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Abstract

We propose a new market design for trading financial assets. The design combines
three elements: (1) Traders submit persistent piecewise-linear downward-sloping demand
curves to trade in shares per second (Kyle and Lee (2017)). (2) Markets clear using frequent
batch auctions held at regular intervals, such as once per second (Budish, Cramton, and
Shim (2015)). (3) Traders may submit orders to trade portfolios of assets, expressed as ar-
bitrary linear combinations with positive and negative weights, as if they were one asset.
Thus, relative to the status quo design: time is discrete instead of continuous, prices and
quantities are continuous instead of discrete, and traders can directly trade portfolios. Mar-
ket clearing quantities and prices are the solution to a quadratic program with linear con-
straints, constructed by attributing preferences to orders and maximizing imputed gains
from trade. Clearing prices and quantities are shown to exist, with the latter unique. Calcu-
lating prices is shown to be computationally feasible. Microfoundations for portfolio orders
are provided. The market design has several potential benefits relative to the status quo:
(1) traders can directly express many common trading demands, which reduces costs and
complexity; (2) it reduces the importance of speed; (3) it allows liquidity and price discovery
to be easily linked across related assets; and (4) it improves fairness and transparency, as all
executable orders trade at the same prices at the same time.
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1 Introduction

Description of the current design Current exchanges for trading equities and many other fi-

nancial assets implement a market design with the following features. Most orders are varia-

tions on a standard limit order, such as, “Buy 1000 shares of AAPL at $150.00 per share or better,”

which has one maximum quantity and one limit price. The orders are processed continuously,

one-at-a-time in sequential order, with incoming “executable” orders matched in whole or in

part with “nonexecutable” orders resting in the limit order book. Orders are typically for sin-

gle securities rather than portfolios of securities. Displayed bids and offers respect a minimum

“tick size,” which is typically $0.01 per share for U.S. stocks, and minimum “lot size,” which has

historically been 100 shares for most U.S. stocks. In some markets, traded quantities must also

respect a minimum tick size and minimum lot size.

This market design makes it costly for investors to implement trading strategies. Since

the entire quantity for an order resting in the limit order book is subject to immediate exe-

cution against the next incoming executable order, resting limit orders risk being “picked off”

or “sniped” by a high-frequency trader acting on new information such as new bids, offers, or

trades in the same or related securities. This risk makes it more expensive to provide liquidity

and, in turn, increases the cost of accessing liquidity. On exchanges which process older resting

limit orders before new ones at the same price, the discrete minimum tick size induces a race

for “time priority” to be the first in the limit order book. The economic rents in this race, too,

correspond to increased costs for investors. Both sniping races and the race for queue priority

also increase the market’s complexity.

Institutional investors trading large quantities face additional unnecessary costs and com-

plexity. Institutional investors often strategically choose to smooth their trading out over time

to reduce price impact. Doing this efficiently requires placing and canceling hundreds or thou-

sands of small orders for individual stocks. This requires institutional investors to have access to

complex, expensive trading platforms to manage their orders. Similarly, trading strategies that

entail trading portfolios (e.g., most forms of active and passive investing) or buying some stocks

while selling others based on relative valuations (e.g., factor investing, long-short arbitrage) re-

quire constantly canceling and replacing orders for stocks as prices fluctuate. Implementing

such strategies efficiently also requires access to complex, expensive trading platforms.

Flow trading To reduce the costs and complexity that the current market design imposes on

retail and institutional participants, we propose a new market design called “flow trading.”

Flow trading is a combination of three key elements (Table 1). First, instead of placing orders

that define quantities as step functions of price, traders place flow orders that specify quanti-
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Flow Trading Traditional Exchange

Downward-sloping piecewise-linear Discontinuous step functions
supply and demand curves for discrete quantities
for flows

Batch auctions once per second Sequential matching one at a time

Orders for portfolios (linear combinations) Orders for one asset

Table 1: Comparison of Flow Trading with Traditional Exchange

ties as piecewise-linear, downward-sloping functions of price. Because quantities change con-

tinuously as a function of price, piecewise-linear schedules ensure that all executable orders

execute and execute at the same price. The quantities define execution rates as flows—“Buy

a maximum of one share per second until 1000 shares are bought”—rather than as a discrete

quantity change —“Buy a maximum of 1000 shares right now.”

Second, instead of executing orders one at a time in sequence, orders are processed in dis-

crete time using batch auctions (i.e., “frequent batch auctions”). Suppose the discrete-time

interval is one second. An order to buy at a maximum rate of one share per second will buy

one share per batch if fully executable, a fraction of a share per batch if partially executable, or

no shares per batch if non-executable (“off the market”). Orders persist over many auctions;

an order remains outstanding until either the trader cancels it or a user-defined termination

criterion is met, such as the cumulative purchase of 1000 shares.

In these batch auctions, prices and quantities are approximately continuous—tiny frac-

tions of shares can trade each second within a nearly continuous price grid.1 In the status quo

market design, making prices and quantities approximately continuous would cause an explo-

sion of message traffic, with traders constantly canceling and replacing orders to improve their

queue position. Prices and quantities are therefore discrete, but this leads to inefficiency and

complexity—races for queue position, complexities associated with round lots, etc. Here, the

combination of flow orders and discrete-time batching allows for prices and quantities to be

approximately continuous without issue. That is, relative to the status quo, the proposed market

design makes time discrete instead of continuous, and prices and quantities continuous instead

of discrete.

Third, instead of orders for a single asset, each order is for a portfolio of assets. A “portfolio”

is a user-defined linear combination of assets in which the asset weights can be positive or

negative. Portfolio orders allow assets to be either complements or substitutes. If two assets

1Quantities could be expressed in nano-shares (billionths of shares) and prices in micro-dollars (millionths of
dollars): for example, trade 0.123456789 shares per second at price $50.123456.
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in a portfolio have weights with the same sign, the assets are complements in the usual sense

that an increase in the price of one asset decreases the quantity demanded of the other. If two

assets have opposite weights, the assets are substitutes because an increase in the price of one

asset increases the quantity demanded of the other. For example, a pairs trade has a positive

weight on the stock being bought and a negative weight on the stock being sold. An order to

sell the S&P 500 has negative weights on each of the 500 stocks in the index. A standard limit

order has a nonzero weight only on the stock being bought or sold. An order to sell a single

asset, which represents an upward-sloping supply curve for the asset, is implemented as an

equivalent downward sloping demand curve for a portfolio with a negative weight on the asset

sold and zero weight on other assets.

Benefits Flow trading has four types of benefits relative to the status quo.

First, investors can directly express many common trading demands to the market. In-

vestors can easily control the urgency of trade by choosing the maximum flow rate—in effect,

the ability to trade at the time-weighted average price (TWAP) is built directly into the market

design (Kyle and Lee (2017)). Since trading fast incurs large temporary market impact, some

traders may decide to trade more gradually, while those with short-lived information may still

want to trade more quickly. Investors can also easily trade portfolios of assets, or execute trades

that involve buying some assets while selling others, using a single order specifying the relevant

assets and their respective positive or negative weights. As one example, investors can use port-

folio orders to effectively construct and customize their own index ETFs. As another example,

investors can use portfolio orders to execute a “Buy A, Sell B” pair trade strategy.

In the status quo market design, all of these aspects of trading strategy—controlling urgency,

buying or adjusting portfolios, engaging in long-short trades—require access to sophisticated

trading platforms. This is expensive for large investors and simply unavailable to many small

investors. Here, these trading tools are in effect built directly into the market design, reducing

both costs and complexity.

Second, the market design reduces the importance of speed. As in Budish, Cramton and

Shim (2015), the batch processing means that being δ faster than another participant, if the

batch interval is τ, is only relevant with likelihood δ
τ . For example, being 100 microseconds

faster, if the batch interval is 1 second, is only relevant with likelihood 1
10000 . Moreover, flow

trading makes the executed quantity proportional to the length of time. This means that even

when new information arrives just before the next batch auction, so that regular traders are

vulnerable to sniping, competition among fast traders will quickly adjust prices, and the actual

quantity executed at unfavorable prices will remain small. In addition to reducing sniping, flow

trading also reduces the race for queue position, since there is no longer a need to have a dis-

3



crete price grid to manage messaging costs. See Li, Wang, and Ye (2021) for a model of trading

under the status quo market design that combines sniping races and races for queue position,

and shows how the rents in both kinds of races are ultimately paid by non-HFT market partici-

pants.

Third, the market design makes it easier for market participants to provide liquidity across

correlated assets, and helps link price discovery across correlated assets. Suppose A and B are

highly correlated assets. In the continuous market, a change in the price of one asset can lead

to a sniping race in the other asset—this adds to the expense of providing liquidity. Under flow

trading, a market participant can directly provide liquidity in the pairs trades “Buy A, Sell B”

and “Sell A, Buy B” (indeed, the latter is just an offer to sell the former). This means that even

if an investor arrives wanting to buy just A, their trade can be automatically incorporated into

the clearing prices of both A and B. There need not be a sniping race in asset B, nor is there any

“correlation breakdown” of prices between A and B (Budish, Cramton, and Shim (2015)). The

pairs trade order is like a string that ties the correlated assets’ prices together, maintaining their

underlying economic pricing relationships.

Fourth, the new market design improves transparency and fairness. The key feature is that

all orders that are executable at the clearing prices are executed, either at their full rate or a par-

tial rate depending on the order’s pricing parameters, and all orders that execute for a given as-

set receive the same pricing for that asset. This allows, for example, a retail investor who trades

100 shares over a minute to infer the appropriate execution rate on their order from publicly

announced market clearing prices exactly. Similarly, an institutional investor trading a sophis-

ticated portfolio can confirm directly that they received the correct execution. This perhaps

should not sound radical, but it is a major transparency improvement over the current market

design, where checking whether one’s order received appropriate execution is very difficult (see

Tyc (2014)).

Having mentioned these potential benefits, we add an important caveat, which is that flow

trading is not designed to mitigate market failures related to market power or private informa-

tion. Market participants still must think strategically about how to trade on private informa-

tion and manage their price impact, just as in the status quo market design.

Technical Foundations We provide three sets of technical results: on existence and unique-

ness of market-clearing prices and quantities; on computability of these prices and quantities;

and results that provide micro-foundations for the bidding language.

To prove existence of equilibrium prices and quantities, we transform the problem into a

well-understood quadratic optimization problem with linear constraints. To do so, we first for-

mulate a quasi-linear quadratic utility function for each order by interpreting the order as an
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expression of preferences defining a linear marginal utility curve over the range where it is par-

tially executable. The sum of these utility functions creates a concave planner objective func-

tion. The restrictions that each order must execute at a rate between zero and its maximum

rate (e.g., one share per second) are linear inequality constraints. Market clearing defines linear

equality constraints for each asset. Zero trade is feasible, i.e., satisfies both sets of constraints.

This setup allows us to use known results from the convex optimization literature to prove exis-

tence of unique equilibrium quantities.

Equilibrium prices are found as Lagrange multipliers of the primal problem. Regardless of

whether assets are complements or substitutes, market-clearing prices exist because our lan-

guage imposes downward sloping demand curves on all user-defined portfolios. (We discuss

the connection to other existence and non-existence results in the literature in the next sub-

section). Prices, however, may be non-unique when there are no partially executable orders

from which unique prices can be inferred. For example, when there is only one order to buy

or sell some asset, the market clearing quantity must be zero, but any price at which the order

is non-executable clears the market. Prices can easily be made unique by introducing a tie-

breaking rule, such as selecting the clearing prices closest to the prices from the last auction.

To show computational feasibility of the market design, we start by showing our problem

has a structure such that the gradient method (i.e., tatonnement) is guaranteed to converge.

This proves that our problem is computationally simpler than some cases of finding competi-

tive equilibrium prices (Scarf and Hansen (1973)), as the reader will anticipate from the quadratic-

programming setup described just above. It is well known, however, that the gradient method

can be slow and inaccurate for problems with this structure. We therefore add to the market de-

sign that the exchange itself can serve as a “market maker of last resort”. Formally, the exchange

is willing to buy or sell an epsilon amount of any portfolio at clearing prices. This allows us to

use interior point methods, which are known to be much faster and more accurate than the gra-

dient method. Without the exchange as market maker, we know that zero trade is feasible but

it is not strictly on the interior of the constraint set; with the exchange as market maker, we can

easily find a feasible point strictly on the interior, from which the algorithm can be initialized.

We provide computational proof-of-concept by calculating market clearing prices for a sim-

ulated order book using our own implementation of a public-domain interior-point method on

an ordinary office workstation. In a market with 30,000 orders and 500 assets, with parameters

chosen to try to make the problem difficult, our algorithm calculates prices in about 0.30 sec-

onds. If the number of assets exceeds 2000, the computation time approaches 1.00 second with

the same number of orders. If the number of orders increases to 1,000,000, computation time

approaches 10 seconds with 500 assets. Conceptually, our goalpost for the computational exer-

cise is to suggest that serious computing power can solve a practical problem of realistic size in
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less than one second, not just to illustrate the solution to problem in P and not NP.

We provide a stylized micro-foundation for portfolio orders. Portfolio orders cannot express

arbitrary preferences. Indeed, with wealth effects, demand schedules may slope upward; such

demands cannot be expressed in our language because we require demand schedules to be

downward sloping. For a “CARA–normal” investor (with exponential utility or constant abso-

lute risk aversion and subjective beliefs that liquidation values are normally distributed), the

demands for assets are linear functions of the asset’s own price and the prices of other assets.

Such demands cannot be implemented with standard limit orders due to the dependence of de-

mand on prices for other assets. We show that, by rotating the assets in portfolios in a specific

manner, such demands can be implemented with downward-sloping portfolio orders consis-

tent with our proposal. In general, implementing N asset demands requires N portfolio orders.

If traders believe that assets have a factor structure of rank K < N , they can implement the

optimum with only K portfolio orders, which may be practically appealing.

1.1 Related Literature

The key conceptual ideas behind this paper’s market design proposal—piecewise-linear downward-

sloping demand schedules, portfolios as linear combinations of assets, general equilibrium

theory, quadratic programming, batch auctions, reducing temporary price impact by trading

slowly—are well-understood by researchers in economics and finance. At some level, our con-

tribution is to combine these ideas into a coherent and practical market design for trading fi-

nancial assets such as stocks, bonds, and futures contracts.

More specifically, our paper builds closely on Kyle and Lee (2017) and Budish, Cramton, and

Shim (2015). Kyle and Lee (2017) propose downward sloping, piecewise-linear flow orders for

individual assets (“continuously scaled limit orders”). Budish, Cramton, and Shim (2015) pro-

pose frequent batch auctions as a market design for financial exchanges. Combined, these two

market design ideas yield a market design for financial assets in which time is discrete instead

of continuous, and prices and quantities are continuous instead of discrete; this paper is the

first to point that out, but the point may be obvious. The third ingredient of the market design

proposal, portfolio orders, is a novel contribution. More precisely, the broad idea of bidding for

financial portfolios instead of individual assets is obvious from the combinatorial auctions lit-

erature, but our specific language for portfolio bidding is novel, and different potential ways of

representing preferences for portfolios might not yield the existence and computability results

we obtain here.

Another closely-related body of work is Li, Wang, and Ye (2021), Chao, Yao, and Ye (2019),

Chao, Yao, and Ye (2017) and Yao and Ye (2018). This research highlights the complexities cre-
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ated by tick-size constraints in modern markets, and associates tick-size constraints with an

important aspect of high-frequency trading, the race for queue position. As emphasized earlier,

our market design makes time discrete (in line with Budish, Cramton, and Shim (2015)) and

prices continuous.

Sophisticated expression of preferences over multiple objects is a theme in the market de-

sign literature more broadly. Research on this topic has straddled computer science, economics,

and operations research (Lahaie and Parkes (2004); Sandholm and Boutilier (2006); Milgrom

(2009); Klemperer (2010); Vohra (2011); Bichler (2017); Cramton (2017); Budish, Cachon, Kessler,

and Othman (2017); Parkes and Seuken (2018); Budish and Kessler (forthcoming)). This litera-

ture has mostly focused on indivisible-goods combinatorial allocation problems, such as spec-

trum auctions. Relative to this burgeoning literature, our contribution is our proposed language

for portfolio orders, which treats all goods as perfectly divisible, and allows complementarities

and substitutabilities only to the extent that they can be expressed with linear portfolio weights.

This language is simple enough to obtain strong existence and computational results, while be-

ing expressive enough to capture many important use cases in financial markets.

