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Disclaimer

• The views expressed are our own and not those of any organization we
have been associated with

• Peter Cramton consults on market design and is an academic advisor to
Carta on the design of a private equity exchange.

• Albert S. Kyle is an independent director of a U.S.-based asset manage-
ment company which trades global equities

• The other authors have no relevant or material financial interests that
relate to this research.
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Motivation for a New Market Design

Description of current exchanges:

• Use mostly standard limit orders—a price, quantity, and direction: “Buy
1000 shares of AAPL at $126.85 per share or better”

• Orders are typically for an individual asset rather than portfolios

• Orders are processed one-at-a-time continuously, with incoming “exe-
cutable” orders matched with “resting” orders in limit order book

• Displayed bids and o�ers respect the minimum tick size of one cent and
quantities respect the minimum lot size of one hundred shares
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Motivation for a New Market Design

Current stock market design makes it costly for investors to implement trad-
ing strategies:

• Orders subject to immediate execution risk being picked o� by high fre-
quency traders when new information changes prices

• Discrete minimum tick size (one cent) induces queuing and race for time
priority. Discrete minimum lot size widens bid-ask spread, encourages
speed by enhancing value of time priority

• Institutional traders, who want to spread out their trade over time, must
place and cancel thousands of small orders, requiring large resources

• Arbitrage trades between assets (pairs trades) or trading portfolios in
general requires placing and canceling thousands of orders as prices
change
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Flow Trading: Combination of Three Ideas

• Flow Orders: Piecewise-linear, downward-sloping demand curves, con-
tinuous in price and quantity, with quantity expressed as “flows”

– Buy a maximum of 1 share per second until 1000 shares are bought
– Instead of “Buy 1000 shares right now”

• Frequent Batch Auctions: markets are cleared in discrete-time batch auc-
tions, held at intervals such as once per second

– Relative to status quo: time is discrete instead of continuous, and
prices and quantities are continuous instead of discrete

• Orders for Portfolios: a portfolio is a user-defined linear combination of
assets (arbitrary vector)

– Both positive and negative weights allowed: buying and selling
– Complements: same sign
– Substitutes: opposite signs
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Flow Trading vs. Traditional Exchange

Flow Trading Traditional Exchange

Downward-sloping piecewise-linear Discontinuous step functions
supply and demand curves for discrete quantities
for flows

Batch auctions once per second Sequential matching one at a time

Orders for portfolios (linear combinations) Orders for one asset

Table 1: Comparison of Flow Trading with Traditional Exchange
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Benefits
Flow trading has four types of benefits relative to status quo:
• Investors can directly express many common trading demands:

– Time-weighted average price (TWAP)
– User-defined portfolios (customized ETFs)
– Pairs trades: Buy A, Sell B

• Reduces the importance of speed

– Reduces risk of resting limit orders being picked o�
– No race for queue position

• Easier to provide liquidity across related assets

– Suppose A and B are highly correlated: can directly provide liquidity in Buy A, Sell
B and Sell A, Buy B

– Like a string that ties prices together. No correlation breakdown

• Transparency and fairness: all executable orders trade at the same price

– Traders can verify appropriate execution from publicly announced market clearing
prices exactly

Caveat: Flow trading is not designed to mitigate market failures related to market power or
private information.

Market participants still must think strategically about how to trade on private information
and manage their price impact, just as in the status quo.
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Our Contribution

Combine the following well-understood concepts into a coherent and prac-
tical market design for trading stocks, bonds, futures contracts:

• Piecewise-linear downward sloping demand schedules

• Portfolios as linear combinations of assets

• General equilibrium theory

• Quadratic programming

• Batch auctions

• Reducing temporary price impact by trading slowly
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Literature

• Our market design combines orders for portfolios with ideas from Bud-
ish, Cramton, Shim (2015) and Kyle and Lee (2017)

• Flow orders are motivated by theoretical models (Vayanos (1999); Du and
Zhu (2018); Kyle, Obizhaeva, Wang (2018)) as well as empirical evidence
(popularity of TWAP and VWAP trading)

• Sophisticated expressions of preferences over multiple objects: Lahaie
and Parkes (2004); Sandholm and Boutilier (2006); Milgrom (2009); Klem-
perer (2010); Cramton (2017); Budish et al (2017)

• Wittwer (2021) and Rostek and Yoon (2020a,b) discuss welfare implica-
tions of clearing assets jointly versus separately.

