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1 Introduction

Over the last 60 years, the economy has experienced a remarkable shift towards modular produc-

tion (Baldwin and Clark 2000). Nowadays so many products are made by assembling separately

produced modules that the 21st century has been called the Modular Age (see, for instance, Garud,

Kumaraswamy, and Langlois (2009)). The rise of modular production has the potential to change

the organization of �rms, the structure of industries, and the location of production. In this pa-

per we take a �rst step towards exploring the economic implications of modular production by

examining its impact on the internal organization of �rms.

Herbert Simon anticipated the rise of modular production in 1962, when he observed that

complex social, technological, and biological systems� large �rms, mechanical watches, the human

body� tend to be made up of communities or modules, groups of elements with stronger within

than across group interactions (Simon 1962). The advantage of this modular structure, he argued,

is that it allows systems to adapt to changes in the environment by making adjustments in a

limited number of modules while leaving the rest of the system unchanged. The prevalence of

modular structures has since been con�rmed by the literature on community detection, which has

documented them in a wide variety of contexts from the internet to the global air transportation

network and the brain (Meunier et al. 2009, Guimera et al. 2005, and Fortunato 2010).

A few years after Simon wrote his article, IBM developed the �rst modular computer, the

System/360. Until then computers had been tightly integrated systems of their constituent parts.

A change in the processor or any other critical component required the design of an entirely new

computer. This made it di¢ cult to adopt new technologies and adapt computers to the idiosyncratic

demands of di¤erent customers. The System/360 was designed to change all this. Its modular

structure was a deliberate choice by IBM�s executives who tasked their engineers with developing

a computer that was made up of a small number of easily assemblable and exchangeable modules.

Henceforth, when a supplier developed a better disk drive, or a customer needed more storage, IBM

was able to adapt quickly. Not only did this make the System/360 an enormous �nancial success,

it also changed how computers have been built ever since (Baldwin and Clark 1997 and 2000).

The move towards modular production has not been con�ned to the computer industry. Over

the last few decades, �rms across a wide range of industries followed in IBM�s footsteps and devel-

oped products with modular production functions. Smartphones, airplanes, and electric cars are

all made by assembling a limited number of modules. Even homes are now routinely assembled
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from pre-made modules rather than built on site from scratch. Nor is this move towards modular

production con�ned to physical products. Modular programming� separating the di¤erent func-

tions of computer programs into independent and interchangeable modules� was developed in the

1960s and is now a common feature of almost all programming languages. Of course, many prod-

ucts exhibited some degree of modularity even before the System/360. Builders installed pre-made

doors and windows long before the rise of modular home building. What is di¤erent now, though,

is that many products are modular by design. They are produced entirely by assembling a limited

number of modules and, in line with Herbert Simon�s observations, they are now more rule than

exception.1

The widespread adoption of modular production has the potential to change the organization

of production and thus the outcomes of economic activity. In the short run, �rms adapt their

internal organizations to accommodate modular production. Over time, they may also change

their boundaries which, in turn, can alter the structure of their industries and the location of

production. To manage the System/360, for instance, IBM established a centralized o¢ ce, which

ensured that di¤erent modules worked together, but also delegated control over individual modules

to autonomous teams. This process of decentralization continued over many years with IBM and

its competitors eventually outsourcing the development and production of modules to smaller,

independent, and often foreign �rms (Baldwin and Clark 1997 and 2000).

Figure 1: Left panel� The �rm�s production function takes the form of a network with a non-
overlapping community structure. Right panel� Given the production network, the principal de-
signs the optimal communication network by deciding whom each agent should tell his state to,
taking as given that each directed link comes at an exogenous cost.

The goal of this paper is to take a �rst step towards exploring the economic implications

1See Baldwin and Clark (1997) and (2000). See also the Wikipedia entries for Modular Design, Modular Pro-
gramming, and Modular Building and the references therein.
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of modular production (��rst step� in the economics literature; as discussed below there is an

expansive existing literature in management). We focus on the internal organization of a single

�rm with a modular production function, which we model as a network of decisions with a non-

overlapping community structure and illustrate in Figure 1. Every node represents a decision, an

agent who makes the decision, and a state. The size of the node represents the importance of

adapting the decision to its state, and the width of an edge between two decisions represents the

importance of coordinating the two decisions. The decisions are partitioned into �modules,�groups

of decisions that require more coordination with each other than with decisions in other modules

and that are indicated by the shaded areas in the �gure. The adjacency matrix of the production

network, therefore, takes the form of a block matrix. This structure approximates the interactions

between decisions in modular products, such as the laptop computer illustrated in Figure 2

Figure 2: The �Design Structure Matrix� of a laptop computer in which each row and column
corresponds to a task in producing the computer and an �x� entry indicates a strong need for
coordination (reproduction of Figure 2.3 in McCord and Eppinger (1993)).

In the model, the only impediment to e¢ cient production is that agents involved in the making

of one module do not observe the information relevant for the production of other modules. To

improve e¢ ciency, the �rm can establish communication channels between agents who work on

di¤erent modules. An IBM engineer who works on the disk drive does not directly observe the

factors relevant to someone who works on the processor. But IBM can require the former to meet

with the latter and learn about his local information. The problem is that such communication

does not come for free. Even in the age of ever-evolving communication technologies, explaining

the issues one faces, and understanding those faced by others, takes time and energy. Given this

trade-o¤ between the e¢ ciency of decision-making and the cost of communication, the principal

decides whom each agent should tell his state to. In terms of Figure 1, the principal takes as given
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the production network in the left panel and designs the optimal communication network on the

right by placing directed links between agents, taking into account that each comes at an exogenous

cost but improves the agents�decision making.2

The challenge in designing an optimal communication network is the abundance of possibilities

and absence of any apparent way to order them. To see how the �rm can overcome this challenge, it

is useful to start by asking when it should add a single, directed link to an existing communication

network. The cost of establishing such a link is the time and energy it takes the sender to explain

his information to the receiver, which we take to be exogenous. The bene�t is that learning the

sender�s information allows the receiver to coordinate his decision more closely with the sender�s,

which, in turn, allows the sender to adapt his decision more closely to his state. Crucially, we �nd

this bene�t is independent of what the receiver, or any other agent, knows about any other state.

Because of this independence, the problem of designing an optimal communication network can

be broken into a number of independent subproblems. It is su¢ cient for the �rm to consider each

agent in turn and ask whom this agent should tell about his state. This separability result is what

allows us to characterize optimal communication networks and establish our central result.

Our central result is that modular production gives rise to communication hierarchies. We fully

characterize the optimal communication network and show that it consists of two nested hierarchies,

one that determines whom each agent sends his information to and another that determines whom

he receives information from. An agent with a higher sender rank sends his information to any

agent that a lower-ranked agent sends his information to. And an agent with a higher receiver rank

receives information from any agent that a lower-ranked agent receives information from.

An agent�s rank in either hierarchy depends critically on the cohesiveness of his module, which

is increasing in the number of decisions that are part of the module and the need for coordination

between them, and which is decreasing in the �degree of coupling,�the need for coordination across

modules. The more cohesive an agent�s module is, the more important it is that the agent learns

about the local conditions in other modules and that agents working on other modules learn about

his.

Receiver rank is fully determined by module cohesion. Agents working on the same module have

the same receiver rank; they either all learn about a decision in another module or none of them do.

The same is not true for sender rank, which can vary across agents working on the same module.

