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Abstract

Individual forecasts of economic variables show widespread overreaction to news, but labo-

ratory experiments on belief updating typically find underinference from signals. We provide

new experimental evidence to connect these two seemingly inconsistent phenomena. Building

on a classic experimental paradigm, we study how people make inferences and revise forecasts

in the same information environment. Subjects underreact to signals when inferring about un-

derlying states, but overreact to signals when revising forecasts about future outcomes. This

gap in belief updating is largely driven by the use of different simplifying heuristics for the

two tasks. Additional treatments link our results to the difficulty of recognizing the conceptual

connection between making inferences and revising forecasts.
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1 Introduction

When new information arrives, rational agents should update their beliefs according to Bayes’

rule. Empirical research, however, has uncovered many instances in which agents’ reactions to

information deviate from Bayes’ rule. One recurring theme in the existing research is that the type

of belief-updating bias appears to vary from setting to setting. For instance, excess volatility in

financial markets and boom-bust cycles in macroeconomics are more consistent with overreaction

to information (e.g., Barberis et al., 2015; Maxted, 2020; Bordalo et al., 2021). In contrast, post-

earnings announcement drifts and the sluggish response of individual behaviors to macroeconomic

conditions can be better understood with underreaction to information (e.g., Barberis et al., 1998;

Coibion and Gorodnichenko, 2015). This observation is further echoed in research that directly

elicits beliefs and belief changes in both lab and field settings: while some studies find clear

evidence of underreaction, others find the opposite pattern (see a more detailed review below).

Both overreaction and underreaction are useful concepts in economic analysis and have spurred

the development of many theories tackling important puzzles in finance and macroeconomics.

However, the current discussion is not satisfying because so far, we still know little about what

make people overreact in some cases but underreact in others (Benjamin, 2019). To address this

question, we need to uncover factors that moderate the direction and magnitude of belief-updating

biases. Progress on this front can shed light on the cognitive foundations of information processing

and, in doing so, bring more discipline and predictive power to models that assume non-Bayesian

updating.

In this paper, we propose a condition for underreaction and overreaction that is motivated by an

apparent tension between two large literatures that directly test Bayesian updating using reported

beliefs. On the one hand, in both field and lab settings, individuals, when asked to make forecasts,

often overreact to recent news (e.g., Hey, 1994; Greenwood and Shleifer, 2014; Gennaioli et al.,

2016; Frydman and Nave, 2017; Conlon et al., 2018; Bordalo et al., 2020; Afrouzi et al., 2020).

On the other hand, when asked to make inference about underlying states, subjects in experiments

typically underreact to realized signals (see Benjamin (2019) for a systematic review). While this
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Figure 1: Inference problem (left panel) and forecast-revision problem (right panel)

Notes: In an inference problem, people observe a signal and then update their beliefs about the underlying states. In a
forecast-revision problem, people revise their forecasts about outcomes in response to a realized signal.

tension may be due to differences in contexts or data-generating processes (DGP), we propose

an alternative explanation that has previously been neglected: belief updating differs between an

inference process and a forecast-revision process. The differences between the two processes are

illustrated in Figure 1. An inference process is one where a subject observes signals and learns

about an underlying state that determines the distribution of signals. A forecast-revision process is

one where a subject also observes signals but instead update beliefs about future outcomes whose

distributions depend on the underlying state.

In standard models, the forecast-revision process closely follows the inference process. How-

ever, by conducting a series of controlled experiments in which subjects perform both types of

updating tasks, we find evidence for a disconnect between the two: subjects underreact to signals

when making inference but overreact when revising forecasts. This finding potentially reconciles

the seemingly inconsistent stylized facts in the aforementioned empirical literatures. It also high-

lights an important driver of belief-updating biases that has been previously neglected: the type of

question being asked.

Our baseline treatment follows the “bookbag-and-poker-chip” paradigm1 but phrase the rele-

vant variables in economic terms. In each round of the experiment, there is a “firm” with a fixed

state which is either good or bad. The firm generates signals, framed as its monthly stock price

1In a typical experiment under this paradigm, there is a bookbag that contains poker chips of several colors. Sub-
jects do not know the bag’s color composition, but are given the prior distribution of the composition. A random chip
is then drawn from the bag and, upon observing its color, subjects are asked to report their posterior beliefs about the
bag’s color composition.
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growth, which are informative of the state; good firms, on average, have a higher growth in stock

price than bad firms. Subjects do not know the true state but are given the full data-generating pro-

cess, including the prior distribution over the two states and the distributions of signals conditional

on each state. In each month, the signal distribution is i.i.d. normal, with a mean of 100 if the state

is good and 0 if it is bad.

The key of our experimental design is comparing belief updating about underlying states and

about future outcomes in the same information environment. The baseline treatment has two main

parts: Inference and Forecast Revision. In Inference, subjects observe one signal realization and

then report their updated beliefs about the states—the likelihoods of the firm being good and being

bad. In Forecast Revision, subjects also observe one signal realization, but instead report their

updated expectations about the next signal—the expected stock price growth next month. In our

environment, these two types of belief are tightly linked: if one believes that the firm is good with

a p% chance, then by the Law of Iterated Expectations (LIE), the expectation about the next signal

should be p%× 100 + (1− p%)× 0 = p. The simplicity of this relation ensures that, for subjects

who understand this link, the two problems pose a similar computational complexity.

Despite the straightforward connection between Inference and Forecast Revision, subjects’ be-

haviors exhibit distinct patterns in the two tasks. In Inference, 60% of the answers underreact

relative to the Bayesian benchmark while 25% overreact, a result that replicates the stylized fact

of systematic underreaction in the bookbag-and-poker-chip literature. By contrast, in Forecast Re-

vision, 43% of the answers underreact while 50% overreact. Similarly, when belief updates are

measured using the difference between posterior and prior beliefs, the average size of belief up-

dates is significantly larger for Forecast Revision than for Inference. We refer to this discrepancy

in belief updating as the “inference-forecast gap.”

To detect modes of behavior that could be driving the aggregate results, we examine the dis-

tributions of answers and find several interesting patterns. In Inference, the modal behavior is

“non-updates”; that is, in 30% of the answers, the posteriors equal the priors. In Forecast Revision,

the fraction of non-updates drops to 25%. Meanwhile, two other behaviors that rarely appear in
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Inference become modal. Under the first mode, which represents 20% of the answers, subjects

answer 100 when the signal is good and 0 when it is bad. These subjects make forecasts as if they

were 100% sure about being in the more representative state (the state more consistent with the

signal)—a simplifying heuristic that we term “exact representativeness.” The second mode, con-

stituting 10% of the answers, is to report a forecast that equals the signal. That is, subjects directly

use the past realization as their expectation of the next outcome—a simplifying heuristic we term

“naive extrapolation.” These three behavioral modes, we show, largely contribute to the existence

of the inference-forecast gap.

Additional analysis shows that the inference-forecast gap is robust across subsamples and un-

der alternative framing of the signal and the outcome. Moreover, the main results persist in two

alternative treatments, one with binary signals and one with an outcome that is dissimilar to the sig-

nal and completely determined by the state. By varying the property of the signal and the outcome

variable, these treatments demonstrate that the inference-forecast gap is robust to alternative DGPs.

They also help us rule out explanations, for example, that resort to signal-outcome similarity and

misperceptions about signal autocorrelation (such as the hot-hand bias).

The documented inference-forecast gap, especially the different modal behaviors in the two

problems, could not arise if, when solving a forecast-revision problem, subjects correctly imple-

ment the infer-then-LIE procedure by (a) first updating their beliefs about the states as in Inference

and then (b) using these posterior beliefs to compute the expected value of the forecast outcome

under the LIE. The rejection of this standard procedure of forecast revision prompts us to find

alternative drivers for the gap. One possibility is that subjects intend to follow the infer-then-LIE

procedure, but make errors or take shortcuts due to the procedure’s complexity. To study this pos-

sibility, we run a treatment in which we show subjects their own inference answers when they

solve the corresponding forecast-revision problems. This effectively reduces the two-step infer-

then-LIE procedure to a one-step procedure of simply applying the LIE. The treatment, however,

has little impact on the inference-forecast gap. Moreover, we confirm that subjects are largely

capable of applying the LIE correctly when solving a standalone expectation-formation problem.
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Taken together, these results suggest that subjects do not appear to be following the infer-then-LIE

procedure when solving forecast-revision problems—correctly or with errors. Instead, they resort

to alternative procedures which contribute to the inference-forecast gap we document.