• Growing literature on financial market design: Du�e and Zhu (2017), Zhang
(2020), Chen and Du�e (2020), Du�e and Dworczak (2021), Budish Lee and
Shim (2021), many others

• Indivisible goods and existence of competitive eqm: Kelso and Crawford
(1982), Hatfield and Milgrom (2005), Hatfield et al (2013, 2019), Baldwin
and Klemperer (2019)
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How Orders Work

There are N assets indexed n , I orders indexed i .
An order is specified by a tuple (www i , p

L
i , p

H
i , qi ,Q

max
i
)

• Description of portfolio: List of securities plus list of asset weights de-
scribe a sparse vector of portfolio weightswww i ∈ ÒN :

– Individual asset: One nonzero weight to buy (+) or sell (-) one asset
– Substitutes: One positive weight, one negative weight for pairs trade
– Complements: 500 positive index weights to buy the S&P 500
– Market making: pair of orders with weightswww i and −www i

• Two limit prices for the portfolio (pLi = $50.30 and pHi = $50.40 per share)

– Negative portfolio weight (−1 share) and negative portfolio limit prices
pLi = −$50.40 and pHi = −$50.30 for sell order. pLi < p

H
i with both in Ò

• Maximum execution rate (qi = 1.00 portfolio unit per second)

• Cumulative quantity to be executed (Qmax
i

= 10 000 portfolio units)
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How Orders Work

Order executes

• At maximum rate (fully executable) qi if price weakly below pLi

• At zero rate (nonexecutable) if price weakly above pHi
• At linearly interpolated rate (partially executable) if price in [pLi , p

H
i ]

Buying vs. Selling

• “Selling” an asset is buying a portfolio with negative weight on that asset
at a negative price

• Whether buying or selling, always pLi < p
H
i .

• Think of pLi as analogous to the limit price in a limit order, whether pos-
itive or negative. (“buy my full quantity at any price weakly better than
pLi ”)

• For portfolios with positive and negative weights, there may not be a
natural buying versus selling direction to the order.
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Math: One Portfolio Order

Flow order i is described by the tuple (www i , p
L
i , p

H
i , qi ,Q

max
i
)

Let πππ = (π1, . . . πN ) denote a vector of N market-clearing asset prices. The
price of the portfolio is the weighted sum of asset prices:

pi = πππ
Twww i (1)

Assume the order’s cumulative purchased quantity is not within qi of Qmax
i

.
The execution rate xi of order i is given by:

xi = D
i (pi ) = qi ·trunc

(
pHi − pi
pH
i
− pL

i

)
, where trunc(x ) :=


1, for x ≥ 1
x , for 0 < x < 1
0, for x ≤ 0

(2)
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Illustration of Buying and Selling
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(d) Neg. Demand

For an order to sell 5 shares of a single asset n between $41 and $42:

• www i is sparse vector with wi n = −1 share, zero otherwise

• pLi = −42.00 < p
H
i = −41.00 dollars per share

• qi = 5 shares
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Flexible, Limited Language for Preference Expression

Flexibility: Assets can be substitutes or complements (shoe analogy):

• Buy or sell a left shoe or right shoe separately

• Substitutes: Swap a left shoe for a right shoe (or vice versa)

• Complements: Buy left shoe and right shoe together

• Urgency expressed by maximum execution rate

• Arbitrary continuous downward-sloping portfolio demand function can be ap-
proximated with piecewise-linear orders

Some key financial use cases:

• Standard limit order (set qi = Qmax
i

and pHi → pLi
+)

• Time-weighted average price (TWAP) order (pLi su�ciently aggressive). Our ana-
log of a market order

• Pairs trades ((+,−, 0, . . . , 0))

• Portfolio trades ((+,+, . . . ) or (−,−, . . . ))

• General long-short strategies

• Market making strategies (two orders with weightswww i , −www i )
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Flexible, Limited Language for Preference Expression

Limitations

• Trading demands are only defined at exactly the ratio of portfolio weights
specified in the order. (Contrast to consumer theory)

• Trading demands are linear within each order.

