these cases either.

Since evidence for extrapolation from recent past returns play an important role in earlier

studies of return expectations data, e.g., Greenwood and Shleifer (2014), we also run versions

of these regressions with past one-year excess returns as a regressor. Past returns often have

substantial explanatory power, with positive effects on subjective risk premia of individuals

and CFOs, indicating extrapolation, and negative effects for professionals in the Livingston

survey, indicating a contrarian influence of past returns. Therefore, recent past returns are

a potentially important influence on subjective return expectations that one should seek to

understand. The heterogeneity between individuals/CFOs and professional forecasters in

past returns’ influence on expectations hints that a model with heterogeneous beliefs may

be needed to understand the asset pricing consequences of belief formation, perhaps as in

Barberis et al. (2015) with extrapolators and traders that are rationally contrarian (although

predictions from this model would be difficult to square with the lack of predictability as-

sociated with past returns in the realized return regressions in Table 3). However, for our

purposes, the important take-away from the table is that the inclusion of past returns does

not have a substantial impact on the slope coefficient estimates for the slower-moving asset-

specific predictors and cyclical indicators that are the focus of our analysis. Whatever the

mechanism that let past returns affect return expectations, this mechanism seems to be

largely distinct from the variables and the lower frequencies that have been emphasized in

macro-finance modeling of asset markets.

Figure 1 provides a visual summary of our results on objective and subjective risk premia
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Figure 1
Coefficients from Regressing Equity Excess Returns on Predictors and Cyclical Indicators

Each bar plots the slope coefficients from regressing realized excess returns and survey excess
return expectations on predictors and cyclical indicators while controlling for past one-year
excess returns. The coefficients for realized excess returns are bias-adjusted using bootstrap.
The blue bars use realized excess returns; the red bars use survey expectations from Nagel
and Xu (2021); the yellow bars use the CFO survey; the purple bars use the Livingston
survey.
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in the stock market. While our discussion above focused on estimates in single-predictor

regressions, this figure shows the coefficient estimates when past returns are included in

the regression along the predictor. The blue bars show the coefficients from the realized

return regressions in Table 3. The other bars show the corresponding coefficients for the

same predictor with the survey expected excess returns as dependent variable as in Table 4.

The figure clearly illustrates that subjective risk premia have much lower sensitivity to the

predictor variables—with the exception of the Livingston survey for N-IP and DEFAULT—

than the objective risk premia captured by the predictive regressions with realized returns.

In stark contrast to the results in Figure 1, in a RE model of time-varying risk premia,

the sensitivities of objective and subjective risk premia would be the same. Specific details

of the results for particular predictors aside, the fact that subjective risk premia do not seem

to move much with standard cyclical variables casts doubt on the empirical importance of

time-varying risk or time-varying risk aversion as a major source of aggregate stock market

price movements.

Price-growth extrapolation mechanisms as in Adam et al. (2017) and Jin and Sui (2021)

produce pro-cyclical movements in subjective risk premia and hence, for example, a negative

relationship between D/P and subjective risk premia. This relationship could be sufficiently

weak to still be consistent with a largely acyclical subjective stock market risk premium. Jin

and Sui (2021) report that a one standard deviation increase in their sentiment state variable

pushes up annualized subjective expected stock market returns by about 0.60 percentage

points. This would correspond roughly to a coefficient of -0.60 for CAY or D/P in our

regressions in Table 4—which is in the ballpark of what we find for individual investor and

CFO expectations in Panels A and B. Of course, most of these point estimates are statistically

not significantly different from zero so we cannot say with much confidence whether these

coefficients are truly different from zero.

3.2 Treasury bond market
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Table 5
Regressing Bond Average Excess Returns on Predictors and Cyclical Indicators

In Panel A, dependent variable is the equal-weighted average of one-year excess returns on CRSP Treasury
Indexes with maturities of two, five, seven, and ten years. The sample period is from March 1952 to December
2020. In Panel B, dependent variable is the equal-weighted average of one-year-ahead excess return expec-
tations from BCFF with the same set of maturities as in Panel A. The sample period is from January 1988
to December 2020. Column variables are described in Section 2.2. Re

past denotes the past one-year average
excess returns. All independent variables are standardized to have unit standard deviations in the full sample
period starting from December 1925. The first row in each panel reports the OLS estimates multiplied by
100. In Panel A, bias-adjusted coefficients from bootstrap are reported in braces; EWC t-statistics (without
bias adjustment) following Lazarus et al. (2018) are reported in brackets; bootstrapped p-values are reported
in parentheses. A stationary bootstrap is used with an optimal block length determined by Politis and White
(2004). In Panel B, EWC p-values following Lazarus et al. (2018) are reported in parentheses.

Asset-Specific Predictors Business-Cycle Indicators

LN Cycle N-IP Term Default F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

A. Realized

Coeff 1.94 2.33 2.85 2.85 0.57 0.66 1.50 1.88 1.20 1.26 1.00 1.07 0.31 0.32

{bias-adj.} {1.94} {2.32} {2.29} {2.38} {0.75} {0.85} {1.48} {1.92} {1.36} {1.35} {1.08} {1.13} {0.30} {0.33}
[t-stat] [4.83] [4.61] [3.97] [3.94] [0.60] [0.57] [2.92] [4.09] [1.73] [1.48] [1.94] [1.63] [1.19] [1.20]

(p-value) (0.00) (0.00) (0.01) (0.02) (0.61) (0.60) (0.00) (0.00) (0.12) (0.13) (0.04) (0.07) (0.22) (0.20)

Re
past -0.90 -0.16 -0.13 -0.91 -0.22 -0.22 -0.09

{bias-adj.} {-0.85} {-0.37} {-0.12} {-0.94} {-0.13} {-0.10} {0.02}
[t-stat] [-1.22] [-0.31] [-0.19] [-1.78] [-0.29] [-0.28] [-0.15]

(p-value) (0.20) (0.79) (0.84) (0.08) (0.73) (0.77) (0.88)

Adj. R2 0.14 0.16 0.24 0.24 0.00 0.00 0.09 0.12 0.02 0.02 0.03 0.03 0.00 0.00

N 717 717 578 578 826 814 826 814 826 814 717 717 826 814

B. BCFF

Coeff 0.37 0.50 0.83 0.83 0.54 0.67 0.30 0.33 0.30 0.41 0.57 0.75 0.17 0.22

(p-value) (0.16) (0.05) (0.00) (0.00) (0.31) (0.22) (0.15) (0.11) (0.47) (0.35) (0.02) (0.00) (0.13) (0.07)

Re
past -0.35 0.02 -0.25 -0.22 -0.24 -0.44 -0.28

(p-value) (0.08) (0.90) (0.27) (0.26) (0.32) (0.06) (0.24)

Adj. R2 0.03 0.05 0.23 0.22 0.02 0.03 0.03 0.04 0.01 0.02 0.07 0.11 0.02 0.04

N 397 397 397 397 397 397 397 397 397 397 397 397 397 397
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Table 5 turns to the Treasury bond market. The dependent variable in Panel A is an

equal-weighted average of one-year excess returns on CRSP Treasury Indexes with maturities

of two, five, seven, and ten years. We observe realized returns at monthly frequency, hence

as in the earlier stock market return regressions, the dependent variable is measured over

overlapping annual windows and we use block-bootstrapped p-values to account for this

overlap. In Panel B, the dependent variable is the subjective expected excess returns from

the Blue Chip survey of professional forecasters. As in the case of realized returns, we use

an equal-weighted average of subjective expected excess returns over two-, five-, seven-, and

ten-year maturities.

