
Air Pollution and Economic Opportunity

in the United States∗

Jonathan Colmer John Voorheis Brennan Williams

University of Virginia U.S. Census Bureau University of Virginia

October 21, 2021

Abstract

Neighborhoods are an important determinant of economic opportunity in the United

States. Less clear is how neighborhoods affect economic opportunity. Here we pro-

vide early evidence on the importance of environmental quality in shaping economic

opportunity. Combining 36 years of satellite derived PM2.5 concentrations measured

over roughly 8.6 million grid cells with individual-level administrative data provided

by the U.S. Census Bureau and Internal Revenue Service (IRS), we first document

a new fact: early-life exposure to particulate matter is one of the top five predictors

of upward mobility in the United States. Next, using regulation-induced reductions

in prenatal pollution exposure following the 1990 Clean Air Act Amendments, we es-

timate significant increases in adult earnings and upward mobility. Combining our

estimates with new individual-level measures of pollution disparities at birth our esti-

mates can account for up to 20 percent of Black-White earnings gaps, and 25 percent

of the Black-White gap in upward mobility estimated in Chetty et al. (2018b). Com-

bining our estimates with experiment-induced reductions in pollution exposure from

the Moving to Opportunity (MTO) experiment, we can account for 15 percent of the

total neighborhood earnings effect estimated in Chetty et al. (2016). Collectively, these

findings suggest that disparities in environmental quality may play a meaningful role

in explaining observed patterns of income inequality and economic opportunity in the

United States.

∗Any opinions and conclusions expressed herein are those of the authors and do not necessarily reflect the
views of the U.S. Census Bureau. The Census Bureau’s Disclosure Review Board and Disclosure Avoidance
Officers have reviewed this data product for unauthorized disclosure of confidential information and have
approved the disclosure avoidance practices applied to this release, authorization numbers CBDRB-FY21-
CES014-007, CBDRB-FY21-CES014-036, CBDRB-FY21-CES014-044 and CBDRB-FY22-CES014-001.
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1 Introduction

Neighborhoods shape economic opportunity (Chetty et al., 2014; Sharkey and Faber, 2014;

Chetty et al., 2016; Galster and Sharkey, 2017; Chetty et al., 2018b; Chetty and Hendren,

2018a,b; Chyn and Katz, 2021). But what it is about neighborhoods that matters for eco-

nomic opportunity is less clear.

One margin that has received little attention is the role of environmental quality. In

the past decade our understanding of the economic consequences of environmental quality

has grown dramatically. It is now well established that even acute exposure to pollution

has both immediate and persistent long-run effects on health, educational attainment, learn-

ing, decision-making, productivity, criminal activity, labor force participation, and earnings

(Chay and Greenstone, 2003b; Currie and Neidell, 2005; Graff Zivin, J. and Neidell, M.,

2012; Schlenker and Walker, 2015; Chang et al., 2016; Ebenstein et al., 2016; Isen et al.,

2017; Chang et al., 2018). Higher exposure to particulate matter in early childhood has

even been shown to have persistent effects across generations affecting later-life economic

outcomes for the children of those that were in-utero exposed (Colmer and Voorheis, 2019).

Alongside these causal estimates, it is widely documented that economic and environmental

inequality walk hand-in-hand. Disadvantaged communities are disproportionately exposed

to higher levels of pollution (Commission for Racial Justice, United Church of Christ, 1987;

Mohai et al., 2009; Banzhaf et al., 2019; Colmer et al., 2020; Currie et al., 2020). Taken

together, it is natural to consider how much of a role environmental quality could contribute

to systemic disparities in economic opportunity and inequality.

To date, understanding the role of environmental quality in shaping economic oppor-

tunity has been constrained by data availability. While access to administrative data has

driven research on inequality and opportunity into new frontiers, comprehensive historical

data on environmental quality has lagged behind. We take advantage of recent advances

in the availability of both environmental and administrative data, combining 36 years of

satellite-derived, high-resolution data on particulate matter smaller than 2.5 microns (PM2.5)

concentrations, with U.S. Census Bureau linked survey data and administrative records on

individuals’ residences, earnings and economic mobility.

We begin by presenting a new set of stylized facts. Replicating the analysis conducted

by Chetty et al. (2014), we show that the spatial distribution of early childhood exposure to

particulate matter and the spatial distribution of economic opportunity are strongly corre-

lated. We document that PM2.5 exposure is one of the top five predictors of upward mobility

in the United States. We further show that at the individual level, pollution exposure in

utero is correlated with individual level upward mobility, measured by the difference between
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a child’s income rank and their parent’s rank.

To explore the contribution of environmental quality to economic opportunity we engage

in two empirical exercises. Our first analysis provides new estimates of the effect of prenatal

particulate matter exposure on later-life earnings and upward mobility. Exploiting the in-

troduction of the 1990 Clean Air Act Amendments, we estimate that a 1 µg/m3 reduction

in prenatal PM2.5 exposure is associated with a $1,105 increase in later-life W-2 earnings.

This estimate is substantially larger than existing estimates. We argue this difference is

driven by both differences in identifying variation, which plausibly result in larger effects,

and improvements in data quality, which reduce measurement error. We also estimate that a

1 µg/m3 reduction in prenatal PM2.5 exposure is associated with a 1.29 percentile rank point

increase in upward mobility. For context, the raw correlation between exposure to PM2.5 at

birth and upward mobility for the 1981 cohort is 0.17 rank points per µg/m3 of PM2.5.

Combining this estimate with observed prenatal PM2.5 gaps we calculate the share of

later-life income disparities that can be accounted by our estimate. We calculate that about

20 percent of the contemporary black-white gap in earnings and 25 percent of the black-

white gap in upward intergenerational income mobility can be accounted for by racial gaps

in prenatal pollution exposure.

Our second exercise, more directly examines the role that environmental quality may play

in contributing to the overall “neighborhood effect” on earnings. We revisit the Moving to

Opportunity experiment, run by the U.S. Department of Housing and Urban Development,

which offered a randomly selected subset of families living in high-poverty housing projects

subsidized housing vouchers to move to lower-poverty neighborhoods in the mid-1990s. This

intervention generated plausibly exogenous variation in neighborhood environments for oth-

erwise comparable families, providing an opportunity to evaluate the effects of improving

neighborhood environments on low-income families (Ludwig et al., 2013; Chetty et al., 2016).

Chetty et al. (2016) estimate that the MTO delivered significant increases in later-life earn-

ings for children who moved prior to the age of 13. We present new results showing that

treated families experienced persistently lower levels of PM2.5 compared to families that did

not receive the program. Combining the causal effect of MTO on particulate matter exposure

with our estimate of early childhood exposure on later life earnings, we quantify how much

of the overall MTO–earnings effect can be accounted for by early-life pollution exposure.