• Language does not allow for indivisibilities (Ex: at least 100 shares, or
none).

• Demand depends only on portfolio prices. Can’t condition demand for
asset A on realized price of asset B: “buy whichever of Left Shoe or Right
Shoe gives me more surplus given my reported valuations”. (Contrast:
Klemperer (2010) or Milgrom (2009)).

• Relatedly, no in-order contingencies (“buy A if the price of B is high enough”)
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Math: Market Clearing

Market clears in N assets, not portfolios specified by I orders, with N << I
The exchange converts portfolio units to underlying assets (multiplying by
weightswww i ), calculates net excess demand vector by summing demands for
assets across orders with price vector πππ :

Excess Demand Vector = D (πππ) :=
I∑
i=1

D i
(
πππTwww i

)
·www i (3)

Important detail: D i
(
πππTwww i

)
is a scalar, D (πππ) is N-vector

The exchange seeks to find a market clearing price vector

D (πππ) = 000, (N equations in N unknowns) (4)

in which case each order executes at rate

xi = D
i (πππTwww i ), (scalar equation in portfolio units xi ) (5)
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Illustration of Market Clearing

One asset, six orders (symmetric about $45.00 for buying and selling)

• One fully executable buy order and one fully executable sell order

• One non-executable buy order and one non-executable sell order

• One partially executable buy order and one partially executable sell or-
der
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Existence and Uniqueness

Questions:

• Do equilibrium prices and quantities exist?

• If they exist, are they unique?

Idea for proof:

• Treat orders as expressions of preferences, implying quasi-linear (dollar)
quadratic utility for order i for quantities in range [0, qi ]

– Note: order i ’s preferences are only defined exactly on thewww i vector
– Note: order i ’s preferences are satiated at qi

• Exchange solves the problem of maximizing sum of dollar utility across
orders subject to market clearing constraint

• Interpret Lagrange multipliers for market clearing constraint as price
vector πππ
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Setting up the Optimization Problem

Infer quadratic utility from “as-bid” linear portion of demand schedule

Vi (x ) = pHi x −
pHi − p

L
i

2qi
x 2 (6)

Exchange solves the problem of finding quantities xxx = (x1, . . . , xI ) to solve

max
xxx

I∑
i=1

Vi (xi ) subject to

∑I
i=0 xi www i = 000 (market clearing)

0 ≤ xi ≤ qi for all i (order execution rate),
(7)

This is a quadratic optimization problem with:

• N linear equality constraints enforcing market clearing of N assets,

• 2I linear inequality constraints enforcing no overfilling or underfilling of
I orders

In matrix form: LetDDD denote the I ×I positive definite diagonal matrix whose
i th diagonal element is (pHi − p

L
i )/qi .

max
xxx

[
xxxTpppH − 1

2 xxx
TDDD xxx

]
subject to WWW xxx = 000 and 000 ≤ xxx ≤ qqq .

(8)
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Theorem: Existence and Uniqueness of Quantities

Theorem 1 (Existence and Uniqueness of Optimal Quantities). There exists a unique
quantity vector xxx ∗ which solves the maximization problem (7)

Proof.

• Compactness: Inequality constraints on quantities. Market clearing conditions
are linear constraints, which defines the intersection of hyperplanes. Thus the
set of vectors of trade rates xxx that satisfies all constraints is compact and con-
vex.

• Feasibility: No trade (xxx = 000) is feasible: satisfies constraints with finite value of
objective.

• Strictly Concave Objective Function: Each functionVi is quadratic and therefore
strictly concave. SinceV is the sum ofVi across i , the functionV is concave as
well (on ÒI and on the compact and convex subset defined by the constraints.)

• Well-known principle of convex analysis that a strictly concave objective func-
tion on a non-empty compact and convex set has a unique maximizing vector
xxx ∗ (References: Boyd and Vandenberghe (2004); Bertsekas (2009)).

�
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Why is existence and uniqueness proof so simple?

Compared to general equilibrium theory or indivisible goods literature, our
existence and uniqueness result is very straightforward. Why?

