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Abstract

Why did the market rise yesterday? What are the implications of the latest school shoot-

ing? Why did a particular employee get promoted? To answer such questions, we often

exchange models, stories, narratives, and interpretations with others. This paper provides a

framework for thinking about such social exchanges of models. The key assumption, following

Schwartzstein and Sunderam (2021), is that when people are exposed to multiple interpreta-

tions they adopt the one that best explains the data. A key implication is that within a network

interpretations evolve. This evolution driven by social learning hardens reactions to data that

are open to interpretation: following the exchange of models, people are more convinced they

are able to explain the data. Thus, people in different networks can not only end up with vastly

different beliefs, but in a sense be puzzled by the fact that others outside their network have

different beliefs. For certain network structures, we show that social learning also mutes re-

actions to data that are open to interpretation: the exchange of models leaves beliefs closer

to priors than they were before. Beyond studying fixed networks, we also consider how firm

managers, politicians, and other agents are able to influence patterns of communication to their

advantage. Agents who benefit from muting or broadly shared understandings will encourage

a robust exchange of interpretations; agents who instead want new data to change behaviors

will try to limit the exchange of interpretations, especially interpretations that suggest the data

are not surprising. We apply the framework to consider the goal and structure of meetings in

organizations, as well as the evolution and persistence of myths in social networks.

∗We thank Tristan Gagnon-Bartsch, Ben Enke, Simone Galiperti, Robert Gibbons, Andrei Shleifer, Mario Small,
and seminar participants at UC San Diego, Stanford GSB, and the University of Zurich for helpful comments.



1 Introduction

We make sense of the world together. Why is the unemployment rate better than expected? Why
did one employee receive a promotion while another did not? Why did a political candidate under-
perform her polls? Why is the price of a certain stock shooting up? In response to such questions,
we share not only information but also interpretations. Unemployment numbers are better than
expected “because the economy is doing better than expected” or because “there was a one-time
blip in certain sectors”. One candidate received a promotion over another because “she is uniquely
qualified” or “the employer is signalling that her particular skills are generally valued by the or-
ganization”. The stock price is shooting up because of “fundamentals” or “dumb money”. What
is the outcome of this exchange of interpretations? Does it push us towards the truth? How does
who we talk to influence what we come to believe? And how might an interested party like a firm
manager seek to influence patterns of communication to shape ultimate interpretations?

This paper presents a formal framework for thinking about such social exchanges of interpre-
tations. The basic ingredients of the model closely follow Schwartzstein and Sunderam (2021).
Everyone shares a common prior µ0 over states of the world ω and observes a common, public
history h relevant to updating their beliefs before taking an action to maximize their expected util-
ity. Aspects of the history are open to interpretation, meaning that people are willing to entertain
many different interpretations of the same data. Interpretations are represented by models, which
we formalize as likelihood functions that link the history to states. In other words, interpretations
capture the ways people use the history to update their beliefs. When people are exposed to multi-
ple interpretations of the data, they adopt the one that best fits the data, fixing prior beliefs. People
have a default interpretation d, represented by likelihood function πd(h|ω), and come up with a
single alternative interpretation—their initial reaction to the data—that they adopt if it is more
compelling, i.e., it fits the data plus their prior better, than their default interpretation.

In contrast to standard social learning models where people learn from others’ actions or sig-
nals (e.g., reviewed in Golub and Sadler (2016)), in our framework everyone shares the same
information but learns from others’ interpretations. People are exposed to the interpretations of
others within their network and settle on the interpretation they are exposed to that is most com-
pelling. Formally, person i adopts the model she is exposed to m (represented by likelihood func-
tion πm(h|ω)) if

m ∈ arg max
m̃∈{d,m′

i}∪Mi

Pr(h|m̃, µ0)︸ ︷︷ ︸
=
∫
πm̃(h|ω)dµ0(ω)

,

where m′
i represents the model person i comes up with initially and Mi is the set of models the

person is exposed to in her network. In Bayesian terms, the person acts as if she has a flat prior
over the models she is exposed to and then selects the model with the highest associated posterior
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probability. More intuitively, this assumption loosely captures ideas from the social sciences about
what people find persuasive, including that people favor models which (i) have high “fidelity”
to the data as emphasized in work on narratives (Fisher 1985); (ii) help with “sensemaking” as
discussed in work on organizational behavior and psychology (Chater and Loewenstein (2016);
Weick (1995)); and (iii) make the past feel more predictable (Schulz and Sommerville (2006);
Gershman (2019)).

To see some basic implications of this formulation, consider right-leaning voters who are trying
to assess the outcome of an election—both in terms of who won (i.e,. received the highest certified
vote tally) and whether the election was fair.1 Voters’ priors are that the left-leaning and right-
leaning candidates are equally likely to win, but the left-leaning candidate is more likely to win
unfairly. An example of such a prior is given in the following table:

µ0 u f

l .75/2 .25/2

r .25/2 .75/2

,

where l stands for the left-leaning candidate winning, r for the right-leaning candidate winning, u
for the election being unfairly won, and f for the election being fairly won. The number in each cell
corresponds to the prior likelihood of the row-column combination. After the election, data comes
out: h = “left-leaning candidate won the certified vote tally with no official evidence of fraud”.
In reality, the data perfectly reveals that the state is (l, f): the left-leaning candidate won a fair
election. The data is closed to interpretation on who won the election—there is only one possible
interpretation because the winner is by definition the candidate who received the highest certified
vote tally. The data, however, is open to interpretation on the election’s fairness; there are many
different ways to think about the implications for fairness of the lack of evidence of fraud.

Following the release of data, then, everybody agrees that the left-leaning candidate won the
election, but people may disagree about whether the election was fairly won because they use dif-
ferent models to interpret the data. Some voters initially stick with the default interpretation that
the vote tally reveals the election winner and that the election was fairly won.2 Others, however,
view the data as instead suggesting the election was unfair. Assuming the population is suffi-
ciently large that roughly every interpretation consistent with the left-leaning candidate winning is
someone’s initial reaction, and that the network is sufficiently connected that the most compelling
interpretation spreads throughout the population, we ask: which take goes viral?

Not the correct one. Eventually everyone will end up holding the model mbf that maximizes
Pr(h|m,µ0) subject to Pr(l|h,m) = 1: that is, the best-fitting model consistent with the left-

1The analysis of left-leaning voters is symmetric.
2Formally, imagine πd(left-leaning candidate won vote tally with no evidence of fraud|(l, f)) = 1 and

πd(left-leaning candidate won vote tally with no evidence of fraud|ω) = 0 for all ω 6= (l, f).
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leaning candidate winning. This model implies a low probability of a fair election: Pr(f |h,mbf ) =

.25. As shown in Schwartzstein and Sunderam (2021), models that fit well tend to result in pos-
terior beliefs close to prior beliefs. Intuitively, models that fit well imply the data is unsurprising,
which means beliefs should not move much in response to it. In this example, right-leaning voters’
prior is that the left-leaning candidate is unlikely to win fairly. The model that best fits the vot-
ers’ knowledge (i.e., their prior and the data) perfectly confirms this prior. Thus, following social
learning, right-leaning voters agree on the interpretation that the left-leaning candidate’s victory
is unsurprising because the election was likely unfair. For example, the interpretation that “there
will never be official evidence of fraud when a left-leaning candidate wins, regardless of whether
the election was fairly decided,” makes it as unsurprising as possible that the left-leaning candi-
date won. In contrast, if the data had been h = “right-leaning candidate won the certified vote
tally with no official evidence of fraud,” these same voters would have adopted a different model.
Their favored interpretation would suggest a high probability the election was fair because that
interpretation would make the right-leaning candidate winning as unsurprising as possible.

This example illustrates three main points. First, social learning hardens everyone’s reaction to
data that is open to interpretation: following the exchange of models, people are more convinced
they have the right explanation for the data because exposure to others’ models helps them find
ways of explaining the data that they would not find on their own. The fit of the model voters con-
verge to is .5, 300% greater than the fit of the default model (.125 = .75/2). Second, interpretations
evolve to make data that is open to interpretation feel less surprising, which often makes final in-
terpretations less accurate than initial reactions. In the example, many right-leaning voters initially
have the correct reaction that the election was fairly won. However, social learning pulls their
reaction back to their prior that left-leaning candidates are unlikely to fairly win. This evolution of
beliefs highlights a key distinction between our formulation and those built on motivated reasoning
or preferences over beliefs. In these alternative formulations, if, for example, right-leaning voters
prefer accounts that a left-leaning candidate could only win by cheating, then their initial reactions
will exhibit that preference. A third point is that social learning not only has a tendency to harden
reactions but also to mute them—bringing posterior beliefs closer to prior beliefs—by increasing
the chances that people are exposed to models that explain why the data is unsurprising and hence
beliefs should not move. Put differently, the exchange of models can have a tendency to untether
beliefs from data. Our analysis generalizes and fleshes out these points, asking how network struc-
ture shapes ultimate interpretations and beliefs, as well as how politicians, firm managers, and
other agents can shape communication to their advantage.

Section 2 introduces the model. We say social learning hardens a person’s reaction to the data
when she feels she is better able to explain the data after social learning than before. It follows
straightforwardly from our assumptions that any amount of social learning hardens reactions and
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that the amount of hardening is increasing in the size of the network. We say that social learning
mutes a person’s reaction to the data when it moves the person’s beliefs closer to her prior. Whether
social learning mutes reactions or not depends on the network structure, as well as the degree to
which data is open to interpretation.

We first establish a basic result for the case where people are willing to entertain roughly
every possible interpretation of the data and everyone is exposed to everyone else’s model. In this
case, everyone adopts a model that perfectly explains the data, which implies there is nothing to
learn from the data. Thus, social learning maximally hardens and mutes a person’s reaction to the
data—people end up convinced that they perfectly understand the data and that their prior beliefs
are consistent with this understanding. This stylized case also captures one important feature
of reality, highlighted in the voting example above: responses to data often initially diverge and
then converge as people share their interpretations, and this convergence often pulls beliefs back
towards views people held before seeing the data. For instance, commentators have noted the
stability of political polls in recent years.3 Consistent with our model, this stability does not mean
that polls do not react to news. They do react, but the impact of news tends to fade quickly, with
people returning to their previous views. Similarly, in discussing reactions to news about Covid-
19, New York Times writer Charlie Warzel made a similar observation: “a story comes out about
a study/specific spreader event/ whatever & it’s like 1) immediate intense reactions followed by 2)
36 hrs of long threads by smart & not smart/qualified & not qualified people picking apart/casting
doubt & 3) usually calm consensus later in the week”.4 In our framework, this disconnect between
the data and long-run beliefs is driven by the adoption of narratives through social learning.

We next turn to the impact of the network structure on interpretations and beliefs. Section 3
studies networks formed on the basis of shared beliefs, where people exchange models with others
who had similar initial reactions to the data. To illustrate in the voting example above, suppose
voters whose initial interpretations suggested the election was unfair all talk to each other, while
voters whose initial interpretations suggested the election was fair all talk to each other. We show
that within each network social learning leads beliefs to converge to the initial reaction in the
network that is closest to the prior. In the voting example, members of the “election was fairly
decided” and the “election was unfairly decided” networks will continue to disagree, but less so
over time as all right-leaning voters converge on models that bring their beliefs closer to the 25%
prior probability they attached to the election being fairly decided conditional on a left-leaning
candidate winning. We also show that shared belief networks can lead to polarization of beliefs
across multiple issues. If networks are formed based on one issue (e.g., the environmental impact

3See, e.g., https://www.pewresearch.org/fact-tank/2020/08/24/trumps-approval-ratings-so-far-are-unusually-
stable-and-deeply-partisan/.

4https://mobile.twitter.com/cwarzel/status/1421177475111931904
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of genetically modified crops), exchange of interpretations leads to the convergence of within-
network beliefs on a second issue (e.g., the safety of genetically-modified crops). In other words,
beliefs across issues become more uni-dimensional. After social learning, beliefs about the second
issue become more correlated with beliefs about the first issue.

This analysis begs a question, which we tackle in Section 4: how can differences in beliefs
across networks persist when there is some communication across networks? We draw a distinction
between being weakly and strongly exposed to beliefs outside a person’s network. We say a person
is weakly exposed to a belief if she is aware of a single model supporting that belief, while she
is strongly exposed to a belief if she is aware of all models supporting that belief. We think
of communication within networks as strong exposure and communication across networks as
weak exposure. Under this view, members of a network can be aware that people outside their
network have different beliefs, but they will be unpersuaded by the arguments they know in favor
of those different beliefs. Weak exposure to others’ arguments is more effective in moving beliefs
before social learning than after. By hardening reactions, social learning innoculates people against
finding models supporting alternative beliefs compelling.

