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Abstract

Non-parametric gravity as defined in this paper characterizes operational implica-
tions of spatial arbitrage in goods. Intuition that structural gravity is more general
than previous parametric forms is validated. Non-parametric sufficient statistics for
gains from trade and terms of trade are derived. Terms of trade in manufacturing
2000-2014 reveal China’s early improvement of 25% followed by an overall decline of
42% driven by its almost fourfold rise in world share. US manufacturing terms of trade
declined 20%. Trade elasticities that best parameterize non-parametric gravity are less
than half those commonly used in counterfactual exercises.
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Gravity models in economics and the inferences drawn from them rest on a class of

parametric foundations that severely restrict income and substitution effects in demand. In

contrast, economic intuition suggests that the logic of gravity holds in a much wider class.

Non-parametric gravity as defined in this paper is a large subset of the class of spatial

arbitrage equilibrium models with demand and supply structures that are consistent with

efficient choice. Arbitrage equilibrium implies market clearing allocations from which no

marginal reallocation of economic activity (goods or factors) between origin and destination

pairs can yield a positive profit. Under invertibility restrictions on demand and supply

structure,1 the equilibrium distribution pattern of activity in the non-parametric gravity

class is characterized by an inverse square law of economic distance. The inverse square

law property pleasingly reconnects economic gravity to its physical origin.2 The complex

determination of equilibrium economic distance has previously hidden the simplicity of its

inverse square role in characterizing spatial equilibrium.

The attractive force in economic gravity is the arbitrage gains from trade. In non-

parametric gravity a country’s gains from trade are locally one-to-one with its terms of

trade. Its terms of trade are inversely proportional to the square of its equilibrium economic

distance to and from the world, the ratio of the geometric mean of its internal distance (to

and from domestic locations) to the geometric mean of inward and outward multilateral

1The ‘connected substitutes’ structure of Berry et al. (2013) is sufficient.
2Economic gravity was inspired by the metaphor of the physical two body problem of Newton. In physics

the force of attraction between two objects centered at points A and B respectively is inversely proportional
to the square of the distance between them. The reasoning is that the attraction of the mass at A toward
the mass at B declines with the distance from A to B, while the attraction of B toward A declines with the
distance from B to A. Physical distance being non-directional, the force of attraction declines with the square
of distance between the two points. The inverse square law applies to many other physical phenomena such
as radiation.

The economic gravity class of models reduces general interdependence to a set of pairwise equilibrium
relationships of each location to a ‘world’ market. This effectively restores the physical logic. In contrast
to physical distance, economic distance as eventually understood [Anderson (2011a)] is endogenous to the
spatial equilibrium, is the geometric mean of directionally varying components, and reflects the spatial
equilibrium interaction of economic activity flows between many origins and destinations rather than two.
Economic gravity is focused on static equilibria, whereas physical gravity is focused on dynamics. The
physical N body dynamics for N > 2 is described by a system of differential equations in which the inverse
square property plays a role, but there is no reduction to a simple set of two body attractions. The dynamic
system is generally not integrable. Stationary equilibrium requires very special restrictions.



resistances. In the special case of CES gravity that first provided an economic foundation

for gravity, the gains from trade are globally inversely proportional to the square of economic

distance. This analogy to physical phenomena is illustrated in Appendix 6.1.

Three sufficient statistics applications of non-parametric gravity are derived. First is a

nonparametric sufficient statistic for the arbitrage (exchange) gains from trade that is valid

in a wide subset of the general class. The Arkolakis et al. (2012) strategy to infer gains from

trade (relative to autarky) from the ratio of internal trade to global sales uses the parametric

CES class to yield a simple sufficient statistic based on observables combined with an estimate

of the trade elasticity parameter.3 Their strategy of focusing on the information in the ratio

of internal sales to global sales is extended here to generate a non-parametric sufficient

statistic for the arbitrage gains from trade in a much wider class of demand structures.

Non-parametric gravity also generates a sufficient statistic for terms of trade changes

based on observables only. This is significant because standard terms of trade calculations

based on price comparisons are limited in scope and rife with measurement error. (Many

categories lack observable prices, while unit values are contaminated by aggregation bias.)

From a gravity perspective, another deficiency of price comparison methods is the absence of

any accounting for end user costs that surely vary across both users and product classes. The

proposed measure remedies these deficiencies. A third practical application is a nonpara-

metric method for estimating economic distance, given further restrictions. This is useful

for applications where model parameters are unnecessary.

Illustrative applications of the proposed sufficient statistics are made to China and the

US in manufacturing over the period 2000-2014 using the World Input-Output Database.

China’s near quadrupling of its world manufacturing share 2000-2014 resulted in an overall

terms of trade decline of 42%. The initial fall in trade barriers induced an early terms of

trade improvement of 25%. China’s gains from manufacturing trade as a share of autarky

manufacturing income fell from 17.7% in 2000 to 11.8% of the much larger base of 2014. US

3For the case of Ricardian supply with labor productivities drawn from a Fréchet distribution, the trade
elasticity is the shape parameter of the productivity distribution.
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manufacturing terms of trade declined 20%, while gains from trade as a share of autarky

real income fell from 27.7% to 22.1%.

A fourth application of non-parametric gravity generates trade elasticity parameters for

use in necessarily parametric counterfactual analysis (e.g. calculating the prospective effects

of Brexit). The analyst faces two parameter questions, given a parametric specification.

First, what is the best parameter value for quantifying the objective of the analysis. A

typical example is the counterfactual change in the gains from trade to a shift in trade costs

such as posed by Brexit. Second, what is an appropriate error band for the counterfactual.

The non-parametric model implies time series changes in gains from trade and terms of

trade. The parameter value that best fits changes in the non-parametric gains from trade to

changes in the terms of trade over the available data provides answers to both questions.

The ‘best-fit’ estimate of the CES trade elasticity is based on the non-parametric gains

from trade and terms of trade changes calculated for all years and countries in the WIOD

manufacturing database. The result is a trade elasticity equal to 1.72, substantially below

the usual estimates based on best fit to all bilateral trade flows. For a widely used example,

Simonovska and Waugh (2014) estimate a trade elasticity approximately equal to 4. The

downward adjustment implies that gains from trade effects of counterfactual policy changes

are more than doubled.

Non-parametric gravity is related to a recent literature extending gravity via non-parametric

approaches to more general parametric approximation models of demand and supply struc-

tures. The paper is closest in spirit to the Adão et al. (2017) non-parametric approach to

reduced form spatial equilibrium exchange of embodied factors. Both papers assume the

broad class of ‘connected substitutes’ demand systems of Berry et al. (2013). In Adão et al.

(2017) the role of connected substitutes is to guarantee invertibility of the factor demand

system. With multi-factor production models, derived factor demand systems do not gener-

ally satisfy invertibility, as the older literature on factor price equalization emphasized. Adão

et al. (2017) therefore specialize to production with one inter-sectorally mobile composite

3



factor endowment in each country. The narrower focus in this paper is on spatial equilibrium

exchange in a model of sectoral goods markets. The goods outputs are given from static

efficient equilibrium in supply. The sectoral focus is consistent with the political economy

concerns that drive typical trade policy. The role of connected substitutes in demand in this

paper is to justify application of the intermediate value theorem to characterize observed

trade relative to ‘as-if-frictionless’ trade. This yields fully non-parametric gravity.

The paper also complements the Adão et al. (2020) non-parametric approach to modeling

heterogeneity of firms productivities in Chaney-Melitz type gravity models. In contrast, this

paper abstracts from selection and all other sources of endogenous supply shifts in order to

cleanly develop the novel aspect of non-parametric specification of demand.4 In principle,

the method of this paper could be applied to endogenous supply to yield a non-parametric

measure of the specialization gains from trade. The extension is only sketched here due to

challenges explained in Section 4.

Section 1 develops the non-parametric gravity model that characterizes spatial arbitrage

equilibrium in the distribution of given equilibrium supplies to many destinations with de-

mands consistent with the weak axioms of revealed preference. Section 2 derives the non-

parametric approach to terms of trade and gains from trade. Section 3 presents the appli-

cations to manufacturing trade 2000-2014. Section 3.3 applies the non-parametric gravity

model to supply a measure of possible specification error in the necessarily parametric grav-

ity models used in counterfactual exercises. Section 4 embeds the spatial arbitrage module

of distribution of given supplies within a class of complete general equilibrium models with

endogenous supply and endogenous trade costs. Section 5 concludes.