Why do subjects not use the infer-then-LIE procedure in Forecast Revision? We hypothesize

that they do not recognize the conceptual link between inference and forecast revision. To test

this hypothesis, we conduct a final treatment in which this link is made more transparent to the

subjects. In the Inference part of the treatment, subjects still observe the firm’s stock price growth

and then report their posterior beliefs about the states. In the Forecast Revision part, however, they

are asked to predict the directional change of the firm’s revenue next month, which is upward if

and only if the firm is good. By equating the underlying states to the outcomes, this design makes

it obvious that Inference and Forecast Revision are essentially asking the same question. In this

treatment, subjects underreact to the same extent in both parts, eliminating the inference-forecast

gap. Therefore, the difficulty of conceptually connecting the two tasks plays a key role in the

inference-forecast gap.

One remaining question is why simplifying heuristics such as exact representativeness and

naive extrapolation are more prevalent in Forecast Revision than in Inference, but non-updates are

prevalent in both. We provide some speculative arguments that this finding may be explained by

the theory of attribute substitution (Kahneman and Frederick, 2002).

Our work is related to an active body of experimental research on the conditions of overreac-

tion and underreaction in belief updating (Afrouzi et al., 2020; Enke and Graeber, 2020; He and

Kucinskas, 2020; Enke et al., 2021; Hartzmark et al., 2021; Liang, 2021).2 We replicate the finding

from the bookbag-and-poker-chip paradigm that people underreact to information when updating

beliefs about underlying states (Phillips and Edwards, 1966; Benjamin, 2019). Importantly, we

show that underreaction does not generalize to forecast-revision problems that ask subjects to pre-

dict future outcomes, even though the information environment does not change.3 We thus bring

2Empirical work using field or survey data, including Malmendier and Nagel (2011, 2016) and Wang (2020), also
discusses the conditions under which people overreact and underreact to new information.

3A few belief-updating experiments using the bookbag-and-poker-chip design elicit beliefs of future draws condi-
tional on the current draw. Moreno and Rosokha (2016), Hartzmark et al. (2021) and Epstein et al. (2021) find either
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a new perspective to this literature; namely, that the direction of belief-updating biases depends

on the type of belief elicited. The documented inference-forecast gap is largely due to the use of

different simplifying heuristics in the two types of problems. This finding is consistent with recent

papers on the roles of complexity and incorrect mental models in explaining belief-updating biases

(Enke and Zimmermann, 2019; Enke, 2020; Esponda et al., 2020; Andre et al., 2021; Graeber,

2021).4

The finding of overreaction in forecast revisions provides experimental support for overreac-

tion in survey expectations.5 In this regard, our paper complements studies that find overextrapo-

lation in autocorrelated time-series forecasts (Hey, 1994; Frydman and Nave, 2017; Afrouzi et al.,

2020; He and Kucinskas, 2020).6 DGPs in our experiment, unlike those in these previous studies,

fully specify the underlying states, which in turn determine the signal and outcome distributions.

This design brings the setting closer to standard models in macroeconomics and finance and lends

several advantages for our analysis.7 First, the explicit separation between states and outcomes

makes it possible to design different questions targeting inference and forecast revision, respec-

tively, thereby allowing us to pin down where a specific updating bias arises. Second, such a design

allows us to separately identify different forms of overreaction, such as representativeness-based

overreaction (Kahneman and Tversky, 1972; Bordalo et al., 2018) and mechanical extrapolation

(Barberis et al., 2015, 2018). Indeed, both forms are prevalent in the data and contribute to the

near-Bayesian updating or overreaction in their average results, and Fehrler et al. (2020) finds underreaction. None of
these experiments compare beliefs of future draws with beliefs of the bookbag’s composition.

4This paper is also related to the psychology literature on the asymmetry between diagnostic reasoning
(Pr(Cause|Effect)) and predictive reasoning (Pr(Effect|Cause)) in a given causal structure (e.g., Tversky and Kahne-
man, 1980; Fernbach et al., 2011). Whereas the inference process in our paper is synonymous to diagnostic reasoning,
forecast revision is different from either kinds of reasoning in this literature because it elicits the belief of one “effect”
(the forecast outcome) of the “cause” (the underlying state) conditional on another effect (the signal). Moreover, in
parts of our experiments, we elicit forecasts without showing subjects any signal, which is more akin to predictive
reasoning. However, we show that biases in these parts cannot explain the inference-forecast gap.

5For example, see Greenwood and Shleifer (2014); Gennaioli et al. (2016); Conlon et al. (2018); Bordalo et al.
(2020); Barrero (2021); and Kohlhas and Walther (2021).

6He and Kucinskas (2020) also finds that forecasts underreact to past observations of a different variable.
7In asset-pricing models, when investors are learning about firm quality (fundamentals), it is common to assume

that they observe noisy signals of quality such as stock returns (e.g., Glaeser and Nathanson, 2017). In the mutual
fund literature, investors learn about manager skills by observing past fund returns (e.g., Berk and Green, 2004; Rabin
and Vayanos, 2010). In the labor literature, job seekers learn about their employabililty from the offers they receive
(Burdett and Vishwanath, 1988).
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inference-forecast gap. Third, having a fully-specified DGP allows us to attribute biases in poste-

rior beliefs to incorrect statistical reasoning rather than to misperceived DGPs. We also apply this

design to show that overreaction in forecast revision generalizes to a setting in which signals and

outcomes are of two different variables.

Overreaction in Forecast Revision is reminiscent of the hot-hand bias (Gilovich et al., 1985;

Tversky and Gilovich, 1989; Suetens et al., 2016), which refers to the exaggeration of belief in

an outcome after observing a long streak of the same outcomes. In contrast, overreaction occurs

in our experiment after just one signal realization. Moreover, we find overreaction even when the

forecast outcome is different from the signal variable and fully determined by the state, a setting

in which misperceptions of outcome autocorrelation, such as the hot-hand bias, are irrelevant. Our

underinference result is also inconsistent with the leading account of the hot-hand bias, which is

based on overinference (Rabin, 2002; Rabin and Vayanos, 2010). On the design level, we use

explicit instructions and comprehension checks to make sure subjects do not commit the hot-hand

fallacy. Overall, it is unlikely that our results are driven by or a manifestation of the hot-hand bias.

The rest of the paper proceeds as follows. Section 2 outlines our experimental design. Section

3 shows the existence of the inference-forecast gap. Section 4 studies the decision procedures used

by subjects. Section 5 concludes and discusses the implications of our results.

2 Experimental Design

2.1 Environment

To compare belief updating between making inferences and revising forecasts for the same

individual, we adopt a within-subject experimental design. For each inference problem a sub-

ject solves, there is a corresponding forecast-revision problem that shares the same information

environment with an identical DGP and signal realization.

The Baseline treatment has five parts which are summarized in Table 1. Each part has eight

rounds of problems. In each round, subjects are first presented with a “firm” randomly drawn from
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Table 1: Summary of variables elicited in each part of the experiment

Number Part Show signal? Beliefs elicited

1 Inference Prior No Pr(θ)

2 Inference Yes Pr(θ|s0)

3 Forecast Prior No E(s1)

4 Forecast Revision Yes E(s1|s0)

5 Expectation Formation No E(s1)

Table 2: Parameter values for DGPs

Index 1 2 3 4 5 6 7 8

Pr(G) 50% 50% 50% 50% 50% 50% 80% 20%

σ 50 60 70 80 90 100 100 100

a new pool of 20 firms. A firm’s state θ is either G(ood) or B(ad). Subjects do not know the state

of the drawn firm, but are given the composition of the pool, which specifies the prior distribution

over the states. The firm generates signals, st, which are framed as the firm’s stock price growth

in month t, and subjects are provided with their distribution: signals of a good firm follow an i.i.d.

normal distribution of N(100, σ2) and signals of a bad firm follow i.i.d. N(0, σ2).8 Because good

firms are more likely to have higher stock price growth than bad firms, a signal of high stock price

growth is diagnostic of the firm being good.