Armed with these results, Section 5 then considers how someone could manage the commu-
nication network to her advantage. A firm manager, for example, influences the network in how
she forms and manages teams and in how she controls the flow of communication within her or-
ganization. Influential Twitter users shape networks in their choice of which voices to amplify by
re-tweeting. We show that if the network shaper is interested in encouraging people to take specific
actions in response to data, then the shaper wants to expose people to all models that support that
action. If the shaper could identify the model that resonates most with people ahead of time then
she would just push that model. But if she cannot, she is better off crowdsourcing arguments and
seeing what resonates instead of using one specific argument. Put differently, a network shaper
who supports a particular action is better off using a collection of individuals, i.e., a platform, to
articulate arguments for taking that action rather than using any given individual. The shaper also
wants to prevent the audience from being exposed to certain arguments. When the shaper wants
people to react to the data rather than letting the status quo prevail, she especially wants to prevent
people from hearing arguments that the data is unsurprising. Such arguments will be compelling
because they fit the data given priors well and will lead people to conclude the status quo should
prevail. In contrast, if the shaper cares more about the audience reaching consensus than about the
specific conclusion they reach, then she wants everyone to share interpretations with each other.
But this approach will favor the conclusion that there is little to learn from the data.

We then spell out some applications of our results in Section 6. Building on a large literature
in organizational studies following Karl Weick (e.g., Weick (1995)) that views sensemaking as a
central activity of organizations, the results on network shapers have straighforward implications
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for when and how firm managers want to hold meetings: If a manager’s objective is to make sure
workers stay on the same page, for example if there is a strong coordination motive, then she
wants to have a very open flow of communication. If there is an event that is open to interpretation
(e.g., someone is surprisingly denied promotion), then the manager wants to call a meeting to
provide a forum for everyone to share interpretations and settle on the view that there is little to
learn from the event. On the other hand, if the manager’s objective is to shift workers’ beliefs
in response to an event, for example if she seeks to manage change, then she wants to control
the flow of communication. If there is an event that is open to interpretation, she wants to call
a meeting where only interpretations supporting desired conclusions are voiced. Even with such
strong control, however, the manager will not be able to get everyone on the same page, perhaps
shedding light on why organizations may find it difficult to reach desired shared understandings
that differ from the status quo (e.g., Gibbons and Henderson (2012a)).

We also consider implications for the evolution and spread of misconceptions through net-
works. Why do misconceptions, e.g., about vaccine and GM safety, persist in a world where
people have access to so much high-quality information? Why do ideological bubbles appear to
play a role despite the fact that people have diverse news diets and do not appear to systematically
avoid counter-attitudinal information (Gentzkow and Shapiro (2011); Guess et al. (2018))? Our
framework offers a simple explanation, complementing recent models that instead highlight the
role of social media echo chambers (Bowen et al. (2021)): Within a bubble or network, people are
exposed to crowdsourced models that evolve to fit the data better and better, making them more
compelling and resistant to change. In our framework, bubbles do not prevent people from being
exposed to the right take on an event, but, by hardening reactions, they inoculate against finding
that take compelling. Vaccine skeptics are aware that many people say vaccines are safe and know
some of the pro-vaccine arguments, but they have been exposed to a broad diversity of arguments
for why vaccines are unsafe and find some such arguments more persuasive.

Related Literature

There is a large literature on social learning reviewed in Golub and Sadler (2016), with influential
early contributions in economics such as Banerjee (1992), Bikhchandani et al. (1992), and Smith
and Sørensen (2000). While much of this work assumes people are Bayesian in updating be-
liefs, important recent contributions study naive social learning by building on the simple DeGroot
(1974) model of linear updating (Golub and Jackson (2010)) or on more psychologically micro-
founded updating rules premised on redundancy or correlation neglect (e.g., Eyster and Rabin
(2010, 2014); Enke and Zimmermann (2019); DeMarzo et al. (2003); Gagnon-Bartsch and Rabin
(2016)). This work focuses on people sharing information (e.g., how much they enjoyed meals at a
restaurant) or observing each others’ actions (e.g., seeing that a restaurant is popular), and studies
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questions like whether social learning successfully aggregates individuals’ private information in
the long run. Our focus is instead on the many situations where people share essentially the same
information (e.g., about the capitol insurrection or the George Floyd murder), and social learning
primarily involves exchanging interpretations to make sense of that information.

While frameworks featuring social learning of information tend to predict long-run consensus
and relatively effective information aggregation, our framework featuring social learning of mod-
els naturally generates long-run disagreement and the persistence of false beliefs. In our frame-
work, increasing connectedness tends to untether beliefs from data that is open to interpretation
by increasing the chances of being exposed to a model that provides a compelling case that the
data is unsurprising. People adopt wrong interpretations in our framework not from hearing the
same wrong interpretations repeatedly, but rather from being exposed to interpretations that evolve
through social learning to compellingly fit their prior knowledge.

A smaller literature on social learning examines how people could leverage networks to their
advantage in spreading information. Much of this work considers how to best seed a network
with information to boost its diffusion (e.g., Akbarpour et al. (2020)). Murphy and Shleifer (2004)
present a model of the creation of social networks based on shared beliefs in the context of studying
political persuasion. This work considers social learning of information or beliefs rather than of
models.

Closer to our work, recent presidential addresses such as Shiller (2017) and Hirshleifer (2020)
have called for studying the social transmission of narratives in economics and finance.5 These
addresses, as well as a related book (Shiller (2020)), have layed the groundwork for this study
by providing vivid illustrations of the importance of socially-emergent narratives as drivers of
economic and financial events. They also sketch models of narrative transmission that liken the
spread of narratives to the spread of viruses. Bénabou et al. (2018) model the spread of moral
narratives (e.g., “thou shall not do this because”) by stratetgic actors. Our work adds to this line
of study by formally modeling social forces that shape the narratives themselves and highlighting
that good explanatory power helps narratives “go viral”.

We build on our earlier work on model persuasion (Schwartzstein and Sunderam (2021)), which
itself built on behavioral models of persuasion based on coarse or associational thinking (e.g.,
Mullainathan et al. (2008)).6 Froeb et al. (2016) present an earlier related model in the context of
studying adversarial decision making in law, Levy and Razin (2020) present a related model speak-
ing to the problem of combining expert forecasts, and Aina (2021) builds on the model persuasion

5While not all narratives are models and vice-versa, they are closely related and we sometimes interchangeably
talk about narratives, stories, and models.

6Our framework also connects to the literature on learning under misspecified models, which sometimes feature
agents who statistically test their models and abandon them in favor of alternatives which fit better. Examples include
Fudenberg and Kreps (1994); Hong et al. (2007); Gagnon-Bartsch et al. (2021); Fudenberg and Lanzani (2021).
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framework by considering what happens when persuaders need to commit to models before seeing
all the data. Contemperaneous work (Eliaz and Spiegler (2020); Bénabou et al. (2018)) take some-
what different approaches to formalizing models or narratives and what makes them persuasive.
For example, Eliaz and Spiegler (2020) assume that people favor “hopeful narratives”. We add to
this work by formalizing how social learning influences which models emerge and persist.

2 Model

2.1 Setup

The basic setup closely follows Schwartzstein and Sunderam (2021). Broadly, individual agents
take the following steps in interpreting data. All agents share a common default model for in-
terpreting data, and in addition each agent comes up with a model of their own. Prior to social
learning, each agent selects from these two models the one that best explains the data. Social
learning then exposes each agent to all models held by other agents in her social networks. After
social learning, each agent adopts the model that best explains the data from the full set of models
she has been opposed to: the default, the model she comes up with on their own, and the models
others in her social network have come up with.

Formally, there are a continuum of agents i ∈ [0, 1] who hold beliefs µi over states of the world
ω in finite set Ω.7 Agent i takes an action a from compact set A to maximize the expectation
under µi of Ui(a, ω). In the baseline setup, agents share a common prior µ0 ∈ int(∆(Ω)) over
Ω and observe a public history of past outcomes, h, drawn from finite outcome space H . Agents
can end up with different posteriors if they use different models to interpret this history. Given
state ω, the likelihood of h is given by π(·|ω). The true model mT is the likelihood function
{πmT (·|ω)}ω∈Ω = {π(·|ω)}ω∈Ω. We assume that every history h ∈ H has positive probability
given the prior and true model.

Agents do not know the true model. A given agent updates her beliefs based on either (i) the
default model {πd(·|ω)}ω∈Ω,8 (ii) the model m′

i that she generates herself to explain the history,
where m′

i is taken from compact set M and indexes a likelihood function
{
πm′

i
(·|ω)

}
ω∈Ω

, or (iii)
a model she learns from someone in her social network, where we let Mi ⊆ M denote the set of
models proposed by someone in i’s social network.

Given the history and the set of models the agent is exposed to, she adopts the one that best
explains the history. Formally, let µ(h, m̃) denote the posterior distribution over Ω given h and
model m̃ ∈ M ∪ {d}, as derived by Bayes’ rule. We assume the receiver adopts the model m and

7In examples we sometimes relax the assumption that Ω is finite.
8The default can potentially be a function of h. We suppress the dependence of d on h when it does not cause

confusion.
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hence posterior µ(h,m) if

m ∈ arg max
m̃∈{d,m′

i}∪Mi

Pr(h|m̃, µ0)︸ ︷︷ ︸
=
∫
πm̃(h|ω)dµ0(ω)

.

That is, the person goes with the model she is exposed to that best fits the data. Upon adopting a
model m̃, the person uses Bayes’ rule to form posterior µ(h, m̃) and takes an action that maximizes
her expected utility given that posterior belief: a(h, m̃) ∈ arg maxa∈A Eµ(h,m̃)[Ui(a, ω)].

To close the baseline model, we need to specify the model a person generates herself. Let
M̄(h, µ0, d,M) = {m ∈M : Pr(h|m,µ0) ≥ Pr(h|d, µ0)} denote the set of models in M that
explain the history as well as the person’s default interpretation given her prior over states. Assume
that measure δ of the population generates the default model and measure (1−δ) generates a model
in M̄(h, µ0, d,M).9 Further assume that that population is large enough that, for each model
m ∈ M̄(h, µ0, d,M), someone in the population generates that model herself.

In the typical case, we set the default interpretation to be the true-model interpretation, d = mT .
We also typically let M be the set of all possible models Ma—i.e., for any likelihood function
{π̃(·|ω)}ω∈Ω there is an m ∈ Ma with {πm(·|ω)}ω∈Ω = {π̃(·|ω)}ω∈Ω. We refer to this as the
case where people are maximally open to persuasion. We simply write M̄(h, µ0) as shorthand for
M̄(h, µ0,m

T ,Ma).10

2.2 Discussion of Model Assumptions

The building blocks of the model come from Schwartzstein and Sunderam (2021), and we refer to
that paper for a detailed discussion of the basic assumptions. We depart from that paper in a few
crucial ways.

First, we allow some receivers by themselves to generate a model other than the default. That
is, in the notation of our current framework, our previous paper assumes δ = 1 (receivers stick with
the default before being exposed to persuasion), while the analysis in this paper focuses on the case
where δ < 1. For many topics, it seems plausible that some people generate an initial interpretation

9Alternatively, we could endogeneize δ by assuming that people sometimes generate models outside of
M̄(h, µ0, d,M) in which case they stick with the default model. This would suggest that δ is larger when the de-
fault does a good job explaining the data h. While this change would influence the distribution of beliefs prior to
social learning, it would not influence the distribution of beliefs following social learning.

10There’s a technical issue that comes up whenMa is the set of all models. In this case, even assuming a continuum
of individuals, the space M̄(h, µ0,m

T ,Ma) may be too large to guarantee that, for every model in M̄ , there exists
a person who holds that model before social learning. For readers who are concerned about such cardinality issues,
we note that all our results and intuitions stated for the case of M = Ma continue to hold if we instead make the
following assumption on M : For every belief µ̃ that is a posterior for some model in Ma given data h, prior µ0, and
default d, M includes the best-fitting model inducing that posterior as well as one worse-fitting model inducing that
posterior.
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of the data, prior to sharing interpretations with others. Many of us have gut reactions about why
the stock market moved yesterday, who is responsible for the storming of a government building,
what the latest school shooting implies about the merits of gun control. These gut reactions may
be constructed spontaneously in response to the data and differ across people. Crucially, however,
we assume that a given person does not come up with all models she is willing to entertain, so she
is influenced by which models she is exposed to.