The idea that optimal trading strategies involve flow trading to reduce temporary price im-

pact costs, even when prices and quantities are continuous, emerges as an equilibrium result

in game-theoretic models of rationally-optimizing strategic traders. Black (1971) conjectures

that more urgent execution of large orders incurs greater price impact costs. In the context

of a continuous-time model of information-based trading among overconfident and privately

informed traders, Kyle, Obizhaeva, and Wang (2018) describe an equilibrium in which exponen-

tial utility and normal distribution imply all traders optimally submit linear flow strategies. In

discrete-time models with trading motivated by private values or endowment shocks, Vayanos

(1999) and Du and Zhu (2017) derive optimal trading strategies in which quantities are linear

functions of price and inventories become differentiable functions of time in the limit as the

time interval between auctions becomes zero.

A growing literature studies the implications of the status-quo market-design requirement

that orders to trade an asset to be contingent only on the asset’s own price and not on the price

of other assets. In a competitive framework, Cespa (2004) studies price efficiency implications

when traders instead can make their demands for a given asset contingent not only on the as-

set’s own price but also on other asset prices. The more recent literature emphasizes the im-

portance of strategic trading and price impact. Rostek and Yoon (2020b) and Wittwer (2021)

find that such fully contingent demand can either increase or decrease welfare depending on

market characteristics such as the size of the market and the correlation across assets. Rostek

and Yoon (2020c) show that the welfare implications of introducing a new synthetic asset, like

a portfolio of original assets, depend on price impact and symmetry across traders and assets.
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Chen and Duffie (2021) show that trading the same asset in multiple fragmented markets can

improve welfare.

Researchers have also investigated the welfare implications of market design when informa-

tion asymmetries and strategic trading are both important. Rostek and Yoon (2020a) survey the

literature on strategic trading; see Kyle (1985, 1989) and Klemperer and Meyer (1989) for some

early contributions. Duffie and Zhu (2017) examine a specific model with welfare improvement

when the market design is based on “size discovery,” in which an auctioneer announces prices

and traders indicate quantities they are willing to trade at the specified price. Zhang (2020) pro-

poses to tax traders who take liquidity and subsidize traders who provide liquidity. There is also

an older proposal for “sunshine trading,” in which traders transparently announce quantities

before the auction is held to mitigate adverse selection (Wunsch (1986)).

Relationship to General Equilibrium Theory Readers familiar with the standard treatment

of general equilibrium theory will notice differences in our approach to existence and unique-

ness. Mas-Colell, Whinston, and Green (1995, Chapter 17) (“MWG”) is a reference for the stan-

dard treatment, descending from Arrow and Debreu (1954) and McKenzie (1959). This standard

approach uses fixed-point theorems to derive existence results for general convex preferences

which include income effects. Actually finding the fixed point is known to often be computa-

tionally intractable (Scarf and Hansen (1973); Daskalakis, Goldberg, and Papadimitriou (2009);

Budish, Cachon, Kessler, and Othman (2017)). By contrast, our market design approach focuses

on a language for preferences that yields existence and uniqueness within a computationally

tractable framework.

There are three main differences with the standard treatment, as explicated in MWG.

First, the setting and assumptions are different.

1. While MWG define preferences for the entire positive orthant, our model defines prefer-

ences for a given portfolio on the line segment (0, q), representing partial execution of an

order to buy the portfolio. The portfolio can be a short position. By defining utility to be

minus-infinity off the line segment, we preserve convexity over a larger space, but we lose

continuity.

2. While MWG allow general preferences that allow income effects, we assume quasi-linear

utility functions of the form u(x)−πππTx, which do not have income effects.

3. While MWG require strongly monotone preferences and strictly positive prices, our pref-

erences are not strongly monotone and prices can be negative. Individual assets can be

“goods” or “bads”. Moreover, it may be difficult to make preferences monotone, even over
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the restricted domain of agents’ demands, because there is no natural “up” direction for

the legs of a pairs trade.

Second, the technique to prove the existence of equilibrium is distinct. While MWG relies

on Kakutani’s fixed-point theorem, we use quadratic programming.

Third, while equilibrium may not be unique in MWG, we have uniqueness up to a convex

set. This results from using quasi-linear utility, which makes the second derivative of the plan-

ner’s objective function negative (semi) definite, and this guarantees that all equilibria must lie

in a convex set. In our framework, substitutes and complements do not matter for existence

or uniqueness, since the matrix is negative semi-definite anyway, but substitutes and comple-

ments may matter for computational performance.

Relationship to the Indivisible Goods Literature Our assumptions are in some respects more

similar to assumptions made in the literature on indivisible goods, which typically uses quasi-

linear utility.

A classic reference is Kelso Jr and Crawford (1982), who show that competitive equilibrium

is guaranteed to exist in an indivisible goods setting under a substitutes condition. There have

been many different variations of the Kelso-Crawford substitutes condition defined in the lit-

erature; see Gul and Stacchetti (1999); Milgrom (2000); Hatfield and Milgrom (2005); Ostrovsky

(2008); Hatfield et al. (2013). Hatfield et al. (2019) discusses the relationship among many of

these criteria and provides a maximum domain result for existence.

Baldwin and Klemperer (2019), on the other hand, use tropical geometry to show that exis-

tence can be obtained not only when indivisible goods are substitutes but also in some cases

when they are complements. For example, left-shoes and right-shoes are clearly complements,

but prices for shoes may nevertheless be guaranteed to exist if all agents’ preferences regard

them as complements in ways that enable the application of the Baldwin and Klemperer (2019)

existence theorems. For example, if all agents purchase shoes as pairs, and no agents regard left

shoes and right shoes as substitutes for each other, prices are guaranteed to exist.

Unlike in Baldwin and Klemperer (2019), or in most of the indivisible-goods substitutes lit-

erature, we obtain existence for any preferences expressible in our language. This stronger ex-

istence result relies on our treatment of all assets as perfectly divisible (avoiding the potential

difficulties of exact market-clearing when there are indivisibilities), and—as noted above in the

discussion of the relationship to general equilibrium theory—the restriction that preferences

are only defined for each portfolio on a line segment exactly corresponding to those portfolio

weights, as opposed to preferences being well defined on a richer consumption space.

Two other papers in the indivisible goods literature that stand out as especially related to

ours are Klemperer (2010), which proposes the product-mix auction, and Milgrom (2009), which
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proposes the assignment auction (see also Demange, Gale, and Sotomayor (1986)). Both papers

describe multi-object auction designs that use linear preference languages and are motivated

in part by financial applications—Klemperer’s auction, in particular, was designed for the Bank

of England to purchase toxic financial assets during the financial crisis. Technically, the key

difference is the preference language. In our design, participants bid for portfolios of assets—

e.g., buy a portfolio in which the ratio of AMZN:GOOG is fixed 1:1, at rate up to 1 portfolio unit

per second, up to a limit price of $5000. In Klemperer’s and Milgrom’s designs, participants ex-

press preferences over substitutable assets—e.g., I value AMZN at $3000 per share and GOOG

at $2000 per share, buy one share of whichever asset gives me greater surplus at the realized

prices. This difference in language then drives differences in existence and uniqueness results.

The papers also have different intended use cases. We have in mind near-continuous trading

of financial assets, in which users trade portfolios in flows. Klemperer’s and Milgrom’s designs

are intended for more of a one-shot, high-value allocation—e.g., a high-value auction for toxic

assets during the financial crisis, or a spectrum auction. This difference in intended use case

lies behind the difference in the proposed languages.

Structure of the paper The rest of the paper is structured as follows. Section 2 describes flow

orders for portfolios. Section 3 discusses the existence and uniqueness of market clearing prices

and quantities. Section 4 provides a characterization of equilibrium, discusses optimization

approaches, and shows computational feasibility of our proposal. Section 5 provides a micro-

foundation for portfolio orders. Section 6 discusses implementation and policy issues. Section

7 concludes.

2 Flow Orders for Portfolios

2.1 Formal Definition of Flow Orders

Traditional limit orders consist of a price, quantity, and direction of trade for a single symbol.

For example, buy 1000 shares of AAPL at $150.00 per share. The order implicitly defines a step-

wise demand curve, with full demand (i.e., 1000 shares) at any price weakly better than the limit,

and zero demand at any price strictly worse than the limit.

Flow orders depart from traditional limit orders in 3 ways:

1. Orders are for portfolios of assets instead of individual assets. A portfolio is defined by a

vector of weights, wi := (wi 1, . . . , wi N )T, where i identifies the order, N denotes the num-

ber of assets in the market, and wi n ∈Rdenotes the portfolio weight of asset n in order i . A
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strictly positive weight denotes buying the asset, a strictly negative weight denotes selling

the asset, and a zero weight denotes that that the asset is not a part of that portfolio.

2. Instead of step-wise demand, flow orders describe piecewise-linear downward-sloping

demands. The user specifies two prices, pL
i < p H

i . The flow order interprets pL
i as a de-

mand to buy the portfolio in full quantity at prices weakly lower than pL
i , and interprets

p H
i as indicating zero demand for the portfolio at prices weakly higher than p H

i . Then,

in the interval [pL
i , p H

i ], the flow order linearly reduces the quantity demanded from full

quantity at pL
i to zero quantity at p H

i .2 Note that we use the phrase “buy the portfolio” to

include the case of selling assets—in our language, selling an asset is buying a portfolio

with a negative weight on the asset at a negative price (i.e., receiving a transfer). We will

clarify this point, which we acknowledge is potentially confusing, in detail below.

3. Quantities are expressed as flows per batch interval, up to a total quantity limit. For each

order i , the user specifies two quantity parameters, qi > 0 and Qmax
i > 0, expressing their

demand to buy up to quantity qi of the portfolio per batch interval, up to a cumulative

total purchased quantity of Qmax
i . Instead of requiring that quantities express a demand

to trade immediately (1000 shares right now!) the user can tune their urgency to trade.

Thus, a flow order is described by the tuple (wi , pL
i , p H

i , qi ,Qmax
i ).3

Next we formally define a flow order’s demand within a batch auction. Assume for now

that the order’s cumulative purchased quantity is not within qi of Qmax
i , so that the order can

purchase its full quantity qi in the next batch without exceeding Qmax
i .4 Let πππ = (π1, . . . ,πN )T

denote the column vector of market prices of all assets n = 1,. . . ,N . The market price for the

portfolio defined by the weight vector wi is the inner product

pi = wi
Tπππ :=

N∑
n=1

wi nπn . (1)

Order i ’s demand per batch auction, which we call its “flow demand”, is the downward-sloping

2In a traditional limit order at price p, the implied demand is the full quantity at prices weakly better than p and
zero quantity at prices strictly worse than p. In our language, these two implications of the traditional limit price
are split into two separate parameters: demand in full at prices weakly better than pL

i , and demand zero at prices

weakly worse than p H
i .

3Throughout this paper, we use a lower-case bold font to denote vectors, an upper-case bold font to denote
matrices, a subscript i to denote orders, and a subscript n to denote assets.

4In the case where the order’s cumulative purchased quantity, say Q t
i , is within qi of the limit Qmax

i , replace qi

with the remaining quantity demanded Qmax
i −Q t

i . This is a simple way to avoid overshooting. Another possible
approach is to take the demand curve implied by the original qi but truncate it above so that demand never exceeds
Qmax

i −Q t
i .
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linear function of the portfolio price pi = wi
Tπππ defined by:

Di
(
pi

∣∣wi , qi , pL
i , p H

i

)= qi trunc

(
p H

i −pi

p H
i −pL

i

)
, where trunc(z) :=


1, for z ≥ 1

z, for 0 < z < 1

0, for z ≤ 0

. (2)

Notice how the rate at which order i buys the portfolio depends on both the order’s quantity

limit qi and where the price for the portfolio is relative to the order’s price parameters pL
i and

p H
i . If the portfolio price pi is less than or equal to pL

i , the order is “fully executable” and the

portfolio is bought at the maximum rate qi . If the portfolio price pi is higher than p H
i , then the

order is “nonexecutable” and does not buy at all. If the portfolio price is somewhere between

p H
i and pL

i , then the order is “partially executable” and buys at the rate determined by linear

interpolation between the two price parameters.

Buying vs. Selling This formulation treats “selling” an asset as buying a portfolio with a nega-

tive weight on that asset at a negative price. This not only generates compact notation for rep-

resenting both buying and selling but also emphasizes a symmetry between buying and selling

which will be important for understanding how market clearing works. General equilibrium

theory often uses this idea that an upward sloping supply curve for positive quantities is equiv-

alent to a downward sloping demand curve for negative quantities.

Whether buying or selling, we have pL
i < p H

i and demand defined according to equation (2).

However, when selling, both pL
i and p H

i are negative. For example, an order to sell XYZ in full

at price $42.00 or higher, with the sell rate declining linearly to zero at price $41.00, would be

encoded with pL
i = −$42.00 and p H

i = −$41.00. There are two equivalent ways to remember

this. First, think of pL
i as analogous to the price limit in a traditional limit order (willing to

trade in full at this price or better), with demand then declining linearly to zero in the interval

[pL
i , p H

i ]. Alternatively, think of p H
i as the price at which the trader is exactly indifferent between

trading and not. Then, as the price improves from p H
i , the trader’s quantity demanded increases

linearly, up to a maximum quantity of qi when the price reaches pL
i or better.

See Figure 1 for an illustration of buying and selling.

Last, note that if a portfolio has both positive and negative weights, there may not be a nat-

ural buying versus selling direction to the order. The trader is always “buying the portfolio”

under our approach, but whether their pricing parameters pL
i and p H

i are positive or negative

will depend on the weighted valuations of the assets in the portfolio.
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Figure 1: Plots of (a) the function trunc(z); (b) a single buy order, with pricing parameters pL
i = $41.00

and p H
i = $42.00, and maximum flow demand of qi = 5.00 portfolio units per batch auction; (c) a single

sell order, initially plotted as an upward-sloping supply curve with one upward-sloping linear segment,
and (d) the same sell order, now plotted as a downward-sloping demand for negative quantities, which
is our treatment here. The pricing parameters for the sell order are pL

i =−$42.00 and p H
i =−$41.00, with

maximum flow demand of qi = 5.00 portfolio units per batch auction. The figures for buy and sell orders
are plotted with flow quantity on the horizontal axis and price on the vertical axis.

Additional Technical Remarks on the Formulation We make two additional technical re-

marks on this formulation.

First, observe that while the above demand function (2) has just a single downward-sloping

segment, the user can define an arbitrary piecewise-linear downward-sloping demand function

for a given portfolio by using multiple flow orders.

Second, order specification using the tuple of parameters tuple (wi , pL
i , p H

i , qi ,Qmax
i ) con-

tains an intentional redundancy of notation. Buying a portfolio containing one share of a single

stock at a rate of two portfolio units per batch auction is equivalent to buying a portfolio con-

taining two shares of the same stock at a rate of one portfolio unit per batch auction. More

generally, for some parameter α> 0, changing the order parameters from (wi , pL
i , p H

i , qi ,Qmax
i )

to (αwi ,αpL
i ,αp H

i , qi /α,Qmax
i /α) has no effect on the trade rates for each asset as a function of

asset prices.

Proxy Instructions For Orders Over Time As in the traditional market design, users may mod-

ify or cancel their flow orders at any moment in time throughout the trading day. Additionally,

users may want to specify what we will refer to as “proxy instructions” that modify or cancel

their orders under specified contingencies.

The parameter Qmax
i is a simple example of such a proxy instruction: cancel the order from

the market once the cumulative total quantity Qmax
i has been reached. Another simple example

is time-in-force instructions, such as “good for day” or good for some other user-specified pe-

riod of time. In principle, the exchange could provide more complex examples, such as allowing
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an order’s pricing parameters to vary dynamically over time as a function of recent prices (“En-

sure that my order’s price impact is never more than ten basis points”), or allowing an order’s

quantity parameter to vary over time (“Reduce this order’s flow quantity if I am averaging above

ten percent of trading volume”). We will not discuss such complex order contingencies in this

paper.

2.2 Key Examples

We give several key examples to illustrate the flexibility of portfolio orders.

1. Standard limit order.

A standard limit order expresses preferences to buy or sell a fixed quantity of one asset

at one limit price. A flow order can be specified to approximate a standard limit order.

First, when only one weight wn is nonzero, the order is a simple order to buy one asset if

the weight is positive or to sell one asset if the weight is negative. Second, the maximum

rate qi can be set to equal the quantity the trader wants to buy or sell, Qmax
i (say 1000

shares per batch auction). If fully executable, this order would purchase 1000 shares at

the next batch auction. Third, the price parameters can be set so that pL
i corresponds to

the intended limit price, and p H
i is as close as is allowed to pL

i . Theoretically, we obtain a

standard limit order in the limit as p H
i → pL

i
+

.

2. Time-weighted average price (TWAP) order.

In the traditional market design, a market order executes immediately at the clearing

price. The analog here is a time-weighted average price (TWAP) order. The user speci-

fies a price parameter pL
i that is sufficiently aggressive relative to recent prices that it is

esssentially guaranteed to execute.5 Then, the user will trade quantity qi of the portfolio

every batch auction until their quantity limit is achieved, i.e., they will trade at the TWAP

over this time period.