4Goods trade with selection of heterogeneous firms combines necessarily parametric selection structure
with demand and supply structure. In Adão et al. (2020), the initial non-parametric probability distribution
of productivities is approximated for quantitative evaluation with a flexible functional form.

4



1 Non-parametric Gravity

The non-parametric gravity model is approached from an initial intuitive graphical represen-

tation that suggests the generality of gravity representations of spatial equilibrium. It also

provides perspective on the specialization of demand systems that permits non-parametric

quantification. Section 1.1 sets out the graphical analysis of spatial equilibrium containing

the essential ideas. Section 1.2 provides the formal analysis in class of invertible demand

systems. Section 1.3 develops an operational nonparametric gravity approach to bilateral

trade modeling. In Section 1.4, CES and Almost Ideal Demand System cases illustrate some

parametric and semi-parametric uses.

Begin with the broad definition of the spatial arbitrage model.

Definition A:

(i) Equilibrium spatial arbitrage – at each destination the buyer’s full price (including

possible unobservable quality evaluation elements) deflated by trade frictions (including un-

observable costs or resistance absorbed by the arbitrageur or the seller) is equal to a common

net-of-frictions seller cost at each origin.5

(ii) Each origin ships an endowment of goods (a variety of a single product class or an

aggregate bundle of product classes that differ in composition by origin) to many, potentially

all, destinations.

(iii) Markets clear – the value of all shipments from origin i valued at destination full

prices must equal the sum of bilateral (including sales of i to destination i) purchases.

(iv) Expenditures at each destination must be “rational”, i.e. obey the weak axioms of

revealed preference, and

(v) Trade frictions absorb a constant fraction of shipments (iceberg melting trade costs).

The endowment of seller i is denoted yi. Shipments from i to j are denoted xij. Prices

received by sellers net of trade costs are denoted pi. Prices pij paid by buyers include trade

5The focus is on bilateral trade over long intervals such as yearly, rather than bilateral price difference
behavior over short intervals such daily. The assumption is that systematic deviations from arbitrage equi-
librium are eliminated, remaining observed differences being independent of observed trade flows.
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costs and other frictions τij ≥ 1. Frictions include unobservable user costs and heterogeneity

in preferences across destinations. For simplicity, start by thinking of τij as fixed, though

subsequently it is endogenous.

In the arbitrage equilibrium pij/τij = pi, ∀i, j. This condition is necessary and sufficient

for zero arbitrage profits. Assumption (ii) takes supplies as given. The value of goods

purchased at end user valuations (including any unobservable user costs) is Xij = pijxij.

1.1 Graphics

The graphical analysis uses a goalpost diagram (familiar from the specific factors model).

Start with a system of generic demand schedules to characterize the equilibrium allocation

from origin i to a particular destination j. Region i’s residual supply to j is given by

xRSij = yi −
∑

l 6=j xil. The generic demand schedule for goods from i in j is labeled xDij ,

downward sloping for standard reasons. The residual supply schedule with frictions slopes

upward because it is the difference between the endowment yi and the sum of downward

sloping demands being filled in all destinations other than j. For reference, a hypothetical

frictionless residual supply schedule is also drawn.

The worldwide aggregate demand for goods from i (defined under conditions specified

below) is downward sloping and intersects the supply schedule yi at price piΠi, the price paid

by a hypothetical buyer in the ‘world’ market. Πi is the sellers’ incidence of trade frictions

on world sales. Intuitively, it is an index of the bilateral trade frictions faced by shipments

from i to all destinations j including internal shipments to destination i. The index reflects

the efficient spatial arbitrage pij = pitij, ∀j. The formal analysis in Section 1.2 derives the

equilibrium incidences {Πi}.

Demand systems of the general class considered here are characterized by homogeneity

of degree zero in prices {pij}. This implies that each destination has an ideal price index

Pj such that we may regard the left vertical axis in the figure below as measuring relative

prices pij/Pj = pitij/Pj in arbitrage equilibrium. Thus the equilibrium shipment xeij at the
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equilibrium point E is associated with relative price pij/Pj. Comparing price indexes across

destinations, assume initially that price indexes differ only because the trade frictions differ

by destination, tij 6= til. Then the price index Pj varies across destinations j due to trade

cost variation only. Then Pj is interpreted as buyer j’s incidence of the set of bilateral trade

costs tij, ∀i.

Equilibrium in the ij market at point E on the goalpost diagram below is associated with

relative price price pij/Pj = pitij/Pj and quantity xeij. The quantity demanded is met by

shipments yi −
∑

l 6=j xil at price pi projected from the right vertical axis. The buyers price

in the hypothetical world market is piΠi. The sellers’ incidence Πi on sales to the world

deflates world buyers price piΠi, yielding the net sellers price pi. The projection of pi from

the right vertical axis to the quantity xeij implies arbitrage equilibrium with Πi being seller

incidence. The remainder of bilateral trade cost = tij/Πi is buyer j’s bilateral incidence on

purchases from i. The goalpost diagram plots an as-if-frictionless residual supply schedule,

with the essential implication that xeij < xFij at the hypothetical as-if-frictionless shipment

point. In contrast to the partial equilibrium analysis of incidence, the price associated with

frictionless point F plays no role in the division of incidence. Because sales must add up to

the total shipped, the implication is that xeii = yi −
∑

j 6=i x
e
ij >> xFii = yi −

∑
j 6=i x

F
ij. The

effect of adjustment to frictions implies interdependence of the shifts in supply to markets as

Πi affects residual supply to all other markets. It also implies further shifts in demands as

the price vector shifts demand schedules about. But the analysis suggests that all markets

together determine the equilibrium incidences Πi and the buyer incidences.
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Demand
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piΠi

pi

∑
l

xD
il

pi

The aggregate demand
∑

l x
D
il similarly has each demand function in the sum being

a function of the l specific vector of relative prices {pil/Pl}. The arbitrage equilibrium

conditional on given total expenditure or real income in each destination is reached by finding

the equilibrium set of {Πi, Pj} that is consistent with zero arbitrage profit. Essentially, the

aggregate seller incidence Πi affects buyer incidence Pl in all destinations l, so the bilateral

demands and aggregate demands shift about until equilibrium is found. In a particular

equilibrium of observed trade flows, it is convenient to choose units such that world prices

piΠi = 1, ∀i. Then pi = 1/Πi and the equilibrium pattern of bilateral trade is determined

by {tij/ΠiPj}.

Trade varies negatively with tij/ΠiPj. The denominator is a product. A natural mean

of a product is its square root, the geometric mean. Define the economic distance between

i and j as

Dij ≡
√
tij/ΠiPj (1)

In the economic gravity context the equal exponents of the geometric mean reflect the equal
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forces of sales from i seeking higher net price and of purchases from j seeking lower price.

Thus bilateral trade varies inversely to the square of economic distance. The set of inverse

squares of economic distance {
√

ΠiPj/tij} determines the pattern of trade.

The full general equilibrium model that nests the gravity model of distribution re-

quires links between expenditure and income in each location. The set of links (closures

of the model) simultaneously with the gravity model determines equilibrium {pi} along with

{Πi, Pi} up to a normalization. The standard normalization of prices is
∑

i piyi/
∑

i yi = 1.

Graphically, each of the N origin products has a market clearing condition represented

by the intersection of aggregate demand with the right vertical axis supply schedule in the

diagram. The equilibrium set of multilateral resistances and seller prices is efficient, with the

no arbitrage profit efficiency condition represented by the intersection of bilateral demand

and residual supply at pij = pitij.

The graphical model also illustrates the exchange gains from trade. Country i has supply

of its product yi, purchased by the rest of the world in amount
∑

j 6=i xij. These export sales

in equilibrium equal yi − xii, supply less domestic sales. The export supply schedule of

country i is given by the upward sloping schedule yi − xii, an increasing function of relative

price pii/Pi = pitii/Pi. As before, the general equilibrium of distribution determines the

sellers’ incidence Πi from the adding up condition for sales on the rightmost vertical axis,

hence the common ‘no arbitrage profit’ pi = pij/tij, ∀i, j. The diagram shows initial export

of Tyi with domestic trade OT. The leftmost vertical axis depicts the adding up condition on

purchases expressed as the sum of expenditure shares. This determines the buyers’ incidence

Pi.
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Now consider a trade cost reduction due either to country i lowering its ‘trade barriers’

to imports or its partners lowering barriers to its exports.6 The direct effect of reducing

some tijs is that Pi must fall with i’s import barriers falling (downward shift on the leftmost

vertical axis) while Πi must fall with a decline in barriers to its exports (downward shift on

the rightmost vertical axis). The displaced domestic sales (xii) face external trade frictions

so there are further endogenous changes in multilateral resistances. The net result in either

case is a shift up and to the left in the export supply schedule along the home demand

for i’s goods. The analysis also reveals a qualitative symmetry between country i’s export

restrictions (affecting Πi) and its import restrictions (affecting Pi). Lerner symmetry thus

extends qualitatively to sectoral trade without trade balance.