Second, the focus of this paper’s analysis is on the social exchange of models, not on the
behavior of a strategic persuader who attempts to influence the beliefs and behavior of audience
members. While many situations are well described by the persuasion setup, many other situations
involve evolving interpretations of data through social learning. By taking as primitive the set of
models a given person i is exposed to, Mi, our framework accommodates a variety of network
structures, including both directed networks, where the flow of communication goes one way, and
undirected networks, where it goes two ways.

Third, implicit in the idea that a person is exposed only to the models of those within her
network is an assumption that she does not actively seek out the models proposed by members of
other networks. One way of thinking about this assumption is that people exhibit a sort of out-
group homogeneity bias (e.g., Quattrone and Jones (1980)), thinking there is not much reason to
investigate the models in other networks because they are “all the same”. A person who favors gun
control may be aware of some arguments for why shootings suggest weaker gun control (e.g., “we
need more guns in the hands of good guys”) and think once she has heard one such argument she
has heard them all, perhaps underappreciating the diversity of these arguments.

2.3 Examples

Example 1 (Interpreting data about policy issues). We now sketch two brief examples, which we
will return to throughout the paper.

Our first example involves public-policy choices. Suppose the state space is binary, Ω = {l, r}.
In state ω = l, a Democrat would make a better US president, and in state ω = r that a Republican
would make a better US president. The prior over states is prior µ0(l) = 1/2. Further suppose that
people can take three possible actions, a ∈ {L,M,R} ,where action a = L is to vote Democrat,
a = M is to abstain from voting, and a = R is to vote Republican. Alternatively, one can think
of the states as corresponding to whether some left- or right-leaning policy (e.g., involving gun
control, climate change, pandemic policy) would be effective, and the actions as corresponding to
supporting such policies (a = L, R) or the status quo (a = M ). The payoffs Ui are such that a = L

is optimal if µ(l) ≥ .75, a = M is optimal if µ(l) ∈ (.25, .75), and a = R is optimal if µ(l) ≤ .25.
The history h can take on two values, (hl, hr), and the data fully reveals the state under the true
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model: πmT (hl|l) = πmT (hr|r) = 1. Further assume people are maximally open to persuasion,
M = Ma, and the default model is the true model, d = mT .

We will sometimes extend this example to consider cases where people may use the same data
to update beliefs about a variety of issues. For instance, in the introduction, people updated both
about who won the election and whether the election was fair. Similarly, people may construct
narratives surrounding data about genetically-modified crops that both have implications for their
safety and their impact on the environment (e.g., how their adoption influences pesticide use). To
accommodate such examples, let Ω = Ω1 × Ω2. We will consider how network-members’ beliefs
over Ω1 (e.g., what the data implies about the environmental impact of genetically-modified crops)
spill over to influence beliefs over Ω2 (e.g., what the data implies about the safety of genetically-
modified crops).

Example 2 (Interpreting data about startups). Our second example involves investing. Relative to
the first example, there are two qualitative differences. First, it highlights more clearly the role of
the data. Second, it illustrates how restricting the model space impacts our results.

Consider a community of venture capitalists trying to predict the success of a startup in a
new sector (e.g., cryptocurrency) based on the history of past startups and their characteristics.
The history of past startups is h = {(x1j, x2j, x3j, yj)}j where yj = 1 if startup j succeeded
and yj = 0 if it failed. The characteristics of startup j are its profits (x1j), management-team
experience (x2j), and an individuating characteristic (x3j) – a characteristic that is unique to each
startup. Figure 1a shows an example history. Each dot represents a previous startup, with profit
plotted on the horizontal axis and team experience plotted on the vertical axis. The individuating
characteristics are not pictured. A dot is filled in if the startup was successful and is unfilled if
it failed. Venture capitalists start with a prior that a given startup’s probability of success, θ, is
uniformly distributed on [0, 1] and dogmatically believe that (profit) x (experience) characteristics
are uniformly distributed in [0, 1] × [0, 1]. They then use the history to make predictions about a
new startup k’s success probability as a function of its characteristics.

We assume there are four types of models in the model space M . First, all venture capitalists
start with the default model that all startups in the new sector have the same success probability re-
gardless of their characteristics. Second, there are models that are cutoff rules in profit: all startups
with profit below the cutoff share the same success probability and all startups with profit above
the cutoff share the same success probability.11 For instance, the vertical green line in Figure 1b
depicts the model where the cutoff is the 25th percentile of profits. Third, there are models that
are cutoff rules in team experience: all startups with experience below the cutoff share the same
success probability and all startups with team experience above the cutoff share the same success

11Formally, success probabilities below and above the cutoff are independently drawn—once and for all—from the
uniform distribution.
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probability. For instance, the horizontal red line in Figure 1c depicts the model where the cutoff
is the 25th percentile of experience. Fourth, there is a model positing that neither profits nor ex-
perience matter. Instead, each startup’s outcome is due to its individuating characteristics; in other
words, each startup had a unique feature that perfectly determined success or failure. Note that this
model perfectly explains each data point. Formally, under the model mind, Pr(y|x3,m

ind, µ0) = 1

for y ≡ (yj)j and x3 ≡ (x3j)j .
Prior to any social learning, venture capitalists consider the default and one other model ran-

domly selected from the other three model types so long as it fits better than the default. As shown
in Figure 1d, venture capitalists will have a variety of different interpretations, and thus different
beliefs, at this point. In the figure, we depict for simplicity the case where the cutoffs considered
are at the 25th, 50th, and 75th percentiles of each dimension. All fit better than the default.
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2.4 Basic Definitions

Prior to social learning, a person adopts the model

m′ ∈ arg max
m̃∈{d,m′

i}
Pr(h|m̃, µ0)

and holds beliefs µ(h,m′). Following social learning, the person adopts the model

m ∈ arg max
m̃∈{d,m′

i}∪Mi

Pr(h|m̃, µ0)

and holds beliefs µ(h,m). As shorthand, write µ′
i (m′

i) as person i’s beliefs (adopted model) prior
to social learning and µi (mi) as her beliefs (adopted model) following social learning.

We say that social learning hardens a person’s reaction to data when she feels she can better
explain the data following social learning than before social learning: that is, when Pr(h|mi, µ0) ≥
Pr(h|m′

i, µ0). When social learning does not harden the person’s reaction, we say it softens

the person’s reaction. We say that social learning mutes a person’s reaction to data when it
moves the person’s beliefs closer to her prior. Formally, following Schwartzstein and Sunderam
(2021), let Movement(µ̃;µ0) ≡ maxω∈Ω µ̃(ω)/µ0(ω) be a measure of the change in beliefs from
prior µ0 to posterior µ̃. Social learning mutes reactions to the data when Movement(µi;µ0) ≤
Movement(µ′

i;µ0). When social learning does not mute a person’s reaction to data, we say it
intensifies the person’s reaction.

A simple observation is that social learning must harden a person’s reaction to data: being
exposed to more explanations of the data enables the person to better explain the data. Social
learning leads a person to become more convinced she understands why the market moved as
it did, why an unexpected political event occured, or the daily movement in pandemic deaths.
Following social learning, any event seems more predictable.

3 Social Exchange of Models

3.1 Initial Reactions

We start by briefly describing people’s initial reactions before social learning. There are two key
points. First, before social learning, people will have a wide variety of reactions to the data.
Second, there will be a greater dispersion of initial reactions when people are more surprised by
the data in the sense that the default model provides a poorer fit to the data, fixing prior beliefs.

To illustrate, let ∆̄(h, µ0, d,M) =
{
µ ∈ ∆(Ω) : µ = µ(h,m) for some m ∈ M̄(h, µ0, d,M)

}
denote the set of initial beliefs in reaction to the data. By assumption, fraction δ of the population
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will stick with the default model and hold beliefs µ(h, d) and fraction (1 − δ) will hold beliefs in
∆̄(h, µ0, d,M).

Proposition 1. The set of initial beliefs in reaction to the data is a subset of

¯̄∆(h, µ0, d,M) =

{
µ ∈ ∆(Ω) : µ(ω) ≤ µ0(ω)

Pr(h|d, µ0)
∀ ω ∈ Ω

}
.

Further, when the data is maximally open to interpretation, M = Ma , we have ∆̄(h, µ0, d,M) =
¯̄∆(h, µ0, d,M).

Proposition 1, which is essentially a restatement of Proposition 1 in Schwartzstein and Sun-
deram (2021), characterizes the set of initial reactions to the data.12 From this result, it is immedi-
ate that the set of initial reactions is constrained by prior beliefs, µ0(ω), as well as the ability of the
default to explain the data given those prior beliefs, Pr(h|d, µ0). Intuitively, the better the default
model fits the data, the harder it is for an initial reaction to fit the data even better. And the more
unlikely a state under peoples’ prior, the less likely it is that their beliefs following their initial
reaction put a lot of weight on that state. If the data is maximally open to interpretation, sticking
with prior beliefs is always an initial reaction to the data and the range of initial reactions is greater
when people are more surprised by the data, i.e., when Pr(h|d, µ0) is lower.

To illustrate, return to the voting example from the introduction. Proposition 1 implies that
some right leaning voters initially react to h = “left-leaning candidate won the certified vote tally
with no official evidence of fraud” by concluding that the election outcome was surely unfair.
Right-leaning voters are so surprised by the idea that a left-leaning candidate would win fairly that
their initial reactions are all over the place. Formally,

∆̄(h, µ0, d,M
a) =

{
µ ∈ ∆(Ω) : µ(l, u) + µ(l, f) = 1 and µ(ω) ≤ µ0(ω)

Pr(h|d, µ0)
∀ ω ∈ Ω

}
= {µ ∈ ∆(Ω) : µ(l, u) + µ(l, f) = 1} ,

where the equality follows from µ0(l, u)/Pr(h|d, µ0) = (.75/2)/(.25/2) = 3 and µ0(l, f)/Pr(h|d, µ0) =

(.25/2)/(.25/2) = 1. In other words, the inequality constraint never binds because the right-hand-
side is above 1 for all states consistent with the left-leaning candidate winning.

On the other hand, if the data were h = “right-leaning candidate won the certified vote tally
with no official evidence of fraud,” Proposition 1 says that no right-leaning voter would initially

12To derive the distribution over initial reactions, we need to additionally specify the distribution over models people
come up with on the fly. When people instead talk to each other, many of our results are independent of the choice of
this distribution.
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react by concluding the election outcome was surely unfair—right-leaning voters are not surprised
by the idea that a right-leaning candidate would win fairly, so their initial reactions are more
concentrated around their default interpretation. Formally,

∆̄(h, µ0, d,M
a) =

{
µ ∈ ∆(Ω) : µ(r, u) + µ(r, f) = 1 and µ(ω) ≤ µ0(ω)

Pr(h|d, µ0)
∀ ω ∈ Ω

}
= {µ ∈ ∆(Ω) : µ(r, u) + µ(r, f) = 1 and µ(r, u) ≤ 1/3 and µ(r, f) ≤ 1} .

So, given h, we see that the highest probability right-leaning voters could initially attach to the
right-leaning candidate winning unfairly given that she won equals (1/3)/(1/2) = 2/3.

3.2 Complete Networks

We now examine how social learning impacts beliefs, first establishing a result for the case where
every person is exposed to everyone else’s model: that is, where the network is “complete” in
graph-theory parlance. (All proofs are in Appendix C.)

Proposition 2. Suppose everyone is maximally open to persuasion and talks to every person:

M = Ma and Mi = Ma for all i. Then social learning mutes every person’s reaction to the data:

for every person i, Movement(µi;µ0) ≤ Movement(µ′
i;µ0). In fact, social learning maximally

mutes and hardens each person’s reaction to the data in the sense that each person sticks with

their prior belief with a model that perfectly explains the data: for every person i, µi = µ0 and

Pr(h|mi, µ0) = 1.

This result says that if everyone talks to each other, then following social learning they do not
react to the data at all because they view it as inevitable in hindsight. Given that the world is
large, someone will come up with the model that explains why whatever happened was bound to
happen. That model will spread throughout the network, and since the network connects everyone,
everyone will adopt it. The fact that a model that fits the data well will be broadly adopted in
turn means that beliefs will move very little. Intuitively, models that fit well imply the data is
unsurprising, which means beliefs should not move much in response to it.