2Our focus on the trade-o¤ between the e¢ ciency of decision-making and the cost of communication is in line
with Kenneth Arrow�s discussion of the design of optimal communication within �rms in Arrow (1974), where he
observes that: �Since information is costly, it is clearly optimal, in general, to reduce the internal transmission...That
is, it pays to have some loss in value for the choice of terminal act in order to economize on internal communication
channels. The optimal choice of internal communication structures is a vastly di¢ cult question.�
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The reason is that the bene�t of sharing information does not only depend on module cohesion

but also on the variability of the sender�s local information and the need to adapt his decision to

it. If an agent�s module is very cohesive, it is important he learns about other modules to enable

them to adapt their decisions to their information. But if his own information is predictable, or the

need to adapt his decision to his information is low, it may not be important for those working on

other modules to learn his information. Sender and receiver ranks need not be perfectly correlated.

Agents who hear the most may not be those who speak the most.

We apply our characterization to explore the notion that communication links should sim-

ply mirror technological interdependency, that �we should expect to see a very close relation-

ship...between a network graph of technical dependencies within a complex system and network

graphs of organizational ties showing communication channels�(Colfer and Baldwin 2016, p.713)

This notion has a long history in management and related �elds, where it is known as the Mirroring

Hypothesis (Thompson (1967) and, for a discussion of the literature, Colfer and Baldwin (2016)).

In our context, the Mirroring Hypothesis predicts communication within but not across modules.

We show that for the Mirroring Hypothesis to hold, conditions have to be just right. There cannot

be too many modules, and none of them can have too many members or require too much coordi-

nation among them. Otherwise the organization bene�ts from communication across modules. At

the same time, none of the modules can have too few members and require too little coordination

among them, which would negate the need for communication even within modules.

Our characterization result also speaks to the possibility that �rms engage in �partial mirroring�

by limiting across-module communication to clusters of modules. The result implies that if such

clustering is optimal, there is at most one cluster of modules whose agents engage in across-module

communication. Moreover, this cluster is made up of the most cohesive modules. Agents working

on less cohesive modules are outside of the cluster and do not communicate across modules. In

this case, the optimal communication network, therefore, has a core-periphery structure, which is a

pervasive structure among social and communication networks (Herskovic and Ramos 2020). The

model shows that this common structure can be an optimal way to organize a modular �rm, but

only if the core is made up of the modules with the largest number of decisions and/or the highest

need for coordination among them.

2 Related Literature

To the best of our knowledge, there is no literature in economics on the economic implications of

modular production. From a technical perspective, our paper belongs to the small but growing
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literature on centralized network design. In an early paper in this literature, Baccara and Bar-Isaac

(2008) explore the optimal design of a network among members of a criminal organization in which

more links facilitate cooperation but also leave the organization more vulnerable to attack by law

enforcement. The trade-o¤ between the e¢ ciency of interactions among members of a network and

its increased vulnerability to attacks by outsiders is also at the center of Goyal and Vigier (2014),

who are motivated by the optimal design and defense of computer networks. Both papers are quite

far from ours, not only in terms of motivation but also modeling.

Much closer to us is Calvó-Armengol and de Martí (2009), who consider an organization in

which each agent�s payo¤ depends on how well his decision is adapted to a common state and

coordinated with the other agents�decisions. A key feature of their model is that decisions enter

the production function symmetrically: each has the same need for adaptation and is connected

to all the others, with the need for coordination being the same between any two decisions. As

such, their production network is complete, which precludes production from being modular. In

our setting, in which the principal can add an arbitrary number of communication links at a given

per link cost, such a production function gives rise to optimal communication networks that are

bang-bang: each agent either tells his state to all the others or to none of them. In their setting,

instead, the principal can add communication links at no cost up to an exogenously given cap.

They show that, if the need for coordination is su¢ ciently small, and the degree of uncertainty

su¢ ciently high, an optimal network then maximizes a span index that they de�ne.

Herskovic and Ramos (2020) also consider a setting in which each agent�s payo¤ depends on

how well his decision is adapted to a single state and coordinated with the other decisions, and

in which all decisions enter the production function symmetrically. The key di¤erence between

their model and both Calvó-Armengol and de Martí (2009) and ours is that the communication

network is not designed by a principal but formed by the agents�decentralized decisions of whom to

communicate with. Their paper, therefore, belongs to the large literature on endogenous network

formation that started with Jackson and Wolinsky (1996) and Bala and Goyal (2000), rather than

the literature on centralized network design that ours belongs to. They show that, in spite of

agents�decisions being identical ex ante, the network they form is hierarchical, with agents in a

given tier having their signals being observed by those in the lower tiers.

In the endogenous network formation literature, the paper whose setting is closest to ours is

Calvó-Armengol, de Martí, and Prat (2015). They, too, consider an organization whose agents face

a trade-o¤ between adaptation and coordination. Like us, though, they assume that each agent

is adapting his decision to an independent state and, crucially, allow for decisions to di¤er in their

6



needs for adaptation and coordination. Even though they allow for di¤ering coordination needs,

however, they do not assume that it has a non-overlapping community structure, and thus do not

explore modular production. Moreover, they assume that each agent decides independently how

much e¤ort to put into communicating with each of the other agents, which is what places them

in the endogenous network formation literature. In contrast, we allow the principal to decide who

each agent communicates with. Their main result provides a characterization of how, in such a

setting, an agent�s decision is in�uenced by the signals received by others.

A shared feature between all the above papers on adaptation and coordination, and ours, is that

the agents�payo¤ functions are quadratic, and their actions are continuous and exhibit strategic

complementarities. As such, they all build on the literature on quadratic games on networks

that started with Ballester, Calvó-Armengol, and Zenou (2006). In recent contributions to this

literature, Bergemann, Heumann, and Morris (2017) and Golub and Morris (2017) characterize

optimal decision-making for general information and network structures. We draw on their results

to determine the agents�decision-making for given communication networks. Our focus, though,

is not on the agents� decision-making but on the prior stage in which the principal designs the

communication network, taking as given that agents will make their decisions optimally.

Apart from the literature on networks, our motivation and application places us �rmly in the

literature on organizational economics and, in particular, team theory. Starting in the 1950s, team

theory explores the optimal design of organizations when agents share the same goal, but cognitive

constraints make communication costly (for an early treatment see Marschak and Radner (1972)

and for recent surveys see Garicano and Prat (2011) and Garicano and van Zandt (2013)). In this

literature, a closely related paper is Dessein and Santos (2006), who were the �rst to explore how

the trade-o¤ between adaptation and coordination shapes the internal organization of �rms. In

their setting, decisions enter the production function symmetrically, and the principal does not

design a communication network. Instead, they allow for each agent to make multiple decisions

and assume the same quality of communication between any pair of agents. They show that, in

such a setting, more uncertainty about the environment increases the optimal number of decisions

per agent, while the e¤ect of an improvement in the quality of communication on specialization is

non-monotonic.

We also relate to Dessein, Galeotti, and Santos (2016), who build on Dessein and Santos (2006)

by endogeneizing communication while taking the allocation of decisions as given. Decisions di¤er

in their needs for adaptation but the need for coordination is the same for any pair of decisions.

As such, the production network is complete, and production is not modular. As in our model,
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the principal designs the �rm�s communication structure before agents learn their information and

make their decisions. In contrast to our model, each agent�s communication is public, leaving all

the other agents equally well, or poorly, informed about him. The paper shows that if the total

amount of time that agents have to learn about others is limited, the principal �nds it optimal to

have them spend all their time learning about a small number of core agents, while staying largely

ignorant about the others.

Even though, to our knowledge, there is no literature on modularity in economics, there is a

large literature on this topic in management and related �elds, as well as in computer science.

As noted earlier, Simon (1962) observed that complex systems are often made up of modules and

argued that this modular design facilitates adaptation. A similar point was made by Alexander

(1964), who argued that a modular system design accelerates adaptation by allowing the system

to adapt module by module. In computer science, Parnas (1972) argued that a modular software

design allows for faster programming by enabling di¤erent teams to work on di¤erent program

modules in parallel, and explored criteria to best decompose a program into modules.