In Panel A, for realized excess returns, the two asset-class specific predictors LN and

CYCLE are statistically significant at conventional levels (p < 0.01 for LN; p < 0.05 for

CYCLE). If used as single predictors, they get point estimates of 1.94 and 2.29, respectively.

This means that a one standard deviation move in the predictor is associated with between

roughly 2pp movement in objective expected excess returns. Among the cyclical indicators,

TERM and F1 are also significant predictors at conventional levels, and DEFAULT marginally

so. The magnitude of expected return variation associated with the cyclical indicators is

generally smaller than for LN and CYCLE.

Interestingly, for all of these predictor variables, we again see much smaller coefficient

estimates when subjective expected excess returns are the dependent variable in Panel B.

Here we obtain the maximum coefficient with the CYCLE predictor variable, but at 0.83 the

magnitude is still much smaller than in Panel A (2.29). Including excess returns over the

past year as an additional predictor variable generally has very little effect, both in Panel A

and B.

Figure 2 summarizes the results, again focusing on coefficient estimates in regressions with

past returns included as controls. The figure shows very clearly the different magnitudes of the

slope coefficients in the regressions with realized returns, shown as blue bars, and regressions

with subjective expected excess returns, shown as red bars. Thus, in the Treasury bond
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Figure 2
Coefficients from Regressing Bond Average Excess Returns on Predictors and Cyclical

Indicators

Each bar plots the slope coefficients from regressing equal-weighted average of realized excess
returns and survey excess return expectations on predictors and cyclical indicators while
controlling for past one-year excess returns. The coefficients for realized excess returns are
bias-adjusted using bootstrap. Blue bars use the realized excess returns and red bars use
survey expectations from BCFF.
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market, too, subjective risk premia are much less sensitive to cyclical predictor variables

than objective risk premia are.

3.3 Foreign exchange market

Table 6 presents results for foreign exchange. The dependent variable in Panel A is the

realized excess return on a portfolio of developed market currencies from the viewpoint of a

US-based investor. The asset-class specific predictor is the average forward premium on the

developed currencies as in Lustig et al. (2014).

In Panel A, all predictors except TERM produce statistically significant or at least

marginally significant coefficient estimates. The magnitudes are substantial. The one stan-

dard deviation change in the average forward premium is associated with a change of 3.75pp

in predicted realized excess returns. Among the cyclical indicators, the strongest predictor

is N-IP. A one standard deviation move in N-P is associated with a change of 6.66pp in the

objective expected excess returns on a US investors’ currency portfolio.

The estimates in Panel B for subjective expected excess returns show a sharp contrast to

Panel A. Point estimates are generally much smaller and none of the coefficient estimates is

significantly different from zero according to conventional levels.

As earlier in the case of bond excess returns, controlling for the past one-year return on the

currency portfolio does not have much effect on the point estimates of the other predictors,

neither for realized excess returns, nor for subjective expected excess returns.

Figure 3 visualizes the magnitude of the coefficients, focusing on the regressions that

include past returns along with the predictor variable. The figure clearly shows the sharp

contrast between the large coefficients obtained in realized excess return prediction regressions

and the extremely small coefficients in the subjective expected excess return regressions.

There is therefore little support for the notion that the objective return premia obtained in

ex-post regressions with realized excess returns reflect ex-ante subjective risk premia from

the viewpoint of the professional forecasters.
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Table 6
Regressing FX Average Excess Returns on Predictors and Cyclical Indicators

In Panel A, dependent variable is the average realized one-year excess returns on the basket of developed
currencies. The sample period is from October 1984 to June 2021. In Panel B, dependent variable is the
one-year-ahead average excess return expectations on the same basket of developed currencies from CE and
FX4casts. The sample period is from August 1986 to June 2021. Column variables are described in Section
2.2. Re

past denotes the past one-year excess returns. All independent variables are standardized to have unit
standard deviations in the full sample period starting from December 1925. The first row in each panel reports
the OLS estimates multiplied by 100. In Panel A, bias-adjusted coefficients from bootstrap are reported in
braces; EWC t-statistics (without bias adjustment) following Lazarus et al. (2018) are reported in brackets;
bootstrapped p-values are reported in parentheses. A stationary bootstrap is used with an optimal block
length determined by Politis and White (2004). In Panel B, EWC p-values following Lazarus et al. (2018) are
reported in parentheses.

Asset-Specific Predictors Business-Cycle Indicators

Avg. FD N-IP Term Default F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

A. Realized

Coeff 3.83 4.25 7.43 6.74 1.84 2.06 5.75 6.79 2.51 1.94 1.24 1.29

{bias-adj.} {3.75} {3.79} {6.66} {5.55} {1.99} {2.24} {5.99} {7.05} {2.65} {2.50} {1.44} {1.24}
[t-stat] [2.90] [2.47] [2.81] [2.36] [1.33] [1.20] [2.37] [2.65] [2.09] [1.79] [2.35] [2.15]

(p-value) (0.03) (0.08) (0.04) (0.10) (0.27) (0.29) (0.07) (0.07) (0.06) (0.14) (0.03) (0.04)

Re
past -1.27 1.00 0.07 0.65 0.82 0.89

{bias-adj.} {-1.23} {1.03} {-0.12} {0.50} {0.76} {0.75}
[t-stat] [-0.81] [0.57] [0.04] [0.46] [0.47] [0.51]

(p-value) (0.42) (0.62) (0.97) (0.67) (0.69) (0.66)

Adj. R2 0.15 0.13 0.10 0.07 0.03 0.04 0.11 0.15 0.04 0.02 0.03 0.04

N 442 430 442 430 442 430 442 430 442 430 442 430

B. CE & FX4casts

Coeff -0.19 0.01 0.27 0.10 -0.68 -0.62 0.27 0.23 0.06 -0.03 0.56 0.53

(p-value) (0.75) (0.99) (0.74) (0.91) (0.24) (0.25) (0.69) (0.77) (0.89) (0.94) (0.10) (0.13)

Re
past -0.41 -0.40 -0.20 -0.40 -0.43 -0.25

(p-value) (0.54) (0.57) (0.76) (0.57) (0.54) (0.71)

Adj. R2 0.00 0.01 -0.00 0.01 0.04 0.04 -0.00 0.01 -0.00 0.01 0.07 0.07

N 419 419 419 419 419 419 419 419 414 414 419 419
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Figure 3
Coefficients from Regressing FX Average Excess Returns on Predictors and Cyclical

Indicators

Each bar plots the slope coefficients from regressing average realized one-year excess returns
and survey excess return expectations of developed currencies on predictors and cyclical
indicators while controlling for past one-year excess returns. The coefficients for realized
excess returns are bias-adjusted using bootstrap. Blue bars use the realized excess returns
and red bars use survey expectations from CE and FX4casts.
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3.4 Commodity futures market

In our analysis of commodity futures risk premia, we look at the energy and metals sectors

separately. The economic risks that the underlying commodities are exposed to could be

quite different and the dynamics of risk premia could therefore be potentially different as

well. Following Hong and Yogo (2012), the asset-class specific predictors for commodity

futures are the futures basis and past one-year open interest growth.

3.4.1 Metals

The dependent variable in Panel A of Table 7 is the average realized one-year buy-and-

hold excess return on a portfolio of metals futures. As shown in columns (1) to (4) the

futures basis and open interest growth are economically strong predictors, with one standard

deviation change in the predictor associated with around 7pp change in the predicted excess

returns. However, the commodity futures excess returns are so noisy that these estimates

are not statistically significantly different from zero at conventional levels despite the large

magnitude of the point estimates. With a p-value of 0.11, open interest growth, when used as

a single predictor, is at least close to marginally significant. Among the cyclical indicators,

only VIX2 is marginally significant on its own (p < 0.10).