• Goods are infinitely divisible

• Portfolio demand schedules are downward sloping

• Utility is defined on a line segment (not defined or irrelevant o� diagonal)

• Quadratic utility is strictly convex (for uniqueness) and goes to infinity in
all relevant directions
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Dual Problem: Prices

Define Lagrangian

L (xxx ,πππ,λλλ,µµµ) :=V (xxx ) −
N∑
i=1

(xi ·www i )Tπππ + xxxTµµµ + (qqq − xxx )Tλλλ (9)

• Prices πππ are positive or negative Lagrange multipliers enforcing market
clearing

• “Taxes” and “subsidies” µµµ and λλλ are Lagrange multipliers enforcing order
execution rate constraints

The dual objective associated with the primal problem of solving for optimal
quantities is

Ĝ (πππ,λλλ,µµµ) := max
xxx

L (xxx ,πππ,λλλ,µµµ) for πππ ∈ ÒN , µµµ ≥ 000, λλλ ≥ 000 (10)

The dual problem is

g ∗ := inf
πππ,λλλ,µµµ

Ĝ (πππ,λλλ,µµµ) subject to πππ ∈ ÒN , µµµ ≥ 000, λλλ ≥ 000 (11)
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Result: Existence of Market Clearing Prices

Theorem 2 (Existence of Market Clearing Prices). There exists at least one
optimal solution (πππ∗,λλλ∗,µµµ∗) to the dual problem (11). The solutions xxx ∗ and
(πππ∗,λλλ∗,µµµ∗) are a primal-dual pair which satisfies the strict duality relation-
ship

g ∗ =V (xxx ∗). (12)
The prices πππ clear markets.
Proof. The quadratic program has these properties:
• Concavity: The objective functionV (xxx ) is concave

• Finite solution: Sum of concave objectives bounded from above

• Feasibility: No trade (xxx = 000) is feasible: clears markets, satisfies order
execution rates

• Linear constraints: Market clearing and order execution rates
Implies strict duality: primal and dual have same solution. Prices clear mar-
kets because exchange could lower losses by changing prices if markets did
not clear (Bertsekas 2015, Proposition 5.3.4, p. 173) �

The set of market clearing prices is convex, but may be unbounded
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Duality and General Equilibrium Theory

Primal-dual problem is like a zero-sum game in which which the exchange
tries to minimize its losses from trading at non-market clearing prices (Von
Neumann)
While our approach has the flavor of general equilibrium theory, our imple-
mentation di�ers in some ways

• General equilibrium theory: Price space is made compact by focusing on
relative prices. Existence of prices derived using Kakutani or Brouwer
fixed point theorems. Market demand curves may be badly behaved,
nonexistent or multiple prices. Uses gross substitutes assumption to
make problem well-behaved. Reliance on non-empty interior assump-
tion. Obtains welfare results (Pareto optimality).

• Our approach: Constraints on quantities imply compactness. Quadratic
problem simplifies with linear constraints. Does not require non-empty
interior assumption. Allow both substitutes and complements (based on
same or opposite signs on portfolio weights). Our “welfare” results are
based on “as-bid” preferences
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Computation
Question: prices and quantities exist. Can we compute them?

• Many economic settings where prices are known to exist but hard to find
(Scarf and Hansen, 1973)

• Many economic settings where prices are trivial to compute—one asset
version of our problem is an easy example!

• Our problem lies in between

• Plan

– Show that gradient method works. “Easier than Scarf’s problem”
– Result: gradient method convergence slow (confirmed in simulations)
– Add “exchange as market maker” which enables interior point meth-

ods
– Result: faster in theory, and also in simulations.
– Goal in mind: solve large problems in less than one second.
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Gains Function

Theorem 3 (Gains function). Define the gains function as

G (πππ) := min
λλλ,µµµ

Ĝ (πππ,λλλ,µµµ) subject to λλλ ≥ 000, µµµ ≥ 000. (13)

Every market clearing price vector πππ∗ satisfies

πππ∗ = arg min
πππ∈ÒN

G (πππ). (14)

The set of market clearing prices is a nonempty, closed convex set which may
be unbounded.