Our paper connects to a related literature that takes the modular design of products as given

and explores its implications for the organization of production. A common argument in this

literature is the Mirroring Hypothesis we mentioned in the introduction, which posits that the

organization of a �rm, and speci�cally its internal communication structure, ought to mirror the

modular nature of its production function. A �rm that makes a modular product, in other words,

should see intense communication within modules but not across (see, in particular, Thompson

(1967), Henderson and Clark (1990), Sanchez and Mahony (1996) and, for a survey, see Baldwin

and Colfer (2016)). Langlois and Robertson (1992) observed that modular production might not

only a¤ect the internal organization of �rms but also their boundaries and, through this channel,

the structure of industries. Baldwin and Clark (2000) document these dynamics in the context of

IBM and the computer industry, and provide an exhaustive discussion of modular production and

its organization.

A related literature reverses the causality of the Mirroring Hypothesis and argues that the

design of products re�ects the organization of the �rms that developed them. In this view, a

modular organization has a tendency to develop modular products. In computer science, this view

is known as Conway�s Law, named after Melvin Conway who observed that �To the extent that an

organization is not completely �exible in its communication structure, that organization will stamp

out an image of itself in every design it produces�Conway (1968, p.30).
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3 Model

A �rm consists of one principal and N agents. All parties are risk neutral and care only about the

�rm�s pro�ts. There are no incentive con�icts.

Production. Each agent i 2 N makes a decision di 2 [�D;D] that is associated with a state
�i 2 [�D;D], where N = f1; :::; Ng is the set of agents and D is a large but �nite scalar. Output

depends on how well each decision is adapted to its associated state and coordinated with the other

decisions. Speci�cally, output is given by

r (d1; :::; dn) =
NX
i=1

24�d2i + 2aidi�i + NX
j=1

pijdidj

35 ; (1)

where ai > 0 captures the importance of adapting decision di to its state �i, pij � 0 represents the
need to coordinate decisions di 6= dj , and where pii = 0. The need for coordination is symmetric,
that is, pij = pji. The interactions between decisions can, therefore, be represented by an undirected

network, which we summarize in an N�N matrix P with entries pij . We assume that
PN
j=1 pij < 1

for all i 2 N , which ensures that equilibrium decisions exist. Finally, we normalize the price of the

product to one so that output (1) also represents revenue.

Modules. Each decision, and its associated state and agent, belongs to a �module�Mm for

m 2 f1; :::;Mg, which is a set of nm � 1 such decisions. The function m (i) gives the module

Mm(i) that decision di belongs to. For expositional convenience we adopt the convention that the

�rst decision d1, and its associated state and agent, belong to moduleM1.

The need for coordination is stronger between two decisions within the same module than

between two decisions in di¤erent modules. Speci�cally, the need for coordination between any two

decisions di and dj 6= di is given by pij = t � 0 if they belong to di¤erent modules and, abusing

notation slightly, it is given by pij = pm � t if they belong to the same moduleMm. The parameter

t, therefore, captures the degree of coupling between modules, while the parameter pm captures the

need for coordination within moduleMm.

Information. Each state �i is independently drawn from a distribution with zero mean and

variance �2i , for any i 2 N : The realization of state �i is privately observed by agent i and the other
agents in his moduleMm(i). All other information is public.

Before the states are realized, the principal can place directed communication links between

any two agents. Each such link comes at a cost 
 > 0, which captures the resources involved in

communication. If the principal places a communication link from agent i to agent j, agent i tells
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j the realization of his state �i. Communication, therefore, takes the form of a directed network,

which we summarize in the N �N matrix C. Entry cij is equal to one if agent i tells agent j about

his state, or agent j observes �i directly, and it is equal to zero otherwise. Row Ci then summarizes

the agents who learn �i and column C(j) summarizes the states agent j learns about.

Organization. The principal�s problem is to design the optimal communication network that

maximizes expected revenue net of communication costs, that is, to solve

max
C
E[r (d1; :::; dN ) jC ]� 


NX
i=1

�
Ci1� nm(i)

�
; (2)

subject to cij = 1 for all i; j 2 N such thatMm(i) =Mm(j), where 1 is an N � 1 vector of ones.

Timing. After the principal designs the communication network, agents learn their states and

tell them to other agents as speci�ed in the network. Next, the agents simultaneously make their

decisions, payo¤s are realized, and the game ends. The solution concept we use is Perfect Bayesian

Equilibrium.

We discuss the various key assumptions, such as the assumptions that agents do not re-transmit

information they receive and that their decisions are not distorted by incentive con�icts, in Section

8, after solving the model in the next three sections and applying it to the Mirroring Hypothesis

in Section 7.

4 Decision-Making

We solve the game by �rst determining equilibrium decisions for any given communication network

and then characterizing optimal communication networks. After agents have observed their states

and communicated with each other, they make the decisions that solve

max
di
E
�
r (d1; :::; dN )

��C(i)

�
for all i 2 N ,

where r (d1; :::; dN ) is revenue (1) and where C(i) is the i�s column of the communication matrix

C that summarizes the states agent i is informed about. The best response functions that follow

from these optimization problems are given by

di = ai�i +

NX
j=1

pijE
�
dj
��C(i)

�
. (3)

Each agent�s best-response, therefore, is the weighted sum of his state and the decisions he expects

the other agents to make, where the weight on his own state is ai and the weight on the decision he
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Figure 3: Production network P e. The width of the edges indicates the need for coordination and
the blue shaded areas highlight the modules.

expects agent j to make is pij . To solve the system of best responses, note that (diagCj)P (diagCj)

is the subgraph of the production network that consists of the nodes whose agents know state �j ,

as well as all the links between them. We can then state the following lemma.

LEMMA 1. Equilibrium decisions are unique and given by

d�i =
NX
j=1

aj!ij (Cj) �j for all i 2 N , (4)

where !ij (Cj) denotes the ijth entry of (I � (diagCj)P (diagCj))
�1.

The lemma shows that agent i�s equilibrium decision d�i is the weighted sum of all states, where

the weight on state �j is given by aj , the importance of adapting decision dj to �j , times !ij (Cj),

the ijth entry of (I � (diagCj)P (diagCj))
�1. This latter object has a natural interpretation in

terms of walks on the production network, but before providing it, we pause brie�y to review the

notion of walks and their values.

A �walk�between di and dj on the production network is a sequence of links that lead from

di to dj . Each link between two decisions in this sequence is associated with a discount factor,

which given by the need for coordination between them. The �value�of a walk is the product of

these discount factors. As an example, consider the production network P e in Figure 3, where the

superscript stands for �example.�In this case, d1 to d2 to d3 constitutes a walk from d1 to d3 whose

value is given by p12p23. Standard arguments imply that the ijth entry of (I � P e)�1 is the sum

of the values of all walks from di to dj on the production network P e.

In light of this discussion, the ijth entry of (I � (diagCj)P (diagCj))
�1 in agent i�s equilibrium

decision rule (4) represents the value of all walks from node i to node j on the subgraph of the
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production network that consists only of decisions made by agents who know state �j . If agent i

does not know �s, for instance, di is not part of this subgraph, and so !is (Cs) = 0. Agent i puts

no weight on �s, as one would expect. If, instead, �s is public, the subgraph encompasses the entire

production network and the weight agent i puts on �s is the value of all walks from di to ds on

the production network P . Note that this is the case no matter what the agents know about the

other states. This result re�ects a general implication of the lemma that will be important for what

follows: for a given production network, the weight agent i puts on state �s depends only on who

knows �s and not on what agent i, or any other agent, knows about any other state.