Panel B shows the corresponding regressions for subjective expected excess returns. Look-

ing across all specifications, we again see the general pattern that the magnitudes of the slope

coefficient estimates for the predictors are almost all lower than in Panel A (and often of dif-

ferent sign). Figure 4 illustrates this graphically.

Interestingly, Panel B also shows that subjective risk premia of professional forecasters in

the metals futures market seem to be strongly contrarian with respect to recent past excess

returns on metals futures. A fairly large share of time-variation in subjective risk premia can

be traced to this contrarian effect, even though the relationship of past returns to objective

risk premia is, if anything, positive in Panel A.
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Table 7
Regressing Metals Excess Returns on Predictors and Cyclical Indicators

In Panel A, dependent variable is the average realized one-year buy-and-hold excess returns on metals. The
sample period is from September 1978 to June 2021. In Panel B, dependent variable is the one-year-ahead
average excess return expectations from CE. The sample period is from August 1995 to June 2021. Column
variables are described in Section 2.2. Re

past denotes the past one-year excess returns. All independent
variables are standardized to have unit standard deviations in the full sample period starting from December
1925. In Panel A, bias-adjusted coefficients from bootstrap are reported in braces; EWC t-statistics (without
bias adjustment) following Lazarus et al. (2018) are reported in brackets; bootstrapped p-values are reported
in parentheses. A stationary bootstrap is used with an optimal block length determined by Politis and White
(2004). In Panel B, EWC p-values following Lazarus et al. (2018) are reported in parentheses.

Asset-Specific Predictors Business-Cycle Indicators

Basis OI N-IP Term Default F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

A. Realized

Coeff -6.57 -6.69 6.38 5.72 5.84 7.80 1.51 1.98 -3.51 -1.61 -1.18 0.25 3.11 3.83

{bias-adj.} {-5.86} {-4.57} {7.45} {5.51} {5.91} {7.03} {2.33} {2.48} {-5.19} {-3.78} {-0.88} {1.24} {3.80} {4.31}
[t-stat] [-1.61] [-1.35] [1.96] [1.62] [0.70] [0.92] [0.35] [0.47] [-0.54] [-0.22] [-0.30] [0.06] [1.99] [2.55]

(p-value) (0.20) (0.31) (0.11) (0.19) (0.55) (0.43) (0.75) (0.64) (0.69) (0.86) (0.80) (0.96) (0.06) (0.03)

Re
past 3.45 1.27 4.68 4.70 4.20 4.50 5.31

{bias-adj.} {4.50} {3.61} {5.68} {5.98} {4.58} {5.51} {6.10}
[t-stat] [1.07] [0.36] [1.32] [1.55] [1.14] [1.31] [1.59]

(p-value) (0.34) (0.81) (0.27) (0.20) (0.33) (0.27) (0.13)

Adj. R2 0.06 0.09 0.09 0.09 0.01 0.04 0.00 0.03 0.00 0.02 -0.00 0.02 0.03 0.07

N 516 504 441 441 516 504 516 504 516 504 516 504 516 504

B. CE

Coeff 7.27 1.79 -2.22 -0.01 -0.05 -0.89 0.47 0.41 2.28 0.65 1.24 0.38 1.09 0.68

(p-value) (0.02) (0.43) (0.01) (0.99) (0.97) (0.52) (0.52) (0.62) (0.28) (0.71) (0.32) (0.72) (0.05) (0.20)

Re
past -3.83 -4.12 -4.19 -4.12 -4.01 -3.83 -3.86

(p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Adj. R2 0.12 0.35 0.13 0.34 -0.01 0.35 -0.00 0.35 0.04 0.35 0.02 0.30 0.08 0.38

N 150 150 150 150 150 150 150 150 150 150 145 145 150 150
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3.4.2 The oil market

Table 8 presents the results for futures excess returns in the oil market. The results for

realized excess return prediction in Panel A show that there are no statistically significant

predictors of excess returns. Some of the point estimates are large, though. For example, the

point estimate for N-IP implies that a one standard deviation fall in industrial production

growth is associated with a rise of predicted excess returns of 10.26pp. But the p-value of

0.21 indicates that there is a very large degree of uncertainty about the true magnitude of

the effect.
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Figure 4
Coefficients from Regressing Metals Excess Returns on Predictors and Cyclical Indicators

Each bar plots the slope coefficients from regressing average realized one-year buy-and-hold
excess returns and survey excess return expectations of metal futures on predictors and
cyclical indicators while controlling for past one-year excess returns. The coefficients for
realized excess returns are bias-adjusted using bootstrap. Blue bars use the realized excess
returns and red bars use survey expectations from CE.
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Table 8
Regressing Oil Excess Returns on Predictors and Cyclical Indicators

In Panel A, dependent variable is the realized one-year buy-and-hold excess returns on crude oil. The sample
period is from December 1984 to June 2021. In Panel B, dependent variable is the one-year-ahead buy-and-hold
excess return expectations from CE. The sample period is from August 1995 to June 2021. Column variables
are described in Section 2.2. Re

past denotes the past one-year excess returns. All independent variables are
standardized to have unit standard deviations in the full sample period starting from December 1925. In Panel
A, bias-adjusted coefficients from bootstrap are reported in braces; EWC t-statistics (without bias adjustment)
following Lazarus et al. (2018) are reported in brackets; bootstrapped p-values are reported in parentheses. A
stationary bootstrap is used with an optimal block length determined by Politis and White (2004). In Panel
B, EWC p-values following Lazarus et al. (2018) are reported in parentheses.

Asset-Specific Predictors Business-Cycle Indicators

Basis OI N-IP Term Default F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

A. Realized

Coeff 1.20 -0.71 0.36 5.14 9.89 7.82 -4.25 -4.33 2.43 2.03 -0.63 -2.35 3.88 3.64

{bias-adj.} {1.74} {0.24} {-0.71} {0.45} {10.26} {9.32} {-4.46} {-5.16} {0.58} {0.66} {-0.47} {-2.98} {4.05} {4.18}
[t-stat] [0.27] [-0.12] [0.08] [0.74] [1.35] [0.83] [-0.80] [-0.74] [0.42] [0.29] [-0.18] [-0.63] [1.57] [1.38]

(p-value) (0.81) (0.90) (0.95) (0.58) (0.21) (0.48) (0.53) (0.57) (0.71) (0.81) (0.84) (0.51) (0.25) (0.33)

Re
past -3.30 -6.39 -1.78 -3.10 -2.53 -3.34 -2.03

{bias-adj.} {-1.38} {-2.59} {-0.66} {-2.44} {-2.19} {-2.52} {-0.51}
[t-stat] [-0.52] [-0.90] [-0.33] [-0.62] [-0.47] [-0.66] [-0.41]

(p-value) (0.67) (0.55) (0.77) (0.57) (0.67) (0.55) (0.75)

Adj. R2 -0.00 -0.00 -0.00 0.00 0.01 0.01 0.01 0.02 -0.00 0.00 -0.00 0.00 0.03 0.02

N 439 427 426 426 439 427 439 427 439 427 439 427 439 427

B. CE

Coeff 2.46 -1.43 -3.61 1.98 3.82 -1.94 -1.73 -1.36 0.19 -5.05 0.22 -2.60 0.52 -0.71

(p-value) (0.04) (0.36) (0.13) (0.38) (0.23) (0.55) (0.35) (0.41) (0.95) (0.00) (0.92) (0.19) (0.52) (0.29)

Re
past -6.47 -7.14 -5.93 -5.41 -6.60 -7.24 -5.83

(p-value) (0.01) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01)

Adj. R2 0.07 0.33 0.14 0.33 0.03 0.32 0.01 0.32 -0.01 0.38 -0.01 0.43 0.00 0.32

N 150 150 150 150 150 150 150 150 150 150 145 145 150 150
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Panel B presents the result for subjective expected excess returns. As in the case of metals

futures, subjective risk premia are strongly contrarian with respect to recent past excess

returns. Other than this past returns effect, there is little else in terms of a clear relationship

to predictors. The basis in column (1) shows up with a statistically significant relationship

on its own, but this goes away when past returns are controlled for. DEFAULT in column

(10) is statistically significant only when past returns are controlled for. Figure 5 shows that

the overall picture of absolute coefficient magnitudes in the two panels is mixed, with no

clear difference in magnitudes in the objective and subjective risk premia specifications. This

is to be expected when none of the variables really has a strong relationship to objective or

subjective risk premia.