Our calculations suggest that the MTO-induced improvements in early life PM2.5 exposure

can account for 10-30 percent of the earnings effects for children who moved before the age

of 13, estimated in Chetty et al. (2016).

Collectively, our findings suggest that environmental quality may play a non-trivial role

in explaining systemic patterns of economic opportunity and inequality in the United States.
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Our findings contribute to several literatures. First, we contribute to the literature on

economic inequality and opportunity. Within this literature, the importance of neighbor-

hoods has been established for the economic opportunities of children (Chetty et al., 2016,

2018a; Chyn, 2018; Deutscher, 2019). However, the particular bundle of characteristics that

makes a neighborhood an “opportunity bargain” (Chetty et al., 2018a) has largely remained

a black box. We provide evidence to suggest that environmental quality may be an important

factor underlying the “neighborhood effect.”

Second, we contribute to the literature on the economic importance of environmental

quality. To date, much of the focus has been on the short and long-term effects of ges-

tational exposure on health and later life labor market outcomes (Chay and Greenstone,

2003b; Isen et al., 2017; Currie et al., 2013). Although this literature has consistently found

that “pollution matters”, the degree to which pollution effects contribute to aggregate pat-

terns of economic opportunity has not been discussed. We are the first to directly connect

pollution exposure with aggregate patterns of economic opportunity and inequality, as well

as providing direct evidence of the effect of prenatal pollution exposure on intergenerational

income mobility. This evidence connects with recent work showing multigenerational effects

of pollution exposure Colmer and Voorheis (2019), deepening our understanding of how

environmental quality can have persistent effects on economic circumstances.

Third, we contribute to the literature on measuring environmental inequality and its

causes and consequences. Although a large literature has documented the existence of dispar-

ities in exposure across demographic groups (Commission for Racial Justice, United Church

of Christ, 1987; Mohai et al., 2009; Banzhaf et al., 2019; Colmer et al., 2020; Currie et al.,

2020), less is known about how these disparities have evolved over time, and what the down-

stream implications of these disparities are. Following Colmer et al. (2020) and Currie et al.

(2020) who use satellite data to explore the trends in environmental inequality, we show that

pre-existing racial disparities in pollution exposure in 1981 account for a non-trivial share of

contemporary racial economic disparities.

2 The Correlation Between Environmental Quality and

Economic Opportunity

Despite decades of research on racial and economic disparities in pollution exposure, a sys-

tematic evaluation of the relationship between environmental quality and economic opportu-

nity has been hindered by data availability. The main issue is that environmental monitoring

networks are sparse. Fowlie et al. (2019) document that fewer than 20 percent of counties
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contain a monitor that is capable of recording fine particulate matter. Hsiang et al. (2018)

calculate that only 40 percent have a monitor capable of recording any of the criteria air

pollutants regulated under the Clean Air Act.

Only recently has systematic data on air pollution over time and space become available

(Di et al., 2016; Van Donkelaar et al., 2016; Meng et al., 2019). These data products

combine spatially continuous satellite measurements of pollution correlates (e.g., aerosol

optical depth) with other observable pollution correlates—such as emissions inventories,

chemical transport models, weather patterns—to provide a high-resolution and consistent

understanding of particulate matter concentrations over time and space. We utilize 36 years

of annual and monthly PM2.5 estimates between 1981 and 2016 for ∼8.6 million U.S. grid

cells that measure 0.01◦ by 0.01◦ (0.9 km by 1.1 km). We spatially intersect this data with

Census tract boundary files and link it to individual-level administrative records.

On average, these estimates match up well with the “ground truth” as measured by EPA

monitors (Colmer et al., 2020). In-sample measures of fit are very high. However, evidence

suggests that satellite-derived measures may deviate from the ground truth in the tails of

the pollution distribution (Fowlie et al., 2019). Specifically, estimates tend to be downward

biased for high concentrations of PM2.5 (Di et al., 2016; Van Donkelaar et al., 2016; Meng

et al., 2019). Given existing evidence on the incidence of high pollution, this suggests that

prediction errors will attenuate measured disparities, providing a lower bound on true gaps

in exposure.

2.1 County-Level Facts

Using this data we explore the correlation between early life pollution exposure and upward

mobility at the county-level. In Figure 1 we plot three maps of the United States. Panel

(a) plots county-level measures of upward mobility for the individuals born between 1978–

1982, first presented by Chetty et al. (2014). Panel (b) plots county-level average daily

PM2.5 concentrations for the year 1981, aggregated by the authors from new data provided

by Meng et al. (2019). Panel (c) plots a heatmap representation of the two measures,

presenting a continuous representation of the pollution-mobility relationship. We see that

there is substantial spatial heterogeneity in both upward mobility and PM2.5 levels. The

most striking observation, however, is the strong visual relationship between the two. In

Figure 2 we formalize this relationship, presenting the bivariate relationship between the

two variables. We estimate a strong negative correlation between early life PM2.5 levels and

upward mobility. A 1 µg/m3 reduction in PM2.5 is associated with a 1.28 rank point increase

in upward mobility. For context, a 1 µg/m3 increase in PM2.5 would be equivalent to moving
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from the 50th to the 75th percentile of the PM2.5 distribution in 2016, and a 1.28 point

increase in upward mobility is approximately one tenth the size of the black-white gap in

upward mobility from Chetty et al. (2018b).

Second, we document that environmental quality is an important correlate of upward

mobility. In Figure 3 we juxtapose the relationship between PM2.5 and upward mobility with

the bivariate relationships between upward mobility and other neighborhood characteristics,

first presented in Chetty et al. (2014). All correlates are standardized for comparability. We

observe that PM2.5 is one of the top five strongest predictors of upward mobility in the United

States. The association between upward mobility and a one standard deviation increase in

PM2.5 is comparable in magnitude to the association between upward mobility and a one

standard deviation increase in the share of residents that are black, a one standard deviation

decrease in the share of workers that live within 15 minutes of work, a one standard deviation

increase in the Gini coefficient, a one standard deviation decrease in income-adjusted test

scores, a one standard deviation increase in the share of high school dropouts, a one standard

deviation decrease in the social capital index, a one standard deviation decrease in the share

of households that are married, a one standard deviation increase in the share of single

moms, and a one standard deviation decrease in the teenage labor force participation rate.

We do not claim causality here. Rather, we highlight the empirical relevance of early-life

PM2.5 concentrations as a predictor of upward mobility.

2.2 Individual-Level Facts

We also explore the correlation between prenatal PM2.5 exposure and individual measures

of economic disparities using the Census Bureau’s data linkage infrastructure. The Census

Bureau’s data linkage infrastructure allows us to link data at the address, individual and

firm level. The address-based linkages capitalize on the Census Bureau’s Master Address

File, while the person-based linkages capitalize on a reference file of all individuals who either

have a Social Security Number or have filed taxes with an Individual Taxpayer Identification

Number (ITIN). The unique anonymized keys that are crucial to this data linkage process

– Master Address File Identifiers (MAFIDs) and Protected Identification Keys (PIKs) – are

assigned to administrative records, surveys, decennial census and third-party datasets by

Census staff using the enterprise Personal Validation System (Wagner and Layne, 2014).