• Economic interpretation: The gains function minimizes the sum of “con-
sumer surplus” across orders. Analogous to minimizing expenditure func-
tion to maximize utility

• Intuition: optimizing against non-market clearing prices allows market
participants to achieve greater surplus than trading at market clearing
prices, but trading at nonclearing prices costs exchange more

• Derivative of the gains function is minus the market demand function

• Second derivative of the gains function is a negative semi-definite matrix
25



Computation: Tatonnement and Gradient Method

Economist intuition: Use Walrasian tatonnement on dual problem (prices):

• Tatonnement is equivalent to gradient method of optimization on gains
function since gradient search direction is negative of derivative, which
is exceess demand search direction of tatonnement.

• Since gains function is variation on dual problem, we know clearing prices
exist.

• Bad news: Although convergence can be guaranteed, with a bound on
convergence rate, convergence is too slow for solving problem in one
second.

Theorem 4. Let G be a convex with continuously di�erentiable gradient sat-
isfying a Lipschitz condition with constant L. Using step size 1/L, the the
error after k iterations of the gradient method G (πππk ) − G (πππ∗) is related to
the error of the initial guess πππ0 − πππ∗ by

G (πππk ) −G (πππ∗) ≤
2L‖πππ0 − πππ∗‖2

k + 4
. (15)

(Nesterov 2004, Corollary 2.1.2)
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Exchange as Market Maker

We now add the exchange as a small market maker:

• Generates good tie-breaker rule when clearing prices nonunique and
even unbounded.

• Allows interior point method to be used to calculate prices by guaran-
teeing that initial allocations αxxx , 0 < α < 1 are on interior of feasible set,
since exchange takes other side of otherwise uncleared quantities.

– Natural starting point of no trade is otherwise not an interior point.

Exchange places small linear demand for each asset:

yn = εn (π0n − πn), (16)

where εn > 0 is small, π0n is exchange’s best guess at clearing price (e.g., last
price or from some initial computation)
In vector notation, demand function and utility function of exchange are

yyy = εεε (πππ0 − πππ), yyy Tπππ0 − 1
2 yyy

Tεεε−1 (17)
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How Interior Point Method Works

Adding exchange as a trader, modified primal problem is

max
xxx ,yyy

[
xxxTpppH − 1

2 xxx
TDDD xxx + yyy Tπππ0 − 1

2 yyy
Tεεε−1 yyy

]
subject to WWWxxx+yyy = 000, 000 ≤ xxx ≤ qqq .

(18)
Interior point method changes problem by replacing inequality constriants
with penalty functions:

max
xxx ,yyy

[
xxxTpppH − 1

2 xxx
TDDD xxx + yyy Tπππ0 − 1

2 yyy
Tεεε−1 yyy + ν̄log(xxx )T111 + ν̄log(qqq − xxx )T111

]
, WWWxxx+yyy = 000.

(19)
Solution of modified problem with inequality constraints converges to solu-
tion of modified problem without inequality constraint in the limit ν̄ → 0.
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Complexity of Interior Point Method

Nice accessible discussion by Gondzio(2012)
Let ε denote size of required error (percentage reduction)

• Complexity of interior point method: O (log(1/ε))

• Complexity of gradient method: O (1/ε) or O (1/ε2)
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Characterization: Karush–Kuhn–Tucker Conditions

Theorem 5 (Necessary and Su�cient Conditions). The vector of quantities xxx ∗

is the unique primal solution and a vector of multipliers (πππ∗,λλλ∗,µµµ∗) is a dual
solution if and only if the following conditions hold:

I∑
i=0

xi www i = 000, 000 ≤ xxx ≤ qqq , (Primal Feasibility), (20)

πππ ∈ ÒN , λλλ ≥ 000, µµµ ≥ 000, (Dual Feasibility) (21)

xxx ∗ = argmax
xxx∈ÒI

L (xxx ,πππ∗,λλλ∗,µµµ∗), (Primal Optimality) (22)

λλλ∗ · (qqq − xxx ∗) = 000, µµµ∗ · xxx ∗ = 000 (Complementary Slackness) (23)

In the above theorem, maximizing the Lagrangian can be replaced by the
first-order conditions for xxx
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Interior point methods and KKT conditions

KKT conditions with interior point method:

• Add the exchange’s demand to the first-order condition.

• Add the exchange’s quantities traded to the market-clearing condition.