The domestic share of sales shrinks from OT/Oyi to OF/Oyi. The new equilibrium

relative price for buyers in the domestic market becomes pfi tii/P
f
i . Using the simplification

peiΠ
e
i = pfi Π

f
i ,

7 country i’s terms of trade improve from T ei = 1/Πe
iP

e
i to T fi = 1/Πf

i P
f
i .

6The simplest case is a trade friction cut with no revenue consequences, such as reasonably may apply to
regulatory barriers.

7This is consistent with the partial equilibrium intuition of the diagram, and simplifies the more general
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The net change in the gains from trade is non-parametrically negatively related to the

domestic trade share

bii =
pitii
Pi

xii
yi
.

Graphically, beii = T ei × OT/Oyi while bfii = T fi × OF/Oyi. Assume for simplicity that the

trade frictions removal accrues to sellers with no losses of revenue. Normalize by Oyi = 1.

The non-parametric measure of the gains from trade change is approximately ∆(pi/Pi)(x
e
ii+

xfii)/2. This is represented by the area to the right of home demand schedule xDii between

the initial terms of trade T ei and the new higher terms of trade T fi , equal to the income rise

yi(T
f
i − T ei ) minus the loss of consumer surplus on domestic sales, the area to the left of

home demand schedule xDii between T ei and T fi . In application it is convenient to report the

change as a percentage ∆T̃ib̃ii where the tilde denotes evaluation at intermediate values for

the domestic share bii and the percent change in Ti. Allowing for revenue/rent offsets to the

‘free’ box (T fi −T ei )×Tyi may reduce the gain as far as the shaded triangle ∆(pi/Pi)∆xii/2.

( The gains from trade relative to autarky is given by the area to the right of xDii between

T ei or T fi to point A, relative to the area of the rectangle formed by the product of Oyi and

relative price given by vertical line yiA.)

The graphical treatment suggests a focus on the ex post change in gains from trade caused

by movement of the terms of trade pi/Pi and its association with how much trade is gained

or lost. Any change shifts the equilibrium in each global market i, with changes in the

terms of trade for all pi/Pi and exchange gains from trade approximated non-parametrically

by ∆(pi/Pi)(x
f
ii + xeii)/2. Conversion of the non-parametric gains measure to standard real

income measures requires a fully parametric approach, subject to the burden of the accom-

panying assumptions. The parametric CES demand system resolves the issue of relating

consumer surplus to real income of a representative agent.8 The result is an exact measure

of the relative change, shown by Arkolakis et al. (2012) to be a decreasing power function

conclusion that pi is negatively related to Πi.
8Treatment of heterogeneous agents and income distribution requires far more assumed structure, includ-

ing an aggregate welfare function.
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of beii/b
f
ii as discussed in Section 1.4. (The CES gains measure (see Section 3) falls inversely

to the square of economic distance. Appendix 6.1 completes a graphical reconnection of the

CES gravity model to its original physical inspiration.)

In principle, the same graphical analysis applies to exchange in derived factor demand

systems where trade is in embodied factors, as in Adão et al. (2017). A special case is the

one mobile factor (Ricardo or Ricardo-Viner) model of production. The diagrams above are

reinterpreted by relabeling the quantity axis as embodied labor, the sellers’ wage wi as the

sellers’ price pi while the buyers’ price is replaced by witij/Ωj where Ωj is a price index for

the vector of embodied labor purchased by j. Arkolakis et al. (2012) show that the CES

parametric expression for gains from trade (now including the specialization gains) applies to

trade in embodied labor flows in the Eaton and Kortum (2002) Ricardian model of gravity.

In this case the active labor productivities are generated as random draws from a Fréchet

distribution. Adão et al. (2017) extend the interpretation of the single factor as a composite

of multiple factors in their non-parametric setup.

The general non-parametric model yields non-parametric inference of changes in the

terms of trade and the accompanying changes in gains from trade. A time series of such

non-parametric terms of trade changes can usefully inform the parameterization that is

required for ex ante counterfactual projection of the effects of changes in trade frictions.9

These suggestions are applied based on the formal model that follows.

1.2 Formal Model

Spatial equilibrium in the non-parametric gravity model implies that the distribution of

goods (the pattern of the bijs) is determined by the set of inverse squares of economic dis-

tances {Dij ≡
√
τij/ΠiPj} where τij aggregates over h the underlying bilateral resistances

{tijβhij} with βhij indicating a household h specific quality shifter. Dii, the case of internal

9Counterfactuals require parametric specification of the high dimensional mechanism that determines
the endogenous movement of price indexes {Pi} due to endogenous rises in the sellers prices {pi} and the
simultaneous interaction of {Pi} with {Πi}.
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trade, is a direct measure of the elusive “open-ness to trade” concept that is comparable

across countries in the cross section and across non-nested modeling choices. A key impli-

cation is that region i’s terms of trade are reduced relative to its as-if-frictionless value by

Dii.

Notice that relative frictions {τij/
√
τiiτjj} are what determines the cross section pattern

of trade:

τij
ΠiPj

=
τij/
√
τiiτjj

(Πi/
√
τii)(Pj/

√
τjj)

.

For the present purpose of characterizing spatial arbitrage, it is harmless to simplify notation

with the relative trade friction form: henceforth τij = tijβij/
√
tiitjjβiiβjj. The internal fric-

tions are absorbed in the multilateral resistances.10 With this simplification, Dii =
√

ΠiPi

understanding that the multilateral resistances are scaled by 1/
√
τii. An important impli-

cation of this discussion is resolution of a spatial unit puzzle. Gravity applies to spatial

arbitrage between units of any chosen size (countries, regions, commuting zones, ...). The

natural asymmetries of directional distance are geometrically averaged in internal distances

√
τii for the chosen unit size i, without consequence for characterizing spatial arbitrage be-

tween the units of the chosen sizes. Relatedly, small unit sizes are associated with smaller τii,

hence larger Dii, contributing to a regularity observed in CES gravity model applications.

Assumption (iv) (buyer choices obey the weak axioms of revealed preference) implies

that the expenditure of agent h in destination j is characterized by the value (expenditure

or cost) function ehj ({pij}, uhj ), which is concave and homogeneous of degree one in the

price vector and increasing in utility uhj . The effects of cross-section variation in agent h

behavior on expenditure function ehj (·) are restricted here to define the general gravity class

of equilibrium arbitrage models that satisfy

Definition G

1. assumptions (i)-(v) hold along with

10In applications to panel data where policy changes affect the ratio of internal to cross-border trade, the
separate variation of internal and cross border frictions requires explicit treatment.
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2. assumption (vi): the demand system has the connected substitutes property of Berry et

al. (2013).

Let pj denote the vector of pijs at destination j. Assumptions (vi)-(vii) imply that the

common expenditure function e(pj, uhj) is equal to e(phj)uhj for an appropriately chosen

price vector phj. Thus origin-destination-agent specific shifters βhij = phij/pij, ∀i, j, h apply

to each agent h in location j. The ‘connected substitutes’ assumption includes allowing tastes

to differ by destination-agent varying quality shifters.The taste shifters incorporate the effect

of price-dependent non-homotheticity at the equilibrium. Assumption (vi) and Shephard’s

Lemma imply a unique (up to a scalar) solution to βhij from ei(p
hj, uhj) = ei(p

hj)uhj. Thus

a ‘full price’ in arbitrage equilibrium is phij = pitijβ
h
ij, where βhij is the inferred taste shifter

that explains buyer choice when facing seller price pi combined with trade cost tij in arbi-

trage equilibrium. All heterogeneity and non-homotheticity is hidden in the βhij variables

– origin-destination-agent fixed effects in the econometric sense of reduced form exogenous

controls. Interpreting the properties of the equilibrium does not require unpacking the rich

endogeneity concealed in the bilateral resistances. General gravity describes the spatial ar-

bitrage equilibrium for given equilibrium values of the bilateral resistances τhij = tijβ
h
ij and

thus given real incomes uhj .

It is important in the gravity context to note that connected substitutes does not require

that all goods be positively demanded at all destinations. [See Berry et al. (2013).] Zeros

are prevalent in bilateral trade data. The occurrence of a zero in a destination is associated

with a choke (reservation) price with an equilibrium value that influences all the positive

demand shares. The vector of choke prices at any destination is effectively solved from the

sub-system equating demand with the zero delivered supply and then carried into all the

positively demanded goods.