In the context of the policy example above, this result says that a given person’s reaction to
an event might push her to favor taking actions a = L or R, but after being exposed to many
different arguments she will go back to favoring the status quo of a = M . As an illustration, a
school shooting might initially lead people to think we need a change in gun-control policies, but
they will eventually favor interpretations that say we did not learn much from the shooting. Indeed,
there is empirical evidence of exactly such dynamics. Following mass shootings, Twitter users who
are initially against gun control temporarily become more open to the idea. However, as narratives
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evolve and spread in the weeks following a mass shooting, these Twitter users slowly revert back
towards their original beliefs (Lin and Chung (2020)). As noted in the introduction, such a pattern
is harder to explain in mechanical models of motivated beliefs, which would instead suggest that
people who are initially against gun control would immediately (i.e., before social learning) come
up with ways to view the mass shooting as confirming prior beliefs against gun control.

More generally, our model predicts that following a realization of new data that is open to inter-
pretation, there is initially a broad divergence of opinion followed by convergence as people share
their interpretations and settle on commonly believing they learned little from the data. Models
evolve though social learning to better and better fit the data, which in turn lead people’s beliefs to
move less and less.

While Proposition 2 considers the impact of social learning when everyone talks to each other,
people are often embedded in smaller networks.

3.3 Shared Belief Networks

We next turn to networks formed on the basis of shared beliefs.13 For instance, networks are
formed based on beliefs that one political party typically governs better than others, that vaccines
are harmful, and that free markets lead to prosperous societies.

To analyze such networks, suppose that the beliefs a person holds prior to talking to others
influences who she talks to. Formally, consider a partition S over the set of beliefs ∆(Ω), where
we denote s(µ) as the element in S that belief µ ∈ ∆(Ω) belongs in. In a shared-belief network,
a person i exchanges models with another person j if and only if their initial beliefs are similar, in
the sense that they fall in the same element of S.

Definition 1. In a shared-belief network, Mi =
{
m ∈ M̄(h, µ0, d,M) : µ(h,m) ∈ s(µ(h,m′

i))
}

for every person i.

Given our assumption of common priors, this definition, taken literally, says that a shared-
belief network forms based on a common reaction to a specific event. For example, a shared-belief
network could form among people who react similarly to a police shooting in their beliefs on the
need for police reform. While we think this literal interpretation is a reasonable approximation
of reality for certain high-profile events, in many instances networks based on shared beliefs are
probably constructed based on common reactions to a broader set of events. For example, people
who tend to lean left in their interpretations might share views on the most recent event, even if their
initial views on that most recent event are quite different. In such cases, a broader interpretation
of our shared-beliefs setup is appropriate—these networks are formed among people who initially

13Appendix B analyzes networks instead formed on the basis of shared models.
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hold similar beliefs about some question of interest, whether or not these similar beliefs arise
literally from having a common initial reaction to the most recent event.14

Before establishing a basic result for shared-belief networks, we recall a lemma from Schwartzstein
and Sunderam (2021).

Lemma 1 (Schwartzstein and Sunderam (2021)). Fix history h and let

Fit(µ̃;h, µ0) ≡ max
m

Pr(h|m,µ0) such that µ(h,m) = µ̃

be the maximal fit of any model that induces posterior µ̃ given the history h and a person’s prior

µ0. Then

Fit(µ̃;h, µ0) = 1/Movement(µ̃;µ0).

The idea behind this inverse relationship between fit and movement is that models that fit the
history well say it is unsurprising in hindsight, which then implies that beliefs should move little.
So, for any given belief µ, the maximal fit of a model inducing that belief is greater the closer this
belief is to µ0.

Proposition 3. Suppose everyone is in a shared-belief network and is maximally open to per-

suasion, M = Ma. Then social learning mutes every person’s reaction to the data: for ev-

ery person i, Movement(µi;µ0) ≤ Movement(µ′
i;µ0). In fact, social learning leads everyone

to share the initial belief within their network that is closest to the prior: for every person i,

µi ∈ arg minµ∈s(µ′i) Movement(µ;µ0) when such minimizers exist.

This result says that a person who only exchanges models with others who react similarly to
data ends up at a belief that reacts least to the data among those that are shared with her.15 By the
earlier lemma, such a belief is supported by a better-fitting model than any other she is exposed to.

3.4 Examples

Interpreting Data About Policy Issues

As an illustration of Proposition 3, suppose that in the public-policy example, µ0(l) = 1/2 and
shared-belief networks are formed based on people’s views on the right action to take: Everyone

14We will more formally capture this idea in briefly studying dynamics in Section 6.
15Since everyone within a network ends up sharing the same beliefs, the solution concept we apply to shared-belief

networks is a refinement of an alternative concept proposed by Murphy and Shleifer (2004) that requires members of
the same network to hold sufficiently close post social-learning beliefs. If we applied the Murphy and Shleifer concept,
we would have many equilibria. As an illustration, in the binary-state example with a 50-50 prior, taking any finite
set of final beliefs

{
µ(l)1, µ(l)2, . . . , µ(l)K , 1/2

}
with µ(l)1 < µ(l)2 < . . . < µ(l)K < 1/2 there is an equilibrium

where these are the final beliefs of members of the K + 1 ∈ {1, 2, . . . , } groups: these would be the final beliefs if
people with initial beliefs [0, µ(l)1] were in one network, those with initial beliefs (µ(l)1, µ(l)2] were in another, ...,
and those with intitial beliefs (µ(l)K , 1] were in a network.
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Figure 2: Evolution of Beliefs Across Shared-Belief Networks Surrounding a Single Policy Issue
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with an initial reaction supporting a right-leaning action (µ′
j(r) ∈ [.75, 1]) is in one network,

everyone with an initial reaction supporting the neutral action (µ′
j(r) ∈ (.25, .75)) is in another,

and everyone with an initial reaction supporting the left-leaning action (µ′
j(r) ∈ [0, .25]) is in the

final network. Then Proposition 3 says, and Figure 2 illustrates, that everyone in a given network
will end up at the belief that is closest to the prior within her network. For example, someone
whose initial reaction to the data moves her belief from µ0(r) = .5 to µ′(r) = .9 will exchange
models with others whose initial reactions support the right-leaning action (pictured in red in the
figure), which will end up muting her reaction to µ(r) = .75. The person’s reaction will also be
hardened: everyone in the right-leaning network ends up adopting a best-fitting model supporting
the right-leaning action, namely a model satisfying Pr(h|mr, µ0) = 2/3 (by application of Lemma
1).

As we saw in the special case where a person talks to everyone, talking to those who share
similar beliefs is a moderating force in terms of how people think about implications of data,
but a polarizing force in terms of hardening people’s positions by exposing them to better-fitting
arguments supporting those positions. In other words, people’s final beliefs move less than their
initial reactions, but they become more certain that their interpretation of the data is correct and
perhaps more puzzled that anyone could conclude something different. The dynamics highlighted
by the proposition may help explain the recent stability of political polls.16 If voters are exchanging

16E.g., https://www.pewresearch.org/fact-tank/2020/08/24/trumps-approval-ratings-so-far-are-unusually-stable-
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interpretations of data within shared belief networks, their beliefs will not respond much to that
data.

In addition, Proposition 3 illustrates that, within any given network, social learning leads beliefs
to converge. That is, beliefs within any network become more homogeneous. However, across
networks, beliefs remain divergent with everyone becoming more confident in their reaction than
before social learning. A person who only talks to others who share the reaction that the latest
school shooting indicates the need for stricter gun-control measures will become more confident in
the rationale for drawing this conclusion from the data; a person who only talks to others who share
the reaction that the shooting indicates the need for looser gun-control measures will similarly
become more confident in drawing this conclusion from the data.17

Proposition 3 also has implications for political polarization. To illustrate, we consider an
extension of the example where there are multiple issues, but networks are formed based on shared
beliefs about one of them. Let Ω = Ω1 × Ω2 and describe marginal beliefs over Ωj by µj . Then
networks are formed based on shared beliefs over issue 1 but not issue 2 when s(µ) depends only
on µ1.

In particular, let Ω1 = {l, r} be whether a left- or right-leaning candidate governs better and
Ω2 = {n, y} whether we are (y) or are not (n) in a sort of crisis that requires the expertise of
scientists. Networks are formed given beliefs over {l, r} but not {n, y}: suppose people with
initial beliefs µ1′

i (l) ≥ .75 are in one network (the “left-leaning network”), those with initial beliefs
µ1′
i (l) ∈ (.25, .75) are in another (the “centrist network”), and those with initial beliefs µ1′

i (l) ≤ .25

are in another (the “right-leaning network”).
Even though beliefs over the second issue do not influence network formation, final beliefs

over that issue differ across networks when prior beliefs are correlated across the issues. For
example, people might believe that left-leaning candidates tend to govern better at times when a
crisis requires the expertise of scientists:

µ0 n y

l .25/2 .75/2

r .75/2 .25/2

.

In this case, the movement-minimizing belief among members of the left-leaning network is

and-deeply-partisan/
17This is in a sense consistent with the evidence in Schkade et al. (2007), which found that, after group interactions,

views on climate change, affirmative action, and civil unions became more homogenous and more confident. Some
studies on such “group polarization” find that beliefs also become “more extreme” after group interactions. Proposition
3 is consistent with those findings insofar as extremity is measured by confidence and inconsistent with those findings
insofar as groups are formed based on shared beliefs, people have common priors, and extremity is measured by the
degree to which beliefs are reactive to shared data. On this last point, Roux and Sobel (2015) shows how group
polarization naturally arises in models of rational information aggregation.
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µleft-leaning n y

l 3/4 · .25 3/4 · .75

r 1/4 · .75 1/4 · .25

,

the movement-minimizing belief among members of the centrist network is the prior, while the
movement-minimizing belief among members of the right-leaning network is:

µright-leaning n y

l 1/4 · .25 1/4 · .75

r 3/4 · .75 3/4 · .25

.

By Proposition 3, this says that µleft-leaning is the shared final belief among members of the
left-leaning network, µ0 is the shared final belief among members of the centrist network, and
µright-leaning is the shared final belief among members of the right-leaning network. While members
of the left-leaning network will view data as suggesting the likelihood of a crisis is µleft-leaning(y) =

3/4 · .75 + 1/4 · .25 = .625, members of the right-leaning network will view this same data as
suggesting the likelihood of a crisis is µright-leaning(y) = 1/4 · .75+3/4 · .25 = .375. Sharing models
that suggest the left-leaning candidate is better at governing leads members of the network to also
interpret the data as suggesting that it is likely there is a crisis that requires the expertise of sci-
entists. Conversely, sharing models that suggest the right-leaning candidate is better at governing
leads members of the network to also interpret the same data as suggesting that it is unlikely there
is a crisis. In other words, in this example, the belief that there is a crisis becomes a “spurious
justification” for the belief that the left-leaning candidate will govern better. Agents who interpret
the data as supporting the left-leaning candidate will diagnose the data along other dimensions in
a way that justifies that candidate.

These results illustrate how networks based on one issue shape views on connected issues. This
perhaps shed light on the so-called “polarization of reality” documented by Alesina et al. (2020).
They show how the political left and right differ in their perceptions of factual issues, for example
on the probability of upward social mobility.

Interpreting Data About Startups

Next return to the startup example and suppose venture capitalists are in shared-belief networks.
Specifically, they share interpretations with others who have similar initial reactions to the data.
Optimists who believe the data suggest that the average startup is likely to be successful talk to each
other; pessimists who believe the data suggest that the average startup is likely to be unsuccessful
talk to each other; and moderates who believe that success of the average startup is 50-50 talk to
each other. This network structure may emerge because people with different initial reactions have
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different objectives going forward. For instance, optimists think they are likely to invest and want
to figure out the characteristics that matter most for success, while pessimists want to figure out
the most compelling way to explain to their clients why they are not investing.
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(b) Models after social learning

Figure 3: Evolution of Beliefs Across Shared-Belief Networks Surrounding Startup Success

Social learning will lead beliefs to converge within each network to the model that best fits
the data within that network. For instance, consider the optimists. Two models lead to optimistic
interpretations of the data: one where the cutoff is at the 25th percentile of experience and one
where the cutoff is at the 25th percentile of profits. The former fits the data almost ten times
better than the latter. This can be seen in by comparing Figures 1b and 1c. The experience-based
model in Figure 1c more effectively separates successes from failures than does the profit-based
model in Figure 1b.18 Thus, after social learning, all optimists adopt the experience-based model,
depicted by thick-red horizontal line in Figure 3b. Given the data and this adopted model, simple
application of the standard beta-binomial updating formula tells us that members in the optimist
network forecast average startup success to be 3/4 · ((7 + 1)/(9 + 2)) + 1/4 · (1/(5 + 2)) ≈ .58.
Essentially, they believe the best way to explain the data is that failure is relatively rare–only the
startups with the least experienced management teams fail. This example illustrates that with
a limited model space, muting does not always occur. In this case, optimists’ beliefs are more
optimistic after social learning than before. However, we show in simulations (available upon
request) that even in this example social learning mutes the data on average (i.e., across different
draws of startup characteristics).