3.5 Some variations and summary

Figure 6 summarizes the results across all asset classes. For each survey, we first calculate

the following ratio of average absolute coefficients:

M ≡
∑

k∈K |βSubk |∑
k∈K |β

Adj
k |

, (7)

where βSubk is the slope coefficient on return predictor or cyclical indicator k from regressing

survey excess return expectations, βAdjk is the bias-adjusted coefficient from regressing realized

excess returns, and K is the group of return predictors and cyclical indicators considered. The

final measure is calculated by first taking the average of M within asset classes (if there are

multiple surveys) then across asset classes.7

To explore the robustness of our conclusions, we report results from several different

specifications. First, we use coefficient point estimates obtained with (“Control”) or without

(“Single”) controlling for past returns. Second, we re-run all of the analysis with a different

definition of the realized excess return sample. In our baseline analysis above, we used

7 We treat metals and the oil market as in the same asset class. Treating them as separate asset classes
does not quantitatively change the results.
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Figure 5
Coefficients from Regressing Oil Excess Returns on Predictors and Cyclical Indicators

Each bar plots the slope coefficients from regressing realized one-year buy-and-hold excess
returns and survey excess return expectations of crude oil futures on predictors and cyclical
indicators while controlling for past one-year excess returns. The coefficients for realized
excess returns are bias-adjusted using bootstrap. Blue bars use the realized excess returns
and red bars use survey expectations from CE.
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the maximum sample length that was available given data availability constraints on the

predictors and returns data. With this baseline approach, one might worry that the law of

motion of objective risk premia has undergone structural change and may be different in

the samples for which we have survey data coverage, which are often much shorter than the

samples for which we have realized returns and predictor data. For this reason, we re-run all

realized excess regressions with the realized returns sample restricted to the time periods for

which we have survey data to construct subjective expected excess returns. In Figure 6, the

results from our baseline analysis with the full sample are denoted with “(F ),” those with

the return sample matched to the survey sample are denoted with “(S).”

The four bars on the left-hand side of the figure show the results. Based on the comparison

of the first two bars with the third and fourth bar, including or not including past returns

has very little effect on the ratio of absolute coefficients for objective and subjective premia.

In both cases, we get a ratio of about 0.30. Using the full sample for realized returns (second

and fourth bar) or a shorter sample matched to the survey data set (first and third bar) does

not have much effect on the results either. The ratio stays around 0.30. Overall, there is

substantially less variation of subjective risk premia with the predictor variables

One potential concern about the analysis so far could be that the set of predictors might

contain some that are just irrelevant for risk premia. If the predictor variable represents just

irrelevant noise that is not truly related to risk premia, neither objective nor subjective, the

true slope coefficients are zero. Due to estimation error, the slope coefficient estimates will

be non-zero and they could have similar absolute magnitudes in the regressions with realized

returns and subjective expectations. This would bias the ratio toward one.

For this reason, the last two bars on the right-hand side focus, within each asset class,

only on predictor variables that are significant at conventional levels (p ≤ 0.05) in predicting

realized excess returns using the full available sample of realized return and predictor data.

According to rational expectations logic, these predictor variables are the prime candidates

to capture the true variation in objective risk premia. As the figure shows, for these variables,
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Figure 6
Comparing Magnitude of Coefficients from Regressing Survey Expectations and Realized

Returns

In each bar, we first calculate the following ratio for each survey:

M ≡
∑

k∈K |βSubk |∑
k∈K |β

Adj
k |

,

where βSubk is the slope coefficient on return predictor or cyclical indicator k from regressing

survey excess return expectations, βAdjk is the bias-adjusted coefficient from regressing realized
excess returns, and K is the group of return predictors and cyclical indicators considered.
We then take the average of M within each asset class if there are multiple surveys and
finally across asset classes. “(F)” denotes estimates using the full sample; “(S)” denotes
estimates using the matched-to-survey sample; “Control” and “Single” denote estimates with
and without controlling for past excess returns, respectively; “Sig” denotes measures only
using predictors whose full-sample p-values are smaller than 0.05.
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the relative magnitude of the subjective expected excess return regression coefficients is even

lower than 0.30. Depending on whether we include past returns in the regression or not, we

obtain a ratio of slightly above or below 0.20.

In some sense, the ratio of around 0.20 is a conservative assessment of how well objective

risk premia variation is matched by subjective risk premia variation because this ratio of

absolute coefficients does not take into account directional mismatch between the movements

of subjective and objective risk premia. As we showed earlier, for some predictors the sign

of the slope coefficient is different in the realized excess return regressions and the subjective

expected excess return regressions.

4 Comparison with Out-of-Sample Forecasts

Our analysis so far compared the cyclicality of subjective expected excess returns with the

cyclicality of forecasts implied by estimates of in-sample predictive regressions. For evaluating

RE models, this is the appropriate comparison. In RE models, agents already know the

underlying data-generating process, including the values of its parameters, and in-sample

predictive regressions are the most efficient way for an econometrician to estimate what

economic agents already know. The empirical evidence on the large gap in cyclicality between

subjective expectations and in-sample predictive regression forecasts is hard to square with

RE models. This brings up the question whether non-RE belief-formation mechanisms that

do not endow agents with so much knowledge of the data-generating process could explain

the lack of cyclicality in subjective expected excess returns.

One natural step is to consider the possibility that, unlike in RE models, investors do

not know the parameters of the data-generating process and learn about them from data

available in real time. In this case, the forecast that should reflect their beliefs is an OOS

forecast, not the fitted value from an in-sample regression run ex post over the whole sample.

For this reason, we now examine whether the cyclicality of OOS forecasts of excess returns

is closer to the subjective excess return expectations than the in-sample predictions.
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We first construct out-of-sample forecasts at time t based on each individual predictor xi

by performing the following predictive regressions over expanding windows:

Rek = αi,t + βi,txi,k−1 + εi,k, k = 2, . . . , t. (8)

Given the negligible role of past excess returns in predicting future excess returns in our

earlier analyses, we focus here on specifications with just a single predictor without including

past one-year excess returns as an additional predictor. We assume that investors estimate

αi,t and βi,t as

(α̂i,t, β̂i,t) ≡ argmin
α, β

t∑
k=2

ωt,k(R
e
k − α− βxi,k−1)2. (9)

Our first set of analyses sets ωt,k = 1 and hence α̂i,t and β̂i,t are simply OLS estimates.