Once these keys have been attached to a file, it is possible to link that file with any of the

other files in the data linkage infrastructure.

For our individual level analyses, we construct a dataset which takes advantage of the

Census Bureau’s linkage infrastructure to follow individuals over time and identify parent-
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child relationships. Our individual-level dataset starts from survey responses to the 2001-

2019 American Community Surveys (ACS).1 These surveys provide detailed sociodemo-

graphic information – including age, race, sex, education, occupation and family structure –

for a very large sample of the U.S. population. We then restrict these individual responses

to those born between 1976-1998. From this sample frame we link each birth to their parents

based on filing status in the IRS 1040 universe from 1994-1999.2 We assign the primary tax

filer on this tax form as the child’s parent.

With these parent-child links in hand, we identify the place of birth for each child and the

economic circumstances of each parent at the time of birth. To do this, we link each parent

to their 1040 tax returns in the years 1969, 1974, 1979, 1984 and 1989. We then assign place

of birth (resolved at the census tract, zip code and county) and parental income information

from the form filed in the year closest to the child’s birth. Due to the incomplete coverage of

tax data held by Census before 1989 we can’t rule out measurement error in birth location;

however, our results are robust to using place of birth at the county level from the Census

Numident and to restricting the sample to those born in the exact filing years.3

Finally, we identify later-life economic outcomes for each child. We link all individuals

to form W-2s and 1040s between 2010–2018. We then calculate total annual earnings by

summing all earnings and deferred compensation across all W-2s received by an individual

in a given year. Labor earnings only captures employee compensation. Earnings from inde-

pendent contractors or self-employed individuals do not appear in this measure. To address

this, we also measure Adjusted Gross Income from the form 1040 in which an individual

appears as a primary or secondary tax filer. This measure includes all income sources.

Using this data we construct an individual level measure of economic mobility which

is similar in spirit to the Chetty et al. (2014) measure used in our county-level analysis.

Specifically, we calculate the difference between a child’s income rank and their parent’s

rank in the parental income distribution.4 This measure is similar in spirit to the upward

mobility measure used in Chetty et al. (2014), which we use in our county-level analysis.

This measure captures a relative mobility concept, which we argue is the relevant concept

for this time period, as it abstracts from changes in the cross-sectional income distribution

and the distribution of income growth which arose during our sample period. In subsequent

analysis we will also consider the relationship between environmental quality and absolute

1≈ 93 percent of individuals in the ACS can be assigned a PIK, the unique linkage key needed to link
individuals across datasets.

2While the IRS required the reporting of SSNs and other personally identifiable information for depen-
dents after the 1986 tax reforms, this information was not digitally captured until the 1990s.

3The Census Numident is an administrative records file derived from Social Security Administration SS-5
forms that is the universe of all individuals who have applied for a Social Security Number.

4We use Adjusted Gross Income as our measure of income.
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measures of economic well-being such as labor market earnings.

We show the correlation between individual level upward mobility—the difference be-

tween an individual’s rank at age 30 and their parent’s rank around the child’s birth—and

an individual’s prenatal exposure to PM2.5 for a single cohort of individuals born in 1981.

Panel B of figure 2 presents the bivariate relationship between these individual-level vari-

ables. As with our county-level analysis, we estimate a negative relationship, however there

is substantially more heterogeneity. In particular, the non-parametric relationship between

individual mobility and PM2.5 exposure exhibits more of a U-shaped pattern, with higher

levels of upward mobility at high levels of PM2.5 exposure. The previous aggregate analysis

may have obscured this, as many of the largest counties (e.g. Los Angeles County, CA) are

also highly polluted. However, given that this is the unconditional association we are not

able to give any clear interpretation to why this pattern arises. Note that the best linear

approximation of this non-linear relationship (the line of best fit shown in Figure 2) between

early-life air pollution exposure and upward mobility remains negative with a slope of 0.19

in rank points. In the following section, we set out to identify the causal effect of prenatal

PM2.5 exposure on earnings and our measures of economic opportunity. We then combine

these estimates with individual-level measures of environmental and economic disparities to

quantify the contribution that air pollution may play in accounting for observed economic

disparities in the United States.

3 The Causal Effect of Prenatal PM2.5 Exposure on

Earnings and Economic Mobility: Evidence from the

1990 Clean Air Act Amendments

To identify the causal effect of particulate matter on earnings we exploit plausibly exogenous

variation in prenatal air pollution exposure that arises from the introduction of the 1990s

Clean Air Act Amendments (CAAA). By leveraging improvements in the measurement of

PM2.5 exposure and a more detailed set of administrative records, we are able to refine the

approach taken by a number of previous studies (Chay and Greenstone, 2003a; Isen et al.,

2017; Voorheis, 2017; Colmer and Voorheis, 2019).

3.1 Data

Our sample frame for this analysis comes from the 2001-2019 American Community Survey

(ACS), which we link to longitudinal information from administrative records.
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To analyze the effects of the 1990 CAAA, we refine this analysis dataset to a subsam-

ple of U.S.-born ACS respondents who were born between 1989-1996, a time period that

spans the enactment of the nonattainment designations we leverage in our research design,

while ensuring that the youngest cohort will have meaningful labor market activity in our

contemporary IRS data (individuals born in 1996 were 23 in tax year 2019).

To measure prenatal exposure to ambient air pollution, we utilize the most detailed

geographic information available. The pre-1989 Form 1040 data housed at the Census Bureau

contains information on the exact address of parents when they filed their tax returns (street

address, city, state and zip code). We first attempt to geocode these addresses to the Census

tract level using the Master Address File IDs (MAFIDs) assigned to the 1040s. However,

not all cases can be assigned a MAFID, so we additionally use the zip code information

in the Form 1040 data to locate individuals (either to assign them to a zipcode tabulation

area (ZCTA), or a county). This provides three potential levels of geography to assign

pollution exposure: Census tract, zipcode, or county. We focus on the county level results to

be consistent with the descriptive evidence, and present results using alternative exposure

definitions in sensitivity analysis.

We measure economic outcomes primarily through income information available in IRS

data. We focus on two measures of income: total annual earnings (including deferred com-

pensation) from Form W-2, and adjusted gross income from Form 1040. As we have multiple

endpoint observations for individuals (annually from 2016-2019), we create a stacked dataset,

with each row corresponding to a year in which income is earned. This will allow us to control

for year-of-birth by year of income earned unobservables, accounting for lifecycle earnings

patterns (since individuals affected born after the nonattainment designations will always

be younger than those born before). We adjust all income amounts to 2012 dollars, which

allows for easy direct comparisons with Chetty et al. (2018a) and Isen et al. (2017).