To sum up, in each round, the DGP is fully specified by two pieces of information: the prior

distribution of states and the conditional distribution of signals. Both are presented to subjects

using figures and text in a one-page display (see Figure 2 for an example), and we explain this

interface with detailed instructions.9 Table 2 summarizes the parameter values for the eight DGPs.

8In the actual implementation, we discretize the supports of normal distributions to multiples of 10 and truncate at
both tails.

9Screenshots of the experimental interface can be found at http://yuchengliang.com/iegap/
instructions.pdf.
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Each DGP is represented by one problem in each of the five parts (the DGP is modified in the

Expectation Formation part, which we will explain later). As a result, each problem in any given

part has a corresponding problem in each of the other four parts, which ensures that answers across

parts are directly comparable. Unless mentioned otherwise, an observation is defined as a subject’s

answers to the five corresponding questions in the five parts.

The two main parts are Inference and Forecast Revision. In each round, subjects first observe

the firm’s stock price growth in the current month s0. In Inference, after seeing the realized signal,

subjects report their updated beliefs about the states Pr(θ|s0). The beliefs are elicited in percent-

age, and henceforth we will refer to an inference answer as the reported belief about the Good

state without the % sign.10 In Forecast Revision, subjects instead report their updated expectations

about the firm’s stock price growth next month E(s1|s0). To ensure an apples-to-apples compari-

son between the two parts, signal realization is set the same in any two corresponding rounds for

the same subject, though it varies across subjects.

In the other three parts, subjects do not observe any signal realization before beliefs are elicited.

In Inference Prior, they directly report their prior beliefs about the states Pr(θ) based on their

knowledge about the DGP. Similarly, in Forecast Prior, they directly report their prior expectations

about the signal E(s1). These two parts test whether subjects can correctly form prior beliefs. The

last part, Expectation Formation, is identical to Forecast Prior, except for the composition of firms

in the pool. While the composition of firms in Forecast Prior is set exogenously according to Table

2, in Expectation Formation it is determined endogenously by subjects’ reported posterior beliefs

about the states in Inference. For example, if a subject reports a posterior belief of Pr(G|s0) =

40% in a round in Inference, then the pool of firms in the corresponding round in Expectation

Formation will have 40% × 20 = 8 good firms and 12 bad ones.11 Expectation Formation is

designed to test whether subjects can correctly form expectations about the next signal when the

10In the experimental interface, there is one blank for the belief about the Good state and one for the Bad state.
Once a subject types a number into one of the two blanks, the other blank will be automatically filled with 100 minus
that number. Only numbers in the range [0, 100] are allowed.

11The numbers of good and bad firms in Expectation Formation are rounded to the nearest integer if the reported
beliefs in Inference are not a multiple of 5%. Fourteen percent of the answers in Inference are not multiples of 5%,
among which half are rounded up and the other half rounded down.
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Figure 2: An example of the interface for the DGP
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states are distributed according to their own inference posteriors.

Subjects need to stay on each page for at least eight seconds before they can type in answers.

This requirement aims to ensure that sufficient attention is paid to the problems and to prevent

click-through behavior. For each subject, we further randomize (a) the order of different DGPs

in each part and (b) the order of the five parts. For the latter randomization, we require that (a)

priors are elicited before eliciting posteriors and (b) the Expectation Formation part comes after

Inference. Hence, we are left with three orders of parts: 12345, 12534, and 34125.

After the five parts, the experiment ends with an unincentivized exit survey. At the end of

the experiment, subjects may receive a $5 bonus payment, the chance of which depends on their

answer in one randomly selected round through a quadratic rule.12

Building off the Baseline treatment, we implement several straightforward extensions as ro-

bustness checks. First, we frame the signal as revenue growth instead of stock price growth. Sec-

ond, we ask subjects about their expectations of the last signal s−1 (“stock price/revenue growth

in the previous month”) instead of the next signal s1. In Appendix A.5, we show that results are

qualitatively similar across all these extensions. Therefore, we pool the data from all versions of

the Baseline treatment for our main results.

2.2 The no inference-forecast gap benchmark

According to standard probability theory, answers in Inference and Forecast Revision should be

tightly linked. Specifically, the Law of Iterated Expectation (LIE) implies the following equation:

E(s1|s0) = Pr(G|s0)× E(s1|G, s0) + Pr(B|s0)× E(s1|B, s0). (1)

12If their answer in that round equals the rational benchmark according to standard probability theory, then they
receive the bonus with certainty; otherwise, their chance of getting the bonus decreases quadratically in the difference
between their answer and the rational benchmark (see (Hartzmark et al., 2021) for a similar incentive structure). If the
answer is p and the rational benchmark is q (in % for the two Inference parts), then the chance of receiving the bonus
is max{0, (100− (p− q)2)%}.
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In our experiment, s1 and s0 are independent conditional on the state θ, so E(s1|G, s0) = E(s1|G) =

100 and E(s1|B, s0) = E(s1|B) = 0. Therefore, Equation (1) simplifies to the following equation:

E(s1|s0) = Pr(G|s0)× 100. (2)

We term Equation (2) the no inference-forecast gap condition. It summarizes the theoretical link

between the posterior belief about the underlying states and the updated expectation of the fore-

cast outcome s1. If an Inference answer and its corresponding Forecast Revision answer satisfy

this condition, then there is no discrepancy between these two types of belief-updating problems:

Bayesian inference would then translate to rational forecasts, and any deviation from Bayes’ rule

in the inference answer would imply the same deviation from rationality in the forecast-revision

answer.

The computational simplicity of Equation (2) is an advantage of our experimental design. Un-

der the no inference-forecast gap condition, if a signal leads to a belief that the good state has 40%

probability, then the resulting expectation of the outcome should be 40. For subjects who under-

stand this condition, the computational cost of solving a forecast-revision problem is very close to

that of solving the corresponding inference problem. Therefore, computational complexity alone

is unlikely to cause violations of the no inference-forecast gap condition.13

When subjects solve a forecast-revision problem, one simple and standard procedure that sat-

isfies the no inference-forecast gap condition is the following infer-then-LIE procedure. In the

first step, subjects update their beliefs about the states using the same (and possibly non-Bayesian)

rule as in the corresponding inference problem. In the second step, they apply the LIE using the

posteriors from the first step to obtain their expectations about the forecast outcome.

Since the correct implementation of the infer-then-LIE procedure satisfies the no inference-

forecast gap condition, a gap can arise for two broad reasons. First, subjects may consciously

follow the infer-then-LIE procedure, but in doing so make errors or take shortcuts that bias their

13Moreover, because beliefs are equally incentivized across the two types of problems, rational tradeoff between
monetary gains and computational costs, in the spirit of Sims (2003); Gabaix (2014); Caplin and Dean (2015); and
Woodford (2020), cannot generate an inference-forecast gap.
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expectations, resulting in a gap. Second, it may be that subjects do not use the infer-then-LIE

procedure, but use alternative procedures in their forecast revisions.

2.3 Instructions and comprehension questions

Subjects receive extensive instructions, with the tasks and incentive structure explained in de-

tailed and intuitive terms. In particular, we go to great lengths to ensure that subjects fully under-

stand the DGP. First, we emphasize that the state of a firm is constant across months but the signals

are i.i.d. conditional on the state. In doing so, we explicitly caution against incorrect beliefs that

the signals are autocorrelated conditional on the state. Second, we use an example DGP to illus-

trate the discretized normal distributions of the signals. In particular, we highlight the conditional

means (0 and 100) and the property that signals higher (lower) than 50 are good (bad) news about

the firm’s quality. Third, we present subjects with two explicit formulae, one for calculating the

prior distribution over states from the pool composition (Pr(G) = Number of Good Firms
20

) and one for

calculating the expectation about the signal from the belief about the states (E(s) = Pr(G)×100).