18Formally, the likelihood of the data under the experience-based model is proportional to (
∫ 1

0
(1−θ)5dθ)·(

∫ 1

0
θ7(1−

θ)2dθ) ≈ .00046, while the likelihood of the data under the profit-based model is proportional to (
∫ 1

0
(1 − θ)3dθ) ·

(
∫ 1

0
θ7(1− θ)4) ≈ .000063.
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Members of the pessimist network go through an evolution similar to the optimists. There are
two models that lead to pessimistic interpretations: one with a cutoff at the 75th percentile of ex-
perience and one with a cutoff at the 75th percentile of profits. In this case, the profit-based model
fits approximately ten times better than the experienced-based model, so pessimists converge to the
model depicted by the thick-green vertical line in Figure 3b. Given the data, members in the pes-
simist network forecast average startup success to be 3/4·((2+1)/(9+2))+1/4·((5+1)/(5+2)) ≈
.42.

Finally, consider the neutral network. Prior to social learning, the two models in the neutral
network are the default model (that the success probability is the same regardless of characteristics)
and the model where the success or failure of each previous startup was inevitable given individ-
uating characteristics. The latter model fits the data perfectly, so members of the neutral network
converge to it, while continuing to forecast average startup success to be .5.

The example highlights how interpretations may evolve in very different ways across networks.
Members of the optimist network initially disagree about whether experience or profit matter;
some believe exerience matters, while others believe profit matters. Yet they all come to believe
that startup success is predicted by experience and not profit. Members of the pessimist network
similarly start out disagreeing, but instead come to believe that startup success is predicted by
profits and not experience. Members of the neutral network come to believe that success is un-
predictable ex ante because individuating characteristics are all that matter. Thus, details of the
network structure—i.e., who talks to whom—influence what people in each network will end up
concluding.

4 Making People More Connected

This section analyzes the impact of making people more connected, addressing two questions.
First, how can differences in beliefs across networks persist when there is some communication
across networks? Our main result here is that differences in beliefs can persist when members of
one network only hear some arguments made by members of another network. In other words,
ideological bubbles need not be hermetically sealed. So long as only some arguments are transmit-
ted across networks, differences in beliefs can persist. The second we question we ask is whether
beliefs become more accurate when people are exposed to a richer set of models through network
expansion. In contrast to standard information-based theories of social learning, we show that
larger networks do not generally need to more accurate beliefs.
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4.1 Communication Across Networks

We first consider the impact of two different types of communication across networks. Person i
is weakly exposed to belief µ̃ if the set of models she is exposed to expands from Mi to Mi ∪
{m(µ̃)}, where m(µ̃) is a specific model that supports belief µ̃. On the other hand, a person is
strongly exposed to belief µ̃ if the set of models she is exposed to expands from Mi to Mi ∪M(µ̃),
where M(µ̃) is the set of all models that induce µ̃. We think of weak exposure as capturing most
communication across networks. For instance, a person who views evidence as suggesting that
a new vaccine is safe is likely aware that there are people in “anti-vax” networks who believe
otherwise. However, this person is likely only aware of a thin slice of anti-vax arguments.

Proposition 4. Suppose everyone is maximally open to persuasion.

1. Suppose person i is weakly exposed to a belief µ̃ not represented in her network. Independent

of her network and the alternative belief, there are an infinite number of ways for this weak

exposure to have no impact on the person’s final belief. For every set of modelsMi and belief

µ̃ not supported by any model in Mi, there exists positive measure of models m̃ = m(µ̃)

supporting µ̃ that fit less well than the best-fitting model in Mi.

2. Suppose person i is strongly exposed to a belief µ̃ not represented in her network. Then this

impacts the person’s final beliefs if µ̃ is closer to her prior, as measured by Movement(·;µ0),

than any belief supported by a model in Mi.

The first part of Proposition 4 implies that weak exposure to beliefs outside a person’s network
is never guaranteed to impact her beliefs.The second part of Proposition 4 implies that strongly
exposing a person to an alternative belief has at least as much impact on her ultimate beliefs and
behavior as weakly exposing her to that alternative belief. In particular, while weak exposure to an
alternative belief is never guaranteed to move final beliefs, strong exposure will move final beliefs
whenever the alternative belief is closer to the person’s prior than other beliefs represented in her
network.

These results provide a simple way of understanding why different beliefs persist across net-
works, despite the fact that there is communication across networks. We think of cross-network
communication as weak exposure. People might exchange models in addition to beliefs when in-
teracting with others in the same network, while only exchanging beliefs (and perhaps a subset
of models supporting those beliefs) when interacting with members of different networks. For in-
stance, a person who believes a school shooting indicates the need for stricter gun-control measures
is likely aware that there are others who conclude the opposite without being intimately familiar
with all of their arguments. Proposition 4 says that is weak exposure to anti-gun control arguments
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is unlikely to move the beliefs in the pro-gun control network. While a person might become con-
vinced by listening to a broad set of arguments for a position, she is unlikely to be convinced by a
narrow subset of the arguments (or simply a statement of the position itself).19

Another way of thinking about Proposition 4 connects to what it means to get someone out
of an ideological bubble. Strongly exposing a person to a belief could be thought of as getting
her outside of a bubble by immersing her in the arguments of people with different beliefs, while
weakly exposing a person to a belief could be thought of as just making her aware that someone
outside of her network holds that belief. Under this interpretation, Proposition 4 suggests that the
former is more effective at changing minds because it increases the diversity of arguments a person
is exposed to that supports a belief.20

Exposure to alternative beliefs is also more effective when it comes before social learning, since
it may impact which network a person joins. To see this, consider shared-belief networks. Imagine
that before joining such a network, person i with belief µ′

i is weakly exposed to belief µ̃ /∈ s(µ′
i)

with supporting model m(µ̃). Following exposure to model m(µ̃), the person potentially updates
her beliefs and joins the shared-belief network associated with her posterior.

Proposition 5. Suppose everyone is maximally open to persuasion, M = Ma, and is in a shared-

belief network. Let µi denote a person’s belief following social learning without being exposed to

a belief µ̃ /∈ s(µ′
i), µei denote her belief following social learning after being exposed to belief µ̃,

and µpi denote her belief following social learning when exposed to belief µ̃ before social learning.

If being weakly (strongly) exposed to a belief after social learning impacts person i’s final beliefs,

µei 6= µi, then being weakly (strongly) exposed to a belief before social learning impacts person i’s

final beliefs, µpi 6= µi. However, the converse does not hold.

This result says that exposing someone to an alternative belief is more likely to have an impact
on her final beliefs if this exposure comes before the person exchanges models with others in a
shared-belief network. The reason is simple: as we saw before, social learning hardens a person’s
reaction to data. As we see from this result, such hardening innoculates the person against finding
models supporting alternative beliefs compelling.

We next turn to analyzing the impact of network expansion more broadly.

19A different reason why beliefs might not converge across networks is that, after engaging in social learning
within a network, a person’s posteriors may become her priors for evaluating arguments outside the network—i.e., she
might evaluate model m based on Pr(h|m,µ(h,mi)), rather than Pr(h|m,µ0). This is a sort of confirmation bias,
which would advantage models supporting beliefs close to µ(h,mi). We explore a related possibility when briefly
considering dynamics in Section 6.

20In highlighting the importance of the breadth of arguments a person is exposed to in whether this changes her
mind, our model relates to “persuasive-arguments theory” from psychology (e.g., Burnstein and Vinokur (1977)).
However, persuasive-arguments theory emphasizes the number of distinct arguments a person is exposed to, while we
emphasize the compellingness of arguments (in terms of fit) a person is exposed to.

24



4.2 Expanding Networks

Next consider network expansions through merging networks: Expanding person i’s network by
merging it with person j’s network enlarges the set of models that are shared with person i to
Mi ∪Mj . This exercise helps assess the impact of increasing social connectedness.

Proposition 6. Suppose everyone is maximally open to persuasion,M = Ma. Let µi (mi) denote a

person’s belief (model) following social learning prior to a network expansion, and µei (me
i ) denote

her belief (model) following social learning with the expanded network.

1. Expanding person i’s network in any way weakly hardens her reaction to the data: for any

expansion of Mi to Mi ∪ M̃ with M̃ ⊂M , Pr(h|me
i , µ0) ≥ Pr(h|mi, µ0).

2. If, in addition, everyone is in a shared-belief network, then expanding person i’s network in

any way also weakly mutes her reaction to the data: for any expansion of Mi to Mi ∪ M̃
with M̃ ⊂M , Movement(µei ;µ0) ≤ Movement(µi;µ0).

The first part of Proposition 6 shows that expanding a network always (weakly) hardens a net-
work member’s beliefs. Being exposed to more models leads a person to become more convinced
she knows how to interpret the data that is open to interpretation. The most basic impact of in-
creasing connectedness in our model is increasing a person’s view that such data was predictable.

The second part of the proposition shows that when networks are based on shared beliefs,
expanding the network always additionally mutes a network member’s beliefs. Being exposed to
more models leads a person to become more convinced she knows how to interpret the data, while
adopting a model that mutes her reaction to the data. In the limit where the person is exposed to all
models, we saw from Proposition 2 that the person will adopt a model where the data is completely
neutralized: when data is open-to-interpretation and relevant for updating beliefs about ω under
the true model, further expanding a person’s shared-belief network further untethers her beliefs
from reality.

These results highlight the differences between our framework and typical information-based
theories of social learning, in which increasing connectedness tends to lead to more accurate be-
liefs. In our setting, larger networks increase the chances of hearing an interpretation that suggests
the data is perfectly consistent with a person’s prior and hence there is no need to update. These
results speak to concerns about the increased connectedness between people generated by social
media, which we discuss in Section 6 below.
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5 Managing Networks

Here we ask how someone could try to shape communication networks to her advantage. The
network shaper could do this by writing a book, forming groups based on certain shared be-
liefs/experiences/interests, holding meetings that invite a select group of people, forming social
networks, etc. The shaper might also try to prevent certain groups from forming, actively trying to
discourage people in one group from speaking to people in another. For example, a manager might
insist on being in all meetings with certain subordinates. Or Twitter users might shame those who
re-tweet certain arguments.

5.1 Promoting Specific Actions

Suppose first that the network shaper wants to encourage people to take some action in response
to the data. For example, in response to a school shooting, the shaper might want to promote
gun control, the status quo, or loosening gun restrictions. Formally, consider the case where each
person has a finite action space and the shaper’s objective is a strictly monotonically increasing
function of the fraction of people who choose her ideal action as ∈ A. How would the shaper want
to structure the network—i.e., the set of models Mi a given person i is exposed to—to maximize
this objective?

Proposition 7. Suppose each person has a finite action space and the network shaper’s objective

is a strictly monotonically increasing function of the fraction of people who choose her ideal action

as ∈ A. The network shaper cannot do better than, for every person i, exposing her to all people

who would choose as in the absence of social learning, and exposing her to nobody else: That is,

the network-shaper’s objective is maximized by setting

Mi =
{
m ∈ M̄(h, µ0, d,M) : a(µ(h,m)) = as

}
(1)

for all i. The network-shaper’s objective continues to be maximized by adding to Mi specified in

Eq. (1) any model m with Pr(h|m,µ0) < maxm̃∈Mi
Pr(h|m̃, µ0), but it is no longer maximized by

adding a model m with Pr(h|m,µ0) > maxm̃∈Mi
Pr(h|m̃, µ0).

This result says that the network shaper wants to expose people to all models that support taking
action as and no other models, except perhaps ones that fit the data plus people’s priors worse than
the best-fitting model supporting as. That is, the shaper wants to form a directed network where
everybody listens to people who support action as and does not want people to hear good-fitting
arguments supporting other actions. If the exact person who would communicate the best-fitting
model supporting action as were known, they shaper would do as well by having everyone just
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listen to this person, but realistically the shaper may not be able to identify that person ahead of
time. The network-shaper does no worse by exposing everyone to the arguments of people who
support action as—and it seems plausible to imagine she is able to identify supporters of action as.

In a sense, then, this result suggests that a network-shaper who supports a particular action is
better off by using a collection of individuals—a platform—to articulate arguments for taking that
action than any single individual. A person who wants people to react to recent election results by
concluding there is election fraud does better by crowdsourcing arguments from people who have
reached this conclusion (and seeing which arguments resonate on social media) than by just leaving
it to a single personality to argue. Communities of anti-vaxxers or conspiracy theorists are more
persuasive than almost any single person. A platform of different contributors (say Breitbart) will
tend to be more influential than any single contributor (say Steve Bannon), even if that contributor
reaches the same audience. The reason is that increasing a person’s exposure to a broad range
of arguments supporting a given conclusion makes it more likely that she will find one of those
arguments compelling than if she is exposed to only a few of those arguments.