3.2 Research Design

Exposure to air pollution is correlated with many observable and unobservable characteristics

that are also correlated with long-run economic and social outcomes. To identify the causal

effect of prenatal pollution exposure we need to identify exogenous variation. We do this

by exploiting plausibly exogenous, regulation-induced variation in prenatal PM2.5 exposure.

Specifically, we exploit the introduction of new regulatory particulate matter standards that

affected some counties, but not others, following the introduction of the 1990 Clean Air Act

Amendments. This style of research design build on a well-established literature (Chay and

Greenstone, 2003a; Isen et al., 2017; Voorheis, 2017; Colmer and Voorheis, 2019; Currie et
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al., 2020).

The Clean Air Act was first implemented in 1963, but limited federal oversight of state

efforts led to disappointing results. It wasn’t until Congress enacted the Clean Air Act

Amendments of 1970 and established the EPA, dramatically increasing federal powers to

address air pollution, that the regulation started to have an effect. The 1970 Amendments

relied on “command and control” regulations, using criteria that focused on the health bene-

fits of cleaner air without consideration of the economic costs. The legislation was instigated

through the national ambient air quality standards (NAAQS), which set the maximum allow-

able levels of “criteria air pollutants” – sulfur dioxide, carbon monoxide, nitrogen dixoide,

lead, particulates, and ozone. Based on these standards the EPA determines the set of

counties that are in “nonattainment”. The consequences of nonattainment are severe. State

governments have to implement a pollutant-specific plan describing how nonattainment coun-

ties will be brought into compliance. If a state does not act or develops an inadequate plan,

then federal funding for the state air pollution control program, highway construction, and

sewage treatment plants can be withheld. The EPA can also ban permits required for new or

modified constructions that could source pollution, or impose its own federal plan on nonat-

tainment counties. These powers are sufficiently broad that even the threat of regulatory

action has been associated with reductions in pollution Keohane et al. (2009).

Since the 1970 amendments, there have been several other major amendments, alongside

hundreds of additional policy designations as scientific consensus about the harms of pol-

lution and feasible compliance technologies have evolved. Our focus is on the 1990 Clean

Air Act Amendments, which updated the national ambient air quality standards, broadened

the enforcement powers of the EPA, and created new market-based mechanisms, such as the

sulfur dioxide allowance-trading program to address acid rain. The 1990 amendments also

resulted in the regulation of “toxic” air pollutants. 189 hazardous air pollutants were iden-

tified and emission standards were implemented that provided “an ample margin of safety

to protect publish health,” by minimizing the amount of toxic pollution that was released

into the air.

Our identifying variation comes from the updating of the NAAQS standards, which

affects some counties but not others through nonattainment designations.5 New standards

were introduced for particulates smaller than 10 microns (PM10) and for nitrogen oxides

(NOx). Note that these standards did not directly target the fine particulates measured in

our data (PM2.5). Rather, these regulations affected all particles smaller than 10 microns

and NOx an important precursor to the formation of fine particles (NOx reacts with other

atmospheric chemicals to create fine particulates). The introduction of these new standards

5The other changes that arose from the 1990 CAAA were common across all counties.

10



resulted in new counties falling into nonattainment, providing regulation-induced variation

in particulate matter exposure.

We estimate the effect of these new nonattainment designations on prenatal PM2.5 ex-

posure using a difference-in-differences research design. We define an indicator variable to

be equal to one if an individual’s county of birth becomes subject to the new nonattain-

ment designations (zero otherwise) and interact this with an indicator variable each cohort.6

Treated individual’s are those that were conceived in nonattainment counties following the

introduction of the 1990 CAA.

We estimate the following specification,

PM2.5i,c,s,m,t = α1(Nonattainmentc,1990 × 1[t > 1991]) (1)

+αc + αs,t + αm + γX ′i + δX ′ct+ νi,c,s,t

where i indexes each individual, c indexes the county of birth, s indexes the state of

birth, m indexes the month of birth, and t indexes the year of birth, i.e., the cohort.

Prenatal exposure to PM2.5 is measured for each individual i, where PM2.5i,c,s,m,t is the

average particulate matter concentration that individual i was exposed to in county of birth c

in month m and year t. PM2.5 is measured in µg/m3. We regress this measure of exposure on

a time-invariant county indicator equal to 1 if a county is designated in nonattainment of the

updated 1990 PM10 and NOx standards, Nonattainmentc,1990, and interact this term with

an indicator equal to 1 for the years after the 1990 CAA amendments went into affect, 1[t >

1991]. The interaction term is therefore equal to 1 for individuals born in nonattainment

counties following the implementation of the 1990 CAAA. The parameter of interest is α1,

which under the assumption of parallel trends and non-interference, provides an estimate

of the average treatment effect on the treated for nonattainment designation on prenatal

TSP exposure in the years after CAAA regulations went into effect. We include county-of-

birth fixed effects to control for time-invariant unobserved determinants of prenatal pollution

exposure and state-of-birth × year fixed effects to control for time-varying determinants of

prenatal pollution exposure that are common across all individuals born in state s in year t.

We also include month-of-year fixed effects to control for seasonality in exposure. Following

the existing nonattainment designation literature we also include additional controls: X ′j is a

vector of individual characteristics, including age, race, and sex, as well as prenatal exposure

to temperature and rainfall. X ′ct is a vector of county-level characteristics, measured in

6We observe that nonattainment counties are either in nonattainment of the PM10 standard or both the
PM10 and NOx standard.
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1980, interacted with linear and quadratic time trends. Across all specifications we cluster

our standard errors by the an individual’s county of birth—the level at which we measure

exposure.

Consistent with previous research exploring the 1970 and 2005 Clean Air Act Amend-

ments we show that prenatal exposure to the new nonattainment designations is associated

with substantial and persistent reductions in prenatal PM2.5 exposure. Following the intro-

duction of the 1990 CAA we estimate that prenatal exposure to PM2.5 concentrations in

nonattainment counties fell by 1.32 µg/m3 (Table 1). This reduction is similar in magnitude

to the declines in prenatal TSP exposure following the 1970 Clean Air Act Amendments.7

Figure 4 presents cohort-specific estimates from a distributed-lag model. We see that

before the new regulations, individuals in nonattainment counties were not differentially

exposed to PM2.5, providing support for the parallel trends assumption. Following the im-

plementation of the 1990 CAA, we estimate a sharp and persistent drop in prenatal PM2.5

exposure. The reductions are driven by counties that are in non-attainment of both the

PM10 and NOx standard. This does not mean that the PM10 nonattainment by itself wasn’t

effective, just that it wasn’t sufficient to reduce levels of PM2.5, a more granular measure of

particulates.