It is convenient in what follows to aggregate the household shifters βhij by defining τij
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implicitly from

e({piτij}) = e(pj) =

Hj∑
h

e({piτhij})uhj/
∑
h

uhj,

whereHj is the number of agents (households) in j. The explicit form is τij =
∑

hX
h
ijτ

h
ij/
∑

hX
h
ij,

from applying Shephard’s Lemma with Xh
ij denoting expenditure in j by household h on

goods from i. Thus pj = {piτij}. The aggregation is over many possible dimensions of het-

erogeneity. The well-known stability of estimated bilateral frictions in the empirical gravity

literature suggests that the distribution of heterogeneous effects is reasonably stable.

The aggregate expenditure in the world under assumption (iv) combined with assumption

(vi) implies that

E =
∑
j

Hj∑
h=1

e({piτij})uhj =
∑
j

e({piτij})uj. (2)

World equilibrium requires that expenditures add up to sales at end user valuation, hence

E − Y = 0. It also requires world market clearance for each country’s product. In a

frictionless world equilibrium with the same demand structure and the same vector of supplies

(endowments) {yi}, the adding up conditions imply E∗ − Y ∗ = 0. The price vectors for

sellers differ. The standard normalization implies that relative prices are constrained such

that
∑

i(pi − p∗i )yi = 0 = Y − Y ∗.

The normalization removes the common global gain in efficiency to isolate the relative

effect on terms of trade and real incomes. The gravity model has no way to measure this

absolute efficiency; it only reveals relative effects. The ‘as if frictionless’ pattern of trade is

consistent with τij = τiτj, ∀i, j for any values of τi, τj ≥ 1.

Combine the adding up conditions for the actual and frictionless equilibria in

E − E∗ − (Y − Y ∗) = 0.

The properties of the expenditure function applied to this equilibrium condition yield rela-

tionships between the bilateral demands for each origin product in each destination relative
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to the same bilateral demand in frictionless equilibrium. This gives the general characteri-

zation of spatial arbitrage equilibrium.

Shephard’s Lemma [∂e({piτij})/∂pij = xij = ei(·)uj] gives demand for good i by the ag-

gregate agent in j, and implies agent j’s share of expenditure on good i, bij = ei({piτij})pij/e(·) =

ei({piτij/Pj})pi/Pj. The last equation uses the true cost of living index Pj = e({piτij}) and

the homogeneity of degree zero of the demand system.

The world’s expenditure share on good i, Bi, is in equilibrium a weighted average of the

national agent shares bij, Bi =
∑

j bijEj/Y . The fictitious world buyer faces ‘price’ vector p∗

such that e(p∗)
∑

j

∑Hj

h=1 u
hj = E∗ = Y ∗ = Y = E. Under the assumption that the demand

structure has the connected substitutes property, p∗ is unique. Apply Shephard’s Lemma

to the aggregate expenditure E∗ thus defined to solve for the common ‘world market’ price

vector {piΠi} = p∗ that satisfies the market clearing conditions

Yi
Y

= Bi({piΠi}), ∀i. (3)

Since
∑

i Yi/Y = 1, system (3) solves for relative prices only. The adding up condition

implies a normalization on prices such that the ‘world price index’ e(p∗) = 1.

Use the previous choice of units such that the ‘world price’ vector in frictionless equi-

librium is piΠi = 1, ∀i. Then the buyer’s price index for country j is Pj = e({piτij}) =

e({τij/Πi}). Thus Pj is the index of bilateral buyer’s incidences τij/Πi, hence is interpreted

as the buyers overall incidence of trade frictions with the world market. Πi analogously

is the sellers incidence of trade frictions with the world market. Take e({τij/Πi}) = Pj

into the arguments of bij using homogeneity of degree zero of ei in the price vector, hence

bij = ei({τij/ΠiPj})τij/ΠiPj. Thus the set of bilateral economic distances Dij =
√
τij/ΠiPj

determines the pattern of bilateral exchange. The next step reveals the inverse square law

relationship by analyzing the difference between the equilibrium aggregate bilateral shares

bij and the ‘as-if-frictionless’ shares Bi.
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Return to the world adding up condition that combines the actual and frictionless equi-

libria (E − E∗) − (Y − Y ∗) = 0 =
∑

j e(p
j)uj − e(p∗)

∑
j u

j −
∑

i(pi − p∗i )yi. Differentiate

with respect to each pi, apply Shephard’s Lemma and multiply by pi in the first two terms

and sum over i and j while holding real incomes uj constant. The result is:

∑
i,j

ei(p
j)piju

j −
∑
i

ei(p
∗)piΠi

∑
j

uj − (
∑
i

Yi −
∑
i

Y ∗i ) = 0. (4)

Each component j of the double sum above simplifies using bij = ei(p
j)pij/e(·), uj = Ej/Pj

and balanced trade, Ej = Yj. Divide the jth component of (4) by uj. The result is

∑
i

[bijPj −Bi]− (Pj − Y ∗j /uj), ∀j;

Note that Y ∗j = u∗j = p∗jyj since P ∗j = e(p∗) = 1, while uj = Yj/Pj = p∗jyj/ΠjPj. Thus

u∗j/uj = ΠjPj and the percentage gain in real income for country j is given by

∑
i

[bijPj −Bi]− (Pj − Y ∗j /uj) = ΠjPj − 1 = Gj, ∀j.

Gj is due to the terms of trade effect of the move to uniform frictions (observationally

equivalent to frictionless trade). The move may create both winners and losers via the terms

of trade gains and losses implied. But global average welfare ordinarily rises. Multiplying

Gj by uj and summing over j implies that

∑
j

ΠjPj
uj∑
j u

j
=

∑
j u
∗j∑

j u
j
> 1.

The inequality is established because (i) Πi > 1 by τij > 1, ∀i 6= j. Second (ii), the

average buyers price is preserved in the move to uniform frictions,
∑

j Pju
j/
∑

j u
j = e(p∗) =

1.11 Third,
∑

j ΠjPju
j/
∑

j u
j = E(Π) · 1 + Cov(Π, P ) using the algebra of covariance.

11This follows from rearranging (4) and using the normalization
∑

i(Yi − Y ∗
i ) = 0. This implies that

e(p) =
∑

j e(p
j)uj/

∑
j u

j =
∑

j Pju
j/
∑

j u
j .
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The covariance term is positive for plausible trade frictions structures. For example in the

symmetric case Πj = Pj,∀j, the covariance term is a variance. For sufficient asymmetry

the covariance could fall below zero but to reverse the inequality requires truly pathological

asymmetry. Estimated multilateral resistances and bilateral frictions have no such properties.

Note that
√

ΠjPj = 1/Djj (using the convention that the multilateral resistances Πj, Pj

are scaled by 1/
√
τjj). Then the global adding up property implies a normalization on the

inverse squares of economic distance,

√∑
j

D−2jj
uj∑
j u

j
= 1.

The “frictionless” trade pattern is equivalent to that associated with any uniform equivalent

set of frictions denoted s such that τ̃ sij = Diid
s
iDjjd

s
j , ∀i, j, and dsi > 0 ∀i. The normalization

of economic distance resolves the indeterminacy.

1.3 Non-parametric Bilateral Trade Sufficient Statistics

From the point of view of potential non-parametric inference of gravity structure, economic

distance consists of pair fixed effects τij combined with origin and destination fixed effects

Πi, Pj. The first step toward sufficient statistics applies the intermediate value theorem

to the expenditure function evaluated at each location’s buyers prices differenced from the

as-if-frictionless expenditure function. Non-parametric gravity is based on the elements of

the resulting sum. Operational non-parametric sufficient statistics for gains from trade and

terms of trade are approximations, exact under further restrictions. Section 3 reports results

based on WIOD manufacturing data. More stringent restrictions lead to non-parametric

inference of bilateral economic distance in Section 3.2.

The intermediate value theorem applied to the expenditure function for each country j 12

12The theorem holds for price vectors in a connected set, a condition satisfied by the expenditure function
under the connected substitutes restriction of Berry et al. (2013).
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assures that for some intermediate price vector p̃ij = λjpiτij + (1− λj)piΠi;λj ∈ [0, 1], ∀i, j:

e({piτij})uj − e(p∗)uj =
∑
i

bij({p̃ij})
τij/Πi − 1

(λjτij/Πi + (1− λj))
ujP̃j, ∀j. (5)

The price index P̃j = e({p̃ij}), while world price Πipi is divided into both numerator and

denominator to form the ratio on the right hand side of equation (5).