3. Pairs trades.

A pairs trade can be executed by specifying a portfolio weight vector wi with one strictly

positive entry, one strictly negative entry, and the rest zeros.

5In the traditional formulation of a market order, one thinks of the limit price as ∞ if buying and as 0 if selling.
The 0 for selling implicitly encodes that assets are “goods” that can always be sold at a weakly positive price. Here, if
the order is for a portfolio with both positive and negative weights, it is not automatic from the order itself whether
the portfolio is a “good” that should always trade at a positive price or a “bad” that should trade at a negative price.
Either way, the trader can guarantee execution by specifying pL

i sufficiently large, but they may not wish to do that.
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4. Portfolio trades.

A portfolio trade can be executed by specifying a portfolio weight vector wi with either all

entries weakly positive (if buying the portfolio) or all entries weakly negative (if selling the

portfolio). The assets whose weights are strictly positive or strictly negative comprise the

portfolio.

We note that traders can construct and trade their own index portfolios. For example, an

order to buy the S&P 500 has positive weights on each stock in the S&P 500 index, with

weights proportional to S&P 500 weights and zero weight on stocks not in the S&P 500

index. An order to sell an index has negative weights on all stocks in the index. Traders

can easily customize the index portfolios by adjusting portfolio weights, over-weighting

desirable assets and under-weighting the others.

5. General long-short strategies.

A general long-short strategy combines the previous two cases: multiple positive entries

and multiple negative entries.

6. Market making strategies.

A trader can engage in market making—whether for a single asset, a pairs trade, a port-

folio trade, or a general long-short strategy—by using two orders with opposite-signed

weights and price parameters. For example, a market maker who is willing to buy portfo-

lio wi in full at 41.00 and sell it in full at 42.00, could use orders like

• Buy leg: weights wi , price parameters pL
i = $41.00, p H

i = $41.25

• Sell leg: weights -wi , price parameters pL
i =−$42.00, p H

i =−$41.75

2.3 Limitations of the Language

We note several important limitations of the language for representing trading demands.

First, trading demands are only defined at exactly the ratio of portfolio weights specified

in the order. If an order specifies it wants to buy assets A and B at a ratio of 2:1, the order

contains no information about the trader’s willingness to trade at, say, a ratio of 2.2:1 or 1.8:1.

This restriction relative to traditional consumer theory, where preferences are typically defined

on the whole positive orthant, is key to our method of existence proof (below in Section 3.3).

However, this restriction may mean that a trader has to modify their portfolio weights if prices

change, either themselves or via proxy instructions. This is a limitation.

Second, trading demands are linear within each order. In principle, we could replace the lin-

ear trunc function with the flexibility to specify an arbitrary downward-sloping function on the
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interval of prices [pL
i , p H

i ]. However, our existence proof and computational results do take ad-

vantage of this linearity. We view the linearity restriction as less important a limitation than

some of the others, because arbitrary downward-sloping functions can be approximated, if

needed, with a set of linear orders.

Third, the language does not allow for indivisibilities. Most importantly, a user cannot spec-

ify a minimum transaction quantity per batch, only a maximum. So, for example, an order

cannot be “fill or kill”, or “at least 100 shares per batch, otherwise stay out”. That said, a user

may be able to approximate such preferences with marketable orders if prices are continuous

enough.

Last, the language does not allow for in-order contingencies. This includes cases like “buy

A if the price of B is high enough” or “buy whichever of A or B gives me more surplus given

my valuations”. This latter kind of preference expression is analyzed in Demange, Gale, and

Sotomayor (1986) and is present in market design proposals of Klemperer (2010) and Milgrom

(2009). As with indivisibilities, a user may be able to approximate such preferences with mar-

ketable orders if prices are continuous enough.

3 Market Clearing Prices and Quantities

Now we turn our attention to the exchange’s problem of finding clearing prices and quantities.

3.1 Definition of Market Clearing

To define market clearing we need to convert individual traders’ demand curves for portfolios

as a function of portfolio prices into a market demand curve for assets as a function of asset

prices. For each portfolio i , first replace the portfolio price pi by the weighted vector of asset

prices, using pi =πππTwi , then convert the demand for portfolio units Di (πππTwi ) into the demand

for individual assets by multiplying by the portfolio weights wi . Next, sum up the demand for

assets across all orders i to obtain the market net excess demand curve for assets as a function

of asset prices:

D(πππ) :=
I∑

i=1
Di

(
πππTwi

∣∣∣wi , qi , pL
i , p H

i

)
wi . (3)

The function q = D(πππ) maps asset price vectorsπππ ∈RN to net asset quantity vectors q ∈RN . The

market clearing equation D(πππ) = 0 defines N equations in N unknowns.

The exchange finds the clearing prices and allocations by solving for a price vector πππ such
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that net excess demand for each asset is zero:

D(πππ) = 0. (4)

Once the clearing prices are determined, the trading rate for the assets defined by each individ-

ual portfolio order is uniquely determined by the portfolio demand curve xi = Di (πππTwi ).

The key difference between the market-clearing mechanism of our design and that of the

conventional exchange is that clearing prices must be calculated for all assets simultaneously.

Specifically, to find clearing prices for assets, the exchange needs to calculate for each vector of

N asset prices the aggregate demand for each asset by summing across all orders the product

of the buy rate of the order’s portfolio and the portfolio weight of the asset. Of course, for many

orders, the portfolio weight of an arbitrary asset is likely to be zero. Since orders are functions

of the prices of the portfolio and prices of portfolios depend on prices of all the assets in the

portfolio, the aggregate demand curve for any asset is a function of the entire vector of N prices.

For arbitrary, non-clearing price vectors, the quantity vector q = D(πππ) may have both pos-

itive and negative components. We do not enforce a constraint that prices be nonnegative.

Negative prices arise naturally in commodity markets, such as electricity, with limited storage

and costly curtailment.

3.2 Illustrations

When there is only one asset or when all orders are for the same asset or portfolio, calculat-

ing an equilibrium price is easy. Since each order is a piecewise-linear function that demands

a zero quantity at a sufficiently high or low price, the aggregate demand curve is continuous,

weakly downward sloping, non-negative for sufficiently low prices, and non-positive for suffi-

ciently high prices. Hence, the intermediate value theorem implies that there exists a clearing

price, which may be either a single point or a closed interval. This price can be approximated

arbitrarily closely by bisection or trial-and-error.

Figure 2 illustrates the simplicity of calculating clearing prices when all orders are for the

same asset. Figure 2(a) shows a piecewise-linear demand curve and a piecewise-linear supply

curve which intersect at a unique clearing price p = $45.00 per share. The market trading vol-

ume is x = 2.00 shares per second. Figure 2(b) shows the combined demand and supply curve

as one downward-sloping net demand curve, which has the same clearing price at a net quan-

tity of zero. While the clearing price is easily calculated from the net demand curve, trading

volume cannot generally be inferred from the net demand curve.

With many orders for different portfolios of multiple assets, calculating a clearing price is

mathematically more complicated because the intermediate value theorem and the bisection
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Figure 2: Plots of (a) a supply curve (dashed) intersecting a demand curve (solid) and (b) the net demand
curve obtained by summing supply and demand. The supply and demand curves are each generated
by summing together three orders. The clearing price of $45.00 per share generates trading volume of
2.00 shares per second. The clearing price and quantity can easily be calculated by bisection or trial and
error.

algorithm do not generalize in a natural way.

Example: Two Assets Consider an example with two assets. Suppose there are only two orders

in the market, a buy order for asset A and sell order for asset B . The only clearing prices involve

no trade because neither order can find another order to trade with. The clearing prices which

support no trade are not unique because any high enough prices for asset A and low enough

prices for asset B will imply that both orders are non-executable. Next, add to this example a

pairs-trade order for a portfolio with negative weight on asset A and positive weight on asset

B , where upper and lower limit prices are set such the only clearing prices involve no trade.

The set of no trade prices is now the interior of the triangle defined by the three dotted lines in

Figure 3. As indicated in grey, this region is the intersection of the three orders’ halfplanes of no

execution.

If the limits p H
i and pL

i on the pairs trade order order are changed, it is possible for trade

to occur, as in Figure 4. Figure 4(a) shows the order for asset A as a solid line and plots the

derived demand for asset A as a heavy dashed line. The derived demand takes into account the

derived demand from the pairs-trade order by fixing the price of asset B at its market-clearing

value. Figure 4(b) shows the order for asset B as a solid line and the derived demand, holding

the price of asset A constant at its market-clearing level, as a heavy dashed line. The pairs trade

order makes the assets substitutes. Therefore, when the price of asset B is fixed at a level above
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Figure 3: Plots of (a) a buy order for asset A; (b) a sell order for asset B ; and (c) price pairs for the buy order,
the sell order, and a pairs-trade order which sells A and buys B . In (c), the areas between the parallel solid
and dashed lines indicate regions of partial execution of the orders. The solid lines bound the region of
no execution and the dotted lines bound the region of full execution. The three orders generate no trade
at any prices on the interior of the triangle defined by the intersection of the dashed lines. The arrows,
which are proportional to the vectors of portfolio weights, indicate the direction in which the orders
tend to push prices. In the Euclidian norm, the arrows are orthogonal to the solid lines they point to. As
plotted, the arrows may not appear to be perpendicular to the lines they point to because one dollar on
the vertical axis represents a different length than one dollar on the horizontal axis.
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Figure 4: Plots of (a) a buy order for asset A, and sell order for asset B , and (c) price pairs for both assets.
In (a) and (b), the solid line represents the order itself, the heavy dashed line represents the demand
schedule generated by the order for the asset and the pairs-trade order fixing the price of the other asset
at its market-clearing level, and the light dash lines represents the demand for asset A from the order
itself and the pairs-trade order fixing prices for the other asset above the market clearing level. In (c),
the solid lines indicate boundaries between no execution and partial execution of the buy order, the sell
order, and the pairs-trade order. The dashed lines indicate boundaries between partial execution and full
execution of the orders. Trade occurs at a price on the interior of the triangle defined by the intersection
of the three solid lines. Arrows proportional to orders’ portfolio weights indicate directions in which the
order push prices.
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Figure 5: Plots of (a) a buy order for asset A and buy order for asset B , and (c) an index order to sell
both assets. In (a) and (b), the solid line represents the order itself, the heavy dashed line represents the
demand schedule generated by the order for the asset and the index order fixing the price of the other
asset at its market-clearing level, and the light dash lines represents the demand for the asset from the
order itself and the pairs-trade order fixing prices above the market clearing level for the other asset. In
(c), the solid lines indicate boundaries between no execution and partial execution of the buy order, the
sell order, and the index order. The dashed lines indicate boundaries between partial execution and full
execution of the orders. Trade occurs at a price on the interior of the triangle defined by the intersection
of the three solid lines. Arrows proportional to orders’ portfolio weights indicate directions in which the
orders push prices.

its equilibrium price, the derived demand for asset A is shifted towards higher prices as well.

The same is true for asset B . This is depicted in Figures 4(a) and 4(b) as the thin dashed lines,

which for both assets have prices which are the same or higher than the thick dashed line. In

Figure 4(c), the region where all three orders are partially or fully executable is the interior of

the triangle defined by the intersection of the solid lines defining the boundary between no

execution and partial execution of the orders.

Now, consider the case when there are buy orders for each asset A and B and a sell order for

the index portfolio of assets A and B . Let the price limits on the index order be such that trade

occurs only in the region where all three orders are partially executable. The portfolio order

makes the assets complements. Therefore, when the price of asset B is fixed at a level above its

equilibrium price, the derived demand for asset A is shifted towards lower prices. The same is

true for asset B . This is depicted in Figures 5(a) and 5(b) as the thin dashed lines, which for both

assets have prices which are the same or lower than the thick dashed line. The parallel lines

defining the infinite strip in which the index order is partially executable are downward sloping

rather than upward sloping because keeping the portfolio price constant as asset prices change

requires increasing the price of one asset and decreasing the price of the other asset.

The examples with two assets in Figures 3, 4, 5 illustrate principles which generalize to mar-
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kets with more than two assets. The parallel lines defining regions of partial execution become

parallel hyperplanes. The arrows, which point in directions proportional to portfolio weights

defined by the orders, become vectors perpendicular to the hyperplanes.

The regions where prices are not unique, such as regions of no trade in Figures 3, are convex

sets which may either be bounded (compact) or extend to infinity in one or more directions. It

is this property of the set of clearing prices that enables simple tie-breaking rules. For exam-

ple, nearest-to-the-prior-price-vector identifies a unique price vector within the set of clearing

prices, since the set of clearing prices is convex.

3.3 Existence of Market Clearing Prices and Quantities

To show the existence of clearing prices, which then determine market clearing quantities, we

formulate an optimization problem by imputing to each order “as-bid” preferences which de-

fine the dollar utility value of the number of portfolio units bought, then sum the utility func-

tions across orders to obtain the objective function to be maximized.

In the range of prices where an order is partially executable, the demand is a linear func-

tion of prices. Therefore, a quadratic quasilinear utility function defines preferences. The con-

straints preventing overfilling or underfilling the order are linear inequality constraints. The

constraint that markets clear are linear equality constraints. Putting this together mathemat-

ically results in the problem of maximizing a quadratic utility function subject to linear con-

straints. The quadratic utility function is the sum across orders of a one-variable quadratic

utility function for each order. There are two inequality constraints for each order, one to pre-

vent overfilling and the other to prevent negative portfolio quantities. There is one equality

constraint for each asset.

Quadratic programs have been thoroughly studied and are well-understood. Given the

structure of our problem, it is well known that unique utility maximizing quantities exist, and

the solution implies Lagrange multipliers which correspond to clearing prices. A solution to the

dual problem of calculating optimal (market-clearing) prices also exists and implies the same

solution as the original (“primal”) problem.

In the rest of this section, we describe these well-known theoretical results by mapping them

into economic language which makes connections with economic concepts such as maximiz-

ing utility, consumer surplus, and market clearing.

Imputing utility functions to orders is a convenient mathematical modeling device. We

proceed as though orders directly represent consumer preferences, even though, in practice,

traders submit orders strategically. Thus, our methodology does not measure actual economic

welfare and does not generate welfare results on market efficiency. Still, the method provides a
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practical approach to prove that clearing prices and quantities exist.

Pseudo-Utility Let Vi (x) denote the dollar utility of order i from a trade rate of x in portfolio

units per second. To find Vi (x), we first define the marginal utility function Mi (x) as the inverse

demand curve, pi = Mi (xi ), where recall the order i demand curve is denoted by Di (pi ) = xi . In

words, the inverse demand curve maps order i ’s trade rate x ∈ [0, qi ] into prices p ∈ [pL
i , p H

i ].6

Rearranging equation (2) we have:

Mi (x) := p H
i − p H

i −pL
i

qi
x for x ∈ [0, qi ]. (5)

The value of Mi (x) measures marginal as-bid flow value in dollars per portfolio unit. Utility

Vi (x), as a function of the trade rate x, is defined as the integral of the marginal utility function

for trade rate over the interval [0, x]:

Vi (x) :=
∫ x

0
Mi (u) du (6)

Since the marginal value is linear in x, the total value is quadratic and therefore strictly concave

in x:

Vi (x) = p H
i x − p H

i −pL
i

2qi
x2 (7)

We will think of Vi (x) as defined for all x ∈ R, with order specifications imposing the constraint

x ∈ [0, qi ].7

Value Maximization Our problem of finding clearing prices is formulated as two optimization

problems, a primal problem of finding quantities which maximize “as-bid dollar value” and a

dual problem of finding prices which minimize the cost of non-clearing prices. The first-order

conditions for optimality of either of these two problems imply market clearing quantities and

prices.

The exchange, acting analogously to a social planner in general equilibrium theory, chooses

a vector of execution rates for all orders x = (x1, . . . , xI ) to maximize aggregate as-bid value, de-

fined as the sum of pseudo-utility functions across orders,

V (x) :=
I∑

i=1
Vi (xi ) for x ∈RI , (8)

6For trade rates in the interval (0, qi ), the fact that the order chooses an interior quantity tells us that the or-
der’s as-bid marginal utility is equal to the corresponding price in the interval (pL

i , p H
i ). The same logic extends

to the boundary points 0 and qi , corresponding respectively to prices p H
i and pL

i , by assuming as-bid utility is
continuous.

7We could equivalently think of the domain of Vi (x) as x ∈ [0, qi ] or define Vi (x) =−∞ for x ∉ [0, qi ].
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subject to choosing quantities consistent with market clearing constraints and order execution

rate constraints:

max
x

V (x) subject to


∑I

i=0 xi wi = 0 (market clearing)

xi ∈ [0, qi ] for all i (order execution rate),
(9)

The objective function V (x) is concave because it is a sum of concave functions.