However, we do not mention or nudge subjects toward any specific belief-updating rule.

At the end of the instructions, subjects need to answer a set of comprehension questions to

test their understanding of the DGP, the incentive structure, and the two formulae. Subjects can

proceed only if they have answered all the comprehension questions correctly.14

2.4 Procedural details

We programmed our experiment using oTree (Chen et al., 2016). For Baseline, we recruited

202 subjects through Prolific, an online platform designed for social science research.15 For 120

subjects, signals were framed as monthly revenue growth, and for 82 subjects, signals were framed

as stock price growth. For 40 subjects, questions in the forecast parts—namely Parts 3, 4, and

5 in Table 1—asked about expectations of the last signal (“stock price or revenue growth in the

14If there are mistakes, she will be asked to re-answer those questions.
15See Palan and Schitter (2018) on using Prolific as a subject pool. We recruited only US subjects who had com-

pleted more than 100 tasks on Prolific and who had an approval rate of at least 99%.
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Table 3: Overview of additional treatments

Treatment Section Difference from Baseline

Cross-variable Forecast 3.3
Forecast outcome is a different variable; = 100 if θ = G, = 0 if
θ = B

Binary Signal 3.4 Signals are binary; forecast questions ask about full distributions

Nudge 4.1 Beliefs about states and forecasts are elicited on the same page

Obvious Connection 4.2
Forecast outcome is a different variable; = Up if θ = G, = Down if
θ = B; forecast questions ask about full distributions

previous month”) instead of the next signal. There was also some variation across subjects in the

order of parts: 72 subjects went through the experiment in the order of 12345, 73 in the order

of 12534, and 57 in the order of 34125. A subject, on average, spent about 30 minutes on the

experiment and earned a payment of $7.15, $5 of which was the base payment.

2.5 Other treatments

In addition to Baseline, we also implemented several other treatments that investigate the ro-

bustness of our results and the mechanisms behind. These treatments are summarized in Table 3.

The details will be described in their respective sections.

3 Evidence for the Inference-Forecast Gap

In this section, we present results from our experiment to compare belief-updating in inference

and forecast-revision problems. This comparison is carried out using three methods of analysis.

First, we classify answers into Near-rational, Overreact, and Underreact, and compare the distri-

butions of these three categories amongst inference and forecast-revision problems. Second, we

compare the average belief movements from the priors in these two types of updating task. Third,

we compare the distributions of individual answers and identify differences in modal behaviors. If
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the no inference-forecast gap condition in Equation (2) is met, then results from the two types of

updating problems should exhibit identical patterns in all three kinds of analysis. Any systematic

differences would imply the existence of an inference-forecast gap.

3.1 Aggregate patterns

For an inference problem in our experiment, the rational benchmark is given by Bayes’ rule:

PrRational(G|s0) =
Pr(G) · Pr(s0|G)

Pr(G) · Pr(s0|G) + Pr(B) · Pr(s0|B)
. (3)

For a forecast-revision problem in our experiment, the rational benchmark can be derived by ap-

plying LIE to the corresponding rational inference answer:

ERational(s1|s0) = PrRational(G|s0)× E(s1|G) + PrRational(B|s0)× E(s1|B)

= PrRational(G|s0)× 100. (4)

Note that the no inference-forecast gap condition in Equation (2) is satisfied by the rational bench-

marks.

We classify answers in Inference and Forecast Revision by how they compare to the rational

benchmarks. An answer is classified as Near-rational if its difference from the rational benchmark

is no more than 2.5.16 To introduce the categories of Underreact and Overreact, we first define

“update” by how much an answer moves from its (objective) prior value in the direction of the

realized signal:

update =


answer− prior, if s0 > 50

prior− answer, if s0 < 50

(5)

It is straightforward from equations (3) and (4) that rational updates between any two correspond-

ing inference and forecast-revision problems are identical. We classify an answer as Overreact if

16We choose the number 2.5 so that the interval for Near-rational covers at least one multiple of five, on which
subjects’ answers tend to cluster.
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Table 4: Aggregate patterns in Baseline

N=202, Obs=1480 Classification Update

Underreact Near-rational Overreact Mean (s.e.)

Inference 59.8% 15.0% 25.2% 15.1 (0.8)

Forecast Revision 43.1% 7.4% 49.5% 29.9 (2.3)

Rational 23.4 (0.3)

Notes: The first three columns present the percentages of answers classified as Underreact, Near-rational, and Over-
react. The last column shows average belief movements in the signal direction from the (objective) priors and their
rational benchmark. Observations with signal equal 50 are excluded. Standard errors are clustered by subject.

its update is larger than the rational update by more than 2.5 and as Underreact if its update is

smaller than the rational update by more than 2.5. We do not classify answers when s0 = 50; that

is, when the signal is uninformative.

Table 4 shows the aggregate patterns in the Baseline treatment (excluding observations with a

realized signal of 50). Results from Inference replicate the key finding from the classic bookbag-

and-poker-chip literature: subjects overwhelmingly underreact to new information and update too

little about the firm’s underlying state. Out of all the answers, 59.8% imply underreaction, 25.2%

imply overreaction, and 15% are considered Near-rational. These patterns, however, flip in Fore-

cast Revision: 49.5% of the answers indicate overreaction to new information—higher than the

43.1% classified as underreaction.

The last column of Table 4 demonstrates that the inference-forecast gap also shows up in av-

erage updates. In Inference, the average update across all answers is 15.1, much smaller than the

average rational update of 23.4. By contrast, in Forecast Revision, subjects update too much, lead-

ing to an average update of 29.9. Column (1) of Table A6 confirms the inference-forecast gap in

updates in a regression.

The inference-forecast gap is highly robust in various cuts of the data (see Appendix A for

detailed results). In a more “reasonable” subsample which only includes observations with a

forecast-revision answer within [0, 100] and updates that are nonnegative, forecast-revision an-
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Figure 3: Scatterplots of answers against realized signals: subsample with symmetric priors

Notes: This figure plots the updated beliefs against the realized signals. The size of each circle represents the number
of answers that equal the value on the y-axis given the realized signal on the x-axis.

swers no longer exhibit overreaction on average, but the inference-forecast gap remains highly

significant. Moreover, the gap is present under all eight DGPs, which entail different priors and

signal distributions. The gap increases in signal strength but exists even for the weakest signals.

Our result also persists in a subsample that excludes observations with incorrect reported prior be-

liefs. In addition, the order of experimental parts, the framing of signals and outcomes, and subject

characteristics have no qualitative impacts on the inference-forecast gap.

3.2 Modes of behavior

To detect more nuanced patterns in individual answers, in this section we examine the distribu-

tions of posterior beliefs and explore modes of behavior that could be driving the inference-forecast

gap. To illustrate, Figure 3 plots the answers against the realized signals for problems with sym-

metric objective priors in Inference and Forecast Revision.17 Several behavioral modes appear

salient in the plots. In Inference, a large fraction of answers equals the 50-50 prior. The prevalence

of such non-updates replicates the stylized fact in previous inference experiments (e.g., Coutts,

2019; Graeber, 2021).
17Distributions of answers in problems with asymmetric priors display similar patterns. See Appendix B for details.
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For Forecast Revision, non-updates also constitute a mode. However, two other modes emerge.

First, a large number of forecast-revision answers cluster at 100 when s0 > 50 and 0 when s0 < 50.

Subjects who give these answers behave as if they were certain about being in the representative

state (the state consistent with the direction of the signal’s realization) and base their forecasts

solely on that state. We term this overreacting behavior “exact representativeness” because it is

consistent with the representativeness heuristic (Kahneman and Tversky, 1972; Bordalo et al.,

2018).18

Second, a smaller yet still significant fraction of forecast-revision answers are anchored at the

face value of the realized signal.19 We term this behavior “naive extrapolation” because it suggests

a particular form of extrapolative expectation formation (Barberis et al., 2015, 2018; Liao et al.,

2021).20 The face value of the realized signal is among the top three common answers for 19

out of 53 values of the realized signal. This behavior leads to overreaction in the problems with

symmetric priors in our experiment.