The economic implications of (5) are revealed by eliminating uj from both sides of the

equation. ujP̃j is equal toẼj, the expenditure required to support uj facing price vector p̃j.

Divide both sides of the equation by uj and use e(p∗) = 1 to give the percentage change in

expenditure needed to support uj relative to the frictionless equilibrium, Pj − 1. This is a

measure of the loss due to frictions. Thus the percentage cost of trade frictions to country

j implied by (5) is:

Pj − 1 =
∑
i

bij({p̃ij})
(τij/Πi − 1)

[λjτij/Πi + (1− λj)]/P̃j
, ∀j. (6)

Shephard’s Lemma also implies an equivalent expression in terms of observables:

Pj − 1 =
∑
i

[bijPj −Bi].

The equilibrium condition Bi = Yi/Y implies that Bi is observable.

Non-parametric gravity is derived using the elements of the sum on the right hand side of

(6). The individual elements are equal to the observable expressions bijPj−Yi/Y , up to a non-

parametric error term εij that represents theoretically possible but unknowable deviations

of the individual non-parametric gravity elements from their observable counterparts. ε is

discussed further below. With this setup, non-parametric gravity is characterized by:

bij({pij})Pj − Yi/Y = b̃ijP̃j
(τij/Πi − 1)

[λjτij/Πi + (1− λj)]
+ εij, ∀i, j. (7)
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The first term on the right hand side of (7) is the non-parametric predictor of the observable

left hand side bijPj − Yi/Y . {τij} is a set of bilateral fixed effects while {Πi, Pj} is a set of

origin and destination fixed effects. b̃ij = b({p̃ij}) where p̃ij = λjpij + 1− λj using the as-if-

frictionless price p∗j = 1 ∀j. Under the ‘connected substitutes’ assumption for the expenditure

function, b̃ij is a share intermediate between actual bij and frictionless Bi = Yi/Y , capturing

the general equilibrium effect of frictions ‘on average’ in shifting bij away from Yi/Y . The

ratio term on the right hand side of (7) isolates an ‘own effect’. The numerator is interpreted

as (piτij − piΠi)/piΠi, the percentage increase in the buyers price of good i, implicitly also

relative to the as-if-frictionless price index e(p∗) = 1. The denominator of the ratio is the

intermediate value of the price of good i in destination j deflated by the world price, piτij/piΠi

relative to the intermediate value of the price index P̃j. (Move P̃j in (7) to the denominator

of the denominator.) The ratio in this form is thus interpreted as an appropriate discrete

form of the percentage change in pij/Pj, the relative price of good i in destination j implied

by hypothetically moving from the observed situation to the as-if-frictionless equilibrium.

Non-parametric gravity expression in (7) uses all the non-parametric information implied

by spatial arbitrage. Further restrictions yield a non-parametric class for which εij = 0. The

non-parametric error term εij represents possible deviations of non-parametric gravity from

the observed data on the left hand side of (7).13 Nevertheless, non-parametric gravity is

correct ‘on average’ because it derives from an equilibrium model with adding up constraints.∑
i εij = 0 by the budget constraint for each buyer and the application of the intermediate

value theorem in (6). Similarly, the market clearing condition (3) implies that
∑

j εijEj/Y =

0. Thus the first term on the right hand side of (7) is interpreted as correct ‘on average’,

while εij may be non-random. Parametric cases are sufficient to eliminate εij, given that the

parametric specification and the set of parameter values is ‘true’.

(7) is qualitatively useful as a decomposition, but it is not operational because λj depends

on the deep structure of equilibrium. The Törnqvist approximation b̄ij → b̃ij sets λj = 1/2 to

13Note that b̃ij as constructed is not generally equal to the intermediate value of bij−Bi. Thus εij reflects
this potential difference.
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achieve operationality. An approximation error ηij is added to the non-parametric error εij in

this case. The translog demand system structure is a wide subset of non-parametric gravity

models for which the Törnqvist approximation to (7) exactly reveals all the non-parametric

information. Disregarding measurement and other random error sources, ηij = 0, ∀i, j. If

the translog is the ‘true’ model, then εij = 0 as well. Section 3 exploits this property to

obtain non-parametric sufficient statistics for gains from trade and terms of trade. Section

3.3 uses the setup to propose a specification error measure for the parametric specifications

needed to do counterfactuals.

1.4 Relation to Parametric Gravity

The standard parametric CES case implies that the equilibrium expenditure share is given

by bij = (piτij/Pj)
−θ, θ > 0. The spatial equilibrium distribution is given by the closed form

CES gravity expression

bij =
Yi
Y

(τij/ΠiPj)
−θ. (8)

The relationship of (8) to (7) is given by taking logs of (8) and rearranging:

ln bij − ln(Yi/Y ) = −θ[ln(τij/ΠiPj)− ln 1],

a parametric relationship in logs. The closed form (8) allows straightforward gravity esti-

mation using bilateral friction proxies such as distance along with origin and destination

fixed effects for each country. The qualitative difference of (8) from (7) is that cross effects

play no role in determining equilibrium CES bij while cross effects matter in determining

non-parametric b̃ij, λj and P̃j.
14

For various parametric special cases that restrict the demand system in (7) but generalize

14Discrete changes in the CES case permit the comparative static hat algebra of Dekle et al. (2007), a
property not generally available under Definition G. The gains from trade in the general case are monotoni-
cally decreasing in bii (because arbitrage equilibrium implies efficiency gains) but are not generally a power
function as in the CES case. Moreover, the gains from trade are now a real-income-compensated concept
unless preferences are homothetic.
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from the CES case, bij has a closed form. In the translog case bij − Yi/Y is a translog form

in the log τij/ΠiPj arguments. Non-parametric gravity (7) cannot generally determine the

values of λj, but in the translog case the approximation λj = 1/2 is exact. Thus non-

parametric gravity exactly contains the entire class of translog demand systems, obviating

the need to infer N × (N − 1)/2 substitution parameters.

Assumption (vi) excludes any income effects in demand systems that are not associated

with price. In contrast the PIGL class such as AIDS treats non-homotheticity with a price-

independent income effect. Allowing for price independent effects of non-homotheticity in

the AIDS case, a remainder term on the right hand side of (12) is equal to the change

in internal shares due to the effect on bjj of the change in real income from all sources

between equilibrium 0 and equilibrium 1. With AIDS gravity estimates of the real income

effects of income changes on bjj, denoted ∆Zjj, the change in gains from trade is given by

∆(bjj−Yj/Y )−∆Zjj. Anderson and Zhang (2019) have derived a closed form Almost Ideal

Demand System (AIDS) gravity model, a log-quadratic approximation to the expenditure

function e(·) used above. bij − Yi/Y is a linear closed form in {ln(τij/ΠiPj)}. (AIDS is a

specialization of the PIGLOG class.) Zhang (2020) uses the AIDS gravity to model the role

of taste heterogeneity βhij proxied by immigrant proportions h of resident populations.

2 Gains from Trade and Terms of Trade

The well known gains from trade sufficient statistic approach of Arkolakis et al. (2012) is

extended in non-parametric gravity to a much wider class of demand systems. Arkolakis et

al. (2012) relate the gains from trade relative to autarky to the inverse of the internal share

bjj in a CES class of models that are observationally equivalent to (8). The gains from trade

relative to autarky (where bjj = 1) are given by

b
−1/θ
jj =

(
Yj
Y

)−1/θ
1

ΠjPj
. (9)
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The left hand side is the product of a −1/θ power transform of j’s global sales share and the

terms of trade D2
jj = 1/ΠjPj. A more widely useful application is to ex post evaluation of

changes. It is convenient for purposes of comparison with non-parametric gravity methods

to form log differences of (9):

∆lnGj = −1

θ
∆lnbjj = −1

θ
∆ln(Yj/Y ) + ∆ lnTCESj . (10)

The first term on the right controls for changes in global sales share of j while the second

term is the change in log terms of trade TCESj = 1/(ΠjPj)
CES.

For non-parametric gravity, the corresponding change in gains expression is derived from

(7) with i = j using the Tor̈nqvist approximation. Rises in [bjjPj − Yj/Y ] measure a loss

relative to as-if-frictionless trade,

gj = [Pjbjj − Yj/Y ] = b̄jj
1− 1/Πj

(1/ΠjPj)
1/2
. (11)

Equation (11) specializes (7) with i = j to the translog case, implying b̄jj = [bjj + Yj/Y ]/2,

P̃j = (P 1
j )1/2 and 1̃/Πj = (1/Πj)

1/2(1)1/2, based on translog expenditure function properties.