Indeed, since the objective function is quadratic and the constraints are linear, this is a

quadratic program (QP). To make this quadratic structure apparent using matrix and vector

notation, let W denote the N × I matrix whose i th column is wi . Let pH denote the column

vector whose i th element is p H
i . Let D denote the I × I positive definite diagonal matrix whose

i th diagonal element is (p H
i −pL

i )/qi . Then problem (9) may be written compactly as

max
x

[
xTpH − 1

2 xTD x
]

subject to W x = 0 and 0 ≤ x ≤ q. (10)

We first show that quantities which maximize aggregate utility exist. Then we show that

clearing prices exist by examining the dual problem to the utility maximization problem.

Theorem 1 (Existence and Uniqueness of Optimal Quantities). There exists a unique quantity

vector x∗ which solves the maximization problem (10).

Proof. The problem has the following properties:

1. Compactness and convexity: The inequality constraints on trade rates define the Carte-

sian product of I intervals, [0, q1]×·· ·× [0, qI ], which is compact and convex. The market clear-

ing conditions are linear constraints, which defines the intersection of hyperplanes. The in-

tersection of a compact, convex set with hyperplanes is compact and convex. Thus, the set of

vectors of trade rates x that satisfies all constraints is compact and convex.

2. Feasibility: No trade (x = 0) generates well-defined utility for each order (Vi (0) = 0), clears

markets and is allowed on each order. In this sense, no-trade is feasible.

3. Strict concavity: Each function Vi (xi ) is quadratic and therefore strictly concave for all

xi ∈ R. Since V is the sum of Vi across i , the function V is concave on the domain RI and thus

also on the compact and convex subset defined by the constraints.

It is a well-known principle of convex analysis (Boyd and Vandenberghe (2004); Bertsekas

(2009); Nocedal and Wright (2006)) that a strictly concave objective function on a non-empty

compact and convex set has a unique maximizing vector x∗.

Our approach makes the problem compact by assuming that traders are not interested in

trading additional quantities beyond some very favorable level of prices. This is like putting

upper and lower bounds on quantities and linear combinations of quantities.
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To prove that clearing prices exist, we exploit the duality between the problems of finding

optimal quantities and prices. For this, we define a Lagrangian function of the vector of quanti-

ties x with three constraints: (1) the market clears (
∑I

i=1 xi ·wi = 0); (2) the order execution rate

is greater than or equal to zero (x ≥ 0); (3) the order execution rate is less than or equal to the

maximum (x ≤ q). In vector notation, the Lagrangian is defined by

L(x,πππ,λλλ,µµµ) := xTpH − 1
2 xTD x−πππTW x+µµµTx+λλλT(q−x). (11)

Since the multipliers associated with the market clearing equality constraint have the economic

interpretation as market prices for assets, we use the notation πππ = (π1, . . . ,πN ) for these multi-

pliers. Two vectors of order-execution-rate multipliers, µµµ = (µ1, . . . ,µI ) and λλλ = (λ1, . . . ,λI ), are

associated with inequality constraints on order execution rates, with two constraints for each

order.

The dual problem associated with the primal problem of maximizing aggregate utility (10),

is then defined by

Ĝ(πππ,λλλ,µµµ) := max
x

L(x,πππ,λλλ,µµµ) for πππ ∈RN , µµµ≥ 0, λλλ≥ 0. (12)

The dual problem is a minimization problem with infimum g∗ defined by

g∗ := inf
πππ,λλλ,µµµ

Ĝ(πππ,λλλ,µµµ) subject to πππ ∈RN , µµµ≥ 0, λλλ≥ 0. (13)

The dual problem (13) is formulated as an infimum rather than minimum because we have not

yet shown that there exists a solution (πππ∗,λλλ∗,µµµ∗) which attains the infimum.

Theorem 2 (Existence of clearing prices). There exists at least one optimal solution (πππ∗,λλλ∗,µµµ∗)

to the dual problem (13). The solutions x∗ and (πππ∗,λλλ∗,µµµ∗) are a primal-dual pair which satisfies

the strict duality relationship

g∗ =V (x∗). (14)

Proof of Theorem 2. The primal problem has the following properties:

1. Concavity: The objective function V (x) is strictly concave.

2. Finite solution: The primal objective is the sum of a finite number of concave quadratic

functions. Since each quadratic function is bounded above, the solution to the primal problem

is bounded above.

3. Linear constraints: The minimum execution rate constraint x ≥ 0, the maximum execu-

tion rate constraint x ≤ q, and the market clearing constraint W x = 0 are all linear.

4. Feasibility: No trade (x = 0) is feasible because it clears the markets and is allowed on
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each order.8

It is a standard result from convex programming that a concave primal problem, a finite

supremum on the primal problem, feasibility, and linear constraints guarantee that a solution

to the dual problem exists and has the same optimal value as the supremum to the primal prob-

lem even if a solution to the primal problem does not exist like it does in our problem; see

Boyd and Vandenberghe (2004), Bertsekas (2009, Proposition 5.3.4, p. 173), Nocedal and Wright

(2006, Theorem 16.4, p. 464). Since Theorem 1 guarantees that a solution to the primal prob-

lem does exist, the solution to the primal problem has the same value as the solution to the dual

problem.

There are three Lagrange multipliers in this problem: πππ, λλλ, and µµµ. The multiplier on the

market clearing condition πππ is the vector of prices for all assets. The other multipliers λλλ and µµµ

ensure that orders are not underfilled ( x < 0 ) or overfilled (x > q).

It follows from the market-clearing equality constraint that the solutionπππ to the Lagrangian

is a set of clearing prices. Another way to see this is that if the market were not to clear,πππ can be

tweaked slightly to decrease Ĝ .9 Since the constraints on the order are inequality constraints,

each of the individual multipliers must be nonnegative (µi ≥ 0 and λi ≥ 0 for all i ).

Theorem 2 does not guarantee that clearing prices are unique. The set of clearing prices is

convex and may be unbounded, as in Figure 3 above. A trivial example occurs when all orders

are buy orders for individual assets, and there are no sell orders. Then any sufficiently high

price clears the market with zero trade. There may also be cases where the clearing price is not

unique even when trade occurs. A trivial example occurs when there is one fully executable

buy order and one fully executable sell order for the same asset, with the same quantities q and

the lower limit price on the buy order strictly above the upper limit price on the sell order. We

discuss a tie-breaking rule to pick a unique price in the next section.

The duality between the primal problem and the dual problem has the intuition of a zero-

sum game played by the price-setting Walrasian auctioneer and hypothetical traders who op-

timize execution of linear orders (x ∈ R) without upper and lower limits (x ∈ [0, qi ]) but instead

with linear incentives provided by the multipliers λi and µi . To interpret the dual problem eco-

nomically, think of the exchange as a Walrasian auctioneer who seeks to quote prices πππ which

clear markets. If we think of the auctioneer as attempting to solve the dual problem, the auc-

tioneer also quotes multipliersλλλ andµµµwhich are designed to prevent overfilling or underfilling

orders. We can think of the dual objective as the cost to the auctioneer of quoting non-clearing

prices over and above the cost of clearing prices. This cost is defined by imagining that the auc-

8Feasibility does not require a strict interior point (Slater’s condition) because the constraints are linear in this
problem (linear constraint qualification).

9Note that prices can be positive, negative, or zero.
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tioneer takes into its own inventories any net uncleared quantities, then, once clearing prices

are known, liquidating these quantities at a loss by walking up or down the orders’ marginal

valuation curves, buying or selling at a loss. Similarly, the Lagrange multipliers are set to pre-

vent overfilling or underfilling the order. Since the Lagrangian pretends that each order’s value

function Vi (x) is quadratic for all R, not just the interval [0, qi ], the exchange reduces its costs

by making the multipliers larger when the order is being overfilled or underfilled, relative to the

multipliers which solve the dual optimization.

4 Equilibrium Characterization and Computation

In this section we address the following issue: We have existence of market-clearing prices, as

well as uniqueness of these prices up to a convex set, from results in Section 3. Can we compute

these prices quickly?

There are many economic settings where market-clearing prices are known to exist but

where it is also known they can be hard to find quickly (Scarf and Hansen (1973)). More mod-

ern work in computer science has focused on the complexity of computing Brouwer and Kaku-

tani fixed points (Daskalakis, Goldberg, and Papadimitriou (2009); Budish, Cachon, Kessler, and

Othman (2017)) and supports the claim that computing competitive equilibrium prices can be

computationally difficult.

There are also, of course, many economic settings where market-clearing prices are known

to exist and trivial to compute. For example, in a single-asset allocation environment with

continuous downward sloping demand and continuous upward sloping supply, computing the

market clearing price is trivial. Formally, you can use the bisection method.

In our setting, we have downward sloping demand schedules for portfolios, which guaran-

tees that quantities are unique and prices are unique up to a convex set. Under minor regularity

conditions satisfied by our problem, this implies that the gradient method, which is equivalent

to Walrasian tatonnement, is guaranteed to converge, unlike in the traditional general equilib-

rium environment studied by Scarf and Hansen (1973). In this sense, our problem is immedi-

ately seen to be “easier” than the traditional general equilibrium environment and is more anal-

ogous to the simple supply-and-demand environment for one asset. In our problem, however,

there may be hundreds of asset prices and tens of thousands of orders. The gradient method

performs poorly in such high-dimensional problems.

Although our proposal does not contemplate the exchange trading as a market maker, it is

useful to add the exchange as a market maker for theoretical and computational reasons. Ex-

change trading solves the tiebreaker problem by helping select a price when the set of market

clearing prices in nonempty and perhaps unbounded. Exchange trading can speed up the gra-
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dient method. The speed-up, however, is not enough to solve our problem in less than one

second. Exchange trading also makes it possible to use interior point methods. Interior point

methods are well-known in the convex optimization literature to be fast and efficient (Nesterov

(2004); Bertsekas (2009); Boyd and Vandenberghe (2004); Gondzio (2012)).

The plan of this section is as follows. Subsection 4.1 shows that the gradient method is

equivalent to applying Walrasian tatonnement to a variation of the dual problem; it converges

to a solution is not fast enough for our application. Subsection 4.2 motivates interior point

methods with the exchange as market maker and describes how the method works. Subsection

4.3 discusses the results of our simulations. It turns out that prices can be computed in less than

one second for hundreds of assets and tens of thousands of orders, with a very small amount of

exchange trading needed to help stabilize the algorithm numerically.

4.1 Walrasian tatonnement, the gradient method, and the dual problem

Economists often approach the problem of finding market clearing prices by using the famil-

iar process of Walrasian tatonnement: Starting with an initial price guess, proceed iteratively

by revising the price guess in the direction of calculated net excess demands until uncleared

quantities are close enough to zero.

Two questions about tatonnement naturally come to mind: (1) Do market clearing prices

exist? (2) Does a tatonnement process converge to these prices efficiently enough to be useful

as a practical algorithm? Intuition suggests that tatonnement should work correctly because

demand schedules are downward sloping for every portfolio.

These questions can be answered formally by mapping the problem of finding market clear-

ing prices into a convex optimization problem for which the first-order conditions equate net

excess demands to zero. The relevant convex optimization problem is the problem of maximiz-

ing consumer surplus.

The remainder of this subsection spells out details for the following analysis. Define a “gains-

from-trade” function G(πππ) which maps prices πππ into aggregate consumer surplus. The deriva-

tive of this gains function is the negative of net excess demands, ∇G(πππ) = −D(πππ). This makes

Walrasian tatonnement equivalent to the gradient method for optimizing convex functions

since the gradient method adjusts prices in the direction of net excess demand, just like taton-

nement. Since the the gains function is closely related to the dual problem, Theorem 2 already

shows that clearing prices exist. Textbook theorems from convex optimization describe how the

efficiency of the gradient method depends on the smoothness of the derivative of the objective

function. Since demands are piecewise linear, the gains functions has a continuous derivative

which satisfies a Lipschitz condition. This is enough to guarantee a much faster rate of conver-
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Figure 6: Plots of gains from trade for (a) a partially executing order and (b) and fully executing order.
The gains from trade are represented by the area of the regions shaded in grey.

gence than for the difficult general-equilibrium theory problems discussed by Scarf and Hansen

(1973). Unfortunately, this derivative is not smooth enough to guarantee a rate of convergence

fast enough for our problem, which requires calculating clearing prices in less than one second.

Gains function For each order, define a “gains function” which measures the consumer sur-

plus from optimally trading a portfolio at price p as the integral of the difference between price

and marginal utility, or equivalently as the value function minus the cost of buying the quantity

executed:

Gi (p) :=
∫ Di (p)

0

(
Mi (z)−p

)
dz. (15)

:=Vi
(
Di (p)

)−p ·Di (p). (16)

To provide intuition, Figure 6 illustrates the gains-from-trade for a buy order. The dollar

gain is the area of a shaded region, which is a trapezoid when the the price is so low that the

order is fully executing (p H
i ≤ p), a triangle when the order is partially executing (pL

i < p < p H
i ),

and exactly zero when the price is so high that the order is not executing (p H
i ≤ p).
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The explicit solution for Gi (p) is

Gi (p) :=


qi

(1
2 (p H

i −pL
i )−p

)
for p < pL

i (fully executable),

qi (p H
i −p)2

2(p H
i −pL

i )
for pL

i ≤ p ≤ p H
i (partially executable),

0 for p H
i ≤ p (non-executable).

(17)

The three cases in equation (17) match up exactly with the three cases for the multipliers, where

µi > 0 corresponds to no execution, λi > 0 corresponds to full execution, and µi =λi = 0 corre-

sponds to partial execution.

Define the aggregate gains-from-trade function G(πππ) as the sum of the individual gains-

from-trade functions with the portfolio price calculated from the portfolio weights and price

vector, pi =πππTwi :

G(πππ) =
I∑

i=1
Gi

(
πππTwi

)
. (18)

By construction, the gradient of the gains function is minus the aggregate demand function,

∇G(πππ) =−D(πππ), (19)

which is defined everywhere and is piecewise linear. Therefore, the exchange can try to find

market clearing prices by solving the set of N equations D(πππ) = 0. like a Walrasian auctioneer.

The gains function and the dual problem We can answer the question whether ∇G(πππ) = 0

has a solution by relating the gains function to the dual problem. The gains function is obtained

from the dual problem by “maximizing out” the multipliersµµµ andλλλ, which builds the inequality

constraints on order execution 0 ≤ x ≤ q into the structure of the gains function itself. Theorem

2 already establishes that a price vector minimizing the gains function does indeed exist:

Theorem 3 (Gains function). The gains function is related to the dual problem by

G(πππ) = min
λλλ,µµµ

Ĝ(πππ,λλλ,µµµ) subject to λλλ≥ 0, µµµ≥ 0. (20)

Every clearing price vectorπππ∗ satisfies

πππ∗ = argmin
πππ∈RN

G(πππ). (21)

The set of clearing prices is a nonempty, closed convex set which may be unbounded.

Proof. See Appendix A
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The second derivative of the gains function ∇2G(πππ), defined everywhere except at the kinks

in the piecewise linear demand curves, is an N ×N matrix given by

∇2G(πππ) =−∇D(πππ) =−
I∑

i=1

dDi (pi )

dpi
·wi wi

T. (22)

The objective function G(πππ) is convex inπππ. This is consistent with ∇2G(πππ) being the positively-

weighted sum of N ×N rank-one positive semi-define matrices wi wi
T and therefore itself posi-

tive semidefinite. At points where G is not differentiable, the gains function is also convex (and

has nonunique subgradients).

The exchange’s problem of calculating market clearing price is equivalent to minimizing,

not maximizing, the gains function. This may seem counterintuitive. If the exchange is maxi-

mizing aggregate utility, what is the economic intuition for its minimizing and not maximizing

the gains function? The answer comes from using standard duality intuition to consider the

costs incurred by the exchange when it trades as a market maker at non-clearing prices.

When the exchange quotes market-clearing prices, the allocation of quantities across traders

is Pareto optimal according to the competitive equilibrium imputed to their imputed utility

functions and demand schedules. The exchange itself does not trade at all. It functions purely

as an agent for calculating prices.