In Table 5, we define the behavioral modes and quantify their prevalence in all inference and

forecast-revision problems. Confirming the patterns in the scatterplots, non-updates are widespread

in both types of problems, making up 29.9% and 25.1% of the answers in Inference and Forecast

Revision, respectively. The other two behavioral modes, exact representativeness and naive ex-

trapolation, appear almost exclusively in Forecast Revision, making up 20.1% and 10.3% of the

answers, respectively. In comparison, observations that meet the no inference-forecast gap con-

dition and are not non-updates constitute only 5.3% of the answers. We conduct further analysis

in Appendix B. In Table B2, we relax the classification criteria for the modes and find similar

qualitative patterns. Table B3 shows similar patterns in a subject-part level classification exercise,

18An alternative interpretation of this modal behavior is that subjects base their expectations solely on the ex-post
more likely state, which can differ from the representative state when the prior is asymmetric. We can differentiate the
two interpretations by examining problems with an asymmetric prior. In Appendix B, we study the distributions of
forecast-revision answers under asymmetric priors and find evidence supporting the representativeness interpretation.
However, this result should be interpreted as only suggestive due to a small sample size.

19For each x-axis value—that is the value of the realized signal—we rank answers by the frequency of their occur-
rence. For 19 out of the 53 x-axis values, anchoring on the signal value is among the top three most frequent answers.
In comparison, non-updates and exact representativeness are each among the top two most frequent answers for 36
x-axis values.

20In general, extrapolation refers to people’s tendency to rely heavily on past outcomes to forecast future outcomes.
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Table 5: Modes of behavior in Baseline

Mode Criterion for answer Inference Forecast Revision

Non-update = prior 29.9% 25.1%

Exact Representativeness = 100 if s0 > 50, = 0 if s0 < 50 3.9% 20.1%

Naive Extrapolation = s0 3.3% 10.3%

No Inference-Forecast Gap

(excluding non-updates)

inference = forecast revision

(6= prior)
5.3%

Unclassified 59.8% 43.9%

Observations 1480 1480

Notes: The column “Criterion for answer” shows the criterion for an answer to be classified into a mode. Note that
an answer may be classified into more than one mode. The percentages in the last two columns are the fractions of
answers in each mode in Inference and Forecast Revision. Observations with signal equal to 50 are excluded.

where a subject is classified into a type for a given part (Inference or Forecast Revision) if more

than half of her answers in that part are classified into the corresponding mode. Based on this

subject-part-level classification, we also find a modest degree of consistency between a subject’s

types in the two parts. For example, many subjects are classified as non-updaters in both parts.

The difference in modal behaviors largely contributes to the inference-forecast gap. For ex-

ample, for the more “reasonable” subsample in which all forecast-revision answers fall within [0,

100] and no answers update in the wrong direction, the inference-forecast gap is eliminated on the

aggregate level if we exclude observations which have at least one answer in one of the three be-

havioral modes—non-updates, exact representativeness, and naive extrapolation (see Column (4)

of Table A6).

3.3 Cross-variable Forecast treatment

In this and the next subsection, we investigate the inference-forecast gap in two additional

treatments with alternative DGPs. Both generate similar patterns to those of the Baseline treatment.

These results demonstrate the prevalence of the inference-forecast gap in various environments and
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Table 6: Aggregate patterns in Cross-variable Forecast

N=100, Obs=748 Classification Update

Underreact Near-rational Overreact Mean (s.e.)

Inference 63.8% 15.1% 21.1% 13.8 (1.3)

Forecast Revision 40.6% 8.7% 50.7% 32.9 (3.3)

Rational 23.3 (.5)

Notes: The first three columns present the percentages of answers classified as Underreact, Near-rational, and Over-
react. The last column shows average belief movements in the signal direction from the (objective) priors and their
rational benchmark. Observations with signal equal 50 are excluded. Standard errors are clustered by subject.

help rule out several potential explanations for its emergence.

The forecast outcome in Baseline is the next signal, which is identical to the realized signal

both in name and in distribution. We change this feature in an additional treatment (N=100) called

Cross-variable Forecast in which the forecast outcome is a variable different from the signal.

Specifically, the new outcome variable is framed as revenue growth when the signal is stock price

growth, and vice versa. We also design the outcome variable to have a degenerate distribution

conditional on the state: it is 100 for sure in the Good state and 0 for sure in the Bad state. Thus,

the outcome is different from the signal in both name and distribution and is similar to the state in

distribution. Nevertheless, under this alternative DGP, the no inference-forecast gap condition re-

mains the same as before: the forecast-revision answer equals the corresponding inference answer

(minus the % sign).

Table 6 shows the results from Cross-variable Forecast. The inference-forecast gap, compared

to that in Baseline, becomes even greater in magnitude. For example, only 21.1% of the inference

posteriors are Overreact, while 50.7% of the forecast-revision answers are. Table A9 further shows,

in a regression analysis, that statistically the gap is highly significant. In Table B4, the distribution

of behavioral modes in Cross-variable Forecast is also similar to that in Baseline.

The results from Cross-variable Forecast help address four issues. First, they rule out the

possibility that the inference-forecast gap is driven by similarity between signals and outcomes
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(Kahneman and Tversky, 1972). According to this explanation, because the signal and the outcome

are represented by the same variable in Forecast Revision, signal-outcome similarity leads subjects

to perceive the signal as more informative and therefore to overreact to it. The results in Cross-

variable Forecast clearly demonstrate that subjects still overreact to signals when they are asked

to make predictions about a different variable.

Second, the fact that the state fully determines the outcome indicates that the inference-forecast

gap is not due to the difference in distribution between the state and the outcome. Under this design,

signals are equally diagnostic about the state and the outcome, thereby ruling out any explanations

based on differential diagnosticity between inference and forecast-revision problems.

Third, the presence of overreaction in Cross-variable Forecast suggests that the overreaction

in forecast-revision problems is not driven by misperceived signal autocorrelation. Because the

forecast outcome is different from the signal and fully determined by the state, perception of signal

autocorrelation is irrelevant to the expectation formation of the future outcome. This further dif-

ferentiates our results from the hot-hand bias (Gilovich et al., 1985; Tversky and Gilovich, 1989;

Suetens et al., 2016) and from overreaction in univariate forecasts (Hey, 1994; Frydman and Nave,

2017; Afrouzi et al., 2020) in which exaggerated autocorrelation is a key driving force.

Fourth, Cross-variable Forecast broadens the external relevance of the inference-forecast gap.

In many empirical settings, the forecaster’s information set is not limited to past observations of

the variables to be predicted but also includes the past observations of other relevant variables. The

results in Cross-variable Forecast suggest that the inference-forecast gap can be an explanation for

overreactions in these settings as well (e.g., Bordalo et al., 2020; Roth and Wohlfart, 2020).

3.4 Binary Signal treatment

We implement a treatment (N=140) in which the signal st follows a binary distribution. The

signal, framed as the direction of the firm’s stock price movement, is either up or down, and the

probability of an upward movement is higher if the firm’s state is Good. The parameters for the

DGPs are listed in Table 7. In the forecast-revision part of the treatment, the problem asks about
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Index 1 2 3 4 5 6 7 8

Pr(G) 50% 50% 50% 50% 50% 50% 80% 20%

Pr(up|G) 60% 70% 80% 90% 70% 55% 70% 70%

Pr(up|B) 40% 30% 20% 10% 45% 30% 30% 30%

Table 7: Parameter values for DGPs in the Binary Signal treatment

the probability distribution Pr(s1) (instead of the outcome expectation E(s1)).