We then assume that investors evaluate, based on the historical data that has accumulated

until time t, whether the predictive regression forecast actually adds value, in terms of OOS

forecasting, relative to simply setting the forecast equal to the historical mean of Rek

R̄et =

∑t
k=2 ωt,kR

e
k∑t

k=2 ωt,k
. (10)

More precisely, we assume that investors check in past data which combination of R̄et and

the predictive regression forecast α̂i,t + β̂i,txi,t produced the best OOS forecasts. Investors’

forecast is then a weighted average:

Êi,tRet+1 ≡ si,t(α̂i,t + β̂i,txi,t) + (1− si,t)R̄et , (11)

where the weight si,t is chosen to maximize the historical OOS performance starting at tmin

39



after a burn-in period

si,t = argmin
s

t∑
k=tmin

ωt,kuk(s)
2, (12)

uk(s) ≡ Rek − s(α̂i,k−1 + β̂i,k−1xi,k−1)− (1− s)R̄ek−1. (13)

In other words, we let investors look for the OOS optimal degree of shrinkage of the predictive

regression forecast toward the historical mean.

In our empirical implementation, we choose 10 years as tmin and as burn-in period for the

predictive regression in (8) until we construct the first OOS forecast. For foreign exchange

and commodity futures we do not have sufficiently long time series of returns to allow for

these burn-in periods and still obtain enough observations of OOS forecasts to have sufficient

statistical power. For this reason, we focus on stock and Treasury bond markets only in

this analysis. Once we have constructed the OOS forecasts Êi,tRet+1, we further truncate

the starting dates of the OOS forecast series to be consistent with survey data availability

(June 1952 for the stock market survey and January 1988 for the Treasury bond market).

We regress these forecasts Êi,tRet+1 on xi,t, just as we regress the subjective expected excess

returns ẼtRet+1 from the survey data on xi,t.

To parsimoniously present the results from this large number of regressions, we again use

the ratio introduced in (7), but now with numerators replaced with coefficients from using

OOS forecasts:

M ≡
∑

k∈K |βOOSk |∑
k∈K |β

Adj
k |

, (14)

Appendix C reports the detailed individual coefficients from these regressions. If the OOS

forecasts constructed in our exercise get close, in terms of cyclicality, to the subjective ex-

pected excess returns observed in the survey data, then we should see this ratio to be similar

to the ratios we reported in Figure 6 where the coefficients from the subjective expected

excess return regressions were in the numerators.
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For comparison, the left-most bars in the two panels of Figure 7 therefore repeat the

earlier estimate from Figure 6 in the “Single (F)” specification, i.e., without controlling for

past excess returns, where the ratio was about 0.25 for the stock market and 0.33 for the

Treasury bond market. The neighboring bars to the right, labeled “Shrink (E),” show the

ratio (14) with coefficients from using OOS forecasts in the numerators. As the figure shows,

using OOS instead of in-sample forecasts goes some way of explaining the cyclicality gap. If

OOS forecasts were as cyclical as in-sample forecasts, the ratio would be about 1.0; if the

OOS forecasts were as acyclical as subjective expected excess returns in the survey data,

the ratio would be about equal to the ratio represented by the baseline bar. The actual

estimate is somewhere inbetween, with 0.47 for the stock market and 0.75 for the Treasury

bond market.

These estimates in Figure 7 may still overstate to some extent the cyclicality of true

OOS forecasts of excess returns, especially for Treasury bonds. The reason is that some of

the predictor variables use look-ahead information in their construction that is not available

to investors in real time. This concern applies to both of the asset-specific predictors for

Treasury bond excess returns. The bond excess return predictor of Ludvigson and Ng (2009)

is constructed as a linear combination of macro factors that with weights chosen to maximize

in-sample bond excess return predictability subject to a model complexity penalty. The cycle

factor of Cieslak and Povala (2015) is constructed by projecting in-sample bond yields on

trend inflation and then bond excess returns on the residuals to construct the cycle factor.

Thus, the construction of these predictors uses ex-post information that is not available to

investors in real time. That these predictors are still quite strongly related to the OOS

forecasts, as can be seen in Table C.2 in the appendix, may partly be an artifact of this

contamination with look-ahead information. True OOS forecasts may be less sensitive to

these predictors.8

8 The equity return predictor CAY and the business cycle variable F1 also use look-ahead information in
their construction. For CAY, this involves estimation of a cointegration relationship over the full sample ex
post; for F1 the estimation of principal components using full sample information. Therefore, these variables
may also be contaminated with information that was not available to investors in real time, but the concern
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That investors make use of the full historical record of asset return data in constructing

their forecasts may overstate their reliance on old historical data. In Nagel and Xu (2021) we

argued that a reasonable and empirically plausible way of representing investors’ learning is

to let memory of historical data slowly fade over time as observations recede into the distant

past. This could reflect actually fading memory or investors’ belief that parameter drift

renders data from the distant past irrelevant for forecasting. In line with the learning model

in Nagel and Xu (2021), we therefore construct an alternative series of OOS forecasts where

investors downweight past data with exponential weights ωt,k = λt−k. We use the same value

of λ = 0.982 as in Nagel and Xu (2021) for quarterly data (and its third root for monthly

data). We then repeat our earlier exercise of regression the OOS forecasts on each individual

predictor and we compute the ratio in (14). The result is shown in Figure 7 in the third

bars from the left, labeled “Shrink (W).” Especially for the stock market, where the ratio is

0.32, the exponential weighting approach brings the ratio substantially closer to the baseline

column. For the Treasury bond market it also drops, but at 0.62 it is still elevated relative

to the baseline value of 0.33.

Another potentially relevant consideration is that investors ex-ante may not know which

one of the candidate predictor variables is really a useful OOS predictor. Rapach et al. (2010)

show that combination forecasts take average across the N individual-predictor forecasts pro-

vide superior OOS forecasts. Such combination forecasts may therefore be an alternative way

of representing how investors might construct their excess return predictions. We therefore

use the individual-predictor OOS forecasts α̂i,t + β̂i,txi,t to construct combination OOS fore-

casts as a simple equal-weighted average across the N predictors:

ÊCt R
e
t+1 =

1

N

N∑
i=1

(α̂i,t + β̂i,txi,t). (15)

We then regress these combination forecasts on the individual predictors, one at a time, to

is perhaps less severe for CAY and F1 as their construction does not directly use realized excess returns.
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(b) Treasury bond market

Figure 7
Comparing Magnitude of Coefficients from Regressing OOS Forecasts and Realized Returns

The last four bars plot the following ratios for each OOS forecast:

M ≡
∑

k∈K |βOOSk |∑
k∈K |β

Adj
k |

,

where βOOSk are the slope coefficients on return predictor or cyclical indicator k from regress-
ing OOS excess return forecasts. K is the group of return predictors and cyclical indicators
considered. “Baseline” represents the ratio of survey estimates to full-sample estimates with-
out controlling for past excess returns. “(E)” denotes equal weighting historical data and
“(W)” denotes exponential downweighting distant past data at a quarterly rate of 0.982 (and
its third root for monthly data).
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construct the ratio in (14). The two right-most bars in the two panels of Figure 7 present the

result, one with forecasts based on equally weighting historical data, labeled “Comb. (E),” the

other one based on exponential weighting, labeled “Comb (W).” These combination forecasts

are very close, in terms of their weak cyclicality, to the subjective expected excess returns

from survey data.

Overall, the results in this section show that simply moving away from the extreme

assumption of RE models that investors know the data-generating process can go a long

way of explaining the gap between subjective risk premium dynamics in survey data and the

dynamics of objective risk premia implied by in-sample predictive regressions.