Now imagine that, after honoring all trades at market-clearing prices, the exchange changes

the prices, and all traders adjust their quantities. Every trader adjusts quantities to achieve

weakly better consumer surplus by buying low and selling high according to their downward-

sloping demand schedules for portfolios. The exchange pays for this increased utility by buying

high and selling low. This implies that the exchange loses more money relative to market clear-

ing prices than the traders gain in consumer surplus. Intuitively, for a small price change, we

can think of a trader who changes quantities as gaining a small triangle of surplus while the ex-

change incurs a small rectangle of costs twice as large as the triangle. In this way, by minimizing

the gains function G(πππ), the exchange maximizes aggregate utility when its own losses are taken

into account.10

Walrasian Tatonnement and the Gradient Method Now we address the question whether

prices can be efficiently calculated using tatonnement. Under tatonnement, a Walrasian auc-

tioneer announces tentative prices, traders in aggregate respond with their quantities, the auc-

tioneer adjusts prices in a direction proportional to net excess demand, and the process contin-

ues until convergence to equilibrium prices occurs. This description of Walrasian tatonnement

10The argument presented here applies to portfolios a logic similar to the argument of Friedman (1960) defend-
ing destabilizing speculation.
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is identical to the gradient method of optimization when the gradient method is used to min-

imize the gains function. The gradient method proceeds iteratively by adjusting prices in the

direction of the negative gradient. Walrasian tatonnement applied to the gains function corre-

sponds exactly to the gradient method because the gradient is the negative of excess demands.

Standard textbook results on optimization show that the gradient method is not expected

to work well on our problem. Small enough price adjustments in the direction of net excess

demands do result in an improvement in the objective function. Unfortunately, our objective

function is not smooth enough to guarantee rapid convergence. Since the gains function has

piecwise-linear derivative, it is continuously differentiable, and the derivative satisfies a Lips-

chitz condition |∇G(πππ+∆πππ)−∇G(πππ)| < L|∆πππ| for some Lipschitz constant L. Now letπππk , k = 0, 1,

. . . , be a sequence of gradient-method iterations starting with intital guess πππ0. Nesterov (2004,

Corollary 2.1.2, p. 70) proves a representative theorem providing a pessimistic guarantee con-

cerning how well the gradient method works under these assumptions:

Theorem 4. Let G be a convex with continuously differentiable gradient satisfying a Lipschitz

condition with constant L. Using step size 1/L, the the error after k iterations of the gradient

method G(πππk )−G(πππ∗) is related to the error of the initial guessπππ0 −πππ∗ by

G(πππk )−G(πππ∗) ≤ 2L‖πππ0 −πππ∗‖2

k +4
. (23)

This theorem says that halving the error G(πππk )−G(πππ∗) may require approximately doubling

the number of iterations. Thus, reducing the error by a factor of one million may require ap-

proximately one million iterations, a prohibitively large number. Of course, this theorem is

providing a worst-case guarantee. As discussed in Appendix B.1, (Nesterov, 2004, Chapter 2)

proves other theorems, which also give pessimistic results.

While different variations of the gradient method (or tatonnement) depend on the formula

for calculating a step size for each iteration, the implications of convergence theorems are also

pessimistic for other step size methodologies.

4.2 Interior-Point Methods with the Exchange as Market Maker

Our flow trading proposal does not contemplate the exchange trading as a market maker like a

traditional NYSE specialist. Instead, we think of the exchange as an agent who calculates prices

for all the other market participants but does not trade on its own account.

Nevertheless, it turns out to be practically necessary to add the exchange as a market maker

for computational reasons associated with numerical efficiency and stability. In this subsection,

we show why adding the exchange as market maker is useful from perspectives which are both
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practical and theoretical. In the next section, we present simulation results which show that

only a tiny amount of exchange trading is needed.

As a practical matter, a tiny amount of exchange trading can solve the “tiebreaker problem”

of choosing market prices when the set of market prices is not unique and possibly unbounded.

If the exchange has a very small partially executable order active for every asset at every rele-

vant price vector, then the exchange’s demands will guarantee unique prices for all assets. This

solves the tiebreaker problem in a nice way because the exchange can trade in a manner which

reduces the difference between the current market clearing price and, say, last period’s mar-

ket clearing price, choosing “reasonable” prices when the choices picked by an algorithm could

otherwise seem arbitrary and create unwanted transitory volatility in clearing prices from auc-

tion to auction.

A deeper theoretical reason for exchange trading is that it makes algorithms for calculating

market clearing prices more efficient. Theoretically, the gradient method can be sped up by

using information about the curvature of the objective function, obtained from the hessian, to

improve the search direction. Newton’s method, when applied to an objective with continu-

ously differentiable second derivative satisfying a Lipschitz condition, converges quadratically

if the current guess is close enough to the optimum. Quadratic convergence means that the

number of significant digits doubles on each iteration.

Unfortunately, our problem does not have a continuous hessian. Furthermore, if we con-

sider a difficult problem in which the difference between upper and lower limit prices on all

orders, pH −pL , is very small, the hessian will be exactly zero at almost all price vectors and

therefore provide no useful information about how to improve the gradient search direction.

Nevertheless, it can be shown that adding exchange trading, by making the objective function

more convex, can improve the convergence rate of the gradient method by intuitively guaran-

teeing better search directions. For details, see Appendix B.1, which discusses the relationship

between exchange trading and the concept of “strict convexity.” While exchange trading does

improve the rate of convergence of the gradient method, it does not make it fast enough to solve

for clearing prices in less than one second. Therefore something better is needed.

Much faster convergence can potentially be obtained by using interior point methods of

optimization. Interior point methods replace the inequality constraints in the primal problem

with smooth penalty functions added to the objective. In our problem, we delete the constraints

x ≥ 0 and add a penalty function of the form ν̄·log(x)T1 to the objective. Since the domain of the

function log(x) is x > 0, not x ≥ 0, the penalty function is a “log-barrier function” which prevents

the inequality constraints from ever holding with equality. Similarly, the penalty function ν̄ ·
log(q−x) replaces the constraint x ≤ q and enforces the strict inequality x < q.

Interior point methods are based on the following intuition: In the limit ν̄→ 0, the solution
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to the altered problem converges to the solution to the original problem, with x → 0 for non-

executable orders and x → q for fully executable orders. Furthermore, even though the original

problem was not smooth enough for Newton’s method, the new problem is smooth enough.

Even better, by shifting attention from the dual problem of finding optimal prices to the primal

problem of finding optimal quantities, the interior point method looks deep into the order book

to use information about the whether an order is “likely” to be partially executable and therefore

relevant for price discovery at the margin. It does this by attaching a low weight to orders where

xk is close to 0 or close to q.

Interior point methods require that there exists a feasible allocation on the interior of the

constraint set; such an allocation satisfies market clearing and also satisfies inequality con-

straints strictly, 0 < x < q. Our natural initial guess is no-trade (x = 0). No-trade is feasible since

it satisfies market clearing and the inequality constraints, but it does not lie on the interior of

the inequality constraint set because x = 0 is on the boundary. Our proof of Theorem 2 used a

linear constraint qualification. If we knew that the order book had a market clearing allocation

on the interior of the inequality constraint set, we could have used Slater’s condition instead.

Slater’s condition requires a non-empty interior assumption like that used in general equilib-

rium theory and like that used to guarantee that interior point methods work. Unfortunately,

Slater’s condition does not hold for some obvious and likely cases, such as one or more orders

to buy some illiquid asset but no orders willing to sell it.

A simple way to deal with this issue is to add the exchange as a market maker with linear

demand and supply for each asset. Formally, the exchange’s demand function for asset n can

be expressed as a linear function of the price

yn = εn(π0n −πn), (24)

where εn is a small positive number defining the slope of the exchange’s demand schedule as

a function of the price, π0n is a price below which the exchange buys and above which it sells,

and yn is the quantity traded by the exchange (positive for buying, negative for selling). If εn is

small, the exchange does not trade much. The value of εn can vary across assets if the exchange

provides a different level of liquidity to different assets.

In matrix notation, the exchange’s demands for all assets can be written y = εεε(πππ0−πππ), where

εεε is the positive definite matrix whose diagonal is (ε1, . . . ,εN ). The exchange’s demand function

can be justified by imputing to the exchange a quadratic utility function yTπππ0− 1
2 yTεεε−1y, adding

this utility to the primal objective function, adding the quantity traded y to the market clearing

condition, and leaving the inequality constraints unchanged (since the small quantities poten-
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tially bought or sold are theoretically unbounded). The new primal problem is

max
x,y

[
xTpH − 1

2 xTD x+yTπππ0 − 1
2 yTεεε−1 y

]
subject to Wx+y = 0, 0 ≤ x ≤ q. (25)

Adding the exchange as market maker makes it possible for non-clearing quantities to be

in the feasible set since the exchange can trade the uncleared quantities. For example, any

allocation x = α ·q is allowed when 0 < α < 1, even though it is not a feasible interior point

without the exchange clearing the market.

Our interior point method changes our original primal problem in three ways: (1) It adds the

exchange’s utility function to the objective function; (2) it adds the exchange’s quantities traded

to the market-clearing condition, and (3) it replaces the inequality constraints with log-barrier

penalty functions. The modified maximization problem is the modified primal problem (25)

with inequality constraints replaced by log-barrier penalty functions:

max
x,y

[
xTpH − 1

2 xTD x+yTπππ0 − 1
2 yTεεε−1 y+ ν̄ · log(x)T1+ ν̄ · log(q−x)T1

]
subject to Wx+y = 0.

(26)

Note that the exchange’s preferences are defined over assets while the customer orders de-

fine preferences over portfolios. The log-barrier function ν̄ · log(x)T1 replaces the inequality

constraint 0 ≤ x, and the log-barrier function ν̄ · log(q−x)T1 replaces the inequality constraint

x ≤ q. In the limit as ν̄→ 0, the solution to this problem is the solution to the modified primal

problem of maximizing utility with the exchange added to the problem.

Solution Methodology and Karush–Kuhn–Tucker (KKT) conditions How does the approach

used by the interior point method change the manner in which the solution is characterized,

without changing the solution itself.

For our original problem, the following theorem shows that market clearing prices and

quantities are characterized by the unique solution of the Karush–Kuhn–Tucker (KKT) condi-

tions.

Definition 1. The Karush–Kuhn–Tucker (KKT) Conditions for for primal feasibility, dual feasi-

bility, primal optimality, and complementary slackness are

W x∗ = 0, 0 ≤ x∗ ≤ q (Primal Feasibility), (27)

πππ∗ ∈RN , λλλ∗ ≥ 0 µµµ∗ ≥ 0, (Dual Feasibility) (28)

pH −Dx∗−WTπππ∗+µµµ∗−λλλ∗ = 0 (Primal Optimality) (29)

λλλ∗ · (q−x∗) = 0, µµµ∗ ·x∗ = 0 (Complementary Slackness). (30)
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Theorem 5 (Karush–Kuhn–Tucker (KKT) Conditions). Any solution of the KKT conditions (27)–

(30) for quantities x∗ := (x∗
1 , . . . , x∗

I ) and multipliers (πππ∗,λλλ∗,µµµ∗) is a solution to both the primal

problem and dual problem. There exists at least one solution to the KKT conditions. The solution

for optimal quantities x∗ is unique.

Proof of Theorem 5. This is a straightforward consequence of Theorems 1 and 2, which imply

that a unique optimal primal solution x∗ exists and some optimal dual solution (πππ∗,λλλ∗,µµµ∗) ex-

ists, and these solutions form a primal dual pair with the same optimized value; see Bertsekas

(2009, Theorem 5.34(b), p. 173) .

Equation (29) presents first-order conditions for the primal optimality problem

x∗ = argmax
x∈RI

L(x ,πππ∗,λλλ∗,µµµ∗), (31)

where L is defined in equation (11). Since the problem is quadratic and strictly concave, the

first-order conditions are necessary, and they are sufficient if the problem has a solution. The

sufficiency follows from the existence of clearing prices and quantities.

In a nutshell, Theorem 5 suggests that (1) solving the primal problem for quantities x, (2)

solving the dual problem for prices πππ, and (3) solving the KKT equations are three different

approaches to solving the same problem. Indeed, it is straightforward to use the KKT equations

to obtain the solution to the primal problem from a solution to the dual problem, or vice versa.

For the modified problem solved by the interior point method, the solution is characterized

by the same KKT conditions (27)–(30) modified in three ways: (1) Add the exchange’s demand

to the first-order condition. (2) Add the exchange’s quantities traded to the market-clearing

condition. (3) Replace the complementary slackness conditionµµµ∗ ·x∗ = 0 withµµµ∗ ·x∗ = ν̄·1, and

then let ν̄→ 0. The modified KKT conditions are

W x∗+y∗ = 0, 0 ≤ x∗ ≤ q, y∗ ∈RN (Primal Feasibility), (32)

πππ∗ ∈RN , λλλ∗ > 0 µµµ∗ > 0, (Dual Feasibility) (33)

pH −Dx∗−εεε−1y∗−WTπππ∗+µµµ∗−λλλ∗ = 0 (Primal Optimality) (34)

λλλ∗ · (q−x∗) = ν̄ ·1, µµµ∗ ·x∗ = ν̄ ·1, ν̄> 0, ν̄→ 0 (Complementary Slackness). (35)

Interior point methods proceed by solving the revised problem for finite ν̄ > 0 while at the

same time pushing ν̄ closer and closer to zero. At each iteration, the guess for x remains an in-

terior point, with x → 0 and x → q for nonexecutable and fully executatble orders, respectively.

It can be shown theoretically that interior point methods have favorable complexity (see
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Nesterov (2004, Chapter 4); Bertsekas (2009), Boyd and Vandenberghe (2004)). In a survey of in-

terior point methods, Gondzio (2012) compares worst-case complexity results for interior point

methods with gradient methods. For interior point methods, the maximum number of itera-

tions has an upper bound proportional to
p

I log(1/ε), where ε is the proportion by which the

error is reduced (Theorem 3.1). In practice, the dependence on I is log(I ), not
p

I . For gradi-

ent methods, the corresponding worst-case complexity result is O(1/ε) or O(1/ε2). In practice,

consistent with this result, gradient methods have difficulty achieving high accuracy.

Our simulations use our own straightforward Python implementation of the interior point

methodology in the CVXOPT package, as described by Vandenberghe (2010). Both the Python

programming language and the CVXOPT package are free and publicly available. Our imple-

mentation is tailored to our specific quadratic program, which has an invertible diagonal matrix

D and simple “Euclidean cone” constraints 0 ≤ x ≤ q.

In brief, the algorithmic strategy is to linearize the KKT conditions (which has 3I +N equa-

tions), solve the linearized system11 with ν̄ = 0 to obtain a search direction which reduces ν̄,

then take a step ∆x which keeps the best guess an interior point and maintains the constraint

ν̄> 0. Since the KKT conditions are essentially first-order conditions, the linearized approxima-

tion is a version of Newton’s method. At each step, the multipliers are expressed as functions

of x, easy invertibility of the diagonal matrix D allows x to be expressed as a simple function of

πππ, and substituting the solution for x into the market clearing condition reduces the problem

to solving an N × N positive definite system for a price update to πππ using a Cholesky decom-

position. The positive-definite matrix to be decomposed changes with each iteration because

it is constructed by implicitly assigning weights to each order based on values of multipliers.

The weights are close to zero if the order is anticipated either to be fully executable or non-

executable; the weights are closer to one if the order is anticipated to be partially executable.

A new Cholesky decomposition is needed on each iteration to incorporate updated weights

from the most recent iteration into calculation of the new search direction. This is how the

algorithm’s Newton method uses information about orders deep in the order book. For more

discussion, see Appendix 4.2.

11The revised KKT system is nonlinear in the unknownsπππ, x,µµµ,λλλ, and ν̄ only because the revised complementary
slackness condition involves element-by-element multiplication of x by µµµ and λλλ. We use the predictor-correction
adjustment described by Mehrotra (1992) to approximate the effect of this nonlinearity in two steps using only one
Cholesky decomposition.
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4.3 Simulation Results

We have implemented a simulation framework to test the practical performance of flow trading.

Calculations were performed on an ordinary office workstation.12 The goal of the simulations

is to show that a base-case problem with 500 assets and 30,000 orders can reliably be solved

in less than one second. We regard meeting this goal as “proof of concept” that flow trading is

computationally feasible.

The simulation framework has two components. First, we simulate an order book in which

one-third of the orders are for individual assets, one-third pairs trades, and one-third for index

portfolios. Second, we use the interior point method, with modest exchange trading, to obtain

clearing prices and quantities. To measure computation time, we only count the time to run

the quadratic programming algorithm, excluding the time to construct the order book, under

the assumption that a realistic production environment will run the optimizer with dedicated

computer resources.

We have tried to make the optimization problem difficult by having huge variation in trader-

provided liquidity across assets, including assets with no orders; poorly conditioned matrices

resulting from index orders, with even worse conditioning due to mixing equally- and value-

weighted indexes; equally-weighted- and value-weighted industry indexes which create poor

conditioning along different dimensions from volume-based portfolios; small differences be-

tween p H
i and pL

i , which make the gradient of the gains function look like a difficult-to-optimize

step function; and very little exchange trading to stabilize the problem. Details of the simulation

methodology are provided in Appendix B.3.