As in the Baseline treatment, the no inference-forecast gap condition for this treatment is given

by the LIE:

Pr(s1 = up|s0) = Pr(G|s0)× Pr(up|G) + Pr(B|s0)× Pr(up|B). (6)

Substituting in Pr(up) = Pr(up|G)× Pr(G) + Pr(up|B)× Pr(B), which is the LIE applied to

the objective prior beliefs, we obtain the following equation:

Pr(s1 = up|s0)− Pr(up)
Pr(up|G)− Pr(up|B)

= Pr(G|s0)− Pr(G). (7)

Equation (7) states that under the no inference-forecast gap condition, the inference update equals

the normalized forecast-revision update, the latter defined by how much the forecast revision an-

swer moves from the objective prior in the signal direction divided by the range of outcome prob-

abilities, Pr(up|G) − Pr(up|B). This equation is not as simple as Equation (2) in Baseline, so

computational complexity could confound the comparison between inference and forecast revision

answers. However, one advantage of the Binary Signal treatment is that it is closer to the common

design in the bookbag-and-poker-chip paradigm.

In Binary Signal, the three categories—Near-rational, Underreact, and Overreact—are de-

fined in the same way as in the Baseline treatment, except that the categories for forecast-revision

answers are defined based on their normalized updates. Table 8 reports the results from the Binary
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Table 8: Aggregate patterns in Binary Signal

N=140, Obs=1120 Classification Update

Underreact Near-rational Overreact Mean (s.e.)

Inference 61% 20.1% 18.9% 11 (0.9)

Forecast Revision 54.9% 6.7% 38.4% 14.2 (2.2)

Rational 18.7 (0)

Notes: The first three columns present the percentages of answers classified as Underreact, Near-rational, and Over-
react. The last column shows average belief movements in the signal direction from the (objective) priors and their
rational benchmark. The updates of forecast-revision answers are normalized by Pr(up|G)− Pr(up|B) so that they
are comparable to the inference updates. Observations with signal equal 50 are excluded. Standard errors are clustered
by subject.

Signal treatment. As in Baseline, more answers are classified as Overreact in Forecast Revision

than in Inference, and the average update in the former part is also larger. (Table A10 shows in a

regression that the gap in updates is significant at the 10% level.) However, answers in Forecast

Revision do not exhibit overreaction on average. The modal behaviors are also similar to those in

the Baseline treatment (see Table B5). Non-updates are prevalent in both Inference and Forecast

Revision, making up 27.1% and 19.8% of answers in those two parts, respectively. In Forecast

Revision, 17.4% of the answers equal the outcome probability of the representative state, which

constitutes the behavioral mode of exact representativeness.

Overall, the Binary Signal treatment shows that the inference-forecast gap extends to environ-

ments with alternative signal distributions. It also shows that this phenomenon can persist when

the elicited object in Forecast Revision is the outcome distribution instead of its expected value.
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4 Decision Procedures

4.1 Implementation errors or nonstandard procedures?

As discussed in Section 2.2, the inference-forecast gap should not arise if subjects, in answering

a forecast-revision question, correctly implement the infer-then-LIE procedure by: (a) first updat-

ing their beliefs about the states as in the corresponding inference problem and (b) then applying

the LIE to form expectations about the forecast outcome. The evidence we have documented

so far on the inference-forecast gap clearly rejects the correct implementation of this procedure,

prompting us to look for alternative explanations.

One possible explanation for the inference-forecast gap is that subjects intend to follow the

infer-then-LIE procedure when revising forecasts, but make errors or take shortcuts because the

procedure is complex. For instance, a decision-maker may be capable of forming probabilistic be-

liefs about the states when making inference is the only task. But when implementing the two-step

infer-then-LIE procedure for the forecast-revision problem, she may have only enough cognitive

bandwidth to form a binary belief (“the firm is good” or “the firm is bad”) in the first step. This

error can lead to overreacting behaviors that look like exact representativeness.

We run an additional treatment, Nudge, with 99 subjects to test the above hypothesis. For parts

that provide signals, after observing the signal realization, subjects are first asked to report their

beliefs about the states and then, while their answers are still on the screen, they are asked to report

their expectations about the next signal.21 With this design, from the point of view of a subject

intending to follow the infer-then-LIE procedure, a forecast-revision problem is made no more

complex than a standalone expectation-formation problem. Indeed, one need only multiply the in-

ference posterior by 100 to complete the infer-then-LIE procedure.22 This reduction in complexity

should mitigate any implementation errors in the procedure and reduce the inference-forecast gap

21More specifically, subjects have to stay on the page for eight seconds before answering each question. The
forecast-revision question appears only after the answer to the inference question has been submitted. Subjects can
revise their answers to the inference question before they submit their answers to the forecast-revision question.

22In fact, because answers to the Inference problems are given in the unit of percentage, the infer-then-LIE procedure
implies that subjects should type in the same number in the corresponding Forecast Revision problems.
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Table 9: Aggregate patterns in Nudge

N=99, Obs=715 Classification Update

Underreact Near-rational Overreact Mean (s.e.)

Inference 70.6% 10.2% 19.2% 10.3 (1.3)

Forecast Revision 42.2% 6.7% 51% 28.9 (2.9)

Expectation Formation 60.6% 6.9% 32.6% 13.7 (2.1)

Rational 22.6 (.5)

Notes: The first three columns present the percentages of answers classified as Underreact, Near-rational, and Over-
react. The last column shows average belief movements in the signal direction from the (objective) priors and their
rational benchmark. The expectation-formation answers are analyzed in the same way as the corresponding forecast-
revision answers: the update of an expectation-formation answer is defined as the answer minus the (objective) prior
in the corresponding forecast-revision problem if the signal in the latter problem is greater than 50 and the reverse
if the signal is smaller than 50. The classification of an expectation-formation answer is conducted against the ratio-
nal benchmark for the corresponding forecast-revision problem. Observations with signal equal to 50 are excluded.
Standard errors are clustered by subject.

according to the hypothesis.

Table 9 shows the aggregate patterns in Nudge. In this treatment, subjects overwhelmingly un-

derreact in Inference and on average overreact in Forecast Revision. In fact, the inference-forecast

gap in Nudge is even larger than in Baseline, according to the regression analysis in Table A9.

Table B6 further examines the modal behaviors in Nudge. The fraction of non-updates in Inference

is 53.4%, a notable increase from the 29.9% in Baseline. However, the fraction of non-updates in

Forecast Revision remains almost the same as in Baseline, as does the fraction of answers classi-

fied as exact representativeness and naive extrapolation. In addition, the fraction of answers that

satisfy the no inference-forecast gap condition increases to 11.3% from the 5.3% in the Baseline

treatment, suggesting that the Nudge treatment induces a greater tendency to give internally con-

sistent answers to the two types of updating questions. However, this small increase does not have

material impact in the aggregate. Taken together, displaying the inference answer when subjects

revise their forecasts does not change the overall pattern of the inference-forecast gap.

How can one explain the ineffectiveness of the Nudge treatment? One possibility is that
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while it indeed makes the infer-then-LIE procedure no more complex than solving a standalone

expectation-formation problem, even the latter is too complex for subjects and their resulting er-

rors lead to overreaction. To test this possibility, in another part of the Nudge treatment called

Expectation Formation, we ask subjects to report their beliefs about the state and then their expec-

tations of the next signal without showing them any signal realization. In addition, for each subject,

we set the distribution over states in an expectation-formation problem to match the posterior be-

lief the subject reported in the corresponding inference problem. For example, if a subject reports

Pr(G|s0) = 40% in a round in Inference, then the pool of firms in the corresponding Expectation

Formation round will have 40% × 20 = 8 good firms and 12 bad ones. This design enables us to

directly quantify how much of the inference-forecast gap in Nudge can be attributed to mistakes in

expectation formation.

Figure C2 in Appendix C shows the average deviations from LIE in the expectation-formation

problems by the prior probability of the Good state; the deviations are small across the board.

Moreover, in the last row of Table 9, we classify expectation-formation answers and calculate

their updates by treating them in the same way as their corresponding forecast-revision answers.

Specifically, the update of an expectation-formation answer is defined as the answer minus the

(objective) prior in the corresponding forecast-revision problem if the signal in the latter prob-

lem is greater than 50 and the reverse if the signal is smaller than 50. The classification of an

expectation-formation answer is conducted against the rational benchmark for the correspond-

ing forecast-revision problem. Comparing the average updates in the inference, forecast-revision,

and expectation-formation problems, we find that mistakes in expectation formation can account

for only 18% of the inference-forecast gap. These results indicate that mistakes in standalone

expectation-formation problems do not explain the null effect of the Nudge treatment on the

inference-forecast gap.