To get an intuition for the equilibrium decision rule in Lemma 1, recall the production network

P e in Figure 3 and consider how much weight agent 1 puts on his own state. If only agent 1 observes

his state, agents 2 and 3 cannot put any weight on �1. As a result, agent 1 faces a trade-o¤ between

adapting his decision to �1 and coordinating it with d2 and d3. Lemma 1 shows that if agent 1

resolves this trade-o¤ optimally, the weight he puts on his own state is given by

a1!
e
11 ((1; 0; 0)) = a1,

where the superscript again stands for �example,� and where the equality follows from the fact

that the value of all walks from d1 to d1 that go only through d1 is one.

If agent 2 learns �1, his decision will put some weight on this state, which relaxes agent 1�s

trade-o¤ between adapting his decision to �1 and coordinating it with d2. As a result, agent 1

increases the weight he puts on his state to

a1!
e
11 ((1; 1; 0)) = a1

�
1 +

t2

1� t2

�
;

where the fraction on the right-hand side is the value of all walks from d1 back to d1 that go through

d1 and d2.

Finally, if agent 3 also learns �1, the weight agent 1 puts on his state increases further to

a1!
e
11 ((1; 1; 1)) = a1

 
1 +

t2

1� t2 +
t2

1� t2 +
2t2
�
t2 + p23

�
(1� t2) (1� p23 � 2t2)

!
;

where the second fraction is the value of all walks from d1 back to d1 that only go through d1 and

d3, and the third fraction is the value of all walks from d1 back to d1 that go through all three

decisions. The intuition for the second fraction is the same as for the �rst: if agent 3 learns �1,

his decision will put some weight on this state. This relaxes the trade-o¤ agent 1 faces between

adapting d1 to �1 and coordinating it with d3, inducing him to put more weight on his state. The

additional e¤ect that is captured by the third fraction is that by making his decision vary with �1,
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agent 3 also relaxes the trade-o¤ agent 2 faces between coordinating d2 with both d1 and d3. As a

result, agent 2 increases the weight his decision puts on �1, which allows agent 1 to do the same.

The example illustrates three general features of the agents�decision-making that matter for

what follows. First, if only agent i observes �i, he puts weight ai on his state. The parameter ai,

therefore, captures the degree of autonomous adaptation. Second, allowing additional agents to

observe �i scales the weight agent i puts on his state to !ii (Ci) ai � ai. It does so since allowing
additional agents to learn �i enables them to coordinate their decisions with each other and with di,

which, in turn, allows agent i to adapt his decision to �i without sacri�cing as much coordination.

The total weight that agent i puts on his state is, therefore, the product of the �coordination

multiplier� !ii (Ci) and the degree of autonomous adaptation ai. Finally, the increase in the

weight agent i puts on his state if agent j 6= i learns �i is larger, if agent k 6= i; j knows �i. We

summarize these properties in the following corollary.

COROLLARY 1. The weight ai!ii (Ci) that agent i�s decision d�i puts on his state �i satis�es

!ii (Ii) ai = ai and is increasing and supermodular in Ci.

Having characterized equilibrium decision-making by the agents, we next turn to the principal�s

problem.

5 The Principal�s Problem

The principal�s problem is to design the communication network that maximizes expected pro�ts,

taking into account that agents make decisions according to (4). It is useful to start by rewriting

revenue (1) as

r (d1; :::; dN ) =

NX
i=1

aidi�i �
NX
i=1

di

0@di � ai�i � NX
j=1

pijdj

1A .
Substituting in the equilibrium decision rules (4), this simpli�es to

r (d�1; :::; d
�
N ) =

NX
i=1

aid
�
i �i +

NX
i=1

NX
j=1

pijd
�
i

�
d�j � E

�
d�j
��C(i)

��
. (5)

In the proof of the next lemma we show that the second term on the right-hand side is zero in

expectation, which implies the following result.

LEMMA 2. Under equilibrium decision-making, expected revenue is given by

R (C) � E [r (d�1; :::; d�N )] =
NX
i=1

aiCov (d
�
i ; �i) ; (6)
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where Cov (d�i ; �i) = ai�
2
i!ii (Ci).

The lemma shows that expected revenue boils down to how well each decision is adapted to its

associated state. For expositional convenience, we interpret aiCov (d�i ; �i) as the expected revenue

generated by agent i 2 N and denote it by

Ri (Ci) � aiCov (d�i ; �i) = �2i a2i!ii (Ci) :

The key property of agent i�s expected revenue is that it depends on Ci but not C�i, on who knows

�i but not on what agent i, or any other agent, knows about any other state. An additional agent

learning �i increases agent i�s coordination multiplier !ii (Ci), and thus the weight ai!ii (Ci) he

puts on his state, as well as the expected revenue �2i a
2
i!ii (Ci) he generates. In contrast, agent i,

or any other agent, learning any other state does not a¤ect !ii (Ci), and thus leaves the weight

agent i puts on his state, and the revenue he is expected to generate, unchanged.

This property of expected revenue is key because it implies that the principal�s problem is

separable. Instead of solving the overall problem (2) head on, the principal can consider each agent

in isolation and ask whom this agent should tell about his state. The answer to whom agent i 2 N
should tell about �i is independent of whom any other agent should tell about his own state. We,

therefore, have our �rst main result.

PROPOSITION 1. An optimal communication network solves the principal�s problem (2) if and

only if it solves the N independent subproblems

max
Ci

Ri (Ci)� 

�
Ci1� nm(i)

�
for all i 2 N : (7)

This separability result greatly facilitates the principal�s quest for optimal communication net-

works. We can further simplify the problem by recalling that agent i�s coordination multiplier

!ii (Ci) is supermodular. This property implies that, whenever it is optimal for agent i to tell

agent j about his state, it must also be optimal for him to tell the other agents in agent j�s module

Mm(j). The principal�s problem, therefore, reduces to which modules each agent should tell about

his state.

To state the principal�s problem in these terms, let G denote the matrix that speci�es the

modules whose agents are told about each state, and let F denote the conversion matrix that

speci�es the module each agent belongs to. Speci�cally, G is an N �M matrix in which entry gim

is equal to one if agent i tells agents in moduleMm about his state �i, and gim is equal to zero if he

does not. Moreover, gim(i) = 1, which re�ects that agents observe the states in their own module

without having to be told about them. The conversion matrix F , in turn, is an M �N matrix in
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which entry fmi is equal to one if agent i belongs to moduleMm and zero otherwise. We can then

restate the principal�s problem (7) as

max
Gi

Ri (GiF )� 

 

MX
m=1

gimnm � nm(i)

!
for all i 2 N . (8)

Finally, supermodularity of !ii (�), together with the linearity of the communication costs, imply
that the subproblems (8) are also supermodular. For any given parameter values, the principal�s

problem can, therefore, be solved using standard algorithms that maximize supermodular functions

in polynomial time (see, for instance, chapter 10.2 in Murota (2003)). Our goal, though, is to solve

the problem analytically, and we do so in the next section.

6 Optimal Communication Networks

The separability result in Proposition 1 allows us to solve the principal�s problem of designing

optimal communication networks by considering each agent in isolation and asking whom he should

tell about his state. To economize on notation, we focus on agent 1. Once we know who agent

1 should tell about his state, we can apply the answer to all the other agents, and thus solve the

principal�s overall problem (8).

To this end, consider the expected revenue R1 (�) agent 1 generates if his state is known to
the agents in his own moduleM1 and to those in some arbitrary set of other modules. Since the

naming of modules is immaterial, there is no loss in denoting the modules whose agents know �1

byM1, ...,M` for ` 2 f1; :::;Mg. We can then de�ne G1 (`) as the 1�M row vector that speci�es

the modules whose agents know �1 and C1 (`) = G1 (`)F as the corresponding 1 �N row vector

of the communication matrix that speci�es the agents who know �1. The next lemma uses this

notation to express agent 1�s expected revenue.