Computation Results Figure 7 presents plots of computation time for 500 simulated orders

books in each of two panels.

In the first panel, the number of assets varies from 10 to 10,000, with the number of orders

held constant at 30,000. Execution time is about 0.30 seconds for 500 assets, approaches one

second for about 2000 assets, and approaches 10 seconds for about 10,000 assets. As the num-

ber of assets exceeds 1000, the plot becomes linear in logs with a slope of 2 or more. The slopes

is related to the fact that the algorithm requires a dense Cholesky decomposition of an N ×N

matrix every iteration. The Cholesky decomposition is an O(N 3) algorithm, and calculating the

N ×N matrix to be decomposed is itself also burdensome.

In the second panel, the number of orders varies from 100 to 1.5 million, with the number

of assets held constant at 500. Execution time is less 0.20 seconds if there are fewer than about

10,000 orders, approaches one second for about 100,000 orders, and is about 10 seconds for 1

12The workstation has an AMD Ryzen Threadripper 3960X processor, 24 cores running at 3.8GHz, and 128GB of
memory running at 3600MHz.
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Figure 7: Execution time for simulated market outcomes.

million orders. As the number of orders increases, execution time is approximately linear in

logs with a slope of about one: Computation time is approximately proportional to the number

of orders when the number of orders is large.

At the far left of both plots, where the problem is as small as allowed, the computation time

is about 0.10 seconds. A significant fraction of this is overhead from the Python interpreter,

which could be reduced by using an efficient compiled language like C++.

In these simulations, the exchange’s share of dollar volume as market maker is small. The

exchange’s share is less than 10−7, often much less. Since the exchange’s initial price guessesπππ0

are not very accurate indicators of clearing prices πππ∗, exchange trading in a realistic environ-

ment is likely to be an even smaller share of volume.

Uncleared quantities, due to convergence tolerance settings or numerical error, are another

form of exchange trading since the exchange is assumed to execute all orders at calculated

prices. These uncleared quantities are typically an order of magnitude smaller than the quan-

tities traded by the exchange as market maker. In a few cases, they are about the same size.

The modest exchange trading in these simulations helps to stabilize numerical calculations and

speeds up calculations slightly by reducing the number of iterations. If settings are changed so

that the exchange trades significantly less, the Cholesky decomposition occasionally fails be-

cause a matrix which is positive definite in theory may not be positive definite numerically. The
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number of iterations also increases because the search directions are less efficient, presumably

due to numerical error. Exchange trading stabilizes the numerical calculations by reducing the

condition number on the matrix to which the Cholesky decomposition is applied. Intuitively,

this matrix measures the depth of the market in all portfolio directions. Adding modest ex-

change trading presumably improves the condition number on this matrix by adding some liq-

uidity to assets or portfolios which other orders are not expressing an interest to trade at prices

relevant for the current iteration.13

Preliminary results suggest that finding clearing prices takes modestly fewer iterations when

the difference between pH and pL is larger. It also takes modestly fewer iterations when ex-

change trading becomes more and more economically significant. In general, the number of

iterations required increase somewhat in I and N but is insensitive to other assumptions.

Except for the exchange’s role in solving the tiebreaker problem of picking a price when it is

not unique, it is not the purpose of our simulations to find prices that are economically reason-

able. Instead, our simulations are designed to stress the algorithm by posing difficult problems,

then see how long it takes the algorithm to find market clearing prices, even if they are not eco-

nomically reasonable. Indeed, as our stress simulations are designed to bring about, many of

our prices are “unreasonable” in the sense that some are thousands of percent higher or lower

(implying negative prices) than the expected midpoint of bids and offers. This occurs because

some illiquid assets have few or no orders, with their prices defined by how they appear in port-

folio orders. In practice, like the way current exchanges operate, we expect market participants

to place orders which prevent unreasonable prices or excessive intraday price volatility, not the

market clearing algorithm or the exchange itself trading as a price-stabilizing market maker.

We interpret these results as being a proof of concept that flow trading is computationally

practical when the market clears at intervals of one second. In a production environment in

the future, faster CPU speeds, better parallelized sparse matrix operations, and more refined

algorithms should make it easier to calculate clearing prices with even greater speed.14

5 Portfolio Orders in the CARA-Normal Framework

Our portfolio flow orders requires that the demand for a given portfolio depends only on the

price of the portfolio. This may appear restrictive given that the demand for portfolios can

generally depend on all prices of the assets. In this section, we show that despite the restriction

portfolio orders can be used to implement optimal portfolios.

13The handful of outliers in Figure 7 could be eliminated by having the exchange trade more aggressively. We do
not yet understand the apparent discontinuity which occurs in the first panel when there are about 3000 assets.

14Even though our algorithm is set up to use multiple processors, it does not seem to do so efficiently, for reasons
we do not yet fully understand but may be related to difficulties parallelizing sparse matrix operations.
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5.1 The Static CARA-Normal Framework

In a canonical CARA-normal framework, widely used in the economics and finance literature

(e.g., Grossman and Stiglitz (1980)), we study the implications of trading portfolios. For simplic-

ity we focus on a static setting, in which there is no distinction between trading in quantities

and trading in flows, and interpret it as a single batch. The literature on dynamic strategic trad-

ing (Vayanos (1999); Du and Zhu (2017); Kyle, Obizhaeva, and Wang (2018)) shows that trading

gradually over time is optimal.

Consider an individual trader placing orders in the market. She has constant absolute risk

aversion preferences with risk aversion A and zero initial wealth.15 There are N risky assets

and one safe asset, whose return is normalized to one. Let v denote the vector of risky assets’

payoffs. The trader has subjective beliefs that v is jointly normally distributed with mean m and

variance-covariance matrixΣΣΣ.

The trader chooses her optimal portfolio to maximize her expected utility, given by

max
ωωω

E
[
−exp−A(v−πππ)Tωωω

]
, (36)

where πππ is the vector of asset prices. We will begin by supposing that traders know the real-

ized prices πππ and choose the optimal quantity demanded for those prices. Later, traders can

implement the demand by submitting the whole demand schedule that specifies quantities

contingent on realized prices.

The joint normality assumption allows us to transform above into the quadratic optimiza-

tion problem:

max
ωωω

[
(m−πππ)Tωωω− 1

2
A ωωωTΣΣΣωωω

]
. (37)

Assume, for now, that the trader is a perfect competitor, taking the market clearing prices as

given.16 Then the first order condition implies that the optimal portfolio is given by

ωωω∗ = (A ΣΣΣ)−1(m−πππ). (38)

Notice that the optimal portfolio determines the demand for each asset as a linear function that

depends on the prices of all assets.

Orders for Individual Assets Since the demand for each asset depends on all prices, if traders

are restricted to using orders for individual assets that are a function only of the individual as-

15This is without loss of generality since there is no wealth effect in CARA preferences.
16Below we show that the main results do not change when traders behave strategically, taking into account their

price impact.
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set’s price as in the market design of current stock exchanges, they cannot trade optimally ac-

cording to equation (38). Recall, in a single asset setting, the ability to make price-contingent

orders allows traders to choose the optimal trade as if they observe the realized price. In a multi-

asset setting, implementing the optimal trade requires making orders contingent on the prices

of all assets. Thus, if restricted to use asset orders contingent only on the asset’s price, traders

must bear the risk of obtaining quantities that are far from the optimal demand. See also the

discussion in Section 1.1 for the related literature that studies the equilibrium implications of

such restrictions in asset orders.

Rotation Now suppose traders can submit orders for portfolios that are a function of the price

of the portfolio as in our proposal. Can they then achieve the optimal trade described in equa-

tion (38)? Below we show that the answer is yes. For this, we need to “rotate” the asset space

such that it is spanned by independent portfolios.

Since the variance-covariance matrixΣΣΣ is positive semidefinite, its singular value decompo-

sition has a form

ΣΣΣ= U∆∆∆UT, (39)

where U is an orthonormal matrix, and ∆∆∆ is a diagonal matrix with nonnegative elements. Let

K ≤ N denote the rank ofΣΣΣ, let δi denote the i th nonzero diagonal entry of∆∆∆, and let ui denote

the corresponding column of U.17 Then we have

ΣΣΣ−1 =
K∑

i=1

1

δi
ui ui

T. (40)

Using this, we can express the optimal portfolio in equation (38) as

ωωω∗ =
K∑

i=1

(
ui

Tm−ui
Tπππ

A δi

)
ui , (41)

which is a combination of demand schedules for portfolios. Here, u1, . . . ,uK are portfolios of the

assets, which themselves are the “rotated” assets. Since they are independent of one another

(and there is no wealth effect in CARA preferences), the optimal portfolio chooses the demand

for each of them separately as if in a single-asset model. That is, the optimal demand for the i th

portfolio is given by
1

A δi
(ui

Tm−ui
Tπππ), (42)

where δi , ui
Tm, and ui

Tπππ correspond to the variance, the expected payoff, and the price of the

17When K is strictly less than N (i.e., the matrix ΣΣΣ is positive semidefinite but not positive definite), we can use
the pseudo-inverse instead of the inverse to define the demand function.
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portfolio ui , respectively. Since the demand for each portfolio only depends on the portfolio’s

price, traders can achieve the optimal trade in equation (38) by utilizing K orders for portfolios

where each order is a function of that portfolio’s price. Recall, in our proposed market design,

we require portfolio orders to be downward sloping. Since the optimal demand for each port-

folio in equation (41) is decreasing in the portfolio’s price, the demand is indeed downward

sloping.

The theorem below summarizes the results.

Theorem 6. Consider a static CARA-normal framework in which a trader believes that the variance-

covariance matrix of the asset payoffs has rank K . Then the trader’s optimal portfolio (equation

(38)) can be represented as the sum of K downward-sloping demand schedules for portfolios, each

of which depends only on that portfolio’s price (equation (41)).

Practical Implementation We can decompose the expected utility from the optimal portfolio

into the contribution of each rotated asset. From substituting the optimal portfolio in equation

(41) into equation (37), we can express the expected utility from trading at pricesπππ as

K∑
i=1

1

2A

(
ui

Tm−ui
Tπππ√

δi

)2

. (43)

This shows that the benefit of each portfolio is determined by its squared Sharpe ratio as per-

ceived by the trader.18 In practice, traders may select a few portfolios, which they perceive to

have a sufficiently high Sharpe ratio (more precisely, its absolute value), and choose to trade

only those portfolios rather than all of the K portfolios.

Strategic Trading Thus far, we have assumed that traders are perfect competitors, behaving as

if they have no price impact. In practice, trades can indeed move prices, and many institutional

traders dedicate considerable time and resources to measure and mitigate their price impact.

Now we show that portfolio orders can still be used to implement the optimal portfolio when

traders behave strategically, taking into account their price impact.

Following the literature (for example, Kyle (1989); Malamud and Rostek (2017)), we assume

that traders believe that their price impact is linear in the quantity they trade. We further as-

sume that the matrix of price impact is positive semidefinite.19 That is, for each trader, there is

18Recall, the Sharpe ratio refers to the risk premium (i.e., the expected return minus risk free rate) divided by the
standard deviation. Here, the risk free rate is zero since the safe asset’s return is normalized to one.

19Malamud and Rostek (2017) show that when the variance-covariance matrix is the same for all traders, each
trader’s equilibrium price impact matrix is proportional to the variance-covariance matrix, which implies that all
price impact matrices are positive semidefinite. It is left for future study to determine under what conditions the
price impact matrix is positive semidefinite in a more general setting.
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an N ×N positive semidefinite matrixΛΛΛ, such that

πππ=πππ0 +ΛΛΛωωω, (44)

where πππ0 is the vector of hypothetical prices that would prevail if the trader were not to trade,

and the nth row ofΛΛΛ corresponds to the marginal impact of trading assets 1 to N on the price

of asset n. With a slight abuse of notation, we use the demand schedule ωωω to also refer to the

actual quantities that a trader trades at given prices.

With price impact, the trader’s optimal strategy is a slight modification of the competitive

solution in equation (38), given by

ωωω∗ = (A ΣΣΣ+ΛΛΛ)−1(m−πππ). (45)

Since the sum of two positive semidefinite matrices is also positive semidefinite, A ΣΣΣ+ΛΛΛ is

positive semidefinite. Thus, we can use singular value decomposition to rotate the asset space

such that it is spanned by independent portfolios. Then the same logic as above implies that the

optimal portfolio can be implemented by combining portfolio orders that only depend on the

portfolio’s price. The number of required portfolio orders corresponds to the rank of A ΣΣΣ+ΛΛΛ.

Theorem 7. Consider a static CARA-normal framework in which a trader believes that her price

impact is linear and positive semidefinite (equation (44)). Then the strategic trader’s optimal

portfolio (equation (45)) can be represented as the sum of downward-sloping demand schedules

for portfolios, each of which depends only on that portfolio’s price.

Recall, when proving the existence and uniqueness of market clearing quantities in Section

3, we treat the orders as if they represent the traders’ true valuations. This, as mentioned earlier,

is just a solution technique and does not necessarily imply that we can infer the traders’ true

valuations from their orders. Strategic trading is one example that generates the gap between

true and as-bid valuations.

5.2 Approximations for General Preferences and Limitations

The two key properties of CARA preferences we use in the arguments above are that they are

strictly concave and that there are no wealth effects. Thus, our logic above extends to an arbi-

trary strictly concave twice continuously differentiable quasilinear utility function over assets.

Since quasilinearity implies no wealth effect, the demand for each independently rotated asset

can be found as if in a single asset model and thus only depends on the price of the rotated

asset. With strictly concave utility, the demand for each asset can be locally approximated as a
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downward-sloping linear demand schedule. As market prices change, the local approximation

also changes, in which case the trader will have to revise the portfolio orders.

However, portfolio orders will not be able to approximate the optimal portfolio of every con-

cave utility function closely. In particular, with wealth effects, the demand for rotated assets

may depend on the prices of the other assets and may also increase in their prices.

6 Discussion of Implementation and Policy Issues

Information Policy Information policy is typically discussed in terms of pre-trade transparency

and post-trade transparency. Concerning post-trade transparency, we propose that the ex-

change publish the trading volume and clearing price of each asset promptly after the quan-

tities and price have been calculated. In addition, the exchange may also publish information

about the slope of the net demand curve for each asset, from which traders can make inferences

about the price impact costs of their orders. The exchange does not publish information about

the identity of traders. If clearing prices can be calculated in one-half second and prices pub-

lished immediately, then traders would have another half-second to process this information

to submit orders to trade at the next batch auction.

Pre-trade transparency in a market with batch auctions works differently from how it works

with the traditional market. Traditional exchanges publish best bid and best ask prices and

quantities. Such publication makes sense because an order may arrive at any time and exe-

cute against the published quotes. Published quotes are actionable for some positive duration.

With frequent batch auctions, there is no trading between auctions. Therefore published quotes

would not be disciplined by the possibility of incoming orders to trade at the quotes. Further-

more, calculating derived bid-ask spreads for assets from all portfolio orders, including orders

for multiple assets, imposes a computational burden that cannot be met in real-time. Finally,

since auctions occur frequently, the post-trade information about price and volume is much

more relevant for deciding on orders in the next auction. Thus, pre-trade transparency for the

auction at time t +1 consists of the post-auction information disseminated from the auction at

time t .

With arbitrary portfolio orders, information about the depth of the order book is inherently

complex because the depth of the order book for a portfolio cannot be inferred from the depth

of the order book for individual assets. The exchange might publish limited depth information

about each asset and also limited depth information about a fixed list of popular portfolios.

If the exchange does not publish much information about the depth of the order book,

traders might measure the depth themselves by changing their orders for one second to see

what happens. Such information has an opportunity cost which is lower when auctions are
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held more frequently.

Trust Flow trading has the desirable trust property that traders can infer from the history of

their own orders and the history of prices the exact quantities they should have traded. By

contrast, executable orders in current markets do not always execute when other orders execute

at the same price. This erodes trust and market confidence, particularly among traders without

state-of-the-art speed tools, whose orders are more apt to lack time priority and therefore get

poorer execution.

Flow trading has a minor trust issue about whether messages sent a few milliseconds before

the end of the batch interval are received in time to participate in that auction. Participants

have no incentive to wait for the last milliseconds before placing the order. More importantly,

with a short batch interval, the economic importance of any single auction is minor.