The term (1− 1/Πj)/(1/
√

ΠjPj) is the discrete percentage change in terms of trade implied

in the move to as-if-frictionless trade. Using observable price index data Pj along with the

other observables, equation (11) can be solved for Πj. Then ex post changes can be evaluated

with declines in loss

−∆ ln gj = −∆b̄jj + ∆ lnTj. (12)

Non-parametric gains expression (12) is fully non-parametric, in contrast to CES expression

(10) that requires an estimate of the trade elasticity θ.

(12) is interpreted as a proportionate change in real income. (Its derivation via (5)-(6)

uses the property that the level of real income cancels from both sides of the equations.)

gjuj scales by the base level of real income uj to give a compensating variation measure.
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The proportionate change ∆ ln gj is invariant to the change in real income from u0j to u1j .

Note that (12), like (9), incorporates changes in Yj/Y . Thus it reflects changes in spe-

cialization due to terms of trade changes along with any other supply side forces at work.15

In contrast, for the case of comparison to frictionless trade (11) the endowments are constant

and the loss is interpreted as a loss of the exchange gain.

The change in the log terms of trade implied by (12) is

∆ lnTj = −∆ ln(Pjbjj − Yj/Y )−∆ ln b̄jj. (13)

In comparison, the change in the log terms of trade implied by the CES restriction is

∆TCESj = −∆ ln(ΠjPj)
CES = −1

θ
[∆ ln bjj −∆ ln(Yj/Y )]. (14)

Terms of trade inferred from gravity are useful because standard measures of the terms of

trade are deficient. Price comparison is rife with measurement error and incomplete coverage

for well known reasons. Less obviously but perhaps more importantly prices do not contain

unobserved user costs, costs that vary across users and product types. Measure (13) uses

structural gravity and usually high quality observations on value of production and trade

while also making use of observed Pj that is subject to the same problems with to price

comparison.

The general case for ex post evaluation avoids having to know “the” trade elasticity or

any other parameter by appeal to the Törnqvist approximation. Quantifying the changes in

real income implied by changes in Pjbjj −Yj/Y is relatively easy in the general setting here.

Begin with the measurement of the loss of gains relative to as-if-frictionless equilibrium.

The right hand side of (7) for the case i = j requires an estimate of b̃jj. The Törnqvist

approximation is b̄jj = (bjj + Yj/Y )/2 ≈ b̃jj. For the translog case, the approximation is

15A subtlety here is that situation 1 is not the as-if-frictionless equilibrium, so the world price vector
p̃ 6= 1. The effect of changes in p̃ is captured by ∆(bjj − Yj/Y ).
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exact. Thus εij = 0, ∀i, j

3 Practical Applications

General gravity (7) has important practical applications to nonparametric measures of gains

from trade, terms of trade and economic distance. A fourth application is to inference of

parameters for counterfactual exercises that necessarily use parametric gravity.

The applications are based on the WIOD data for manufacturing 2000-2014 and use the

Törnqvist approximation. The data do not permit treatment of final demand and interme-

diate input demand separately, so the cost function e(pj) is assumed to be identical for both

uses.

Price indexes from the WIOD are consistently associated with the production and expen-

diture flows. The buyers side price indexes of the theory suggest using the intermediate input

price indexes of the WIOD. The adding up condition on bilateral shares to world market

shares, implies that the normalization of the price indexes is
∑

j EjPj/
∑

j Ej = 1.16 Thus

the observed price indexes P̂j are deflated to form the normalized Pj = P̂j/
∑

j EjP̂j.

Both the approximation error ηij and the unknowable non-parametric error εij may be

substantial and non-random. Inability to treat final and intermediate demand systems sepa-

rately introduces further specification error. All methods are subject to measurement error,

but in contrast to CES gravity the non-parametric method additionally relies on buyer price

indexes subject to error.

3.1 Gains from Trade and Terms of Trade: US and China

Non-parametric sufficient statistics for changes in gains from trade and terms of trade are

calculated below for the US and China. Demand is interpreted as being the derived demand

16The adding up condtion is
∑

j Pju
j/
∑

j u
j = 1, and uj = Ej/Pj . The WIOD data do not report a Pj

for the rest-of-world category, which is generated here by assuming that the missing price is equal to the
expenditure-weighted average of the reported prices.
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for intermediate goods. Thus uj is interpreted as the real activity in destination j for the

set of intermediate goods being produced, and e(·) is interpreted as the cost function for the

intermediate goods. The good produced by each country is identified with a sector. Sectoral

trade is a natural focus for gravity analysis, and is readily justified in the preceding setup

by assuming that intersectoral budget shares are constant – the technology (or preferences)

nests general sectoral structure within an upper level Cobb-Douglas structure. For this case,

all the preceding analysis applies sector by sector.17

The ubiquity of unbalanced trade requires a modification of the gains from trade measure

to consistently account for it. A procedure that is consistent with the focus of typical

counterfactual analysis is to assume that the ratio of expenditure to income φj, ∀j remains

constant at its observed base value as the static equilibrium is perturbed.18 For countries

that borrow (φj > 1), a rise in seller’s price pj yields a rise in spending power φjpj, with

real purchasing power, the terms of trade, changing to φjpj/Pj. Relative changes in terms

of trade are invariant to the value of φj with constant φj.

The model notation in (7) implicitly extends to multiple goods distributed from each

origin. The i notation now refers to an origin-sector product, explicitly designated with

subscript ik. The effects of economic distance on the terms of trade now imply aggregation

across sectors as well as partners, for both sellers and buyers. Apply the Törnqvist approx-

imation to the WIOD data for total manufacturing for the US. The translog case implies

exact aggregation across sectors k.

The application implies that US manufacturing experienced a 5.6% fall in gains from

trade relative to autarky in manufacturing from 2000 to 2014 (from 27.7% to 22.1%). This

was due to a 20% deterioration in US manufacturing terms of trade.

A second application of gains from trade and terms of trade change is to China. The high

growth rate of China’s world manufacturing share (from 8% to 32%) in the same period drove

17The constant shares assumption avoids having to deal with connections between sectors in the compar-
ative statics of (7).

18The adding up constraint for the world implies a consistency constraint on the set of φjs: E =
∑

j Ej =
Y ⇒

∑
j φjYj = Y .
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a manufacturing terms of trade deterioration of 42%, a partial offset to the doubtless high

social return on China’s reallocation of factors from agriculture to manufacturing. China’s

gains from manufacturing trade relative to autarky fell from 17.7% in 2000 to 11.8% in 2014.

Intriguingly, if autarky is regarded as the threat point in bilateral bargaining, the comparison

suggests that China has less to lose than the US.

3.2 Nonparametric Estimation of Economic Distance

(7) under the Törnqvist approximation also suggests a nonparametric approach to estimating

economic distance. This is advantageous for purposes that do not require demand parame-

ters.

The translog case implies that (7) rearranged to isolate an error term µij = ηij + εij on

the right hand side is given by

1 + 2
bijPj − Yi/Y
bij + Yi/Y

− τij − 1/Πi

(ΠiPj)1/2
= µij, ∀i, j. (15)

Non-parametric ‘fit’ to
∑

i,j µ
2
ij is over-determined with N2−N τijs plus 2N −1 multilateral

resistances. Combining the cross-section data on bij and Yi/Y with time series variation,

non-parametric minimum distance estimation can potentially identify time varying multi-

lateral resistances Πi, Pj and time-invariant τijs. It is important to allow for some relevant

time variation in the latter, disciplined by information about trade agreements and similar

events. See Anderson and Yotov (2016) for an example of non-parametric estimation us-

ing fixed effects only, interpreted in a CES structural setting. Time invariant τijs are less

plausible as price-dependent non-homothetic effects and time-varying composition effects of

heterogeneous populations are important. Parametric methods are unavoidable then.

Concern about price independent income effects may be ameliorated using Almost Ideal

gravity to yield a closely related nonparametric measure of economic distance. This requires

parametrically estimated income effects on shares as a prior step. The left hand side of (15)
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is then adjusted to take out the income effects, after which the right hand side delivers the

economic distances ∀i, j. If the income effect parameters are not externally provided, their

estimation requires fully parametric methods applied to the data.

Since roughly half of world trade is in intermediate goods, the demand systems for in-

termediates are derived from cost minimization, hence inherit the properties of the final

demand systems used above. Details are in Section 4.