• Replace the complementary slackness condition µµµ∗ · xxx ∗ = 000 with µµµ∗ · xxx ∗ =
ν̄ · 111, and then let ν̄ → 0.

The modified KKT conditions are

WWW xxx ∗ + yyy ∗ = 000, 000 ≤ xxx ∗ ≤ qqq , yyy ∗ ∈ ÒN (Primal Feasibility), (24)

πππ∗ ∈ ÒN , λλλ∗ > 000 µµµ∗ > 000, (Dual Feasibility) (25)

pppH −DDDxxx ∗ − εεε−1yyy ∗ −WWW Tπππ∗ + µµµ∗ − λλλ∗ = 000 (Primal Optimality) (26)

λλλ∗·(qqq−xxx ∗) = ν̄·111, µµµ∗·xxx ∗ = ν̄·111, ν̄ > 0, ν̄ → 0 (Complementary Slackness).
(27)

Intuition: Solve revised problem for finite ν̄ > 0while at the same time push-
ing ν̄ closer and closer to zero, keeping updated guesses interior points. Re-
sult: quick convergence to the solution of our original KKT conditions
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Our Simulations

Our own implementation of CVXOPT algorithm using Python. Strategy:

• Linearize KKT conditions (3I + N equations).

• Solve linearized system with ν̄ = 0.

• Take step which keeps guessed quantities xxx interior point, keeping ν̄ > 0
but making it smaller.

• Solve equations by expressing multipliers as functions of xxx , express xxx as
function of prices πππ , then solve much smaller N × N system for πππ using
Cholesky decomposition.

• Need new Cholesky decomposition at each iteration to incorporate new
information from “deep in the order book.”
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Simulation Assumptions

Try to pose a di�cult problem:

• 500 assets and 30,000 orders in base case scenario.

• Huge variation in liquidity across assets (Invariance assumptions).

• Correlated index orders (value-weighted and equally-weighted).

• Small (one basis point) di�erence between pHi and pLi on average (step
function approximation)

• Exchange provides very little liquidity.
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Simulation Results

• Panel A varies assets: t ≈ 1 sec for 2000 assets and 30,000 orders.

• Panel B varies orders: t ≈ 1 sec for 500 assets and 100,000 orders.
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Figure 1: Execution time for 2 × 500 simulated market outcomes.
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Importance of Exchange Trading

• In simulation results reported above, exchange share of trading volume
is less than 10−7 when there are tens of thousands of orders.

• Exchange also picks up much smaller uncleared quantities due to imper-
fect algorithm convergence (numerical error).

• This modest exchange trading seems to make algorithm more numeri-
cally stable (as expected).

• Exchange trading also provides a tie-breaker rule, keeping non-unique
prices near exchange’s no-trade price
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Implementation of Portfolio Strategies

• Assume trader has CARA (exponential) utility with risk aversion A.

– Other utility functions might generate wealth e�ects which make de-
mand slope upward, not downward (margin calls).

• Assume trader has subjective beliefs that liquidation values vvv are jointly
normally distributed with subjective meanmmm and subjective variance ΣΣΣ.

Standard finance theory implies demand is

ωωω∗ = (AΣΣΣ)−1 (mmm − πππ). (28)

Quantity of asset n , given by ωn is a seemingly arbitrary linear function of
entire price vector πππ , not just price of asset n itself.

• Optimal quantities for individual assets cannot be implemented by stan-
dard limits order in which of asset is function of asset price itself.

• Optimal vector of quantities can be implemented by a combination of
portfolio orders.

– This can be shown with an argument based on a singular value de-
composition.
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Singular Value Decomposition

SVD rotates covariance matrix ΣΣΣ using orthogonal matrixUUU with columns uuuk :

ΣΣΣ =UUU∆∆∆UUU T, ΣΣΣ−1 =
K∑
k=1

1

δk
uuukuuuk

T, (29)

Since ΣΣΣ is positive semi-definite, ∆∆∆ is a positive definite diagonal matrix of
singular values with positive diagonal (δ1, . . . , δN ).
In terms of demands for rotated portfolios, vector of quantities demanded
can be written

ωωω∗ =
K∑
k=1

(
uuuk

Tmmm − uuuk Tπππ

A δk

)
uuuk . (30)

The above equation is a linear combination of downward sloping linear de-
mands for portfolios uuuk as functions of the portfolio price uuuk Tπππ . QED!
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Theorem

Theorem 6. Consider a static CARA-normal framework in which a trader be-
lieves that the variance-covariance matrix of the asset payo�s has rank K .
Then the trader’s optimal portfolio (equation (28)) can be represented as
the sum of K downward-sloping demand schedules for portfolios, each of
which depends only on that portfolio’s price (equation (30)).