LEMMA 3. Suppose agent 1�s state �1 is known to all the agents in modules M1, ..., M`, for

` 2 f1; :::;Mg, and none of the agents in other modules. Agent 1�s expected revenue is then given
by

R1 (C1 (`)) = a
2
1�
2
1

0@ 1� (n1 � 2) p1
(1 + p1) (1� (n1 � 1) p1)

+
t2x21

P`
m=2 nmxm

(1� tn1x1)
�
1� t

P`
m=1 nmxm

�
1A ; (9)

where

xm �
1

1� (nm � 1) pm + nmt
for m = 1; :::;M:
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The object xm in the lemma captures the �cohesion�of moduleMm, which is increasing in its

size and the need for coordination among its members, and decreasing in the degree of coupling t. A

module is, therefore, more cohesive if coordination among its members is relatively more important

than coordination between its members and those in other modules.3 Both module cohesion xm

and its scaled analog nmxm play a key role in who agent 1 should tell about his state.

In line with our discussion in the previous section, Lemma 3 shows that agent 1�s expected

revenue is the product of a21�
2
1 and the coordination multiplier !11 (C1 (`)), which itself is the sum

of two terms. The �rst term is the value of all walks from node 1 back to itself that only go through

nodes in M1. Because these walks only go through module M1, their value depends only on its

characteristics p1 and n1. The second term, in turn, is the value of the additional walks that also go

through the other modulesM2,...,M`. Notice that the value of these additional walks depends on

the characteristics ofM1 only through x1 and n1x1, and that it depends on the characteristics of

the other informed modules only through the sum of their nmxm terms. The revenue generated by

agent 1, for instance, is the same whether he tells his state to agents in one module with n2x2 = 10

or to agents in ten modules with n2x2 = ::: = n11x11 = 1. This property of expected revenue is

important for what follows.

Having derived agent 1�s expected revenue, we can now determine when the principal bene�ts

from having him tell his state, not just to agents in modulesM2,...,M`, but also to those in either

onlyM`+1 or in bothM`+1 andM`+2. We will see below that doing so delivers a characterization

of optimal communication.

To this end, suppose that, initially, there are at least two modules whose agents do not know

�1, that is, ` � M � 2, and that the principal expands the set of informed agents by having agent
1 also tell his state to the agents in module M`+1. She bene�ts from doing so as long as the per

node marginal revenue it generates is larger than the marginal cost, that is, as long as

1

n`+1
(R1 (C1 (`+ 1))�R1 (C1 (`))) � 
.

Using (9), the per node marginal revenue is given by

a21�
2
1

t2x21x`+1�
1� t

P`
m=1 nmxm

��
1� t

P`+1
m=1 nmxm

� ; (10)

where the fraction is the change in the coordination multiplier !11 (C1 (`)). Notice that the change

in the coordination multiplier is increasing in x1 and n1x1 and thus in n1 and p1. The more
3There are di¤erent notions and formal de�nitions of cohesion in the sociology and economics literatures. Our

de�nition is close to that in Morris (2000). Applied to our setting, his de�nition of the cohesion of module Mm is
(nm � 1) pm= [(nm � 1) pm + (N � nm) t].
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members moduleM1 has, or the more important it is to coordinate their decisions, the more the

principal gains from agents in an additional module learning �1. Beyond the characteristics of

agent 1�s module, the change in the coordination multiplier is increasing in the number of informed

modules, which re�ects the supermodularity of !11 (�). And it is increasing in pm and nm for all

m = 2; :::; ` + 1, which re�ects the fact that the value of the additional walks that are created by

telling agents in another module about a state is increasing in the size of the module and the need

for coordination among them.

Notice also that while the change in the coordination multiplier depends only on characteristics

of the di¤erent modules, per node marginal revenue also depends on a21�
2
1, which is speci�c to

decision d1 and may be di¤erent from the corresponding values for the other decisions in the same

module. The term a21�
2
1 captures the revenue agent 1 would generate if he were the only one who

knew �1 and had to adapt his decision to his state without others coordinating their decisions

with his. As such, a2i�
2
i is the �value of autonomous adaptation�that captures the importance of

adapting decision i 2 N to its state. The higher the value of autonomous adaptation a21�
2
1 is, the

higher is the per node marginal revenue (10) for any given module characteristics.

Next it is useful to compare the per node marginal revenue that is generated when agent 1 tells

his state to agents in one more module with that when he tells it to those in two modules. Suppose

the principal extends the communication network by having agent 1 tell his state to agents in both

M`+1 andM`+2. Again using (9), the per node marginal revenue of doing so

1

n`+1 + n`+2
(R1 (C1 (`+ 2))�R1 (C1 (`)))

is given by

a21�
2
1

1

n`+1 + n`+2

t2x21
�
n
`+1
x
`+1
+ n

`+2
x
`+2

��
1� t

P`
m=1 nmxm

��
1� t

P`+2
m=1 nmxm

� :
Subtracting (10) from this expression, we have that the di¤erence in the per node marginal revenues

1

n`+1 + n`+2
(R1 (C1 (`+ 2))�R1 (C1 (`)))�

1

n`+1
(R1 (C1 (`+ 1))�R1 (C1 (`)))

is equal to

a21�
2
1

n`+2t
2x21

n`+1 + n`+2

(x`+2 � x`+1)
�
1� t

P`+1
m=1 nmxm

�
+ t (n`+1 + n`+2)x`+1x`+2�

1� t
P`
m=1 nmxm

��
1� t

P`+1
m=1 nmxm

��
1� t

P`+2
m=1 nmxm

� :
The key property of this expression is that it is positive if x`+2 � x`+1. If module M`+2 is more

cohesive than module M`+1, the per node marginal revenue of telling agents in both M`+1 and
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M`+2 about the state is larger than that of telling only those inM`+1. It can then never be optimal

for agent 1 to tell his state to agents in M`+1 but not to those in M`+2. It may be optimal for

agent 1 to tell agents in both modules, neither, or only those inM`+2, but telling only the agents in

M`+1 cannot be optimal. This property, in turn, implies our main result: optimal communication

follows a threshold rule in which agent 1 tells his state to agents in any moduleMm whose cohesion

xm is above a threshold, and to none in those whose value is below. Since there is nothing special

about agent 1, the same applies to any other agent. We can then characterize the solution to the

principal�s problem.

PROPOSITION 2. Optimal communication is characterized by N thresholds �i � 0, one for each
agent i 2 N . Given any two agents i and j who belong to di¤erent modules, agent i tells agent j
about his state if and only if the cohesion of agent j�s module is above agent i�s threshold, that is,

if and only if xm(j) � �i. The threshold �i is increasing in marginal communication costs 
 and
decreasing in the value of autonomous adaptation a2i�

2
i , the need to coordinate the decisions within

agent i�s module pm(i), and the size of his module nm(i).

To illustrate the proposition for agent 1, it is convenient to label modules M2; :::;M` in de-

creasing order of their values of xm, so that M2 denotes the module, other than M1, with the

highest value of xm, and MM denotes the one with the smallest. In Figure 4, the blue curve is

the piecewise linear extension of expected revenue R1 (C1 (`)), which we denote by R1 (C1 (`)),

and the red line is a continuous representation of communication costs
P`
m=1 nm
. The changing

curvature of expected revenue R1 (C1 (`)) re�ects the countervailing economic forces at work. The

supermodularity at the heart of the model pushes towards convexity while the modular structure

of the production function pushes towards concavity. A reduction in 
 favors telling agents in

more modules about the state because it �attens the cost curve. And an increase in the value of

autonomous adaptation a21�
2
1 increases the per node marginal bene�t (10), and thus steepens the

expected revenue curve, as does an increase in the size of the agent 1�s module n1 or the need for

coordination among its members p1.