3.3 Parameter Inference from Non-parametric Gravity

Counterfactual measurement of projected changes in gains from trade and related effects

is the object of a large recent literature. Projection requires parametric gravity. Results

are subject to two important sources of parameterization error: (i) error in the parameter

estimate, given the parametric specification; and (ii) error in the specification. Sensitivity

analysis with respect to the estimated parameter error is often crude in the literature. Si-

monovska and Waugh (2014) recommend use of trade elasticities inferred from the parametric

gravity model estimated on the data to be used in the counterfactual. Some of the literature

follows this practice. In contrast, the literature typically does not treat specification error.

Non-parametric gravity suggests a method to deal with both sources of error. As to

(i), parameter estimate error, the standard gravity estimation method selects the parameter

that best fits bilateral trade data. In the usual counterfactual context where the change

in the gains from trade is the objective, the appropriate focus is instead on the fit of the

parametric model to the domestic trade share. This suggests inference based on fitting the

non-parametric changes in gains from trade with the best fit parametric representation. As

to (ii), specification error, the treatment below for optimizing the fit to the gains from trade

extends naturally to evaluating the fit of different parametric specifications.

The widely used CES gains from trade change measure of Arkolakis et al. (2012) is a

convenient example. The CES model requires a value of the trade elasticity. To be consistent

with the non-parametric gains from trade change estimate, the value of θ used for the CES
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estimate in (14) must satisfy equality with ∆ lnT in equation (13):

Hj ≡ (−1/θ)[ln(b1jj/s
1
j)− ln(b0jj/s

0
j)]−∆ lnTj = 0. (16)

The CES measure of change in the China’s manufacturing gains from trade is consistent

with the translog measure of change in the gains from 2000 to 2014 for the value of θ = 2.46

that exactly satisfies equation (16). θ = 2.46 is in the range of estimated θ in the literature

based on the CES specification, though it is below most estimates.

A single value of θ cannot normally satisfy Hj = 0 in US or Chinese manufacturing

changes for each year from 2001 to 2014. A natural quantitative approach is to find the

value of θ that fits best on average for the sample years. Moreover, for counterfactuals the

analysis is usually focused on the changes in gains from trade for multiple countries. This

suggests that the common value of θ should be a best fit for experienced gains from trade

effects across the group of countries. A key issue is the uneven process of globalization over

2000-2014. A non-parametric approach to control for this is a set of time fixed effects that

adjust Hj for common globalization shocks.19

Denote Hj,t as the difference in year t of the sample, where Hj is the difference defined

in equation (16) above. Solve for the minimum distance parameter estimate θ̂ that satisfies

min
θ

∑
j,t

H2
j,t. (17)

Apply the minimum distance technique (17) for the WIOD countries from 2001-2014,

amending Hj,t to include time fixed effects. The solution yields the fitted value of θ = 1.72,

significantly below the value of 2.46 reported above for the solution to (16) for China 2001-14.

The within goodness-of-fit R2 is 0.31 (while the between R2 is 0.015).20 The overall goodness-

19This can be extended to allow for a limited amount of country specific time fixed effects to allow for
asymmetries. See Anderson and Yotov (2020) for an example of non-parametric estimation of this type that
is consistent with a structural model in which bilateral ‘marketing capital’ adjusts over time.

20OLS regressions solves (17). The case with no time fixed effects yields θ = 2 and R2 = 0.14.
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of-fit of the parametric model θ̂ represents how closely the parametric gains measure comes

to the non-parametric measure across the variation in the sample. The within R2 = 0.31

suggests that richer parametric models may do better. Relative to the extensive literature

on counterfactual evaluation of trade policy effects on gains from trade, the lower trade

elasticities implied by minimum distance consistency with non-parametric gravity suggest

doubling the gains from trade effects.

Parametric models more general than CES imply a parameter vector Θ in the analog

to (16)-(17). In this case the goodness of fit of the counterfactual gains measure based on

using Θ̂ still applies. In practice, the goodness-of-fit of various specifications of the Θ vector

can be evaluated using this technique, with a standard statistical penalty for increasing the

number of parameters. Imposing a distribution assumption for the random error, the log

likelihood function for each specification can be deployed to generate an Aikake Information

Criterion (AIC) score to rank the alternatives.21

The suggested comparison treats all parametric specifications equally except for the sta-

tistical penalty for increase in the number of parameters. Gravity models are attractive for

counterfactuals in being sparsely parameterized, so there may be reason to favor sparser

specifications that is not reflected in the AIC score. Even so, the goodness-of-fit of various

specifications relative to the non-parametric model remains a measure of credibility of the

counterfactual exercise.

The minimum distance technique permits statistical inference when the residuals equal to

Hj,t evaluated at θ̂ are random. For example, standard 95% confidence intervals for the time

fixed effects estimate yield −1/θ̂ ∈ [−0.465,−0.695]. Even if standard statistical inference

is not applicable,22 the minimum distance interpretation suggests an informative confidence

band for purposes of evaluating counterfactual projections. Appendix 6.2 discusses non-

randomness of error terms.

21A believable error variance for estimated Θ̂ requires the un-knowable covariance structure of the speci-
fication error.

22Non-randomness may be due to the approximation error or to specification error relative to the unknow-
able ‘true’ specification as well as any systematic error in the trade flows and the price indexes.
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4 Endogenous Supply and Specialization

The specialization gains from trade can in principle be non-parametrically measured with the

technique of Section 1.3: apply the intermediate value theorem to a supply side value func-

tion, the GDP function or profit function. Succeeding steps allow non-parametric calculation

of the specialization gains from trade due to endogenous supply of outputs and sourcing of

intermediate inputs in a setting that includes endogenous trade costs. The method for poten-

tial non-parametric quantification of changes in specialization gains in the composite factor

case is sketched below.

Two obstacles discourage the extension, one theoretical and the other practical. The

theoretical obstacle is that the connected substitutes property of Berry et al. (2013)) must

be taken to apply to the maximum value GDP or profit function. For GDP functions

this requires dubious restrictions on the technology and/or the endowment differences of

countries. Adão et al. (2017) assume a single composite primary factor of production in

the GDP function applied to generate their factor demand system. Given a composite

factor, connected substitutes is no more restrictive on the supply side than on the demand

side. In the context of the extension, the single composite factor effectively treats GDP

as if based on a joint product technology. All non-jointness effects are buried in implicit

endogenous productivity shifters that act like the non-homotheticity shifters of Section 1.2.

Thus the main drivers of specialization in factor proportions and heterogeneous firms models

are implicit in the non-parametric approach.

The practical obstacle to a parallel treatment is the well-known dubious quality of data

on imported intermediate inputs. Input-output table builders allocate imported intermediate

goods to sectors in the same proportions as the observed allocation of domestic counterparts.

This is known to be seriously erroneous in the few cases where it is possible to check the

practice against observed direct data.

The GDP function under the single composite factor assumption is the product of the

GDP deflator function and the aggregator function of the primary factor endowment vector.
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The GDP deflator function is convex and homogeneous of degree one in prices, the vector

of seller prices pjy and input buyer prices pjm. The factor aggregator function is concave and

homogeneous of degree one in the endowment vector vj. World GDP is the sum of country

GDPs.

Applying the method of Section 1.2, the actual world GDP can be related to the as-

if-frictionless world GDP with common price vectors using the intermediate value theorem

applied to the GDP deflator function. The specialization gains from trade can be non-

parametrically calculated from the domestic sales share, in parallel to the exchange gains

calculation based on the domestic expenditure share in Section 1.2.

Restriction of cross-country differences in technology to output- and factor-augmenting

technology differences mimics the treatment of taste differences above. Endogenous tech-

nology shifters admit selection among heterogeneous firms, endogenous markups and some

forms of returns to scale. The endogenous sellers prices that generate the endogenous supply

vectors are generated in the spatial arbitrage equilibrium as in Section 1.

The extension of gravity to general GDP functions permits a very general representation

of trade frictions. This is important because distribution surely involves complicated interac-

tion with pure production. The current understanding of gravity in practice is mainly limited

to iceberg trade costs as in assumption (v), with only very limited extension.23 Appendix

section 6.3 has more details.