Taken together, results from the Nudge treatment reject the hypothesis that the inference-

forecast gap stems from complexity-induced errors or shortcuts when subjects try to implement

the infer-then-LIE procedure in forecast-revision problems. Rather, the gap is likely a result of the
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Table 10: Aggregate patterns in Obvious Connection

N=30, Obs=238 Classification Update

Underreact Near-rational Overreact Mean (s.e.)

Inference 69.7% 10.1% 20.2% 12.5 (2)

Forecast Revision 66.4% 9.7% 23.9% 11.9 (2.6)

Rational 22.6 (.8)

Notes: The first three columns present the percentages of answers classified as Underreact, Near-rational, and Over-
react. The last column shows average belief movements in the signal direction from the (objective) priors and their
rational benchmark. Observations with signal equal 50 are excluded. Standard errors are clustered by subject.

use of other procedures altogether.

4.2 Obviousness of the connection between inference and forecast revision

Why do subjects not use the infer-then-LIE procedure for forecast-revision problems? One

hypothesis is that they do not recognize the conceptual connection between the two kinds of prob-

lems. To investigate this hypothesis, we implement an additional treatment, Obvious Connection,

with 30 subjects. In this treatment, the realized signal is still the stock price growth of the firm in

the current month, but the forecast question concerns the probability that the firm’s revenue will

go up next month. Moreover, subjects are informed that a firm’s revenue goes up if and only if

the state is Good. As the name of the treatment suggests, by equating the underlying states to

the outcomes, we design the treatment to make it obvious that the inference and forecast-revision

questions are asking about the same event.

Table 10 shows the results in the Obvious Connection treatment. With the predicted outcome

obviously connected to the state, the inference-forecast gap almost completely vanishes, and we

obtain the familiar underreaction pattern in the forecast-revision problems. Table B7 shows the

breakdown of answers into different types in this treatment. Exact representativeness is still more

prevalent in Forecast Revision than in Inference, though only slightly. However, the other differ-

28



ences in modal behaviors between Inference and Forecast Revision disappear. Moreover, 16.4%

of answers satisfy the no inference-forecast gap condition, which is much higher than the 5.3%

in the Baseline treatment. These results confirm the hypothesis that many subjects do not follow

the infer-then-LIE procedure when revising forecasts because they fail to recognize the conceptual

connection between forecast revision and inference.

5 Concluding Remarks

In this paper, we present new experimental evidence to show that people overreact more to new

information when they revise forecasts about future outcomes than when they make inferences

about underlying states. This inference-forecast gap in belief updating is largely driven by the

use of different heuristics in the two types of problems. Through a series of subsample analyses

and additional treatments, we show that the gap is robust to order effects, framing effects, sub-

ject characteristics, and alternative data-generating processes. Moreover, it cannot be explained

by existing theories of belief-updating biases. We further examine the underlying mechanism and

show that the gap does not stem from the implementation errors subjects make when they try to

follow a standard decision procedure. Rather, the discrepancy may result from people not recog-

nizing the conceptual connection between inference and forecast revision. This inability to link

the two processes, in turn, motivates them to follow nonstandard decision heuristics when revising

forecasts.

In the remainder of this paper, we discuss the theoretical implications of our finding and its

relationship to empirical evidence on survey forecasts.

5.1 Implications for theory

Our finding that subjects overreact more in forecast-revision problems than in inference prob-

lems cannot be directly accounted for by existing theories of belief updating. Indeed, most existing

theories do not allow updating biases to depend on the type of belief elicited. While we do not have

29



a formal model in this paper to explain the inference-forecast gap, we provide some speculation

about the underlying mechanism.

The inference-forecast gap in our experiment is in a large part driven by distinct heuristics

used in the two types of updating problems. While non-updates are prevalent in both types, exact

representativeness and naive extrapolation emerge only as modal behaviors in forecast-revision

problems. One potential explanation for why subjects use these specific heuristics comes from the

psychological theory of “attribute substitution” (Kahneman and Frederick, 2002), which proposes

that when people are asked a complex question, they often substitute it with a related question that

has an easily accessible answer. Both types of belief-updating questions in our experiment are

complex, so one can imagine subjects asking which easily accessible information can reasonably

substitute for answers to these questions.

For example, the expected outcome conditional on the representative state is a value easily ac-

cessible to the subjects. Furthermore, this variable is conceptually similar to the expected outcome

conditional on the signal that the forecast-revision question actually asks for. Therefore, it is rea-

sonable, though not accurate, to use this value as a substitute answer to the forecast-revision ques-

tion. In contrast, this variable is conceptually very different from the probability over the states,

which the inference problem asks for. The fact that this variable fits the answer to a forecast-

revision problem better than it fits the answer to an inference problem may explain why exact

representativeness is a behavioral mode in the former but not in the latter.

A similar argument can explain why a significant fraction of subjects use the face value of

the realized signal as the answer to the forecast-revision question, but not to the inference ques-

tion. Because past realizations are conceptually closer to future outcomes rather than to underlying

states, subjects tend to use this value in answering forecast-revision questions. The theory can also

explain why non-updates are prevalent in both types of problems. Because prior beliefs about

the states and prior expectations of the outcome are conceptually similar to their posterior coun-

terparts, sticking to the priors is a reasonable heuristic for both inference and forecast-revision

problems. For future research, it would be important to test this and other hypotheses for why
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certain heuristics are prevalent in decision-making.

5.2 Relationship to survey evidence

Recent field studies find widespread overreaction in survey forecasts of variables such as stock

returns, macroeconomic indicators, firm performances, housing prices, and job offers. This is

in stark contrast with the prevalent underreaction documented in lab experiments on inference.

While our experimental evidence is consistent with both sets of facts, we do not claim that the

inference-forecast gap explains the entire discrepancy between these two literatures. After all,

field settings are different from the lab in many other aspects that could be driving overreaction in

survey forecasts. First, the DGP can be much more complex in reality than in simple experimental

settings. The underlying state may be time-variant and the forecast outcome may be correlated with

past signals even conditional on the state. The DGP itself may even be unknown. Second, survey

takers may come from a different pool than experimental subjects. For instance, many financial

survey participants are professional forecasters or investors who are more likely to possess a good

understanding of the financial market.

Despite the caveats, we believe our evidence can still speak—at least partially—to what is

going on in the field for the following reasons. First, with more complex DGPs in reality, it could

be all the more likely that people revise their forecasts using heuristics that are detached from

their beliefs about fundamentals. Second, while survey takers may be more sophisticated, most

market participants are households and closer to the subjects we study. It is also worth noting that

even professionals’ forecasts have subjective inputs (Stark, 2013) and are highly correlated with

household expectations (Greenwood and Shleifer, 2014).23

23Robert Shiller’s United States Stock Market Confidence Indices also show that
U.S. institutions and individuals exhibit highly correlated beliefs over time; see
https://som.yale.edu/faculty-research-centers/centers-initiatives/
international-center-for-finance/data/stock-market-confidence-indices/
united-states-stock-market-confidence-indices
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A Robustness of the Inference-Forecast Gap

In this section, we examine the properties of the inference-forecast gap in various subsamples

of the data.

A.1 A more “reasonable” subsample

We start by examining the inference-forecast gap in a subsample of the Baseline treatment that

satisfies two basic rationality criteria. In this subsample, we only keep observations whose forecast

revision answer falls within [0, 100], the range marked by the expected outcome of the Good state

and of the Bad state. Furthermore, we exclude observations in which either the inference update

or the forecast revision update is negative; these observations indicate that the subjects’ reactions

to signals are in the wrong direction.

Table A1: Aggregate patterns in Baseline: subsample with “reasonable” updates

N=202, Obs=978 Classification Update

Underreact Near-rational Overreact Mean (s.e.)