The proposition implies that optimal communication gives rise to sender and receiver hierar-

chies. To see this clearly, focus again on agent 1 and consider the agents in modulesM2 andM3.

The proposition shows that ifM2 is more cohesive thanM3, agents in moduleM3 will only ever

be told about �1 if those in moduleM2 also are. Moreover, since x2 and x3 do not depend on the

characteristics of the sender�s moduleM1, agents in moduleM3 will only ever be told about any

state that those in moduleM2 also are. Optimal communication, therefore, gives rise to a receiver

hierarchy, in which a higher-ranked agent is told about all the states that a lower-ranked agent is
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Figure 4: Determining the optimal communication network for agent 1 (drawn for parameter values
t = 0:01; n1 = n2 = n3 = 5; n4 = n5 = 2; p1 = p2 = p3 = 0:2; p4 = p5 = 0:1; a1�1 = 1).

told about, and possibly more. Agent i�s position in the ranking is fully determined by the cohesion

xm(i) of the module he belongs to. If xm(i) � xm(j), agent i outranks agent j.

COROLLARY 2. Optimal communication gives rise to a receiver hierarchy among agents. For any

agents i; j; k 2 N who belong to di¤erent modules, if agent i�s module is more cohesive than agent

j�s, then agent j is told about agent k�s state only if agent i also is.

Notice that this result is about communication and not information per se. A higher-ranked

agent is told about all the states that a lower-ranked agent is told about. But a lower-ranked

agent may still have some information that a higher-ranked agent does not have. In particular, a

lower-ranked agent observes his own state, and those in his module, directly and it may well be

optimal for a higher-ranked agent to remain ignorant about those states.

The fact that cohesion xm depends only on the characteristics of moduleMm, and not on those

of any other modules, also implies a sender hierarchy in which a higher-ranked agent tells his state

to all the agents that a lower-ranked agent does, and possibly others. The rank of agent i, though,

does not depend on xm(i) but on �i, and it does so inversely. Agent i outranks agent j if �i � �j .

COROLLARY 3. Optimal communication gives rise to a sender hierarchy among agents. For any

agents i; j; k 2 N who belong to di¤erent modules, if agent i�s threshold �i is smaller than agent

j�s threshold �j, then agent j tells agent k about his state only if agent i also does.

Even though an agent�s rank in either hierarchy is increasing in the cohesion of his module, the

positions need not coincide. Agent i may outrank agent j in one hierarchy but be outranked by
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him in the other. The reason is that while agent i�s rank in the receiver hierarchy depends only the

cohesion of the modules, his rank in the sender hierarchy also depends on the speci�c characteristics

of his decision, as captured by the value of autonomous adaptation a2i�
2
i . Suppose agent i�s module

is very cohesive so that xm(i) is larger than the xm of any other module. Agent i, and the other

agents in his module, then reside on top of the receiver hierarchy, receiving any communication

shared with any agents in any other module. They reside on top of the receiver hierarchy because

their ignorance about other modules would hold those modules back from adapting their decisions

more than the ignorance of agents in any other module would. At the same time, if a2i�
2
i is

su¢ ciently small, �i is also smaller than the �j of any other agent j 2 Nni, placing agent i at the
bottom of the sender hierarchy. Even though his module is very cohesive, his ability to adapt his

decisions to his state is just not very important. The agents who hear the most, therefore, might

also speak the least.

A distinct feature of both hierarchies is that they are nested. This feature is in contrast to

the properties of the knowledge hierarchies in Garicano (2000), and the literature that builds on

his work, in which an agent tells his immediate boss about a problem he cannot solve, but does

not tell the boss�s superiors. The choice of whether to tell the boss�s superior about the problem

is left with the boss, who sometimes decides to do so and sometimes does not. Such narrow

communication chains are not optimal in our setting. If an agent tells a superior about his state, he

tells the superior�s superiors. And if he hears from a subordinate, he hears from the subordinate�s

subordinates.

7 Application

Our result that the optimal organization of modular production is hierarchical contrasts with the

Mirroring Hypothesis. As we discussed earlier, the Mirroring Hypothesis conjectures that the

optimal way to organize modular production is to simply mirror the production function, to ensure

intense communication within modules and accept sparse communication across.

The Boeing Company�s experience with the 787 Dreamliner illustrates the Mirroring Hypothesis

and why it may not always hold.4 The Dreamliner was designed to be modular precisely because

it allowed Boeing to outsource the development and production of most modules to independent

suppliers, many of which were scattered around the globe (see Figure 5). Suppliers delivered the

�nished modules to Boeing�s factory in Everett, where its workers put them together with the

4This account is based on Peterson (2011) and Brown and Garthwaite (2016). See also Tadelis and Williamson
(2012).
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tail �n, the only major module still made by Boeing itself. To the extent that �rm- and country

boundaries hamper communication, this way of organizing the production of the Dreamliner is

broadly in line with the Mirroring Hypothesis.

Figure 5: Reproduction of �gure in �Boeing�s 787 Dreamliner Is Made of Parts from All over the
World,�Business Insider, October 10, 2013.

The intention of Boeing�s organizational strategy was to speed up the development of the

Dreamliner and save production costs. This is not what happened. As an article in Reuters

reported at the time: �On a blustery and drizzly December afternoon in the Paci�c Northwest,

about 20 airplanes sat engineless and inert near the runway at a Boeing manufacturing plant...The

program that produced these un�nished 787s is nearly three years behind schedule and, by some

estimates, at least several billion dollars over budget.�5 The underlying reason for these delays

and cost overruns were coordination problems among the suppliers and between them and Boeing.

These problems proved so severe that Boeing was eventually forced to abandon its organizational

strategy and bring the production of di¤erent modules back in-house: �Some of the parts arriving

in Everett did not �t together, and late deliveries by producers of crucial sections of the plane

5Kyle Peterson. �Special Report: A wing and a prayer: outsourcing at Boeing.�Reuters. January 20, 2011. In
line with the description above, the article goes on to say: �The 787 is not merely a historic feat of engineering.
The program also marks Boeing�s departure from its own time-honored manufacturing practices. Instead of drawing
primarily from its traditional pool of aircraft engineers, mechanics and laborers that runs generations deep in the
Puget Sound region around Seattle, Boeing leads an international team of suppliers and engineers from the United
States, Japan, Italy, Australia, France and elsewhere, who make components that Boeing workers in the United States
put together.�
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stopped the entire assembly process...As a result, Boeing was forced to reverse some of its original

outourcing decisions; for example, in 2009 it spent $1 billion in cash and credit to acquire its fuselage

manufacturing partner Vought Aircraft Industries� (Brown and Garthwaite (2016), p.12). Even

when products are highly modular, therefore, mirroring might fail because the need to coordinate

across modules may necessitate intense communication between agents working on di¤erent ones.

In this section, we use the characterization of optimal communication networks in Proposition

2 to explore when the Mirroring Hypothesis does and does not hold. To allow for within-module

communication, we relax the assumption that agents in the same module observe each others�states

and assume instead that each state is observed only by the associated agent. An organization then

mirrors the production function if the principal places communication links within modules but not

across.

DEFINITION. An organization �mirrors�the production function if agent i 2 N tells agent j 2 N
about his state if and only if they belong to the same module.

For mirroring to be optimal, two conditions have to hold. First, pro�ts have to be higher if each

agent tells his state to the other agents in his own module, and no one else, than if he tells no agents

at all. Second, conditional on each agent telling his state to the other agents in his own module,

pro�ts have to be higher if the agent refrains from telling any other agents in other modules. We

can determine when these conditions are met by drawing on the results in the previous section.