Fairness In traditional markets, the concept of “bid-ask spread” captures many of the fea-

tures participants complain about as unfair. When there is a minimum tick size and the bid-ask

spread is one-tick wide, buyers and sellers cannot offer price improvement by quoting better

prices between the best bid price and best offer price. Instead, buyers and sellers queue up

at the best bid and offer, where the fastest traders have the highest priority in the queue. Slow

traders perceive this as frustrating and unfair. In dealer markets, dealers do not allow customers

to post limit orders to trade directly with other customers. Instead, customers must trade with

dealers in transactions where the dealer buys at the bid price and sells at the offer price. Cus-

tomers complain that dealer markets are unfair because dealers have privileges that customers

do not have. With flow trading, the concept of bid-ask spread is irrelevant when trade occurs

because the market demand schedule for the asset is continuous and strictly downward slop-

ing. All trades clear at the same price. All executable orders execute. Customers can increase

the quantities they trade by offering small price improvements because there are typically ad-

ditional quantities for purchase or sale at slightly improved prices. With flow trading, there still

are trading costs. Trading faster requires offering better prices, which makes clearing prices

move, which creates price impact.

offering better prices, which makes clearing prices move, which creates price impact.

Price Continuity as an Objective Traditional exchanges, such as the NYSE, have claimed price

continuity as a market objective. Customers prefer price continuity precisely because they do

not trust the integrity of order execution. If a customer saw a trade at a low price compared

to recent prices, the customer would logically infer that the customer’s own order was selling

at the bad price and the NYSE specialist or another trader on the floor of the exchange was
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buying. The customer might also have inferred that “fast market” conditions were declared,

which relieved his broker of the obligation to respect the limit price on his own resting order,

which would have otherwise bought at the low price.

With flow trading, transitory price discontinuities benefit customers with orders that exe-

cute slowly over many batch auctions by allowing the orders to execute at better prices. For

example, if prices for a particular asset are higher at one auction and lower at the next auction

by the same price increment, resting executable customer limit orders trades the same com-

bined quantity (by linearity) at the two auctions, but the average price of execution improves

because a larger quantity is executed at the better price and a smaller quantity at the worse

price.

Temporary price discontinuities can result from the arrival of overly urgent orders that have

significant temporary price impact. Under a market design with flow trading, traders have

strong incentives to place patient orders and to protect themselves from unfavorable prices

by adjusting limit prices p H
i and pL

i to tolerable levels.

Regulatory Objectives The U.S. Securities and Exchange Commission (SEC), which regulates

securities markets, pursues various general policy objectives, including economic efficiency,

competition, capital formation, maintaining trust and confidence, and investor protection.

Flow trading is consistent with all of these objectives. It leads to economic efficiency by

reducing wasteful expenditure on fast data feeds, communication technologies, and trading

algorithms. It does this by decreasing the arms race among traders to pick off orders and by

reducing the messages needed to implement dynamic trading strategies. It increases compe-

tition by providing customers, large and small, with a venue to trade small quantities at low

cost. Flow trading is consistent with the current demand of small investors to trade fractions of

shares and construct diversified portfolios consisting of tiny positions in many stocks. It makes

capital formation more efficient by increasing market liquidity, which encourages markets to

produce information about which firms can deploy capital most profitably. It promotes trust

and confidence in markets by having all customers trade at the same transparent price. And

it protects investors from poor order execution by making quality of order execution easy for

customers to measure.

7 Conclusion

This paper has introduced a new market design for trading financial assets, such as stocks,

bonds, futures, and currencies. It combines three elements: flow orders from Kyle and Lee

(2017); frequent batch auctions from Budish, Cramton, and Shim (2015); and a novel language
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for trading portfolios of assets. Technical foundations for the proposed market design include

existence and uniqueness results, computational results, and microfoundations for portfolio

orders.

The combination of flow orders and frequent batch auctions yields a market design in which

time is discrete and prices and quantities are continuous. The status quo market design has

these reversed. As has been widely documented, treating time as a continuous variable and

imposing discreteness on prices and quantities causes significant complexity, inefficiency, and

rent-seeking in modern financial markets. Policy debates on the arms race for trading speed,

the proliferation of complex order types, the importance of proprietary market data and ex-

change access, the cat-and-mouse game between institutional investors and high-frequency

traders, and the internalization of retail investors’ order flow, all relate to continuous time and

discrete prices and quantities.

The novel language for portfolio orders is on the one hand rich enough to allow traders to

directly express many important kinds of trading demands — customized ETFs, pairs trades,

general long-short strategies, general market-making strategies, all with tunable urgency —

while also allowing for guaranteed existence of equilibrium prices and quantities and their fast

computation. This seems to us a useful new point on the frontier of language design, i.e., an

attractive tradeoff between expressiveness and computability. Language design has been an

active area of research and we hope there are further breakthroughs for financial-market ap-

plications in the future, possibly incorporating this paper’s insights about what features of a

portfolio language are important for existence and fast computability.

An open topic left for future research is the efficiency and welfare consequences of portfo-

lio trading. We conjecture there are two main efficiency benefits. First, complexity and cost

benefits of allowing market participants to directly express many common trading demands,

which reduces systems complexity and the need for costly intermediation. Second, portfolio

orders make it more efficient for sophisticated financial market participants to endogenously

link prices and liquidity provision for correlated assets. Portfolio orders enable, for example,

Bertrand competition on the cost of executing a Buy A, Sell B pairs trade, which is impossible

under the status quo market design. We conjecture this will provide a liquidity and price dis-

covery benefit for the market.
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Appendix

A Proofs

Proof of Theorem 3. It is clear from equation (11) that the order execution rate xi and multipli-

ers µi and λi may be chosen on an asset-by-asset basis, dramatically simplifying the problem,

because the only connection between different orders operates through the price of the port-

folio pi = wi
Tπππ. In the primal problem, xi is chosen to maximize utility. In the dual problem,

the exchange chooses prices πππ and multipliers λλλ and µµµ to minimize the utility, taking into ac-

count that xi will be chosen optimally. Differentiating the Lagrangian with respect to λi and µi ,

it is clear that if xi were to be negative (because the portfolio price is so high that the buy order

would want to become a sell order in the absence of an explicit constraints 0 ≤ xi ≤ qi ), then

the exchange could reduce costs by increasing µi . Eventually, xi is increased to the point where

the constraint xi ≥ 0 is satisfied. Similarly, if the order would be overfilled due to low prices, the

exchange would increaseλi to lower costs, forcing the quantity xi down to satisfy the constraint

xi ≤ qi . Once both order size constraints are satisfied, it is not optimal for the exchange to adjust

µi orλi further because doing so would increase the objective being minimized. When the con-

straints are strictly satisfied, 0 < xi < qi , the exchange chooses µi =λi = 0; it could reduce costs

by choosing µi < 0 or λi < 0 but this would violate nonnegativity constraints on the multipliers.

Altogether, the optimal µi and λi chosen by the exchange satisfy the complementary slackness

conditionsµi xi = 0 andλi (qi −xi ) = 0 and xi stays within the required bounds 0 ≤ xi ≤ qi . Thus,

the order i contributes to the Lagrangian by choosing xi to maximize Vi (xi )− xi wi
Tπππ subject

to 0 ≤ xi ≤ qi . This is exactly the value of order i ’s gains function Gi (x∗
i ) in equation (15), de-

fined as the value Vi (xi ) minus the cost xi pi with pi = wi
Tπππ. Thus, the Lagrangian is the sum of

the gains functions Gi (x∗
i ), which is the desired result G(πππ) = minλλλ,µµµ Ĝ(πππ,λλλ,µµµ) subject to λλλ≥ 0,

µµµ≥ 0.

B Details Related to Optimization

This appendix provides a discussion of issues related to computation. Quadratic programming

is well-studied. The results we rely on can be found in standard textbooks. This appendix de-

scribes standard optimization results in terms intended to make it easier for economists to un-

derstand the relationship between the economic problem and the optimization problem.
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B.1 Efficiency of the Gradient Method

The gradient method has been studied extensively in the context of minimizing objective func-

tions like our gains function. Textbook results about the gradient method show that if the ob-

jective function is well-enough behaved, it does allow market clearing prices (zero gradient) to

be approximated arbitrarily closely in theory, but the number of iterations required is so large

that the method is not fast enough for our purposes. Here we review these standard results.

The gradient method proceeds iteratively by adding to the most recent price an increment

which is proportional to net excess demand. Describing a gradient method precisely requires

specifying the proportionality constant by which the gradient is multiplied before adding it to

the most recent price. In the field of optimization, there are many different approaches to de-

termine an acceptable step size, including a constant small step size, a thorough line search,

and adaptive step sizes which change with the number of iterations.

For our purposes, it is sufficient to note that a small enough step size ε > 0 in the direction

of the negative gradient, ∆πππ = −ε · ∇G(πππ) always generates an improvement if the gradient is

nonzero and the objective function is continuously differentiable:

G(πππ−∆πππ)−G(πππ) ≈−ε∇G(πππ)T∇G(πππ) < 0. (46)

Even if the objective function is continuously differentiable, the gradient may change by a very

large amount over a very small interval. This can make the maximum safe step size so small

that the gradient method does not converge to an optimum.

To deal with these issues, optimization researchers makes the assumption that the first

derivative of the objective function is not only continuously differentiable but also satisfies a

Lipschitz condition |∇G(πππ+∆πππ)−∇G(πππ)| < L|∆πππ| for some Lipschitz constant L. Our gains func-

tion G(πππ) is not only continuously differentiable but also satisfies a Lipschitz condition because

the derivative is piecewise linear.

The Lipschitz condition bounds how fast the gradient can change over a small interval. This

makes it possible to prove that a small step size exists which is large enough that convergence to

an equilibrium is guaranteed. Guaranteed convergence is slow. Nesterov (2004, Corollary 2.1.2,

p. 70) shows that the error can be reduced by a factor of two if the number of iterations is dou-

bled.20 This theoretical results implies that the gradient method can slow down as it approaches

the equilibrium. In applications, the gradient method often does slow down in a manner con-

sistent with this theory. Since we need accurate solutions for our problem, we need a stronger

theorem to make the gradient method applicable.

20Nesterov (2004, Theorem 2.1.7, p. 61) shows there are badly behaved functions such that, for numbers of
iterations less than about N /2, reducing the error by a factor of four requires doubling the number of iterations.
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Intuitively, the gradient method should converge faster if the the objective function is “more

convex.” Convex optimization theory deals with this using the concept of strong convexity. The

objective function is “strongly convex” if it remains convex if a positive definite quadratic form

is subtracted from it.

While our objective function is not strongly convex, it can be made strongly convex by

adding a positive definite quadratic form to it. In the context of our problem, adding a quadratic

form corresponds to making the exchange a stabilizing market maker in the traded assets. If we

impute to the exchange a quadratic gains function 1
2 (πππ−πππ0)Tεεε(πππ−πππ0), the exchange’s implied

demand function is the derivative εεε(πππ−πππ0), which is a linear function of prices. The exchange

does not trade at all if πππ=πππ0, buys assets or portfolios with cheaper prices, and sells portfolios

with more expensive prices compared withπππ0. In practice, the exchange’s no-trade price vector

πππ0 might be the prices from the most recent auction, perhaps adjusted in a direction so that the

exchange liquidates previously acquired inventories. The positive definite symmetric matrix εεε

might be a diagonal matrix (with all diagonal elements strictly positive), implying that the ex-

change places stabilizing buy and sell orders at every price for every individual asset, providing

different levels of liquidity to different assets.

It is another standard textbook result from optimization theory that, with strong convex-

ity, the gradient method converges faster than when the derivative merely satisfies a Lipschitz

condition. Nesterov (2004, Theorem 2.1.15, p. 70) shows that reducing the error by a factor

of two requires no more than a constant number of iterations. The constant depends on the

ratio of the Lipschitz constant to the smallest entry on a diagonal matrix Q. If the exchange’s

demand function provides very little liquidity to some asset, this constant number of iterations

can theoretically be very large. Thus, while the gradient method—and therefore a variation on

Walrasian tatonnement—may theoretically find market clearing prices for our problem, the al-

gorithm may be too slow to be practical unless the exchange trades very actively as a market

maker. If the exchange does trade actively enough as a market maker, convergence to an equi-

librium can be very fast, but the exchange will dominate trading volume.

B.2 Interior point methods

Intuition suggests two strategies for speeding convergence.

First, if the objective function had a continuous second derivative (which ours does not

have), Newton’s method could be used. It is well-known that Newtons’s method converges

quadratically to an optimum if the starting point is close enough to the optimum, and the ob-

jective function has a continuous second derivative which does not change too fast. Quadratic

convergence means that the number of digits of accuracy doubles with each iteration! Un-
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fortunately, since the first derivative of our gains function G(πππ) is piecewise linear, the sec-

ond derivative (hessian), denoted ∇2G(πππ), is not always defined. When it is defined, the New-

ton step is proportional to the product of the inverse of the hessian with the negative gradi-

ent, −(∇2G(πππ)
)−1∇G(πππ). One intuition for nevertheless making Newton’s method work is to

“smooth out” the derivative so that the hessian always exists.

Second, a Walrasian auctioneer, frustrated by attempts to find market-clearing prices based

on local information about the derivative of quantities with respect to prices, might be tempted

to look deep into the book of unexecuted orders to find pools of potential liquidity which do

not show up in local gradient information. By using global information rather than local infor-

mation only, more informative price changes may be proposed at each iteration, thus speeding

up convergence.

Both of these intuitions are implicitly implemented by interior-point methods of optimiza-

tion.

Interior point methods, developed in the 1980s and refined in the 1990s, are motivated by

the idea of improving Newton’s method so that it implicitly uses global information about the

shape of the relevant functions. Newton’s method converges locally particularly fast when the

hessian itself satisfies a Lipschitz conditions. As (Nesterov, 2004, Section 4.1) points out, New-

ton’s method—unlike the gradient method—is scale invariant in the sense that changing the

units of measurement of prices (like changing some prices from U.S. dollars per share to dol-

lars per 100 shares but not changing other price conventions) does not change the Newton

iterations at all: When the Newton step is calculated, changes to the inverse hessian exactly

cancel out changes in the gradient. The implications of the Lipschitz condition on the hessian

do change when units are rescaled. To make a Lipschitz-like condition applicable in a scale

invariant manner, interior point methods replace the Lipschitz condition on the hessian with

the concept of “self-concordant functions.” Given two vectors x and u and a function f , define

the univariate function g by g (t |x,u) := f (x+ t ·u). The function f is self-concordant if there

exists a uniform bound L such that |g ′′′(t )| < L|g ′′(t )|3/2 for all x and y. This modified version

of a Lipschitz condition on the hessian uses the norm of the hessian itself to scale units so that

Newton’s method works better globally.

Both of these intuitions are implicitly implemented by interior-point methods of optimiza-

tion. Unlike Walrasian tatonnement, which solves the dual problem of finding optimal prices,

the interior point method uses information from the primal problem to solve the KKT condi-

tions.

Interior-point methods replace inequality constraints with penalty functions. In our prob-

lem, the standard log-barrier penalty function−ν̄ log(x) (element-by-element) can approximate

the inequality constraints x ≥ 0 for small ν̄> 0. Penalty functions keep all points x strictly in the
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interior of the inequality constraint set. This requires the starting point of the optimization

algorithm to be a feasible interior point of the inequality constraint set (but not the equality

constraint set). For our problem, the natural starting point is no-trade (x = 0). This point is fea-

sible but not an interior point because it lies on the boundary of the constraint (since it satisfies

the inequality constraint x >= 0 exactly).

To deal with this issue, we again allow the exchange to be a market maker, buying and selling

small quantities with globally linear demands as before. This allows any x on the interior such

that 0 < x < q to be feasible; the exchange can take into its inventory any uncleared quantities.

The utility function corresponding to the exchange’s gains function 1
2 (πππ−πππ0)Tεεε(πππ−πππ0) is yTπππ0−

1
2 yTεεε−1 y, where y is the vector of assets traded by the exchange. The primal objective function

is changed by adding this utility to it.

The interior point method is applied to an optimization of the primal problem, not the gains

function (dual problem). The new optimization problem differs from our original primal op-

timization problem in three ways: (1) It adds the exchanges utility function to the objective

function; (2) it adds the exchanges quantities traded to the market-clearing condition, and (3)

it replaces the inequality constraints with penalty functions.

The modified maximization problem is

max
x,y

[
xTpH − 1

2 xTD x+yTπ̄̄π̄π− 1
2 yTεεε−1 y+ ν̄ log(x)T1+ ν̄ log(q−x)T1

]
subject to Wx+y = 0.

(47)

If clearing prices areπππ∗, the exchange acquires inventories εεε(πππ0 −πππ∗). Note that the exchange’s

preferences are defined over assets while the customer orders define preferences over portfo-

lios.21

Not many functions are self-concordant. Fortunately, both the quadratic objective and the

log barrier function are self-concordant. This is all that we need for Newton’s method works well

on this problem for any ν̄. Interior point methods rapidly and accurately solve this problem

by solving different version of the problem as ν̄→ 0 using Newton’s method (Nesterov (2004,

Chapter 3)).