The same logic applies to the model of strategic trading if the price impact
matrix, denoted by ΛΛΛ, is positive semidefinite: Let K ′ denote the rank of
AΣΣΣ + ΛΛΛ. Then a strategic trader’s optimal portfolio can be represented as
the sum of K ′ downward-sloping demand schedules for portfolios, each of
which depends only on that portfolio’s price.
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Practical Extensions

• The dollar value of expected utility is sum of squared portfolio-Sharpe-
ratios:

K j∑
i=1

1

2Aj

(
uuu i

Tmmm − uuu i Tπππ√
δi

)2
, (31)

• In practice, rather than submitting demands for all N portfolios, traders
might submit demands for on the top K portfolios with good Sharpe ra-
tios.

– Machine learning with L-1 norm (lasso) might generate this.

• In the context of flow orders, each portfolio may be bought with di�erent
urgency, with more liquid portfolios bought faster than less liquid ones.
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Policy Discussion

• E�ciency: Our proposal dramatically reduces market interface costs for
users, market makers, and other intermediaries

– E�ciency based on “as-bid” strategically expressed preferences rather
than unknown true preferences

• Competition: Allows traders to focus on alpha models, market impact
models, and risk models, not speed, bandwidth, and complexity of order
handling systems

• Fairness: Levels the technological playing field

• Transparency: All orders receive the same prices at the same time. Exe-
cutable TWAP orders automatically achieves TWAP price

• Trust: Proper order execution can be verified from history of market-
clearing prices
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Additional Issues

• Tie-breaking: If prices not unique, minimize distance to prior price

• Exchange as liquidity provider: If exchange places a linear order in each
asset, prices are unique and computation is faster (geometric conver-
gence based on eigenvalue ratio)

• Backup plan: If exchange cannot compute prices in one second, allow the
exchange to trade small quantities to clear markets. The alternative is
to ration orders, like “fast market conditions” suspending traders usual
expectations of order execution quality

• Post-trade transparency: At a minimum, exchange publishes prices and
market volume each second.

• Pre-trade transparency: A large trader can estimate temporary price im-
pact by canceling order execution for one second, see how far the price
moves. To avoid such price blips, the exchange might publish informa-
tion about depth of book for some assets and portfolios
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Conclusion (1)

• This paper has introduced a new market design for trading financial as-
sets, such as stocks, bonds, futures, currencies

• Three elements: flow orders from Kyle and Lee (2017), frequent batch
auctions from Budish, Cramton and Shim (2015), and a novel language
for trading portfolios

• Technical foundations: existency and uniqueness results; computational
results; microfoundations for portfolio orders

• Benefits of combining KL+BCS: a market design in which time is discrete
and prices and quantities are continuous

– Status quo market design has these reversed.
– Continuous time and discrete prices/quantities are the cause of sig-

nificant complexity, ine�ciency, and rent seeking
– Policy debates that relate: arms race for trading speed; complex order

types; proprietary market data and access; internalization of retail
investors’ order flow
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Conclusion (2)

• Benefits of novel language for portfolio orders:

– Rich enough to directly express many important kinds of trading de-
mands

– While also allowing for guaranteed existence and fast computation
– A "point on the frontier of language design" — tradeo� between ex-

pressiveness and computability

• Main open topic for future research: e�ciency consequences of portfolio
trading. We conjecture two main benefits:

– Reduce costs and complexity: traders can directly express many im-
portant trading demands, reducing need for costly/complex interme-
diation

– More e�cient to link liquidity and price discovery across correlated
assets. Example: if A and B are perfect substitutes, prices can be per-
fectly correlated with Bertrand competition on cost of (Buy A, Sell B)

• Also important to study: strategic issues that arise under portfolio trad-
ing around bid-shading and managing price impact
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