We can say more if people are maximally open to persuasion, which we will assume for the
rest of this section. Under the optimal network from the perspective of the network shaper, she
is only able to get everyone to take her desired action if it is the action people would take in the
absence of data—that is, if as is the status-quo action a(µ0). If as is this status-quo action then the
best-fitting model among actions that support as is the one that says everything that happened is
inevitable, Pr(h|m,µ0) = 1, which everybody will adopt. If as is not this status-quo action, then
the best-fitting model that supports as has an associated likelihood Pr(h|m,µ0) that is bounded
away from one, so a positive measure of individuals will stick with models they came up with in
the absence of social learning that have greater associated likelihoods and support sticking with
the status quo. The network shaper is at an advantage if she wants everyone to stick with the status
quo in response to the data. Importantly, this is true even if the right interpretation of the data is
that it supports taking a different action.

To illustrate these results, take the binary example above with µ0(l) = 1/2 and h = hl. The
network shaper who wants people to choose a = L would want to form networks of small numbers
of people who, in the absence of conversation, would choose a = R in a sea of people who would,
in the absence of conversation, choose a = L. For example, if the networks were of the form
“all µ(l) ≥ .75 talk to a single person with µ(r) > .75”, then that person would end up believing
µ(l) = .75. An equally effective network would be one where everybody just listens to anyone
who, in the absence of conversation, would choose a = L. The most important thing for the
network shaper is that people are not exposed to arguments from many people who support the
status quo—i.e., those with µ(l) ∈ (.25, .75).

More concretely, imagine the status quo is not to take action, the network shaper wants to
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promote action, and there is an open-to-interpretation event that could lead to action one way
or the other. For example, the status quo is some amount of gun control and a school shooting
could lead to loosening or tightening gun-control restrictions. Imagine further that the network-
shaper supports left-leaning action, e.g., gun control. The people the shaper mosts wants to silence
are moderates who argue for inaction, whether or not they are left- or right-leaning. The shaper
wants people arguing for left-leaning action to speak and everyone else to listen. And, continuing
this logic in a trivial dynamic extension, once all the people arguing for left-leaning action have
discussed issues with each other enough to harden beliefs, the shaper is not worried about them
having bilateral conversations with reactionaries on the other side—but they would still be wary of
them having bilateral converations with those who support the status quo.

5.2 Promoting Shared Models and Actions

We see from the discussion above that, unless the desired action is the status-quo, promoting spe-
cific actions typically conflicts with promoting shared models and actions. And a network shaper
will sometimes benefit from promoting shared models and actions, for example if she derives ben-
efits from people coordinating on their actions.

To analyze the case where the network shaper wants to promote shared models and actions,
suppose the shaper’s objective is a strictly monotonically-increasing function of the fraction of
people who share what ends up to be the most popular model. The shaper prefers 75% of individ-
uals to hold one model and 25% the other over 60% holding one model and 40% the other, over
50% of individuals holding one model and 50% the other, etc.

Proposition 8. Suppose the network-shaper’s objective is a strictly monotonically-increasing func-

tion of the fraction of people who share what ends up to be the most popular model. The network

shaper cannot do better than, for every person i, exposing her to all models: That is, the network-

shaper’s objective is maximized by setting

Mi = M̄(h, µ0, d,M) (2)

for all i.

This result says that if the goal is for everyone to end up sharing the same model, the network-
shaper cannot do better than encouraging everyone to talk to each other and share their models.
When receivers are maximally open to persuasion, this means that the desire for everyone to end
up sharing the same model will lead everyone to end up with interpretations that neutralize the data
and promote the status-quo action.
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6 Applications

6.1 The Evolution and Spread of Misconceptions Through Networks

Why do people believe in misconceptions (e.g., GMOs and vaccines are dangerous) and conspiracy
theories (e.g., QAnon) when the Internet and social media also give them access to high-quality
information? Echo chambers are a common answer to this question. While people have access
to high-quality information, their media diets and social networks only expose them to misinfor-
mation and falsehoods. Under this view, falsehoods spread like viruses and crowd out the truth.
People hear the same falsehood repeatedly and perhaps then overweight it.

An emerging literature suggests that this misinformation view may be incomplete. Though
many people are exposed to lies or falsehoods, they are also exposed to the truth. For instance,
Guess et al. (2018) argue that most Americans have diverse media diets, and indeed that social
media like Twitter tend to increase the diversity of viewpoints that people are exposed to. Similarly,
Bertrand and Kamenica (2020) find that while social attitudes have become stronger predictors of
political ideology over time, they have not become stronger predictors of media diet. In addition,
Boxell et al. (2017, 2020) find that, while political polarization is increasing, it is not increasing
faster for people who extensively use the Internet and social media. Thus, while echo chambers
could be a concern, evidence suggests they may not be as widespread a problem as conventional
wisdom portrays them to be. Thus, the prevalence of misconceptions in social networks remains a
puzzle not fully explained by echo chambers.

Our framework offers a different explanation, highlighting the difference between misconceptions—
beliefs that are incorrect due to incorrect interpretations—and misinformation. Within a network,
people are exposed to crowdsourced models that evolve to fit the data better and better, which
makes them more certain their interpretation of the data is correct and thus more resistant to change.
In sharp contrast to the misinformation and echo-chamber view, bubbles are not about insulating
people from certain information; they are about exposing people to interpretations of that data that
favor certain beliefs and incoluating them against finding alternative beliefs compelling. Thus, in
our framework, the primary impact of bubbles is not to further polarize beliefs, but to harden and
make them resistant to change. In particular, even if beliefs react a lot in the immediate aftermath
of a big event, bubbles lead members to adopt interpretations that mute and harden their reactions.
To stretch the virus analogy, bubbles lead misconceptions to mutate to achieve better fit within a
bubble—and people are exposed to a greater degree to mutations within than across bubbles.21

21Bowen et al. (2021) provide an alternative model where belief polarization is driven by misperceptions about
selective sharing of second-hand information within an echo chamber. In Bowen et al. (2021), disagreement and
polarization are driven by different people holding different information (having heterogeneous “information diets”
of second-hand information) and not properly accounting for that fact; in our model, disagreement arises even when
people share the same information. Their framework sheds light on situations where tons of news is coming out
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While we could illustrate these results by applying the baseline model we presented above,
it is more revealing to consider a simple two-period dynamic extension of the analysis under the
assumption that everyone is maximally open to persuasion. The key idea the extension highlights
is that if networks form endogenously in response to one set of information, those networks will
tend to encourage different interpretations of all future information. In other words, endogenous
network formation creates strong path dependence in the way people interpret information.

Formally, suppose people begin with the same priors, react to data h1, and form shared belief
networks based on their reactions to h1. Further suppose that after exchanging models through
the network, people’s posterior beliefs after interpreting h1 become their priors in interpreting new
data h2. In interpreting h2, people share models with others in the shared-belief network that was
formed based on common reactions to earlier data h1. That is, networks are sticky across the two
periods: people stay in the shared-belief network that was formed in period 1. For example, people
may talk to others who share a similar reaction to well-publicized evidence purporting to show a
relationship between vaccines and autism and continue to talk to the same people to make sense of
new data that arrives.

The key result from this dynamic extension is that bubbles have lasting consequences on how
people interpret subsequent events. By Proposition 3, everyone within a given shared-belief net-
work ends up holding the initial belief closest to the prior within that network in response to data
h1. So everyone within a shared-belief network begins with the same prior entering into the sec-
ond period where they interpret data h2. Call this prior belief µs1, which differs across networks s.
Since people use the same network to exchange interpretations of h2, Proposition 2 applies. Social
learning maximally mutes and hardens a person’s reaction to the data. In other words, everyone
ends up at the belief they held prior to seeing h2 with a model that perfectly explains the data: for
every person i in shared belief network s, µi = µs1 and Pr(h2|mi, µ

s
1) = 1.

This analysis suggests that networks formed based on shared beliefs may result in beliefs being
persistently untethered from data that is open to interpretation. Once misconceptions evolve and
harden within a network through crowdsourced interpretations of a high-profile event, members
of that network explain subsequent events in a way that makes them consistent with the original
interpretation. In other words, a bad take on an event can be very hard to reverse. Importantly,
members may originally have disparate (and perhaps realistic) interpretations of subsequent events,
but they eventually settle on explanations that neutralize those events.22

each day and it’s hard to keep track of it all (e.g., if there’s a war or people are forming beliefs about a new political
candidate). We shed light on situations where the basic facts are essentially common knowledge (e.g., the George
Floyd murder or the capitol insurrection) and people are primarily exchanging interpretations of those facts.

22In the U.S., reactions to the capitol insurrection appear consistent with this pattern: While initial reactions in
some corners seemed to break from earlier trends, reactions settled on narratives suggesting there was not much to
learn from the event.
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6.2 When and How to Hold a Meeting

Why do organizations hold so many meetings? Economic models assume meetings are fundamen-
tally about information exchange: One worker holds a piece of information that another does not
and exchanging information helps workers adapt to the environment and coordinate their actions
(e.g., Dessein and Santos (2006)). Under this account, meetings are essentially no different from
other communication technologies (e.g., emails) and are called when workers do not share the
same information set. After meetings, workers pull in the same direction, which is better adapted
to the full information set.

Organizational scholars view meetings much more broadly. They come in different forms,
such as town halls or all hands. They are sometimes about information exchange, but they are also
about diagnosing problems, communicating organizational priorities, and exchanging or amplify-
ing views on the right course of action.

This section formalizes such a role for meetings, building on the view put forward in Weick
(1995) that sensemaking is a fundamental activity of organizations. In the model, costly meetings
are called to help workers make sense of shared information. Meetings allow leaders to control
interpretations workers share with each others, and they are called even when workers do not
have any new private information. The structure and goal of meetings is not fixed but depends
on workers’ flow of communication outside meetings and the degree to which the organization
prioritizes adaptation versus coordination. In particular, meetings may help workers get on the
same page by commonly muting their reaction to data instead of better adapting to the environment.

We consider a similar setting to Dessein and Santos (2006) and Bolton et al. (2013), closely
following the latter paper’s language and formulation. The environment is parameterized by ω ∈
[0, 1], which is not known by the leader or a continuum of followers. Instead, they have a uniform
prior over ω and interpret data h in terms of what it implies about ω.

The timing of the game, which we flesh out below, is: (1) everyone observes h, (2) the leader
announces the organization’s strategy aL ∈ [0, 1] and perhaps holds a meeting to discuss it in light
of h, (3) each follower i ∈ [0, 1] chooses an action ai ∈ [0, 1], and (4) payoffs are realized.

Each follower i has payoff function

−α · (ai − [li · aL + (1− li) · ω])2 − κ
∫
j

(aj − ā)2dj,

where α > 0, κ > 0, li ∈ [0, 1] and ā ≡
∫
ajdj. That is, each follower values (i) taking an action

that is aligned with a weighted average of the organization’s strategy aL and the environment and
(ii) being part of a well-coordinated organization. To limit the number of cases, we assume that
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li = 0 for almost all followers and li = 1 for positive fraction ε→ 0 of followers.23 That is, almost
all followers care about taking an action that is well-adapted to the state, rather than than taking an
action that is aligned with the organization’s strategy, and the rest of the followers blindly follow
the organization’s strategy. By focusing on the case where li = 0 for fraction (1 − ε) ≈ 1 of
followers, the analysis below better applies to situations where workers care more about getting
things right than about following the leader. The leader’s payoff simply aggregates the followers’
payoffs:24

−α
∫
i

(ai − [li · aL + (1− li) · ω])2di− κ
∫
j

(aj − ā)2dj.

The leader and followers share the same default model. While the leader is dogmatic the default
model is correct, followers may move away from it by sensemaking on their own and with fellow
followers.

Because Ω in this example is the full unit interval, we for simplicity limit the set of models M
followers could consider to be finite. We assumeM always includes (i) the default model d, (ii) the
best-fitting model mbf that induces the same beliefs as d (i.e., µ(h,mbf ) = µ(h, d)), (iii) a model
that says the history is inevitable in hindsight (i.e., a model m such that Pr(h|m,µ0) = 1), and
(iv) at least one model m satisfying Pr(h|m,µ0) ∈ (Pr(h|m, d),Pr(h|mbf , µ0)) and µ(h,m) 6=
µ(h, d). We also for simplicity assume that mbf fits better than all models in M except for the
model that says the history is inevitable in hindsight.