We use this plausibly exogenous variation as an instrument to identify the effects of

prenatal PM2.5 exposure on later-life economic outcomes. We estimate the following speci-

fication,

Yi,c,s,m,t,y = βP̂M2.5i,c,s,m,t (2)

+αc + αs,t + αm + αt,y + γX ′i + δX ′ct+ εi,c,s,m,t,y

To account for lifecycle earnings effects in our stacked dataset, we control for year of birth

by tax year fixed effects, in addition to the standard state-of-birth by birth-year, county-of-

birth, and month-of-birth fixed effects.

We consider three main outcomes: 1) individual labor market earnings as measured on

form W-2; 2) tax unit adjusted dross income (AGI, which we will abuse notation and refer to

as family income) as measured by form 1040; and 3) a measure of upward economic mobility

– the difference in AGI ranks between an individual around age 30 and their parent (at the

time of the individual’s birth).

We have shown that the first-stage is relevant and that the relationship between nonat-

7TSP concentrations fell in nonattainment counties by ≈10 µg/m3. The crude ratio between PM2.5 and
TSP is 0.22.
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tainment and PM2.5 exposure is plausibly identified, assuming parallel trends. If we assume

that the exclusion restriction holds, the coefficient of interest, β, identifies the effect of a

one-unit increase in CAAA-driven prenatal PM2.5 exposure on later-life earnings.

The exclusion restriction assumption – that the 1990 CAAA only affected later-life out-

comes through reductions in prenatal PM2.5 exposure may not hold. It is possible that

nonattainment designations affected outcomes in ways other than the estimated reductions

in pollution. Isen et al. (2017) and Colmer and Voorheis (2019) make the point that nonat-

tainment designations could affect economic competitiveness (Greenstone, 2002; Greenstone

et al., 2012; Walker, 2011, 2013). However, existing evidence suggests that the effects on

the broader local economy are small, affecting less than 0.7 percent of the total workforce

(Walker, 2013). By contrast, the reduction in pollution benefited everyone in non-attainment

counties. We can’t rule out that the 1990 CAAA contributed to a decline in economic con-

ditions in nonattainment counties. However, since effects on competitiveness would be ex-

pected to have the opposite effect on health to reductions in pollution exposure, it is plausible

that the 2SLS estimates will at worst, understate the effects of prenatal PM2.5 exposure. The

reduced form effect of nonattainment remains valid and is interpreted as the net effect of

the nonattainment designations on later-life outcomes. Our reduced form and correspond-

ing 2SLS estimates produce conceptually identical results, suggesting that violations of the

exclusion restriction are unlikely to be a first-order concern.

3.3 Results

Table 2 summarises our estimates of the effect of regulation-induced decreases in PM2.5 on

later-life economic outcomes. In column 1 we see that a 1 µg/m3 reduction in prenatal PM2.5

exposure is associated with a $1,105 increase in later life W-2 earnings; the reduced form

effect of prenatal exposure to nonattainment is associated with a $1,553 increase in later

life W-2 earnings.8 In column 2 we observe similar estimates for the relationship between

prenatal PM2.5 exposure and later-life AGI, however, they are less precisely estimated – a 1

µg/m3 reduction in prenatal PM2.5 exposure is associated with a $1,313 reduction in annual

AGI. Column 3, presents the relationship between prenatal PM2.5 exposure and our measure

of upward mobility. We estimate that a 1 µg/m3 reduction in prenatal PM2.5 exposure is

associated with a 1.28 rank point increase in upward mobility, about a tenth of the size of

the black-white mobility gap in Chetty et al. (2018b).

These effects are substantially larger than previous estimates of the long-term effect of

8The first-stage estimate predicts a 1.383 µg/m3 reduction in PM2.5, which combined with our second-
stage estimate would predict a $1,528 effect of pollution reductions from nonattainment. This suggests that
any effects on competitiveness are unlikely to be a first-order concern.
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prenatal pollution exposure. Isen et al. (2017) estimate that a 10 µg/m3 reduction in Total

Suspended Particulates, induced by the 1970 Clean Air Act Amendments was associated

with a $352 increase in earnings. Total Suspended Particulates – defined as the total mass of

particles smaller than 100 microns – are much coarser than PM2.5. Consequently, we need to

re-scale existing estimates to make a proper comparison. Using all EPA monitor observations

from monitor sites that had co-located active PM2.5 and TSP monitors, we calculate a crude

scaling factor between TSP concentrations and PM2.5 concentrations as 4.35. A 10 µg/m3

reduction in TSP corresponds to a 2.29 µg/m3 decrease in PM2.5. As such, the Isen et al.

(2017) estimate is consistent with a $153.60 increase in earnings per µg/m3 of PM2.5.9 Our

baseline estimate on W-2 earnings is 7 times larger.

There are a number of plausible origins for increase in magnitude. First, our results rely

on different policy variation—the EPA’s regulations after the 1990 Clean Air Act focus on

finer particulates than the regulations after the 1970 Clean Air Act. Since finer particles

are more damaging to health, the 1990s nonattainment designations may have had a much

larger effect on prenatal health than the 1970s. While the crude reduction in particles is

similar across the two policies, the actual reduction in PM2.5 from the 1990 CAAA is likely

much larger than the reductions in 1970 as it would have been easier and lower cost to

reduce coarser particulates. Second, our assignment of place of birth differs from Isen et al.

(2017) and Colmer and Voorheis (2019)—we use information on the location an individual’s

parent filed taxes rather than the place of birth reported to the Social Security Adminis-

tration. We believe that using tax data locations may more accurately capture exposure,

since SSA locations may correspond to the hospital a child was born in rather than their

residence. Any classical measurement error in exposure will have attenuated previous esti-

mates. Third, our data on exposure is different from the previous literature. As noted earlier,

the satellite-derived data product performs similarly to the ground-based monitors in areas

where the monitor network has coverage. Importantly, however, the satellite derived data

product allows us to observe exposure for all counties, including those not monitored. This

in turn means that our sample is closer to being nationally representative (since it includes

individuals born in all counties, not a selected sample born in monitored counties).

Our results are quantitatively and qualitatively robust to a large array of sensitivity

tests, including transformations of the outcome variables, imputing zeroes for individuals

who cannot be linked to a W-2 or 1040, and changing the geographic level of exposure.

Finally, our results are also robust to the level of geographic granularity used in assigning

pollution exposure to individuals.

We also present cohort-specific estimates of the reduced form. As with the first stage

9$351.74/2.29 = $153.60.
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distributed-lag estimates, there are no statistically significant or economically meaningful

differences between individuals born in treatment and control counties before the nonat-

tainment designations went into effect, providing additional support for the parallel trends

assumption. Consistent with the overall post-treatment estimates presented in Table 2, we

see that all cohorts born in nonattainment counties following the introduction of the 1990

CAAA have higher later-life earnings, relative to those born in attainment counties. We

observe a similar pattern for our cohort-specific estimates of nonattainment on AGI (Panel

c of Figure 4) and upward mobility (Panel d of Figure 4). The cohort-specific estimates are

less precisely estimated.