Solving the problem using this approach is equivalent to solving the KKT conditions (27)–

(30) with three changes: (1) Add the exchanges demand to the first-order condition. (2) Add the

exchange’s quantities traded to the market-clearing condition. (3) Replace the complementary

slackness conditionµµµ∗ ·x∗ = 0 withµµµ∗ ·x∗ = ν̄ ·1, and then let ν̄→ 0.

21Specifically, y is a vector of length N and εεε−1 is an N ×N positive definite matrix while x is a vector of length
I and D is an I × I positive definite diagonal matrix. It is straightforward to approximate the exchange’s orders
by treating them as single-asset portfolio orders which have very high pH and very low pL . This would make the
additional notation for the exchange’s trading unnecessary. We keep it separate to make analysis of exchange
trading more transparent.
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Unlike the solution for our original problem, the solution for our revised problem is unique

because the exchange always has partially executable orders in the market, and these orders

define unique prices:

Theorem 8. At the limit ν̄→ 0, the problem (26) has a unique solution for both optimal (market-

clearing) quantities x∗, y∗ and for pricesπππ∗.

Proof. The problem (26) can easily be converted into almost exactly the same form as the prob-

lem (10) when the exchange is treated as a customer, the exchange’ orders for assets are mod-

ified to be orders for portfolios, and the vectors x and y are then stacked together. The only

difference is that the lower limit price on the exchange’s orders is close to minus-infinity and

the exchange’s execution rates are very large numbers (even though the actual execution rate

is small because the orders are only barely partially executable relative to the lower limit price

near infinity). Thus, Theorems 1 and 2 imply existence of unique market clearing quantities and

possibly non-unique clearing prices. Since the exchange’s orders are all partially executable and

the matrix εεε−1 is positive definite, the unique quantities traded by the exchange can be uniquely

inverted to obtain the prices at which the exchange trades the optimal prices.

Trading by the exchange solves the tie-breaking problem. When there are no executable

orders to make prices unique, the exchange can make price reasonable by submitting a demand

schedule with willingness to trade at recent prices or other prices deemed reasonable.

B.3 Simulation Methodology

To examine numerical feasibility of flow trading, we simulate a book of orders for assets and

portfolios, then use an optimization algorithm to calculated clearing prices. Our simulations

implement a variation on the CVXOPT package in a Python environment. Both Python and

CVXOPT are open-source. CVXOPT solves quadratic programming problems using cone meth-

ods, a variation of interior point methods. This method solves the KKT equations by replacing

the complementary slackness equations (30) with the modified conditions

λλλ∗ · (q−x∗) = ν̄, µµµ∗ ·x∗ = ν̄, ν̄> 0, ν̄→ 0. (48)

For a given ν̄ > 0, the algorithm can easily enforce the interior-point intuition that all guesses

for primal parameters x and dual quantities µµµ, λλλ strictly satisfy the inequality constraints. The

correct solution is obtained in the limit ν̄→ 0, which allows inequality constraints to be satisfied

as equalities, consistent with the original problem.
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In each iteration of the CVXOPT algorithm, the KKT equations are linearized and solved in a

manner that pushes ν̄ towards zero. Since the KKT equations are essentially first-order condi-

tions, solving the linearized system is a variation on Newton’s method. At each iteration, a dif-

ferent linearized system of equations must be solved for updates to x,πππ,µµµ, andλλλ. This requires

solving a different positive-definite linear system with 3I +N unknowns on each iteration. For

typical problems, solving this system dominates computation time.

It may seem algorithmically wasteful to solve a different complex linear system for each it-

eration. Why not solve a system once and reuse it? The answer is that the values of the current

multipliers contain information about which orders are “likely” to be executable. The algo-

rithm uses the multipliers to attach an implicit weight to each order. The weight goes to zero

when the algorithm anticipates the order will be either nonexecutable or fully executable and

therefore will be irrelevant for price dynamics at the margin. The weight goes to one when the

multipliers imply that the order is likely to be partially executable and there highly relevant to

price dynamics at the margin. This is the algorithm’s way of looking deep into the order book

and using information about every order to guide price changes from one iteration to the next,

unlike pure gradient and Newton methods which only use local information. As multipliers

change every iteration, these weights also change every iteration. Therefore, solving the lin-

ear system with different weights each iteration is important if new relevant information about

order executability is being implied by changes in multipliers.

The CVXOPT package gives the user a choice between using a default solver or defining a

user-supplied custom solver. Our problem has two features which make a custom solver par-

ticularly desirable. First, the number of orders I is likely to be much larger than the number of

assets N . Second, the matrix D, which the algorithm assumes to be a positive-definite symmet-

ric matrix, is in our case diagonal and therefore easily inverted. This allows us to use a custom

solver which uses the explicit inverse of D to substitute out updates to the variables x, µµµ, λλλ, re-

ducing the number of variables in the linear system from 3I +N to only N . This dramatically

speeds up the algorithm.

For example, our base-case simulation assumes N = 500 assets and I = 30,000 orders. Our

user-supplied solver calculates a Cholesky decomposition of a 500× 500 matrix, which is far

faster than a prohibitively costly Cholesky decomposition of the 90,100×90,100 matrix using

the default algorithm.

Issues of Algorithmic Implementation Modern packages for solving quadratic programming

problems using the “cone-programming” version of interior point methods often try to solve

as wide a variety of problems as possible. This requires verifying that all inequality constriants

can be approximated with self-concordant barrier functions. This verification process can be a

59



computationally time consuming part of the algorithm. It is not needed for our problem, which

we know from the outset satisfies all needed self-concordance assumptions.

For our implementation, we got better performance by using the documentation of the

CVXOPT algorithm by Vandenberghe (2010) to implement our own version of the quadratic

programming algorithm in Python using the numpy and scipy packages for matrix and vec-

tor math rather than the actual CVXOPT package itself (which relies on different functions for

matrix and vector math). Our implementation gave almost identical results but was faster and

more configurable. Our implementation is much simpler than the CVXOPT package itself be-

cause it is specialized to our specific quadratic program, with D a diagonal matrix and simple

Euclidean cone constraints of the form 0 ≤ x ≤ q known ex ante to be approximated with lob-

barrier functions satisfying self-concordance assumptions.

Intuition suggests using the solution from the previous second’s auction to “warm start” a

search for the solution for the next second’s auction. One disadvantage of interior point meth-

ods in general and the CVXOPT algorithm in particular is that the parameter ν̄must also be reset

when the optimization is restarted. This affects the appropriate starting values for multipliers

and mak difficult to warm-start the algorithm.

An important issue concerning algorithmic efficiency concerns whether various calcula-

tions can be parallelized. Most of the computations are matrix-matrix or matrix-vector prod-

ucts in which the matrix is sparse. Sparsity arises because the portfolios being traded are typi-

cally single assets or pairs trades, which can obviously be described in a sparse manner. While

the sparse matrix multiplication can theoretically be parallelized across orders, our Python en-

vironment may not have exploited this possibility efficiently.22

Developing efficient parallel algorithms is an active area of computation research and may

lead to future improvements. Therefore, in a future production environment, we expect that

increases in computation time related to increases in the number of orders will not be a big

computation bottleneck because more cores can be used to perform computations which ag-

gregate information across orders.

The algorithm also requires many Cholesky decompositions (or other matrix decomposi-

tions), which are not easily parallelized. Increasing computation time related to increasing the

number of assets may prove to be more challenging bottleneck because adding more comput-

ing resources may not speed up the O(N 3) operations required for a Cholesky decomposition

as easily.

22We used the sparse_dot_mkl package for sparse matrix operations. This package calls parallelized functions
from the Intel Math Kernel Library (MKL) but did not offer much improvement in execution speed on multiple
cores, for reasons we do not yet fully understand.
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B.4 Simulation Details

Our simulated order book tries to make the optimization problem difficult for the same three

reasons that the gradient method is impractical.

1. Scaling: The size of the market varies cross-sectionally across assets and portfolios. Some

assets have a large number of orders, with the average order being large in dollar size. Other

markets have a small number of orders of small size.

2. Portfolio orders: The simulated order book orders for assets, orders from equally-weighted

and value-weighted market portfolios, orders for equally-weighted and value-weighted indus-

try portfolios, and pairs-trade orders to swap one asset, market portfolio, or industry portfolio

for another. These portfolio orders make the hessian for the gains function poorly conditioned.

In particular, the differences between equally-weighted and value-weighted portfolio orders in-

troduces a potential difficulty for an optimizer.

3. Changing hessian: To make the hessian change dramatically as prices change, the aver-

age difference pH −pL can be made small. When pH −pL is large, market depth does not change

much as prices changes, the problem looks linear to an optimizer, so clearing prices are likely

to be easy for the optimizer to find. When pH −pL is small, the range over which an order is par-

tially executable small, and the hessian changes greatly when prices change a small amount.

In the limit pH −pL → 0, the hessian itself goes to zero for a randomly guessed price vector.

Gradient methods and Newton methods, which rely only on local derivative information, can-

not make good guesses about search direction because they have no information about prices

where liquidity is located in the limit order book.

Since interior point methods are designed to deal with all of these problems, we expect the

optimizer to be able to calculate clearing prices when liquidity varies greatly across assets, there

are many equally- and value-weighted orders for market and industry portfolios, and orders

have small ranges over which they are partially executable.

The problem difficulty can also be varied by varying the intensity of exchange trading. The

problem is easier when the exchange provides a deeper market for all assets. In our simulta-

tions, we try to keep exchange trading as small as possible, consistent with numerical stability

of the algorithm.

The order book is constructed using parameters listed in Table 2, which provides a name for

the parameter, a base-case assumption for the parameter value, and a description of the param-

eter. The number of assets is 500. There are 10,000 orders for individual assets, 10,000 orders for

various indexes, and 10,000 orders which randomly buy an index or asset and sell an equal ex-

pected dollar value of another asset or index asset. In addition to value-weighted- and equally-

weighted market indexes, there are also 5 indexes for dollar volume quantiles and 10 indexes for

industries. Assets are assigned to volume and industry indexes by sorting the assets by expected
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Table 2: Parameters for simulating an order book. The value of each parameter is the base-case assump-
tion.

Variable Value Description

N 500 number of assets
M A 10,000 number of orders for individual assets
M X 10,000 number of orders for indexes
M2 10,000 number of pairs-trade orders to swap assets or indexes
num_quanti le_i ndexes 5 number industry quantiles
num_i ndustr y_i ndexes 10 number of industries
ew_i ndex_shar e 0.05 dollar volume share of equally-weighted index orders
v w_quanti le_i ndex_shar e 0.08 dollar volume share of value-weighted index orders
ew_quanti le_i ndex_shar e 0.02 dollar volume share of equally-weighted index orders
ew_i ndustr y_i ndex_shar e 0.08 dollar volume share of equally-weighted index orders
ew_i ndustr y_i ndex_shar e 0.02 dollar volume share of equally-weighted index orders
i ndex_pr i ce $100.00 price of one share of any index
std_num_or der s_asset 1.7 log-standard deviation of dollar order size for given asset
mean_asset_pr i ce $100.00 mean expected price of each asset
std_asset_pr i ce 0.00 log-standard deviation of asset price
i nvar i ance_exponent 1/3 invariance exponent
i nvar i ance_c $1.00 invariance constant
i nvar i ance_m 0.60 invariance moment ratio
std_or der _si ze 1.5 log-standard deviation of dollar order size for given asset
std_l i mi t_pr i ce 0.10 log standard deviation of order’s limit price midpoint
f r act i on_buy_or der s_asset 0.50 fraction of asset orders which buy an asset
av g _ph_mi nus_pl _bp 1.00 2∗ (p H

i −pL
i )/(p H

i +pL
i )∗10−4, p H

i −pL
i in basis points

std_ph_mi nus_pl 2.50 log standard deviation of p H
i −pL

i
f r ac_exchang e_l i qui di t y 10−8 larger value implies exchange provides more liquidity
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trading volume, then assigning the assets to value quantiles by their rank in the sort and assign-

ing assets to “industry” quantiles according to their rank modulo the number of industry in-

dexes. The dollar-volume shares of the equally-weighted index orders, volume-weighted quan-

tile index orders, equally-weighted quantile index orders, volume-weighted industry-index or-

ders, and equally-weighted industry-index orders are 0.05, 0.08, 0.02, 0.08, and 0.02, respec-

tively; the remaining 0.75 share of index volume is volume-weighted index orders.

Positive, continuous random variables are assumed to have a log-normal distribution. All

index prices and asset prices are normalized to have an expected price of $100.00 and log-

variance of zero. The matrices and vectors defining the problem are scaled in the algorithm

so that each iteration is unaffected by changes in expected stock prices (which corresponds to

stock splits). The expected price is defined as the mean of the order midpoint (p H
i +pL

i )/2. There

is no concept of fundamental value; prices depend only on orders.

We use the market microstructure invariance assumptions of Kyle and Obizhaeva (2016) to

convert assumptions about the dollar volume all orders if fully executable into assumptions

about the number and dollar size of orders. For any asset or index, the dollar volume of orders

is divided into a number of orders that grows with the two-thirds power of dollar volume, which

implies that the size of each order grows with the one-third power of dollar volume. We use

Kyle–Obizhaeva calibration of a dollar invariant constant and moment ratio to calibrate the

expected size of orders. This calibration does not mean much in the context of a one-second

auction; it does not affect results about computation time either. For a given asset or index,

the dollar size of orders has a log-standard deviation of 1.5, consistent with empirical results of

Kyle–Obizhaeva.

The cross-sectional distribution of expected number of orders across assets is assumed to

have a log-standard deviation of 1.7. This large standard deviation creates a few assets with

many orders and many illiquid assets, some of which may have no orders at all. Thus, a small

amount of exchange trading is helpful in pinning down prices for assets which might otherwise

only be traded as components of indexes.

We assume that the log-standard-deviation of the order midpoint is 10 percent. Half the

orders are expected to be buys and half are expected to be sells.

The average difference between p H
i and pL

i is assumed to be 1.00 basis point. For a typical

order to trade an asset of portfolio with a price of $100.00, this assumption implies that we

expect p H
i = $100.005 and pL

i = $99.995. This calibration is designed to stress the algorithm, not

to capture realistic expectations about market operation. We expect optimal trading strategies

to make the difference between p H
i and p H

i much larger in order to limit price impact and profit

from other traders’ price impact.

Finally, there is a difficult-to-interpret parameter, which defines how aggressively the ex-

63



change trades each asset. A larger value of this parameter results in the exchange market-

making orders capturing a larger fraction of volume. The baseline value of 10−8 leads to little

trading by the exchange.

Altogether, these assumptions attempt to create a difficult optimization problem by having

huge variation in liquidity across assets, including assets with no orders; poorly conditioned

matrices resulting from index orders, with even worse conditioning due to mixing equally- and

value-weighted indexes; equally-weighted- and value-weighted industry indexes which create

poor conditioning along different dimensions from volume-based portfolios; small differences

between p H
i and pL

i ; and very little exchange trading to stabilize the problem.

An important algorithmic implementation detail concerns the manner in which portfolios

are aggregated. If there are thousands of orders to trade a particular portfolio, such as the value-

weighted index, instead of multiplying by the same portfolio weights thousands of times, the

algorithm first adds up the portfolio demands for the particular portfolio across orders, then

multiplies by the portfolio weights only one time. Our algorithm does this by expressing the ma-

trix of portfolio weights W as the product of a sparse matrix defining a “master list” of allowed

portfolio weights and a matrix of order information which identifies one or two portfolios in the

master list, depending on whether the order is a pairs trade or not. These computations involve

very sparse matrices because both the master list specifications and the order information for

individual assets and pairs trades are sparse. Sequencing the sparse matrix multiplications ef-

ficiently improves performance dramatically because multiplying portfolio weights by orders’

execution rates is already a computational bottleneck.

64


	Introduction
	Related Literature

	Flow Orders for Portfolios
	Formal Definition of Flow Orders
	Key Examples
	Limitations of the Language

	Market Clearing Prices and Quantities
	Definition of Market Clearing
	Illustrations
	Existence of Market Clearing Prices and Quantities

	Equilibrium Characterization and Computation
	Walrasian tatonnement, the gradient method, and the dual problem
	Interior-Point Methods with the Exchange as Market Maker
	Simulation Results

	Portfolio Orders in the CARA-Normal Framework
	The Static CARA-Normal Framework
	Approximations for General Preferences and Limitations

	Discussion of Implementation and Policy Issues
	Conclusion
	Proofs
	Details Related to Optimization
	Efficiency of the Gradient Method
	Interior point methods
	Simulation Methodology
	Simulation Details