For the �rst condition, we know from (9) that if agent 1 tells his state to the other agents in his

module, but no one else, his expected revenue is given by

R1 (C1 (1)) = a
2
1�
2
1

1� (n1 � 2) p1
(1 + p1) (1� (n1 � 1) p1)

,

which we can rewrite as

R1 (C1 (1)) = a
2
1�
2
1

�
1 +

p21 (n1 � 1)
(1 + p1) (1� (n1 � 1) p1)

�
.

The �rst term in brackets� the one� is the value of all walks from node 1 back to itself that only go

through node 1 and the second is the value of all walks from node 1 back to itself that go through

at least one other node in moduleM1 but do not go through any nodes in other modules. These

latter walks are the ones that are created if agent 1 tells his state to the other agents in his own

module but no one else. The next lemma then follows.

LEMMA 5. Pro�ts are higher if each agent tells his state to the other agents in his own module,

and no one else, than if he tells his state to no agents at all if and only if

a2i�
2
i

p2i
(1 + pi) (1� (ni � 1) pi)

� 
 for all i 2 N : (11)
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The term on the left-hand side� the per node marginal revenue agent 1 generates when he tells

the other agents in his module about his state� is increasing in ni and pi. For mirroring to be

optimal, each module, therefore, has to have enough members, and coordination among them has

to be su¢ ciently important.

At the same time, each module cannot have too many members, and coordination among them

cannot be too important since otherwise it would be optimal to tell the agents in those modules

about states in other modules. This property would violate the second condition for mirroring

to be optimal: the absence of any communication across modules. Naturally, such across-module

communication can never be optimal when the degree of coupling is su¢ ciently low. The more

members modules have, though, and the more important it is to coordinate among them, the lower

the degree of coupling needs to be for the absence of across-module communication to be optimal.

LEMMA 6. Suppose each agent i 2 N tells his state to the other agents in his module Mm(i).

There exists a threshold degree of coupling ti > 0 such that pro�ts are higher if agent i refrains

from telling agents in other modules about his state if and only if t � ti. Adding modules to the

production function decreases the threshold ti, as does increasing the module characteristics nm0 or

pm0 for all Mm0 2MnMm(i):

The conditions under which mirroring is optimal then follow directly.

PROPOSITION 3. Mirroring is optimal if and only if (11) holds for all i 2 N and t � mini2N ti:

The proposition shows that for the Mirroring Hypothesis to hold, the conditions have to be

just right. There cannot be too many modules and none of the modules can consist of too many

decisions or require too much coordination, or else some agents should tell their information to

agents in other modules. Arguably, this is why mirroring failed at Boeing. At the same time,

there also cannot be modules that consist of too few members or require too little coordination,

or else the agents in such modules should not even tell each other about their states. Mirroring,

in other words, is associated with moderation. Modular production favors modular organization

only if there is a limited number of modules, each of which consists of an intermediate number of

decisions that require an intermediate degree of coordination.

A broader notion of the Mirroring Hypothesis allows for modular-like organizations, ones that

contain clusters of modules whose agents communicate with each other but not with agents outside

of the cluster. The management literature refers to such arrangements as �partial mirroring.�

DEFINITION. An organization �partially mirrors� the production function if the set of modules

M can be partitioned into subsets such that (i.) agent i 2 N tells agent j 2 N about his state if
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Figure 6: Illustration of an optimal communication network with a core-periphery structure. Left
panel: production network consisting of four modules, two with two decisions and two with only
one (where the blue shaded areas highlight the modules). Parameter values are as follows: need
for coordination within the two-decision modules is 0.5, degree of coupling is 0.01, and the value of
autonomous adaptation is one for all nodes. Right panel: the optimal communication network for
any communication cost 
 2 (0:000434; 0:000801).

and only if their modules belong to the same subset and (ii.) there is at least one �cluster,� that is,

a subset that contains two or more modules.

Partial mirroring can be optimal in our setting, and Figure 6 provides an example. If it is,

though, it has to take a particular form.

PROPOSITION 4. When partial mirroring is optimal, the organization contains one cluster of

modules, and the modules that form the cluster are the most cohesive ones, that is, those Mm 2M
with the largest values of xm.

The result follows from the optimality of hierarchies we discussed in the previous section. If

there were multiple clusters, hierarchies would not be nested, which cannot be optimal. Suppose,

for instance, that one cluster consists of modules M1 and M2 and another of modules M3 and

M4. If it is optimal for an agent inM1 to tell his state to agents inM2 but not to those inM3,

then M2 has to be more cohesive than M3. But if M2 is more cohesive than M3, it cannot be

optimal for an agent inM4 to tell his state to agents inM3 but not to those inM2. In contrast,

the existence of a single cluster is consistent with the optimal design of communication networks,

provided it consists of the most cohesive modules. The optimal communication network then has a

core-periphery structure in which the core consists of the most cohesive modules, whose agents all
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communicate with each other, and the periphery consists of the less cohesive ones, whose agents

only communicate with others in the same module.

This takes us back to Boeing and its response to the failure of its initial organizational strategy.

By insourcing the production of some modules, such as the fuselage, while continuing to leave the

production of others to its suppliers, Boeing created a core-periphery structure in which the inhouse

modules formed the core and the outsourced ones the periphery. To the extent that the tail �n

and the fuselage, as well as the other modules Boeing brought in-house, were the most cohesive

ones, this response is consistent with the optimal design of communication networks in our model.

8 Robustness

Some of the assumptions in the model are critical for our results, while others are merely convenient.

In the application in the previous section we already relaxed one of the convenient assumptions, the

assumption that each agent observes all the states in his own module and does not have to be told

about them. Beyond convenience, this assumption captures the notion that, because of physical

proximity and shared expertise, agents working on the same module may know more about each

others� local conditions than those working on di¤erent modules. Our results extend readily to

an alternative speci�cation in which each agent observes only his own state. We examine this

alternative in Appendix B.

Some of the assumptions in the model are critical for the separability result in Proposition 1,

without which an analytical characterization of optimal communication networks becomes much

harder and, to us, intractable. One such critical assumption, and one that we share with Calvó-

Armengol and de Martí (2008), Calvó-Armengol, de Martí, and Prat (2015), and Herskovic and

Ramos (2020), is that agents do not re-transmit information they have received from others. If

agent i talks to another agent, he tells him about his state �i but not about any other information

he may have, such as the other states in his module. This assumption captures the notion that,

while we model each agent�s state as simply a number, it refers to a complex set of conditions and

circumstances that only the associated agent can describe appropriately. If agents were able to

re-transmit information, the separability result would fail. The communication links from agent i

to other agents would then a¤ect the overall cost, and thus optimal placement, of communication

links from any other agent j.

The separability result also depends critically on the assumptions that states are independent

and that communication is binary, that is, that agents learn the realization of a state either perfectly

or not at all. In the absence of either assumption, the proof of Proposition 1 does not go through. We
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share the assumption that states are independent with Calvó-Armengol, de Martí, and Prat (2015)

and the binary communication structure with Dessein and Santos (2006) and Calvó-Armengol and

de Martí (2008).

Finally, the separability result depends on the absence of incentive con�icts. As mentioned

earlier, we share this assumption with the literature on team theory. To see how incentive con�icts

a¤ect the separability result, suppose that each agent only internalizes a fraction � 2 [0; 1] of the
needs to coordinate and acts as if the production network were given by �P rather than P (for

instance because they put more weight on their own revenue or pro�ts, as in Athey and Roberts

(2001) and Alonso, Dessein, and Matouschek (2008)). The rest of the model is as in Section 3. The

next proposition shows how such incentive con�icts a¤ect the separability result.