4 Exploring the Contribution of Environmental Qual-

ity to Economic Opportunity

To better understand how much broader patterns of economic opportunity are explained by

variation in air quality, we engage in two quantitative thought experiments. First, we com-

bine our causal estimates of the effect of early life PM2.5 exposure on earnings and economic

mobility with observed patterns of individual-level pollution and economic disparities. The

objective of this exercise is to calculate how much early-life pollution exposure can account

for Black-White earnings and economic opportunity gaps. Second, we leverage exogenous

variation in early life pollution exposure, arising from the Moving to Opportunity experi-

ment, to explore how much of the overall “neighborhood earnings effect” can be accounted

for by air quality in early childhood.

4.1 How Much Does Prenatal Pollution Exposure Contribute to

Black-White Earnings and Opportunity Gaps?

Our first analysis combines our estimates of the long-run economic effects of prenatal pollu-

tion exposure with cohort-specific disparities in PM2.5 exposure. With these measures, we

provide an estimate of the role that disparities in air quality at birth play in contributing

to later-life economic disparities. Specifically, we consider how much racial gaps in pollution

exposure at birth contribute to contemporary gaps in both the level of income and upward

mobility.

We use our linked dataset to estimate the cohort-specific Black-White gap in PM2.5

exposure at birth – for the 1981 cohort, we find that this gap is 2.43 µg/m3 using county-

level pollution data, and 2.53 µg/m3 using Census tract level pollution data. We then use our

linked dataset to calculate the cohort-specific racial earnings gaps at age 30 using Form W-2

15



data.10 We calculate that the Black-white gap in earnings for the 1981 cohort is $13,600.

Using our central estimate of the effect of PM2.5 exposure on earnings, we calculate that

$2685 of the $13,600 racial income gap can be accounted for by environmental inequality at

birth – 19.7 percent of the total gap.11

We conduct a similar analysis for understanding the contribution of environmental in-

equality at birth in shaping the Black-White economic mobility gap. Chetty et al. (2018b)

estimate that there is a 13 rank point difference in upward mobility between white and black

individuals born around 1978–1982. Taking our 1981 cohort racial PM2.5 gaps and the effect

of pollution exposure on upward mobility from table 2, we calculate that 3.11 points out of

13 can be accounted for by PM2.5 disparities at birth – 23.9 percent of the overall mobility

gap.

We note caveats. This thought experiment combines non-marginal changes in pollution

exposure with a marginal local average treatment effect estimate of pollution damages. Our

analysis implicitly assumes a linear dose response function. If the dose response function

is convex, marginal damages will decrease as the pollution gap shrinks. In this case, our

calculations will overstate the contribution of early life pollution exposure. If the dose

response function is concave, marginal damages will increase as the pollution gap shrinks. In

this case, our calculations will understate the contribution of early life pollution exposure.

Given the size of the pollution gaps, we don’t think that assuming linearity in the dose

response function over this range is totally unreasonable. In the following section we exploit

the Moving to Opportunity Experiment to induce a marginal change in pollution exposure.

In doing so, we also explore the degree to which reduced PM2.5 exposure in early childhood

might contribute to the “total neighborhood” effect on earnings estimated by Chetty et al.

(2016) for the children that moved in response to the intervention before the age of 13.

4.2 Environmental Quality and “The Neighborhood Effect”: Ev-

idence from the Moving to Opportunity Experiment.

In the mid 1990s, the U.S. Department of Housing and Urban Development (HUD) conducted

the Moving to Opportunity (MTO) experiment. The objective was to examine whether

moving public housing recipients to lower poverty neighborhoods improved the economic and

social outcomes of adults. Families were tracked over time, and HUD collected outcomes for

both children and adults at the end of the experiment.

10We average all non-missing annual W-2 observations for an individual for the years in which they are
between 28-32.

11If we use the upper and lower bounds of the 95 percent confidence interval for our earnings estimate,
we account for between $366 (2.7 percent) and $5,032 (37 percent) of the Black-white earnings gap.
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The MTO experiment randomized recipients into three groups: the treatment group

received a voucher that could only be used in a low poverty neighborhood; the Section 8

group received a voucher that could be used anywhere; the control group did not receive a

voucher.

Evaluations during and after the experiment found little evidence of improvements in

the economic circumstances for the treatment groups (Kling et al., 2007; Sanbonmatsu L et

al., 2011). However, more recent work documents that children in the treatment group who

were younger than 13 when they moved experienced higher incomes as adults (Chetty et al.,

2016).

We set out to explore the degree to which improvements in environmental quality may

have contributed to this earnings effect. We do this by estimating whether voucher-induced

movements resulted in lower exposure to PM2.5 and combine estimates of the change in

pollution with our estimates of the PM2.5–earnings relationship. The premise of our analysis,

based on the literature documenting the importance of early childhood for human capital

formation, is that children who moved earlier in life may have disproportionately benefited

more from improvements in air quality relative to children who moved later.

4.2.1 Data

We use data from HUD on the individuals that participated in the Moving to Opportunity

experiment. We focus on those that were younger than 13 years old at time of randomization.

Following Chetty et al. (2016), we restrict the sample to those older than 23 in tax years

2008 - 2012.

We identify demographic information, survey responses, and survey weights from the

MTO Final Analysis dataset provided by HUD. We construct quarterly address history over

the duration of the MTO experiment (1994 - 2010) for all participants using the MTO Final

Evaluation Residential Address History dataset. This dataset provides the census tract that

every MTO participant lived in during the experiment.

We merge the MTO participants’ residential histories to the Census tract level measures

of PM2.5 concentrations discussed above. We define an individual’s pollution exposure as the

duration weighted average of each quarter’s PM2.5 exposure up to the age of 18, or calculate

annual average pollution exposure for each year through age 18.

We also merge the MTO participants to income information from IRS tax data to mea-

sure their economic outcomes. We follow Chetty et al. (2016) and focus on two outcomes:

individual earnings, which we measure using annual average wage income from Form W-2s,

and tax unit level total income, which we measure as the adjusted gross income reported on

form 1040. For comparability with previous literature, we measure this income information
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from the years 2008–2012.

4.2.2 Research Design

We estimate the intent-to-treat (ITT) effect of the MTO treatments on children’s exposure

to PM2.5. We estimate OLS regressions of the form:

Yi,s = α + β1Expi,s + β2S8i,s + δs + εi,s (3)

where Yi,s denotes outcomes for individual i in randomization site s. The outcomes we focus

on are time-weighted PM2.5 pollution exposure, wage income, and adjusted gross income.

Expi and S8i are whether the individual was assigned to the experimental or Section 8 groups

and δs is a set of randomization site fixed effects. We weight regressions using the standard

MTO final analysis weights, which adjust for differences in sampling probabilities across

sites and over time. We cluster standard errors by family, the level at which randomization

occured.