Panel data changes in non-parametric specialization gains from trade and terms of trade

measures analogous to (17) could in principle be applied to parameterize GDP functions

for use in counterfactuals. This project faces challenges in selecting the technology and

selection forces to be parameterized. For example, the constant elasticity of transformation

GDP function equivalent to (17) is implausibly restrictive, since it is associated with specific

23In the general case, endogenous trade frictions soak up a potentially enormous amount of economic
action. Head and Mayer (2014) call gravity trade frictions ‘dark’ in appropriating the gravity metaphor
of cosmology. Special tractable cases may shed some light and reduce the unexplained magnitude of the
frictions. See Arkolakis (2010) and Anderson and Yotov (2020) for gravity model examples of endogenously
increasing trade costs.
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factors and mobile labor allocation based on identical Cobb-Douglas production functions

(Anderson (2011b)).

5 Conclusion

Economic gravity describes the static equilibrium of bilateral trade between N2 pairs of

regions where N is any positive integer. The attractive force driving to equilibrium is rational

profit maximizing arbitrage drawn by the gains from trade between locationally separated

supplies and demands by rationally motivated cost minimizing buyers. Adding up conditions

on sales and expenditures constrain the possible bilateral trades. For a wide class of demand

systems, the equilibrium depends on a set of the inverse squares of bilateral equilibrium

economic distances. Mild restrictions are provided under which non-parametric sufficient

statistics for gains from trade and terms of trade may be calculated. Under further regularity

conditions, non-parametric estimation of economic distances is possible.

Essentially, arbitrage aggregates the equilibrium distribution of goods such that a set of

two body relationships can characterize the equilibrium. The two body relationships take

the form of Newton’s two body law – the inverse of the square of bilateral distance. The two

body property of equilibrium appears most clearly in characterizing the equilibrium terms

of trade of any region. Its terms of trade are driven below its as-if-frictionless terms of trade

in proportion to the inverse of the squared economic distance between that region and the

world market.

Counterfactual calculations require parametric representations of gravity. For such exer-

cises, the non-parametric gains from trade calculations in Section 3 of this paper may provide

a useful specification bias test on the values of parameters used. For example, as in the CES

case developed there, use several years of data to calculate changes in the gains, then solve

for the implied trade elasticity parameter that is consistent with those changes in gains. The

specification bias test can supplement the usual sensitivity checks with respect to values of
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the parameters within a given parametric representation such as CES.
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6 Appendix

6.1 Lost Gains from Frictions

The CES measure of gains from trade in Section 3 falls inversely to the square of economic

distance. The figure below translates this property into a physical analogy with phenomena

like radiation (as well as Newton’s Law). Economic distance is measured as height on the

axis of the cone. Gains are measured as the areas of circles associated with cross sections at

various heights. The radius of the circles falls proportionally with height above the base of

the cone.

ri = tii / ΠiPi

G*i = ( Yi

Y )
−1/θ

r* = 1

Gi = ( Yi
Y )

−1/θ tii
ΠiPi

A

Gains and Economic Distance

6.2 Non-random Error Consideration

Non-randomness in the error term is an important obstacle for statistical inference. The

error structure in Hj,t has its source in (7). In the illustrative case of the trade elasticity

for manufacturing reported above, composition effects are likely to be a big source of non-

randomness. Disaggregation is the appropriate treatment. The analytical considerations

37



below apply to remaining sources of non-randomness.

Temporarily disregard measurement and other sources of error in the variables on the left

hand side. The right hand side of (7) for i = j gives εjj as the error of the non-parametric

model defined here from the unknowable true model. By construction
∑

j εij = 0. Given

this, random εjj appears defensible by the principle of insufficient reason. The Törnqvist

approximation b̄jj for the unknown b̃jj in (11) introduces an approximation error to the

operational version of (7). It may not be random if the true model is not translog. The

change in log terms of trade (13) is also subject to the possibly non-random approximation

error as (7). Then the key variable Hj,t defined in (16) is subject to those same source of

error.

Now consider non-random error in the observable variables on the left hand side of (7).

Non-randomness is most problematic for the price index Pj, though non-random error in

the other observable variables may also be plausible. Based on current understanding of

trade frictions inferred from gravity models, the theoretical buyer multilateral resistance Pj

is partly due to unobservable user costs. This means that observable buyer prices and the

associated observable price indexes are downward biased. Unsystematic downward bias in

Pj will net out of (16). Otherwise, non-randomness is due to both systematic approximation

error and non-random error in the observables.

Given a commitment to CES gravity, a potential procedure to deal with error in observed

Pjs for the purpose of inferring the trade elasticity from (7) uses the CES gravity estimator

to provide instruments. First deflate the destination fixed effects estimated from standard

CES gravity by observed expenditure Ej to yield an estimate of P̂ θ
j . Next, replace Pj in

(16) with
(
P̂ θ
j

)1/θ
. The resulting minimum distance estimator for this variant of (17) fully

exploits the assumed CES structure as part of identification of the trade elasticity that best

fits the variation of gains from trade changes.

From the standpoint of non-parametric gravity, the preceding trade elasticity inference

procedure throws away potential information in observed Pjs. A full investigation of the
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relationship of observed Pj to inferred inward multilateral resistance is far beyond the scope

of this paper.24 A simple compromise procedure allows a role for the information in Pjs

and is easier to use.25 An alternative compromise instrument is constructed from a bivariate

regression of the expenditure-deflated destination fixed effects on observed Pj. In this case(
P̂ θ
j

)1/θ
is replaced by

(
P̂ θ
j

)1/θ̃
where 1/θ̃ is the regression slope. The bivariate regression

controls for the potential downward bias in observed Pj with a constant term and its residuals

may be informative about remaining systematic error structure.

In some plausible cases where non-randomness in the observable data is suspected, a

pseudo data approach may be feasible for creating standard errors, etc. Suppose that the

time series variation in the data is due to variation in the supply data, with the τij being

time invariant. (For periods where there are no regional trade agreement implementations,

this is plausible provided that price dependent non-homotheticity is rule out.)26 In the cross

section, supply and associated expenditure is exogenous, but on the time dimension of the

panel data structure there may be serial correlation. The plausibility of the pseudo data

approach depends on getting the random draw mechanism right.

The pseudo data approach to deal with this source of non-randomness in the sample

generates the pseudo data as random draws t̃ from the actual data:

Hj,t̃ =

[
bt̃jj/(Y

t̃
j /Y

t̃)

b0jj/(Y
0
j /Y

0)

]−1/θ
− T t̃j /T 0

j .

Using the pseudo data generated by many such draws, calculate the minimum distance

estimator defined in (17) where t now runs across all the pseudo data samples.

24Inferred multilateral resistances from CES gravity investigations show that outward multilateral re-
sistance is much larger and has much more variation over time and space than does inward multilateral
resistance.

25The high nonlinearity of the first procedure may be computationally problematic.
26A simple type of time dependence of τij is absorbed by the time variation of bjj,t. See Anderson and

Yotov (2020) for an example of a cross-border-time fixed effect that absorbs globalization effects in a reduced
form gravity model.
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6.3 GDP Function Approach

The convex technology is formalized with vectors xi = {xkij} of sector-origin-destination

final outputs, mi = {mk
ji} sector-origin-destination intermediate (produced) inputs, and

origin-primary-factors vi = {vil}. Restrict locational differences in technology in parallel to

Definition G.

Definition T

Technologies differ across locations only by augmentation shifters.

Technology differences in general gravity that are origin-sector specific are ‘frictions’ that

are absorbed in sellers’ incidences (outward multilateral resistances). There is no need for

separate accounting here. Definition T as it applies to primary factors implies that vil is

measured in efficiency units.

Let yki0 denote production of sector k output in origin i “at the factory gate”, while

ykij, ∀i, j, k > 0 denotes delivery of sector k output in origin i to destination j. Output

in origin i requires produced inputs mk
ji, ∀j, i, k and primary factors vil , ∀l, i; all mea-

sured in efficiency units, under Definition T. The technology comprises feasible vectors

yi,mi,vi ∈ T (yi,mi,vi) where T is a convex set. All productivity differences across origins

and destinations are absorbed in ‘distribution frictions’ by sector-origin-destination and by

primary factor augmentation shifters embedded in the vil variables.

Efficient production results in a GDP function Ri(piy,p
i
m,v

i) that is convex and homoge-

neous of degree one in the price vector (piy,p
i
m), and concave and homogeneous of degree one

in vi. The trade frictions are due to the technology, with their equilibrium values revealed by

pkij/p
k
i0 for both final and intermediate products (with some abuse of sector notation allowing

k to refer to either final or intermediate production of sector k). The joint product restric-

tion implies that the GDP function becomes ri(piy,p
i
m)f(vi) where the composite factor

aggregator function f(·) is concave and homogeneous of degree one.

World GDP is RW =
∑

iR
i =

∑
i r(p

i
y,p

i
m)f(vi).

40