5 Subjective Risk-Return Tradeoff

The evidence so far suggests that to the extent there is any substantial variation in subjective

risk premia, standard predictor variables do not capture much of it. However, this does not

imply that subjective risk premia are necessarily constant. They do seem to be largely

acyclical with regards to typical proxies for business and asset-price cycles, but they could

potentially vary systematically in a different way, unrelated to these standard proxies. As a

final step in our analysis, we explore whether time-variation in subjective perceptions of risk

could generate time-varying subjective risk premia. Due to data constraints, the analysis in

this section focuses on the stock market only.

Standard asset-pricing models predict an approximately linear and positive relation be-

tween the conditional equity premium and the conditional equity return variance (Campbell

and Cochrane 1999; Bansal and Yaron 2004). Empirically, however, evidence on the risk-

return trade-off is mixed and inconclusive (see, e.g., Lettau and Ludvigson (2010) for a recent

review). This existing evidence is based on measures of objective risk premia and objective

measures of time-varying risk. Our analysis focuses on subjective risk premia and subjective

perceptions of risk.

Following Lochstoer and Muir (2019), we construct three proxies of perceived stock market
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risk. The first measure is from the Graham-Harvey CFO survey. In this survey, respondents

provide their assessment of the 10th and 90th percentile of the stock market return distribu-

tion at a one-year horizon. We convert the range between these percentiles into an estimate

of respondents’ subjective variance by taking the square of the range and dividing by the

square of 2.56 (which would be accurate if the distribution was normal). The remaining two

measures are constructed from the United States Crash Confidence Index from the Interna-

tional Center for Finance at Yale (Shiller (2000), Goetzmann et al. (2016)). This index has

two series, one for individuals and one for institutions. They are calculated as the percent

of population who attach little probability to a stock market crash in the next six months.9

We take the negative of this index to proxy for the level of individuals’ and institutions’

perceived crash risk. Surveys were initially conducted at six-month intervals.10 Starting in

July 2001, the index reports a six-month moving average of monthly surveys. We match

this moving average to surveys in the following months. Thus, for example, the index for

November 2018 is an average of results from surveys between June 208 and November 2018,

and we match this index to Livingston survey subjective return expectations in December

2018 (obtained from surveys conducted in November). For individual investor expectations,

we match expectations from the first quarter of 2019 to the index moving level in December

2018.

Our interest now centers on the relationship between perceived risk and subjective excess

return expectations. Figure 8 plots the subjective variance data for the CFO survey and the

subjective expected excess return series. The plot shows a clear positive relationship between

the two series. In particular, the series both increase substantially in the early 2000s, following

the technology crash and recession, in the wake of the financial crisis around 2008, and most

9 The exact survey question is: “What do you think is the probability of a catastrophic stock market crash
in the U. S., like that of October 28, 1929 or October 19, 1987, in the next six months, including the case that
a crash occurred in the other countries and spreads to the U. S.?”

10 The survey dates (first mailing dates) were: July 5, 1989; January 17, 1990; July 27, 1990; January 31,
1991; August 20, 1991; January 31, 1992; August 20, 1992; February 12, 1993; August 6, 1993; February 28,
1994; September 8, 1994; March 4, 1995; September 1, 1995; March 1, 1996; July 30, 1996; March 17, 1997;
September 5, 1997; March 2, 1998; and September 9, 1998.
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Figure 8
Excess Return Expectations and Variance Expectations

The blue line plots the one-year excess return expectations from the CFO survey. The red line
plots the square of the difference between the mean expectations of 90th and 10th percentiles
of returns divided by the square of 2.56, also from the CFO survey. The grey-shaded areas
indicate NBER recessions.

recently during the COVID crisis in 2020.

Table 9 presents the results in regression form. In addition to the CFO survey subjective

risk and expected return series, we also examine the relationship of individual investor and

Livingston survey subjective risk premia to the (negative of) the individual and institutional

investor crash confidence indices. To facilitate interpretation, we standardize the crash confi-

dence series to unit standard deviations. We do not standardize the subjective variance series

from the CFO survey, as the slope coefficient in a regression of subjective expected excess
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returns on subjective variance then has a natural economic interpretation as a relative risk

aversion coefficient (in a model where the representative investor’s wealth is fully invested in

the stock market).

Columns (1) and (2) show that for individual investors there is a weak positive relationship

between individuals’ perceived risk of a stock market crash and their subjective expected

excess returns. The relationship is not statistically significant, however. Controlling for past

returns in column (2) raises the magnitude of the coefficient on perceived risk, but it is still

statistically insignificant at conventional levels (p = 0.11). The coefficient of 0.60 implies that

a one standard deviation rise in the perceived risk measure is associated with an increase of

0.60pp in the subjective risk premium. For comparison, this is somewhat weaker than the

effect of past returns, where a one standard deviation change is associated with a change of

1.01pp in the subjective risk premium.

Columns (3) and (4) show the results for the CFO survey data. As anticipated from Figure

8, subjective variance is positively related to the subjective risk premium. The magnitudes of

the slope coefficient estimates are also economically plausible as they would imply a relative

risk aversion somewhere between 6 and 9. The strong link between subjective variance and

subjective risk premium may seem surprising given that columns (17) and (18) in Table 4,

Panel B show the loading of the CFO subjective risk premium on VIX2 is neither statistically

nor economically significant. This indicates that the CFO variance expectations contain

information orthogonal to VIX2 that is important for determining excess return expectations.

One potential source of such an orthogonal component is highlighted in Lochstoer and Muir

(2019). They find that CFO variance expectations load much more strongly on realized

variance several months ago than VIX2 does.

Columns (5) and (6) present the results for professional forecasters from the Livingston

survey. The relationship between subjective risk premium and subjective risk, as measured

by (the negative of) the institutional investor crash confidence index, is much stronger than

for individuals. The point estimate in column (5) implies that a one standard deviation rise
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Table 9
Subjective Excess Return Expectations and Variance Expectations

In Columns (1)–(6), the dependent variable is the one-year-ahead excess return expectations from surveys.
“NX,” “CFO,” and “Livingston” denote survey excess return expectations from Nagel and Xu (2021), the
CFO survey, and the Livingston survey, respectively. “Var. Exp.” is from the CFO survey and calculated as
the square of interdecile range divided by the square of 2.56. “Crash (Indiv.)” and “Crash (Insti.)” denote
the negative of standardized Crash Confidence Index of individuals and institutions, respectively. Re

past are
standardized one-year excess returns that have unit standard deviations in the full sample period starting
from December 1925. We report the OLS estimates with estimates on Crash Indexes multiplied by 100. EWC
p-values following Lazarus et al. (2018) are reported in parentheses.

NX CFO Livingston

(1) (2) (3) (4) (5) (6)

Const 0.08 0.09 0.02 0.01 0.19 0.17

(p-value) (0.00) (0.00) (0.06) (0.25) (0.03) (0.02)

Crash (Indiv.) 0.38 0.60

(p-value) (0.36) (0.11)

Var. Exp. 6.72 8.65

(p-value) (0.06) (0.04)

Crash (Insti.) 2.53 1.76

(p-value) (0.10) (0.14)

Re
past 1.01 0.74 -2.84

(p-value) (0.00) (0.02) (0.00)

Adj. R2 0.04 0.28 0.12 0.20 0.24 0.40

N 87 86 75 73 39 39
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in perceived risk is associated with an increase in the subjective risk premium of 2.53pp.

Statistically, however, the magnitude of the effect is rather uncertain, as the estimate is

only marginally significant (p = 0.10). To some extent, this is due to the small number of

observations. The Livingston survey is available only semi-annually and hence we are left

with a small number of observations in the part of the sample that overlaps with the investor

crash confidence index series.