Randomization site fixed effects account for inherent differences between the five random-

ization sites (Baltimore, Boston, Chicago, New York, and Los Angeles), which is particularly

important in this context because of differing baseline pollution levels between cities.

β1 and β2, respectively, provide estimates of the association between being offered the

experimental voucher or the Section 8 voucher and our outcomes of interest, relative to the

control group. Because some families do not use the vouchers, the estimates capture the

intent to treat effect.

4.2.3 Results

Table 3 presents estimates of the relationship between being offered vouchers and income,

for individuals whose families received the voucher before the age of 13. In column 1, we

estimate that children assigned to the experimental group have annual W-2 earnings that

are $1,300 higher than the control group. We estimate no statistically significant effects of

assignment to the Section 8 group. These findings very closely match the estimates in Chetty

et al. (2016).

In column 2, we turn to the effects of MTO randomization group assignment on adjusted

gross income (AGI). Wage earnings are a component of AGI, though they come from different

IRS datasets. The AGI results match the W-2 results: children assigned to the experimental

group have annual AGI earnings that are $2,000 higher than the control group. Likewise,

we estimate no significant effect of Section 8 vouchers on annual AGI earnings.
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In column 3, we estimate the relationship between treatment assignment and post-

treatment PM2.5 exposure. We estimate that being offered the experimental voucher is

associated with a 0.170 µg/m3 reduction in PM2.5 exposure, relative to the control group.

This is a 1 percent reduction in exposure relative to the mean. Section 8 voucher recipients

do not appear to experience significant reductions in exposure relative to the control group.

4.2.4 How Much of the MTO-Earnings Effect can be explained by MTO-induced

reductions PM2.5 Exposure?

We have shown that receiving MTO low poverty vouchers reduced children’s lifetime pollu-

tion exposure and increased earnings. In Section 3, we estimated that plauisbly exogenous

variation in prenatal PM2.5 exposure was associated with meaningful increases in later-life

earnings and upward mobility, and that non-marginal changes in pollution (based on the

Black-white PM2.5 gap at birth) can account for a non-trivial share of the contemporary

Black-white income gap. Now, we explore the degree to which the marginal reduction in

pollution induced by the MTO experiment can account for the overall “neighborhood effect”

on earnings.

As shown, the MTO experiment increased earnings by about $1,300 for children whose

family were offered the voucher before the age of 13; and decreased exposure to PM2.5 by

about 0.17 µg/m3. Combining our estimate of the reduction in pollution with our baseline

estimate of the effect of PM2.5 on earnings from Section 3, we calculate that $187 (14.7 per-

cent) of the $1,300 effect can be accounted for by reductions in childhood PM2.5 exposure.12

This is slightly lower than the accounting exercise for black-white earnings gaps. However,

together these exercises paint a remarkably similar picture – childhood PM2.5 exposure is an

important driver of economic mobility in the United States.

5 Conclusion

We have shown, using a variety of datasets and research designs, that exposure to ambient

air pollution is closely related to economic opportunity in the United States. We document

that early life exposure to fine particulate matter is one of the top five predictors of inter-

generational income mobility in the United States. We argue that this strong correlation

may, at least in part, reflect a causal relationship between air quality and economic oppor-

tunity. We provide evidence for this claim in two parts: first, we present new evidence that

plausibly exogenous shocks to pollution exposure have large effects on later life economic

12Using alternate assumptions about the effect of PM2.5 on earnings and the effect of MTO on earnings
and PM2.5 yields a plausible range from 10-31 percent.
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outcomes, sizeable enough to account for meaningful shares of racial economic disparities

in the United States; second, we show that random variation in exposure to pollution from

the Moving to Opportunity experiment, combined with our estimates of the PM2.5–earnings

relationship, can account for 15 percent of the overall “neighborhood effect” on earnings.

Collectively, we our results suggest that exposure to environmental hazards might be an

important determinant of economic opportunity.

These results underline the importance of understanding disparities in pollution expo-

sure: environmental inequality exacerbates economic inequality. However, these results also

provide hope: in the period since the cohort studied by Chetty et al. (2014) were born, there

have been dramatic improvements in average air quality as well as significant reductions in

Black-white PM2.5 exposure gaps (Currie et al., 2020; Colmer et al., 2020). To the extent

that our findings are stable over time, this suggests that pollution-driven economic opportu-

nity may substantially improve going forwards, as less-exposed cohorts grow up and enter the

labor force. Whether overall economic opportunity improves or worsens over time will ulti-

mately depend on the other drivers. Future work should continue to better understand these

effects and how amenable they are to policy intervention. Our findings suggest that place

is not immutable. We can improve economic opportunity within neighborhoods: reducing

exposure to environmental hazards is an easier problem to solve than making neighborhoods

high opportunity.
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Tables and Figures

Figure 1: Spatial Variation in Upward Mobility and Environmental Quality
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Figure 2: The Bivariate Relationship between early life PM2.5 Exposure and Upward Mobility
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parent rank). Panel b) summarizes the bivariate relationship between individual-level PM2.5 exposure compared to individual
level upward mobility (child rank - parent rank). Each point reflects the average upward mobility and PM2.5 within each
percentile bin of the PM2.5 distribution. Error bars reflect the 95 percent confidence intervals calculated with robust standard
errors clustered at the county of birth level.
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Figure 3: The Relative Importance of PM2.5 as a Correlate of Upward Mobility

Source: Author’s calculations using data from Meng et al. (2019) and Chetty et al. (2014). See figure 1 for more details.
This figure shows bivariate correlations between county-level upward mobility and county-level PM2.5, as well as correlations
between upward mobility and other county-level characteristics from Chetty et al. (2014).
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Figure 4: Cohort-Specific Estimates of the Relationship between Prenatal Nonattainment
Exposure and Our Main Outcomes.