If the leader does not hold a meeting, then workers make sense of h in their own networks.
Holding a meeting costs the leader a positive amount c that is vanishingly small. By holding a
meeting, the leader is able to perfectly control the set of models each worker is exposed to, Mi, by
influencing the flow of communication between followers.

Proposition 9. In the leader-follower example of this section:

1. If information h is closed to interpretation or followers always stick with their default in-

terpretation of the information absent persuasion (δ = 1), then the leader never holds a

meeting. In this case, aL = Eµ(h,d)[ω] for all h, and ai = aL for all i.

23Having some followers blindly follow the organization’s strategy induces a cost to the leader of announcing a
different strategy from what she thinks is subjectively optimal. There are other ways to generate such a cost, e.g., by
assuming as Bolton et al. (2013) do that followers and leaders value being part of an organization that is well-adapted
to its environment. We take the approach we do because it is analytically simpler for our purposes than such other
approaches, but our qualitative results do not hinge on our precise formulation.

24For simplicity, we assume the leader evaluates her expected payoff according to her own expectation and not
followers’ subjective expectations. For example, the leader has an incentive for followers’ actions to be well-adapted
to the leader’s view of the environment, but does not directly care whether the followers believe their actions are
well-adapted to the environment. Introducing the latter force could provide an additional reason why leaders want to
hold meetings in our framework: to get followers on board with the direction of the organization, even when getting
followers on board does not influence their actions.
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2. Otherwise, the leader may hold a meeting.

(a) If the weight placed on coordination (κ) is sufficiently large or if h is uninformative

under the default model in the sense that Eµ(h,d)[ω] = Eµ0 [ω] ≡ ω0, then the leader

calls a meeting whenever some followers take an action other than ω0 absent a meeting,

for example because followers are in a network where not everyone talks to everyone

else. Additionally, in this case (i) an optimal meeting features open communication

(Mi = M for all i), (ii) aL = ω0, and (iii) ai = ω0 for all i.

(b) If the weight placed on adaptation (α) is sufficiently large and followers should react to

the information under the default model in the sense that Eµ(h,d)[ω] 6= Eµ0 [ω] , then the

leader calls a meeting whenever too many followers take an action other than Eµ(h,d)[ω]

absent a meeting, for example, because they talk to others who supply a model that says

the history is inevitable in hindsight. Additionally, in this case (i) an optimal meeting

features directed communication with Mi 6= M , (ii) aL 6= ω0, and (iii) not all followers

take the same action.

The first part of Proposition 9 says that, when data is closed to interpretation or followers do not
try to make sense of the data on their own, then there is no need for the leader to call a meeting to
discuss the organization’s strategic response to publicly available data. The leader just announces
her strategic response, which varies one-for-one with the leader’s reaction to the data.

The second part of the proposition shows how the leader’s reaction is very different when data
is open to interpretation and followers try to make sense of it on their own. Meetings then allow
leaders to better control interpretations followers share with each other. If, in the leader’s mind,
followers are reacting to data when they should not be or if the organization places a sufficiently
large weight on coordination, then the leader calls a meeting which features open communication:
everyone shares their view of what the event means for the organization. While opinions will be
voiced that leaders do not agree with, at the end of the day everyone will share a view that the
event teaches them little that they did not already know. Thus, the status quo will prevail. In this
case, the leader’s strategic response to publicly available data may be muted relative to her private
response: if she believes that she cannot persuade enough followers in her desired course of action
through a meeting, her next-best alternative is to ensure coordination by structuring the meeting to
neutralize the data. This may be one reason why informal (e.g., relational) contracts are “hard to
build and change” (emphasis added, Gibbons and Henderson (2012b)).

On the other hand, if too many followers are underreacting to the data or the organization
places a sufficiently large weight on adaptation, then the leader calls a meeting which features a
sort of persuasive campaign where leaders ensure that the loudest voices are those that interpret
the event in a way consistent with its view of the optimal course of action Eµ(h,d)[ω]. In this case,
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leadership would worry about certain interpretations being more compelling than the desired one.
While not everyone ends up on board with the shift in strategy from the status quo of ω0, as many
will be on board as possible. Per Proposition 5 there is also desire to hold the meeting as soon
as possible, before workers can share interpretations with each other on their own. Indeed, the
proof of Proposition 9 establishes that the benefits of holding a meeting that prioritizes adaptation
(through a persuasive campaign) versus coordination (through open communication) is decreasing
in the fraction of followers who adopt the “everything is obvious in hindsight” model prior to
the meeting; the longer the delay before holding the meeting, the greater the risk of this model
spreading among followers.

7 Discussion

This paper is just a first step to studying the social transmission of models. While we assume people
costlessly exchange models with others, in many cases people devote effort, attention, and time
to exposing themselves to new models for reasons of curiosity, identity, and instrumentality. How
does incorporating a realistic demand function for models influence, for example, the way networks
are structured? Appendix A presents one extension along these lines where a platform designer
promotes engagement by exposing individuals to models that provide good explanations and/or to
explanations that justify their pre-existing beliefs. The appendix shows that such platforms are not
a force towards truth but of hardening people’s views.

The framework also admits further applications. For example, if a manager wants to organize
teams to help her arrive at a realistic interpretation of the data, how would she do it? Would
she like to construct teams of advocates to particular positions? Of teams who tend to reach
similar conclusions (i.e., shared-belief networks)? Of teams who look at the data in similar ways
(i.e., shared-model networks, analyzed in Appendix B)? A loose intuition that arises from the
framework which we have yet to formalize is that, reminiscent of Hong and Page (2001) and per
the results in Appendix B, a good manager is able to harness systematically diverse viewpoints on
how to interpret data to reach more accurate conclusions than if she only heard a single viewpoint.
On the other hand, per the results in Section 3, even a good manager does not benefit from hearing
viewpoints that differ not because of systematically different ways of looking at the data but rather
a tendency to reach systematically different conclusions from the data. In the Venture Capital
context, it’s ok to have people who focus on the idea and people who focus on the team but not
people who want to invest and people who want to pass.
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APPENDICES

A Promoting Engagement on a Platform

Suppose the network-shaper is a platform designer who wants to encourage engagement on the
platform. To incorporate engagement in a simple way, we extend the model in the spirit of Mul-
lainathan and Shleifer (2005) to suppose people don’t like having their beliefs disconfirmed: The
engagement of any given person i is decreasing in the distance between pre-social-learning be-
liefs µ′

i and post-social-learning beliefs µi. At the same time, we suppose people like learning
new arguments that support their positions: The engagement of any given person i is increas-
ing in the degree to which the person’s beliefs are hardened following social learning—that is,
in the distance between how well the person’s adopted model following social learning explains
the data, Pr(h|mi, µ0), and how well her adopted model prior to social learning explains the data,
Pr(h|m′

i, µ0).
Overall, suppose the engagement of person i, ei, is a weighted average of these two factors:

ei = β · [−d(µi, µ
′
i)] + (1− β) · (Pr(h|mi, µ0)− Pr(h|m′

i, µ0)) , (3)

where β ∈ (0, 1) and d(·) is some distance metric between beliefs. We assume that for every
person i, the platform designer is able to observe the person’s pre-social-learning beliefs µ′

i and
then select the set of models the person is exposed to among those others have come up with, Mi,
to maximize ei.

While the general problem of maximizing ei appears intractable without further assumptions,
it’s easy to solve for what happens in the limit cases, which also gives a flavor for the general
solution. If engagement mostly depends on a person’s beliefs not being disconfirmed, β ≈ 1, then
Mi =

{
m ∈ M̄(h, µ0, d,M) : µ(h,m) = µ′

i

}
: that is, the designer will implement an extreme

form of shared belief networks where a person is exposed only to models that confirm her pre-
social-learning beliefs. In this case, which might hold when people’s identity is connected to a
specific belief (e.g., on which political candidate would govern better), a platform takes a person’s
revealed belief and returns other arguments supporting that belief. At the end of the day, the
platform leads a person to more strongly hold any belief she started with.

If, on the other hand, engagement mostly depends on the person being better able to explain
data following social learning, β ≈ 0, then Mi = M̄(h, µ0, d,M). In this case, which might hold
when a person is curious about an issue but doesn’t identify strongly with a particular position, the
person is exposed to everyone else’s model. At the end of the day, the platform leads a person to
react less to the data by exposing them to models where the data feels obvious in hindsight.
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In both of the extremes, the platform is not a force towards truth but of hardening people’s
positions. And in the latter extreme, the platform leads people’s beliefs to converge but to become
completely untethered to the data.

B Shared Model Networks

Some networks are based not on shared beliefs, but shared models. Astrologers consider the move-
ment of celestial bodies in making sense of what happened yesterday. Closer to earth, some com-
munities of venture capitalists primarily evaluate startups based on attributes of their products,
while others focus on attributes of their founders. In finance, there are contrarians and trend fol-
lowers. Some political analysts focus on fundamentals (e.g., the economy) in predicting who will
win an election, while others focus on polls. How do networks shape views in such cases?

To analyze shared-model networks, consider a partition C over the set of admissable models
M , where we denote c(m) as the element inM that model m ∈M belongs in. In a shared-model

network, a person i exchanges models with another person j if and only if their initial models are
similar, in the sense that they fall in the same element ofM.

Definition 2. In a shared-model network, Mi =
{
m ∈ M̄(h, µ0, d,M) : m ∈ c(m′

i)
}

for every
person i.

People in a given shared model network will end up agreeing on whichever model in c(m) maxi-
mizes Pr(h|·, µ0).

We analyze a special class of shared models based on shared inflexibility: people may be
commonly dogmatic on how to interpret certain types of information. This may arise from shared
expertise, shared beliefs about what sort of data is uninformative, shared trust in taking some data
at face value, or even a shared convention that some discussions are taboo.

Decompose h into two types of data, ha and hb. In predicting the success of a project, stock, or
politician, for example, there may be both quantitative or hard information, as well as qualitative
or soft information. In interpreting whether a left- or right-leaning policy is better, there may be
data communicated by left-leaning and right-leaning outlets.

Imagine there are networks that view ha as open to interpretation, but not hb, and vice-versa.
Quantitative analysts may believe they have a good handle on how to interpret hard information
but may be more open to different ways of thinking about qualitative information. Symmetrically,
qualitative analysts may have a single interpretation of soft interpretations but be open to many
interpretations of hard information. People on the left may believe they know how to interpret
left-leaning information, e.g., as trustworthy, but may be less sure on how to interpret right-leaning
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information. More formally, suppose there are three categories of models:

cA =
{
m ∈ M̄(h, µ0, d,M) : πm(ha, hb|ω) = πm(hb|ω) · πmfa(ha|ω) ∀ ω ∈ Ω

}
cB =

{
m ∈ M̄(h, µ0, d,M) : πm(ha, hb|ω) = πm(ha|ω) · πmfb(hb|ω) ∀ ω ∈ Ω

}
cO = M̄(h, µ0, d,M) \

{
cA, cB

}
.

The first category of models, cA, has a fixed interpretation mfa of ha but differing interpretations
of hb. Conversely, category cB has a fixed interpretation mfb of hb but differing interpretations
of ha. Finally, category cO contains all other models. If shared inflexibility stems from shared
expertise, it is natural to assume mfa = mT and mfb = mT ; if it stems from shared beliefs that the
data is uninformative, it is natural to assume that mfa renders ha uninformative and mfb renders hb

uninformative; if it stems from shared trust in knowing the process, it’s natural to assume mfa = d

and mfb = d.
Supposing the data is maximally open to persuasion, M = Ma, then people with initial models

in cA will end up convincing themselves that hb is obvious in hindsight and hence uninformative,
while people with initial models in cB will end up analogously convincing themselves that ha is
uninformative. Quantitative analysts will talk to other quantitative analysts about how to interpret
qualitative information and end up agreeing that, while it initially seemed relevant, it is not useful.
Conversely, qualitative analysts will talk to other qualitative analysts about how to interpret quan-
titative information and end up agreeing that, while it initially seemed relevant, it is not useful.
Similarly, people on the left will end up adopting models that neutralize data communicated by
right-leaning outlets as being inevitable no matter the state, and similarly for people on the right.

Proposition 10. Suppose everyone is maximally open to persuasion, M = Ma, and is in a

shared-model network based on shared inflexibility of the form described above, where c(m) ∈{
cA, cB, cO

}
. Then social learning need not moderate everyone’s reaction to the data. In particu-

lar, social learning leads members of cA to view hb as uninformative, members of cB to view ha as

uninformative, and members of cO to view h as uninformative, resulting in final beliefs:

µi =


µ(ha,mfa) if m′

i ∈ cA

µ(hb,mfb) if m′
i ∈ cB

µ0 if m′
i ∈ cO.