PROPOSITION 5. If agents internalize only a fraction � 2 [0; 1] of the needs to coordinate, an
optimal communication network solves

max
C

NX
i=1

aiCov (d
�
i ; �i) + (1� �)

NX
i=1

NX
j=1

pijCov(d
�
i ; d

�
j )� 


NX
i=1

�
Ci1� nm(i)

�
; (12)

where

Cov (d�i ; �i) = ai�
2
i!ii (Ci; �)

and

Cov(d�i ; d
�
j ) =

NX
s=1

a2s�
2
s!is (Cs; �)!js (Cs; �) ,

and where !ij (Cj ; �) denotes the ijth entry of (I � (diagCj)�P (diagCj))
�1.

The only new term in the principal�s objective function (12) is the weighted sum of the covari-

ances between each decision pair. Its presence implies that if agents are biased against coordination,

it is no longer enough for the principal to ensure that each decision is su¢ ciently adapted to its

state. Instead, she also needs to take into account how communication a¤ects coordination and

what she can do to ensure decisions co-vary more strongly with each other. The challenge this

property poses is that the extent to which two decisions co-vary with each other depends on the

overlap of the decision makers�information sets, that is, on which states they are both informed

about. The principal can, therefore, no longer consider each agent in isolation and ask whom he

should tell about his state. She has to consider all agents at once and take into account how com-

munication links from one agent a¤ect the optimal location of such links from the others. Since

the objective function is still supermodular, the principal can still use standard algorithms to solve

for optimal communication networks in polynomial time. Finding an analytical solution, however,

is now more challenging.
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The key assumption in the entire paper is that the production function has a non-overlapping

community structure. This assumption allows us to capture the notion that products are modular,

which are the type of products we are interested in. To generalize this structure, one could allow

for di¤erent degrees of coupling� di¤erent ts� for decisions in di¤erent module pairs. Since a

modules may consist of a single decision, though, such a production function would constitute a

general, unweighted network with little structure to base a characterization on. To see what can

still be said in this case, suppose that the production network P can take any form, provided it still

satis�es pii = 0, pij = pji, and
PN
j=1 pij < 1 for all i; j 2 N . The separability result in Proposition

1, and the lemmas that precede it, continue to hold for such more general production functions.

As such, the principal can still determine the optimal communication network by considering each

agent in isolation. Moreover, the principal�s objective is still supermodular and can, therefore, be

maximized using standard algorithms.

What can no longer hold is the characterization of optimal communication networks in Proposi-

tion 2, which is speci�c to the non-overlapping community structure. Optimal communication can

now take many forms and need not give rise to hierarchies. The speci�c form it takes depends on

the speci�c structure of the production network. There are, however, some properties of optimal

communication networks that hold across production networks.

PROPOSITION 6. As long as the production network P satis�es pii = 0, pij = pji, and
PN
j=1 pij <

1 for all i; j 2 N , optimal communication networks C�
i are increasing in the value of autonomous

adaptation a2i�
2
i and the needs for coordination pij, and decreasing in communication costs 
.

The proposition shows that, independent of the speci�c structure of the production network,

the principal will only ever respond to an increase in the value of adaptation or the need for

coordination, or a decrease in the cost of communication, by adding communication links. These

comparative statics hold because the principal�s objective function is supermodular and has either

increasing or decreasing di¤erences in the various parameters (Topkis 1978, Milgrom and Shannon

1994).

9 Conclusions

Since the middle of the last century, modular production has emerged as a prevalent form of

production. The rise of modular production has been widely observed and documented and has

been explored extensively in management and computer science. The goal of this paper is to take

a �rst step towards understanding the economic implications of the rise of modular production.

27



As a �rst step, we focused on the immediate implications of modular production for the internal

organization of �rms and abstracted from any broader implications for their boundaries and the

structure of industries. Even in this narrow context, many open questions remain. An important

practical issue we put aside is the role of �interfaces�which ensure that di¤erent modules �t with

each other. One way to think about such interfaces in our model is as a limited set of decisions

that are made and announced before agents make the remaining decisions.

Another widely-discussed issue we did not address is �parallel processing,�the notion that mod-

ular production allows �rms to accelerate production by having di¤erent agents work on di¤erent

modules simultaneously (Parnas 1972). One way to get at this issue in our model is to suppose

that the principal can hire agents and decide which decisions each agent is in charge of. Each agent

�rst spends time learning the states associated with his decisions, taking one period per state to

do so. After all the agents have learned their states, they make their decisions simultaneously and

without spending any further time on communication. A patient principal would hire a single agent

and have him make the �rst-best decisions after N periods but an impatient principal may prefer

to hire M agents, put each in charge of one module, and have them make second-best decisions

sooner. We leave the investigation of both interfaces and parallel processing, as well as other issues

related to internal organization, for future research.

The impact of modular production on the economy is unlikely to be con�ned to changes in

the internal organization of �rms. Baldwin and Clark (1997), for instance, observe that while the

introduction of the System/360 did lead to immediate changes in IBM�s internal organization, its

more enduring impact was to cause entry into the computer industry in the following decades. The

entrants were often small, entrepreneurial �rms who focused on the development and production

of individual modules and whose innovative products allowed them to compete successfully with

IBM�s own, inhouse module makers. In this telling, the introduction of the System/360 in the

1960s sowed the seeds for the subsequent disintegration of IBM and the other large mainframe

manufacturers and gave rise to the competitive and innovative computer industry of today.6 There

are many reasons why modular production may a¤ect the boundaries of �rms and the structure

and inventiveness of industries and we leave their exploration for future research.

A question that goes beyond the impact of modular production on economic activity is what

6As Baldwin and Clark (1997) observe: �But modularity also undermined IBM�s dominance in the long run, as
new companies produced their own so-called plug-compatible modules�printers, terminals, memory, software, and
eventually even the central processing units themselves-that were compatible with, and could plug right into, the
IBM machines. By following IBM�s design rules but specializing in a particular area, an upstart company could often
produce a module that was better than the ones IBM was making internally. Ultimately, the dynamic, innovative
industry that has grown up around these modules developed entirely new kinds of computer systems that have taken
away most of the mainframe�s market share.�
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explains its rise in the �rst place. Herbert Simon argued that modularity facilitates adaptation by

con�ning adaptive changes to individual modules within a system. The argument that modularity

allows parallel processing provides another reason why it may have adaptive advantages. In line

with these intuitions, �rms such as IBM explain their development of modular products with the

need to adapt quickly to the changing capabilities of their suppliers and needs of their customers.

Yet, a full explanation for the rise of modular production also needs to account for its costs. It

may be easier to adapt a modular product to its environment but, for a given environment, one

would expect limitations in across-module interactions to a¤ect its quality. After all, products have

not always been modular, and even today many are not, suggesting that such designs also have

signi�cant downsides. Answering the questions of when and why �rms develop modular products,

and what trade-o¤s they face when they are doing so, would require moving beyond one of the

foundational economic modeling assumptions, that production functions are given by nature and

not designed by �rms. As such, it is the most challenging question this paper highlights and, like

the other open questions we sketched above, we leave it for future research.

Finally, this paper also raises empirical issues. Newly emerging data sets contain detailed

information about communication between employees of real-world �rms (Impink, Prat, and Sadun

(2021) and Yang et al. (2021)). Our model makes speci�c predictions about the pattern of such

communication in �rms that make modular products. In particular, the prediction that optimal

communication has a nested, hierarchical structure has a number of implications that are, at least in

principle, observable, such as the emergence of core-periphery structures and the absence of multiple

cores or clusters. While testing the model is naturally di¢ cult, we hope that this paper provides

some stimulation and direction to the budding empirical literature on within-�rm communication.
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