For the Livingston survey subjective expectations, the relationship with the risk percep-

tions captured by the institutional crash confidence index series is quantitatively quite similar

to the relationship to VIX2 in Table 4. For comparison, a one standard deviation move in

VIX2 is associated with a 1.65pp move in the subjective risk premium. In contrast to the

CFO expectations, a component of perceived risk orthogonal to the VIX2 seems to be less

important for the professional forecasters’ subjective risk premia in the Livingston survey.

Overall, there is evidence for a positive risk-return tradeoff in subjective beliefs. At the

same time, different groups of market participants appear to form subjective beliefs about

risks in different ways. For example, using the institutional crash confidence index to explain

individuals’ subjective expected excess returns would result in a substantial deterioration

in explanatory power. Further exploration of the formation of risk perceptions for different

groups of market participants seems like a fruitful area for future research.

From the results in this section it is also clear that while subjective risk premia appear

to vary with subjective risk perception, this variation on its own is too small to play a

major role in generating empirically realistic asset price volatility. A one standard deviation

change in subjective risk perceptions is associated with at most around 2.5pp movement in

the subjective risk premium while a one standard deviation change in strong excess return

predictors in the predictive regressions in Table 3 are associated with around 6-7pp in expected

excess return movements. In addition, the movements in subjective risk risk perceptions are

not highly correlated with movements in these return predictors.
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6 Conclusion

Objective risk premia implied by in-sample predictive regressions of excess returns of major

asset classes vary over time with cyclical state variables. In stark contrast, we find that

subjective risk premia extracted from forecasts in surveys show very little movement with

these cyclical variables. This lack of cyclicality of subjective risk premia is pervasive: it holds

for stocks, bonds, currencies, and commodity futures and for subjective beliefs of individuals,

CFOs, and professional forecasters. While the properties of subjective expected excess return

forecasts differ in some respects between groups of market participants and between asset

classes—for example, whether they are extrapolative or contrarian with regards to recent

realized returns—the pervasive lack of cyclical movement with standard return predictors

and business cycle variables is shared among all of them.

Much of the cyclicality gap between subjective risk premia from survey data and statistical

forecasts of excess returns disappears when the latter are constructed as out-of-sample rather

than in-sample predictions. Thus, moving away from rational expectations models in which

investors know the data-generating process and its parameters to models in which they learn

about it in real time can help reconcile the evidence from statistical forecasts and subjective

excess return expectations data.

While subjective risk premia do not vary much with standard return predictors and

business cycle variables, they are not constant, though. In particular, they comove to some

extent with time-varying subjective perceptions of risk, consistent with a positive risk-return

tradeoff in subjective beliefs. However, the variation in subjective risk premia associated with

movements in perceived risk is too small and not sufficiently aligned with asset price cycles

to contribute much to an explanation of asset price fluctuations.

Therefore, to match the joint set of stylized facts of volatile asset prices, cyclical objective

risk premia, and acyclical subjective risk premia, asset-pricing models need to have a time-

varying beliefs wedge between subjective and objective forecasts of fundamentals, such as,

future dividend growth in the case of stocks or future short-term interest rates and inflation
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in the case of bonds. This wedge must do most of the work in generating large persistent

movements in asset prices. Approaches that generate volatile asset prices instead through

time-variation in risk or risk aversion—or other mechanisms that induce variation in the

excess return that investors require and subjectively expect to earn—are not consistent with

the evidence that subjective risk premia are largely unrelated to the state variables that

capture asset price cycles.
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Appendix

A Data Sources and Timing Assumptions

A.1 Data sources

Interest Rates: The main interest rate we use to calculate one-year excess returns is the one-
year Treasury Constant Maturity rate. To extend the time series, we use annualized three-
month Treasury bill yields: starting from 1934, we use 3-Month Treasury Bill: Secondary
Market Rate; before 1934, we use Yields on Short-Term United States Securities, Three-Six
Month Treasury Notes and Certificates, Three Month Treasury Bills for United States. All
data are available from FRED.

Stock Returns: For monthly stock returns, we use the value-weighted returns on the
CRSP index since January 1926 from CRSP. Longer-horizon returns are cumulative one-
month returns.

Bond Returns: Monthly returns on two-, five-, seven-, and ten-year Treasury indexes come
from CRSP. We only use realized returns starting from April 1951 after the Treasury-Fed
Accord ended the yield control. Longer-horizon returns are cumulative one-month returns.
We subtract the one-year interest rates described in the first paragraph to obtain excess
returns.

Bond Yields: Monthly zero-coupon yields come from Liu and Wu (2021) which are avail-
able starting from June 1961.11 We use these yields to construct subjective bond return
expectations and the cycle factor from Cieslak and Povala (2015).

FX Rates and Interbank Interest Rates: Daily spot and forward exchange rates used for
return construction are from Datastream. The main provider on Datastream is World Markets
PLC/Reuters (WMR) and we supplement data from other providers including Barclays Bank
PLC, Thomson/Reuters, and HSBC. We obtain interbank interest rates and Eurocurrency
deposit rates from Datastream and Global Financial Data. The providers of Eurocurrency
deposit rates on Datastream include Thomson Reuters and Garban Information Services.
The providers of interbank rates on Datastream are national sources including central banks.
Some of the series clearly contain outliers due to data errors. Following Hassan and Mano
(2019), we calculate log forward premium across data providers, exclude observations where
deviations of the log interest rate differential exceed 50 bps, and splice data together. Finally,
we build monthly series as the end-of-calendar-month values.

Commodity Prices and Open Interest : Spot rates and futures prices are obtained from
Bloomberg. For metals traded on London Metal Exchange (LME), we supplement data from
Datastream. For commodities without reliable spot prices, we interpolate the futures curve
to compute the synthetic spot prices (e.g., crude oil). For metals traded on LME, only spot
prices and futures prices at three- and fifteen-month are available. We interpolate the twelve-
month futures prices linearly using adjacent futures as knots. The open interest data come
from Commitments of Traders available at the Commodity Futures Trading Commission.

11 We thank the authors for providing the data on their website.

52



Open interest data before 2010 come from Hong and Yogo (2012).12

A.2 Survey timing

Here we summarize the timing of the surveys:
Nagel and Xu (2021): The major surveys used are the UBS/Gallup survey, the Conference

Board survey, and the Michigan Survey of Consumers. The UBS/Gallup survey typically
interviews households during the first two weeks in the survey month. Questionnaires from
the Conference Board survey reach households around the first of each survey month. The
responses are collected before the eighteenth of the month. Interviews for the Michigan
Survey of Consumers typically begin at the beginning of the survey month or the end of
previous month.

Duke CFO : The CFO Survey is conducted quarterly within a two-week fielding period
(running from Monday of the first week through Friday of the second week). (A special case
is the 2020Q1 survey, which was conducted over six weeks between February 25 and April
3.) The survey typically starts late in the middle or early in the last calendar month of each
quarter and the starting date is provided. We define the survey month as the month that
the starting date belongs to.

Livingston: The questionnaires are mailed to participants in May and November right
after the release of CPI (typically in the last week).

BCFF : The responses are collected during the last week of the month before the survey
month.

Consensus Economics: For currency spot rate forecasts, the responses are recorded on the
first or second Monday in calendar month. For commodity spot price forecasts, the survey
responses are normally collected on the second Monday or third Monday in calendar month.

FX4casts: The survey questions are usually sent out on the last Friday of the survey
month with responses collected during Friday and the following Monday and Tuesday.

In a given survey month, we assume participants in all surveys except the FX4casts have
access to monthly macro information with a two-month lag and price information with a
one-month lag, e.g., June survey participants have information of industrial production up
to April and stock prices up to May. This assumption is consistent with the Livingston
Survey Documentation and the approach in Nagel and Xu (2021). We match the one-month
lags of FX4casts survey to the Consensus Economics survey when constructing the currency
forecasts, e.g., May survey from FX4casts to June survey from the Consensus Economics.