As an illustration, consider networks based on shared expertise and imagine a company will
either be successful (ω = 1) or unsuccessful (ω = 0) with equal probability ex ante. People
are trying to forecast the success of the company based on hard, ha ∈

{
ha, h̄a

}
, and soft, hb ∈{

hb, h̄b
}

, information. The true probability of ha being h̄a or hb being h̄b is .75 conditional on
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future success and .25 conditional on future failure, where hard and soft signals are conditionally
independent. Imagine that the hard and soft signals point in opposite directions, with the hard
signal being truly good (ha = h̄a) and the soft signal being bad (hb = hb). Then, the correct
response is to predict the probability of future success to be 1/2.

People’s initial reactions to these signals will vary significantly. However, by Proposition 10,
the network of soft-information experts will settle on explaining away the hard information and
come to believe the likelihood of future success to be 1/4. Conversely, the network of hard-
information experts will settle on explaining away the soft information and come to believe the
likelihood of future success to be 3/4. The non-experts will settle on explaining away all infor-
mation and believing the likelihood of future success to be 1/2. Since some people in the hard-
and soft-information networks will start with more moderate (and correct) reactions, in this exam-
ple social learning intensifies some opinions in the hard- and soft-model networks in addition to
hardening them.

With re-labeling, a similar example perhaps sheds light on so-called “epistemic closure” in po-
litical debates. Political observers argue that, in recent years, many of beliefs held by conservatives
and liberals seem divorced from reality. Pundit Jonathan Chait puts it in the following way:

the problem is that the [conservative] movement has created its own subculture,
and within this subculture, only information from sources controlled by the movement
is considered trustworthy or even worth paying attention to.25

The key problem, as Chait puts it, is not necessarily that liberals are unaware of information pro-
vided by conservatives and vice-versa, but rather that they hold shared beliefs that information
from the other side of the aisle is not worth grappling with. The analysis in this section shows that
this would be a consequence of shared inflexibility in believing information from your own side
is trustworthy. Under this interpretation, liberals are aware of conservative information. And they
begin with quite diverse opinions on how to interpret conservative information. But, in exchanging
interpretations, they end up settling on a shared view that they should not update based on that
information.

A final example of networks based on shared models is where the measure (1 − δ) of the
population who initially stick with the default are in one network and the rest of the population
are in others. For example, some portion of the population may not devote enough attention to
an issue to construct their own interpretation of the data beyond the default, nor to exchanging
interpretations with others.

When the default is accurate (e.g., in some cases taking scientific consensus at face value),
people who adhere to the default end up with more accurate interpretations and beliefs than those

25https://newrepublic.com/article/74492/what-conservative-epistemic-closure-means
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in other networks. For example, a 2016 Pew report found that Americans “who care a great deal
about GM foods issue expected negative effects from these foods,” belying scientific consensus.
Similarly, Fernbach et al. (2019) found that people who are extremely opposed to GM foods think
they know the most about the safety of those foods, but actually know the least. Such Americans
pushed a number of unfounded interpretations of the data, including that eating GM foods caused
allergies, cancer, and autism.

C Proofs

Proof of Proposition 1. This proof is essentially the same as the proof of Proposition 1 in Schwartzstein
and Sunderam (2021). We repeat it here for completeness.

Note that
µ(ω|h,m) =

πm(h|ω) · µ0(ω)

Pr(h|m,µ0)

by Bayes’ Rule. Since πm(h|ω) ≤ 1 and, by definition of M̄(h, µ0, d,M), Pr(h|m,µ0) ≥
Pr(h|d, µ0) for all m ∈ M̄(h, µ0, d,M), beliefs that do not lie in ¯̄∆(h, µ0, d,M) cannot be in-
cluded in ∆̄(h, µ0, d,M). To see that for rich enough M , all beliefs in ¯̄∆(h, µ0, d,M) are also in
∆̄(h, µ0, d,M), define m by

πm(h|ω) =
µ(ω|h,m)

µ0(ω)
× Pr(h|d, µ0) ∀ω ∈ Ω.

Proof of Proposition 2. That social learning hardens every person’s reaction to the data is im-
mediate from how models are selected. That social learning leads everyone to end up at their
prior follows from the fact that someone will come up with and communicate the model m that
πm(h|ω) = 1 for all ω ∈ Ω, which will beat all other models (since Pr(h|m,µ0) = 1) and leads to
µ(h,m) = µ0.

Proof of Proposition 3. Someone who holds the most moderate initial belief in a network will
come up with and communicate the best-fitting model that leads to that belief—that is, the model
m leading to that belief that maximizes Pr(h|·, µ0). By Lemma 1, this model will beat out all
others in the network.

Proof of Proposition 4. 1. For every µ̃, there exists a positive measure of models m(µ̃) sup-
porting that belief that are less compelling than the model mi a person would adopt prior to
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weak exposure to that belief: for example, take models

πm(µ̃)(h|ω) =
µ̃(ω)

µ0(ω)
· (Pr(h|mi, µ0)− ε)

for all ω ∈ Ω and for ε > 0 small.

2. When µ̃ is closer to the person’s prior, as measured by Movement(·;µ0), than any belief
supported by a model in Mi, then the best-fitting model supporting µ̃ fits better than any
model in Mi (by Lemma 1).

Proof of Proposition 5. Weak exposure to belief µ̃ prior to social learning impacts the person’s
final beliefs if and only if the person finds m(µ̃) more compelling than the model m′

i she currently
has in mind supporting belief µ′

i: that is, if and only if

Pr(h|m(µ̃), µ0) > Pr(h|m′
i, µ0). (4)

Weak exposure to belief µ̃ through network expansion impacts the person’s final beliefs if and only
if the person finds m(µ̃) more compelling than the best-fitting model among those represented in
shared-belief network s(µ′

i): that is, if and only if

Pr(h|m(µ̃), µ0) > max
m′∈

⋃
µ∈s(µ′

i
)M(µ)

Pr(h|m′, µ0). (5)

The result follows from the right-hand-side of inequality (5) being larger than the right-hand-side
of inequality (4).

A similar proof applies to the case of strong exposure to beliefs, replacing the left-hand-sides
of inequalities (4) and (5) with maxm′∈M(µ̃) Pr(h|m′, µ0).

Proof of Proposition 6. 1. That expanding person i’s network hardens her reaction to data fol-
lows from the simple fact that maxm∈Me Pr(h|m,µ0) ≥ maxm∈M Pr(h|m,µ0) whenever
M e ⊃M .

2. That expanding person i’s network if anything mutes her reaction to the data when she’s
in a shared-belief network follows from the fact that mi is the best-fitting model inducing
µi, which fits better than any model inducing a belief further from her prior according to
Movement(·;µ0) (by Lemma 1).
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Proof of Proposition 7. The network-shaper’s objective is clearly maximized by exposing every-
body to the best-fitting model that supports action as and exposing them to no other models. The
network-shaper does no worse by exposing people to all models specified in Eq. (1) (i.e., all mod-
els that support action as), since this includes the best-fitting one and no models that support other
actions. That is, everybody’s behavior is the same whether they are only exposed to the best-fitting
model that supports as or models specified in Eq. (1). This remains true if we add to models
specified in (1) any model m with Pr(h|m,µ0) < maxm̃∈Mi

Pr(h|m̃, µ0), since nobody will adopt
such a model. However, the network-shaper’s payoff is strictly worse if we add to models speci-
fied in (1) any model m with Pr(h|m,µ0) > maxm̃∈Mi

Pr(h|m̃, µ0), since anybody who would’ve
adopted a model in Mi will instead adopt this model which supports taking an action other than as.

Proof of Proposition 8. If everybody is exposed to M̄(h, µ0, d,M), then everybody will also end
up adopting the model in that set that maximizes Pr(h|·, µ0). The network-shaper cannot do better,
since everyone will end up sharing the same model.

Proof of Proposition 9. For the first case, it’s obvious that the leader never holds a meeting because
holding a meeting costs c > 0 and does not influence beliefs and decisions when information
is closed to interpretation or when followers always stick with their default interpretation of the
information absent persuasion. Since aL = Eµ(h,d)[ω] implies ai = aL for all i (this is obvious for
followers who blindly follow aL and other followers set ai = l · aL + (1− l) · Eµ(h,d)[ω] = aL), it
remains to show in this case that aL = Eµ(h,d)[ω]. Setting aL = Eµ(h,d)[ω] uniquely maximizes the
coordination term, −

∫
j
(aj − ā)dj, of the leader’s payoff since everyone coordinates on aL. Since

simple algebra shows that aL doesn’t influence the adaptation term,
∫
i
−(ai−[li·aL+(1−li)·ω])2di,

it is optimal for the leader to set aL = Eµ(h,d)[ω] .
For the first part of the second case, optimizing the leader’s payoff becomes equivalent to

maximizing the coordination term,
∫
j
(aj − ā)2dj, when the weight placed on coordination κ is

sufficiently large. Given that a positive fraction of followers initially adopt the perfectly-fitting
neutralizing model, the only way for all followers to perfectly coordinate their actions is for them
all to take ai = ω0. This is implemented by followers being exposed to all models, either with
open communication absent a meeting or with open communication in a meeting. This is also
optimal from the point of view of the leader when h is uninformative under the default model in
the sense that Eµ(h,d)[ω] = ω0. The leader does better by holding a meeting than not whenever
some followers would adopt a model that implies a belief other than µ0 absent a meeting.

For the last part, if followers are exposed to all models (Mi = M for all i), then they perfectly
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coordinate their actions and the leader’s payoff approximately equals

−αEµ(h,d)

∫
i

(ai − ω)2di = −αEµ(h,d)

∫
i

(ω0 − ω)2di (6)

since li = 0 for almost all followers. If followers are instead all exposed to only models supporting
ai = Eµ(h,d)[ω] (i.e., Mi =

{
d,mbf

}
for all i), then the leader’s payoff approximately equals

−α
[
Eµ(h,d)ρ

∫
i

(Eµ(h,d)[ω]− ω)2di+ (1− ρ)

∫
i

(ω0 − ω)2di

]
−κ
∫
j

(aj−ρEµ(h,d)[ω]−(1−ρ)ω0)2dj,

(7)
where ρ equals the fraction of followers who are persuadable by mbf (i.e., fraction 1 − ρ are the
fraction with the initial reaction to adopt the perfectly-fitting neutralizing model). Since the first
term of (7) is larger than (6) when Eµ(h,d)[ω] 6= ω0, in this case the leader holds a meeting that
features directed communication whenever α is sufficiently large. Such a meeting will clearly be
better than not holding a meeting whenever followers whose initial reaction to the data differs from
µ(h, d) are not exposed to mbf absent a meeting or are exposed to the model that says the history
is inevitable in hindsight.26

Proof of Proposition 10. Recall that

cA =
{
m ∈ M̄(h, µ0, d,M) : πm(ha, hb|ω) = πm(hb|ω) · πmfa(ha|ω) ∀ ω ∈ Ω

}
.

Clearly, the best fitting model in cA is πm(ha, hb|ω) = 1 · πmfa(ha|ω) = πmfa(h
a|ω) for all ω ∈ Ω.

Similarly, the best fitting model in cB is πm(ha, hb|ω) = 1·πmfb(hb|ω) = πmfb(h
b|ω) for all ω ∈ Ω.

Finally, the best fitting model in cO is πm(ha, hb|ω) = 1 for all ω ∈ Ω. By assumption, someone in
each network will propose the associated best-fitting models which all network members will end
up adopting. The final beliefs µi follow.

26To see when else the leader wants to hold such a meeting, (7) minus (6) equals:

−αρEµ(h,d)
[
(Eµ(h,d)[ω]− ω)2 − (ω0 − ω)2

]
− κ

[∫
j

(aj − ρEµ(h,d)[ω]− (1− ρ)ω0)2dj

]
,

which, after some algebra, equals αρ(Eµ(h,d)[ω] − ω0)2 − κρ(1 − ρ)(Eµ(h,d)[ω] − ω0)2. So a meeting featuring
directed communication is optimal whenever α > κ(1− ρ). This reveals that a leader is more likely to call a meeting
to encourage followers to take an action different from ω0 the greater the fraction of followers who are persuadable
to take such an action—that is, the smaller the fraction of followers who, prior to the meeting, are hardened in their
views that the data tells them little they didn’t already know.
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