(a) Prenatal PM2.5 Exposure (b) W2 Earnings ($2012)

(c) AGI ($2012) (d) Upward Mobility

Source: IRS 1040s, IRS W-2s, ACS 2001-2019, Census Numident and author’s calculations using data from Meng et al. (2019).
These figures present cohort-specific estimates of the association between prenatal exposure to nonattainment designations and
our main outcomes of interest. Panel a) presents estimates of the association between prenatal exposure to nonattainment and
prenatal PM2.5 exposure. This is the first-stage of our analysis. Panel b) presents estimates of the association between prenatal
exposure to nonattainment and later-life W2 earnings. Panel c) presents estimates of the association between prenatal exposure
to nonattainment and later-life AGI. Panel d) presents estimates of the association between prenatal exposure to nonattainment
and later-life upward mobility, measured as the difference in AGI income rank between children and their parents. Error bars
reflect the 95 percent confidence intervals calculated with robust standard errors clustered at the county of birth level.
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Table 1: First Stage Effect of Nonattainment on PM2.5

(1)
PM2.5

PM10 Nonattainment -0.1563
(0.1203)

PM10 and NOx Nonattainment -1.383***
(0.3368)

Fixed Effects Birth County, Birth-State × Year, Birth Month

Individual Controls Yes

County-level Controls Yes

Observations 3,428,000

First Stage F-Stat 9.74

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Source: IRS
1040s, IRS W-2s, ACS 2001-2019, Census Numident and author’s calculations using
data from Meng et al. (2019). This table shows the first stage effect of nonattainment
PM10 and NOx designations on PM2.5 exposure at birth.
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Table 2: Effect of PM2.5 On Adult Economic Outcomes

(1) (2) (3)
W-2 Earnings AGI Upward Mobility

Panel A: IV

PM2.5 (µg/m3) -1105** -1313* -0.0128**
(493.2) (693.4) (0.005855)

Panel B: Reduced Form

Nonattainment × Post 1553*** 1922** 0.01103**
(531.9) (868.8) (0.005443)

Fixed Effects Birth County, Birth Year × Tax Year,
Birth State × Birth Year, Birth Month

Individual Controls Yes Yes Yes

County-level Controls Yes Yes Yes

Observations 10,610,000 13,710,000 13,710,000

Control Mean $25,490 $35,340 0.66

First Stage F-Stat 9.69 9.74 9.74

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Source:
IRS 1040s, IRS W-2s, ACS 2001-2019, Census Numident and author’s calculations
using data from Meng et al. (2019). This table shows the second stage effect of
PM2.5 on earnings, AGI and upward mobility in panel A, and the reduced form
effecto fof nonattainment PM10 and NOx designations on on earnings, AGI and
upward mobility in panel B. Column 1 uses a sample consisting of individuals born
between 1989-1996 who have W-2 earnings between 2016-2019. Columns 2 and 3
use a sample consisting of individuals born between 1989-1996 who are a primary
or secondary 1040 filer between 2016-2019. Upward mobility in column 3 is defined
as the child’s AGI rank in 2016-2019 subtracted from their parent’s AGI rank in
their year of birth.
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Table 3: MTO Intent-to-Treat Effect on Earnings and Pollution Exposure

(1) (2) (3)
W-2 Earnings 1040 AGI PM2.5

Exp Group 1300.0∗∗ 2001∗∗∗ -0.170∗∗

(626.5) (730.7) (0.0692)

S8 Group 582.2 1078 0.0271
(666.3) (710.7) (0.0718)

Site FE Yes Yes Yes

Observations 9,500 9,500 9500

Control Mean - - 16.14

Notes: Significance levels are indicated as * 0.10 ** 0.05
*** 0.01. Source: HUD MTO, IRS 1040s, IRS W-2s and
Meng et al. (2019). This table shows the Intent to Treat
effect of random assignment into the MTO experimental
group and into the Section 8 group on pollution exposure.
Column 1 show effects on earnings as measured as the an-
nual earnings across all Form W-2s, while column 2 shows
the effects on AGI income on form 1040s. Column 3 shows
the effects on PM2.5 exposure.
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Online Appendices – Not for Publication

A Additional Results and Robustness Tests

Table A1: Robustness Check: Alternate Geographic Granularity (Earnings)

(1) (2) (3)
W-2 Earnings W-2 Earnings W-2 Earnings

Panel A: IV

PM2.5 (µg/m3) -961.2*** -989.1** -1105**
(330) (403.1) (493.2)

Panel B: Reduced Form

Nonattainment × Post 1553*** 1553*** 1553***
(531.9) (531.9) (531.9)

Exposure Level Tract Zip Code County

Fixed Effects Birth County, Birth Year × Tax Year,
Birth State × Birth Year, Birth Month

Individual Controls Yes Yes Yes

County-level Controls Yes Yes Yes

Observations 8,945,000 10,610,000 10,610,000

First Stage F-Stat 19.47 14.36 9.69

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Source:
IRS 1040s, IRS W-2s, ACS 2001-2019, Census Numident and author’s calculations
using data from Meng et al. (2019). See table 2 for more information. This table
shows the effect of PM2.5 and nonattainment on earnings, using different definitions
of pollution exposure. Column 1 uses PM2.5 exposure resolved to the Census tract
level, while columns 2 and 3 use zip code and county level resolution respectively.
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Table A2: Robustness Check: Alternate Geographic Granularity (AGI)

(1) (2) (3)
1040 AGI 1040 AGI 1040 AGI

Panel A: IV

PM2.5 (µg/m3) -1274*** -1162** -1313*
(487) (564.9) (693.4)

Panel B: Reduced Form

Nonattainment × Post 1922** 1922** 1922**
(868.8) (868.8) (868.8)

Exposure Level Tract Zip Code County

Fixed Effects Birth County, Birth Year × Tax Year,
Birth State × Birth Year, Birth Month

Individual Controls Yes Yes Yes

County-level Controls Yes Yes Yes

Observations 11,520,000 13,710,000 13,710,000

First Stage F-Stat 19.26 14.44 9.74

Notes: Significance levels are indicated as * 0.10 ** 0.05 *** 0.01.
Source: Source: IRS 1040s, IRS W-2s, ACS 2001-2019, Census Numi-
dent and author’s calculations using data from Meng et al. (2019). See
table 2 for more information. This table shows the effect of PM2.5 and
nonattainment on AGI, using different definitions of pollution exposure.
Column 1 uses PM2.5 exposure resolved to the Census tract level, while
columns 2 and 3 use zip code and county level resolution respectively.
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Table A3: Robustness Check: Effect of PM2.5 On Adult Economic Outcomes, Log/IHS

(1) (2) (3) (4)
W-2 Earnings AGI Earnings AGI

Panel A: IV

PM2.5 (µg/m3) -0.03004** -0.0207** -0.02827** -0.01375**
(0.01225) (0.01037) (0.01156) (0.01147)

Transformation Log Log IHS IHS

Fixed Effects Birth County, Birth Year × Tax Year,
Birth State × Birth Year, Birth Month

Individual Controls Yes Yes Yes Yes

County-level Controls Yes Yes Yes Yes

Observations 10,610,000 13,710,000 10,610,000 13,710,000

Control Mean $25,490 $35,340 $25,490 $35,340

First Stage F-Stat 9.69 9.74 9.69 9.74

Notes:Significance levels are indicated as * 0.10 ** 0.05 *** 0.01. Source: Source:
IRS 1040s, IRS W-2s, ACS 2001-2019, Census Numident and author’s calculations
using data from Meng et al. (2019). See table 2 for more information. This table
shows the effect of PM2.5 on earnings and AGI using different transformations of
the dependent variable. Columns 1 and 2 use a logarithmic transformation (which
implicitly excludes zero and negative values), while columns 3 and 4 use an inverse
hyperbolic sine, which allow for zero and negative valued income.
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