B Bootstrap Methods for Predictive Regressions

To correct for the potential small-sample bias in the predictive regressions, we assume the
following system:

zt+1 = α+ β′Xt + ηt+1, (A.1)

Xt+1 = κ+ φXt + ιt+1. (A.2)

12 We thank the authors for providing the data on their website.
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In addition, ηt and ιt can potentially be correlated contemporaneously. We implement a
bootstrap that involves the following steps:

1. We start with estimating a VAR(1) system for the predictors, Xt. To correct for the
bias in the VAR estimates, we use the approach in Amihud et al. (2009) that relies on
the analytical expressions from Nicholls and Pope (1988). We denote the bias-adjusted
coefficients and shocks as κ̃, φ̃, and {ι̃t}.

2. We then estimate the predictive regression in (A.1) with OLS. We obtain coefficient
estimates α̂, β̂ and residuals η̂t+1. We then construct pseudo samples by bootstrapping
the time-series of residual vectors (ι̃t, η̂t) to preserve the cross-sectional correlations. To
account for the potentially autocorrelated {ηt}, we use a circular block bootstrap. For
the sample i, with bootstrapped residuals (ι̃it, η̂

i
t), we impose the null of no predictability

by generating data as

znull,it+1 = z̄ + η̂it+1, (A.3)

Xt+1 = κ̃+ φ̃Xt + ι̃it+1. (A.4)

We then re-run the predictive regression in the sample i and record the t-statistic
τ i. The {τ i} are used to obtain the small-sample p-value by comparing the sample
t-statistic τ̂ . For the sample j, with bootstrapped residuals (ι̃jt , η̂

j
t ), we generate data

under the alternative that β = β̂ as

zalter,jt+1 = α̂+ β̂′Xt + η̂jt+1, (A.5)

Xt+1 = κ̃+ φ̃Xt + ι̃jt+1. (A.6)

We re-run the predictive regression in the sample j and record the coefficient β̂j . By
comparing the average of the {β̂j} with β̂, we obtain the finite-sample bias in β̂.

C Regression Results for Out-of-Sample Forecast Analysis

Table C.1 and Table C.2 report the detailed results of regressing OOS stock and bond excess
return forecasts on asset-specific predictors and cyclical indicators. The OOS forecasts are
constructed as in Section 4.
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Table C.1
Regressing OOS Stock Excess Return Forecasts on Predictors and Cyclical Indicators

In Panels A and B, dependent variables are the quarterly OOS stock excess returns forecasts from predictive
regressions over expanding windows with single predictors. In constructing the OOS forecasts, coefficients are
recursively applied with optimal shrinkage, based on historical OOS performance, toward the trailing mean
excess return. Forecasts in Panel A equally weight historical data, whereas forecasts in Panel B exponentially
downweight distant past data at a quarterly rate of 0.982. In Panels C and D, dependent variables are the
simple average of OOS forecasts constructed from single predictors as in Panels A and B (without shrinkage),
respectively. All predictors are standardized to have unit standard deviations in the full sample period starting
from December 1925. The first row in each block reports the OLS estimates multiplied by 100. EWC p-values
following Lazarus et al. (2018) are reported in parentheses.

Asset-Specific Predictors Business-Cycle Indicators

CAY D/P EXPD NTIS N-IP Term Default F1 VIX2

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A. Shrink, Equal-Weight

Coeff 2.58 5.29 -0.74 -2.14 1.54 3.41 0.20 0.75 -0.10

(p-value) (0.00) (0.00) (0.01) (0.09) (0.00) (0.00) (0.33) (0.01) (0.10)

Adj. R2 0.96 0.89 0.27 0.18 0.47 0.78 0.02 0.47 0.02

N 109 210 214 210 214 214 214 76 214

B. Shrink, Exponential-Weight

Coeff -0.03 3.76 -0.04 -2.72 1.81 1.47 -0.41 -0.74 0.41

(p-value) (0.93) (0.02) (0.93) (0.16) (0.13) (0.02) (0.54) (0.01) (0.24)

Adj. R2 -0.01 0.39 -0.00 0.15 0.14 0.21 0.01 0.19 0.02

N 109 210 214 210 214 214 214 76 214

C. Combination, Equal-Weight

Coeff 0.52 1.22 -0.68 -0.50 0.94 0.58 1.48 0.89 0.37

(p-value) (0.05) (0.00) (0.02) (0.25) (0.12) (0.03) (0.00) (0.00) (0.17)

Adj. R2 0.08 0.32 0.10 0.04 0.07 0.10 0.27 0.23 0.05

N 275 275 275 27 275 275 275 243 275

D. Combination, Exponential-Weight

Coeff 0.24 0.06 0.57 0.29 -0.61 -0.36 -0.84 -0.02 0.18

(p-value) (0.49) (0.90) (0.19) (0.62) (0.26) (0.36) (0.21) (0.94) (0.58)

Adj. R2 0.01 -0.00 0.04 0.01 0.02 0.02 0.05 -0.00 0.00

N 275 275 275 275 275 275 275 243 275
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Table C.2
Regressing OOS Bond Average Excess Return Forecasts on Predictors and Cyclical

Indicators

In Panels A and B, dependent variables are the monthly OOS bond average excess returns forecasts from
predictive regressions over expanding windows with single predictors. In constructing the OOS forecasts,
coefficients are recursively applied with optimal shrinkage, based on historical OOS performance, toward the
trailing mean excess return. Forecasts in Panel A equally weight historical data, whereas forecasts in Panel
B exponentially downweight distant past data at a monthly rate of 0.994. In Panels C and D, dependent
variables are the simple average of OOS forecasts constructed from single predictors as in Panels A and B
(without shrinkage), respectively. All predictors are standardized to have unit standard deviations in the full
sample period starting from December 1925. The first row in each block reports the OLS estimates multiplied
by 100. EWC p-values following Lazarus et al. (2018) are reported in parentheses.

Asset-Specific Predictors Business-Cycle Indicators

LN Cycle N-IP Term Default F1 VIX2

(1) (2) (3) (4) (5) (6) (7)

A. Shrink, Equal-Weight

Coeff 2.24 2.46 0.21 1.44 0.09 0.44 0.01

(p-value) (0.00) (0.00) (0.04) (0.00) (0.14) (0.00) (0.77)

Adj. R2 0.99 0.95 0.07 0.94 0.02 0.41 -0.00

N 397 327 397 397 397 397 397

B. Shrink, Exponential-Weight

Coeff 2.13 1.56 0.21 1.36 0.08 0.28 0.09

(p-value) (0.00) (0.00) (0.12) (0.00) (0.32) (0.13) (0.33)

Adj. R2 0.90 0.63 0.03 0.83 0.00 0.14 0.02

N 397 327 397 397 397 397 397

C. Combination, Equal-Weight

Coeff 0.68 0.43 0.73 0.72 0.72 0.52 0.17

(p-value) (0.00) (0.00) (0.12) (0.00) (0.00) (0.00) (0.03)

Adj. R2 0.47 0.28 0.15 0.73 0.24 0.27 0.11

N 397 397 397 397 397 397 397

D. Combination, Exponential-Weight

Coeff 0.73 0.34 0.84 0.80 0.73 0.49 0.15

(p-value) (0.00) (0.00) (0.06) (0.00) (0.00) (0.00) (0.05)

Adj. R2 0.48 0.15 0.17 0.78 0.21 0.21 0.08

N 397 397 397 397 397 397 397
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