Inference 55.8% 17.3% 26.9% 17.7 (1)

Forecast Revision 45.6% 10.1% 44.3% 23.1 (1.4)

Rational 23.5 (0.4)

Notes: The first three columns present the percentages of answers classified as Underreact, Near-rational, and Over-
react. The last column shows average belief movements in the signal direction from the (objective) priors and their
rational benchmark. Observations with signal equal to 50, forecast revision answers that are outside [0,100], or updates
in the wrong direction are excluded. Standard errors are clustered by subject.

Table A1 shows the results of this subsample. Although the average update in Forecast Revision

is close to rational, there is still more overreaction and less underreaction in Forecast Revision than

in Inference. The gap in updates between these two parts is significant, as is shown in a regression

analysis in Column (2) of Table A6.
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A.2 Priors and signals

The inference-forecast gap exists in all eight problems (see Table A2). Notably, the eight

problems include DGPs with symmetric and asymmetric priors, indicating that our result persists

with and without the potential influence of base-rate neglect.

For the subsample with symmetric (objective) priors, we further examine how the inference-

forecast gap depends on the strength of the signal. We measure signal strength by the Bayesian

update it induces; the more a Bayesian decision-maker moves her belief in response to the signal,

the more diagnostic it is about the underlying state. Table A3 shows the results. Overall, there is

a larger inference-forecast gap when the signal is more diagnostic. But the gap exists even for the

weakest signals.

Most subjects report correct prior beliefs about the states and about the outcome in Inference

Prior and Forecast Prior, but small errors sometimes occur (see Figure C1). To control for the

impact of errors in priors on our result, we repeat the classification exercise for a subsample in

which the reported inference prior and forecast prior are both correct. The pattern in this sample,

shown in Table A4 and in Column (3) of Table A6, is similar: there is more overreaction and less

underreaction in Forecast Revision than in Inference.

A.3 Order between parts

The gap is also robust to different ordering of the parts. Table A5 compares the gap across

different orders and shows that there is a large and statistically significant gap for all three. Com-

paring the inference answers under orders 12345 and 12534 with the forecast revision answers

under order 34125, our results also indicate that the gap persists in a between-subject analysis.

A.4 Subject characteristics

Finally, we examine the heterogeneity of the gap across subject characteristics, such as gender,

education, investment experience, familiarity with statistics and economics, and performance in
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Table A2: Aggregate patterns in Baseline (by problem)

Classification Update

Underreact Near-rational Overreact Mean (s.e.)

Pr(G) = 50% Inference 69.3% 18.8% 12% 20 (1.5)

σ = 50 Forecast Revision 45.8% 13.5% 40.6% 30.7 (2.9)

(Obs = 192) Rational 36.8 (0.9)

Pr(G) = 50% Inference 64.5% 18.8% 16.7% 17.9 (1.5)

σ = 60 Forecast Revision 48.4% 7% 44.6% 28.9 (3.4)

(Obs = 186) Rational 32.4 (1)

Pr(G) = 50% Inference 64.7% 12.6% 22.6% 15.6 (1.4)

σ = 70 Forecast Revision 43.2% 7.9% 48.9% 28.1 (3.2)

(Obs = 190) Rational 26.7 (0.9)

Pr(G) = 50% Inference 65.1% 11.6% 23.3% 12.5 (1.4)

σ = 80 Forecast Revision 45% 5.3% 49.7% 29.5 (3.6)

(Obs = 189) Rational 22.8 (0.9)

Pr(G) = 50% Inference 50.5% 17.9% 31.6% 17 (1.3)

σ = 90 Forecast Revision 40.5% 5.8% 53.7% 33.9 (3.8)

(Obs = 190) Rational 21.2 (0.9)

Pr(G) = 50% Inference 52.6% 15.1% 32.3% 13.7 (1.4)

σ = 100 Forecast Revision 36.5% 7.8% 55.7% 33.6 (3.6)

(Obs = 192) Rational 19.7 (0.9)

Pr(G) = 80% Inference 55.7% 10.9% 33.3% 12 (1.8)

σ = 100 Forecast Revision 44.8% 3.4% 51.7% 27.2 (4.6)

(Obs = 174) Rational 13 (0.8)

Pr(G) = 20% Inference 55.1% 13.8% 31.1% 11 (2)

σ = 100 Forecast Revision 40.7% 7.8% 51.5% 26.3 (4.2)

(Obs = 167) Rational 12.7 (0.8)

Notes: The first three columns present the percentages of answers classified as Underreact, Near-rational, and Over-
react. The last column shows average belief movements in the signal direction from the (objective) priors and their
rational benchmark. Observations with signal equal to 50 are excluded. Standard errors are clustered by subject.39



Table A3: Aggregate patterns in Baseline (by signal strength)

Signal Strength Classification Update

Underreact Near-rational Overreact Mean (s.e.)

Weakest Inference 50.3% 21.2% 28.6% 4.9 (1)

(Obs = 189) Forecast Revision 49.7% 13.8% 36.5% 10.2 (1.8)

Rational 6.3 (0.2)

Weak Inference 64.7% 12.7% 22.6% 8.8 (1.1)

(Obs = 252) Forecast Revision 42.1% 5.6% 52.4% 20.5 (2.3)

Rational 16 (0.2)

Medium Inference 60.9% 7.9% 31.2% 15.6 (1.4)

(Obs = 202) Forecast Revision 41.1% 4% 55% 31.4 (3.3)

Rational 25.1 (0.2)

Strong Inference 64.2% 11.2% 24.7% 21.1 (1.6)

(Obs = 215) Forecast Revision 36.7% 4.2% 59.1% 46.4 (4.9)

Rational 34.3 (0.2)

Strongest Inference 63% 24.2% 12.8% 26.8 (1.6)

(Obs = 281) Forecast Revision 46.3% 11.7% 42% 41.5 (4.2)

Rational 44.9 (0.2)

Notes: The first three columns present the percentages of answers classified as Underreact, Near-rational, and Over-
react. The last column shows average belief movements in the signal direction from the (objective) priors and their
rational benchmark. Observations with signal equal to 50 or asymmetric (objective) priors are excluded. The five
categories for signal strength correspond to five intervals of rational updates: [0, 10), [10, 20), [20, 30), [30, 40), and
[40, 50]. Standard errors are clustered by subject.
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Table A4: Aggregate patterns in Baseline: subsample with correct priors

N=202, Obs=1095 Classification Update

Underreact Near-rational Overreact Mean (s.e.)

Inference 57.7% 17.2% 25.1% 15.6 (1)

Forecast Revision 45.8% 8.8% 45.5% 26.3 (2.5)

Rational 23.8 (.4)

Notes: The first three columns present the percentages of answers classified as Underreact, Near-rational, and Over-
react. The last column shows average belief movements in the signal direction from the (objective) priors and their
rational benchmark. Observations with signal equal to 50 or with incorrect priors are excluded. Standard errors are
clustered by subject.

Table A5: Aggregate patterns in Baseline (by order between parts)

Classification Update

Underreact Near-rational Overreact Mean (s.e.)

Order: 12345 Inference 58.3% 16.1% 25.6% 14.9 (1.3)

(N = 72) Forecast Revision 41% 8.7% 50.3% 30.1 (3.6)

(Obs = 527) Rational 23.3 (0.5)

Order: 12534 Inference 58.6% 16.4% 25% 15.2 (1.3)

(N = 73) Forecast Revision 42.9% 5.8% 51.2% 33 (3.8)

(Obs = 531) Rational 23.5 (0.5)

Order: 34125 Inference 63.3% 11.8% 24.9% 15 (1.9)

(N = 57) Forecast Revision 46% 7.6% 46.4% 25.5 (4.6)

(Obs = 422) Rational 23.5 (0.6)

Notes: The first three columns present the percentages of answers classified as Underreact, Near-rational, and Over-
react. The last column shows average belief movements in the signal direction from the (objective) priors and their
rational benchmark. Observations with signal equal to 50 are excluded. Standard errors are clustered by subject.
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the comprehension questions. Table A7 show regression results by interacting variables for these

characteristics with a Forecast Revision dummy. One notable result is that subjects who pass all

comprehension checks in one pass exhibit less underreaction in Inference and less overreaction in

Forecast Revision, which leads to an inference-forecast gap that is only half as that of the other

subjects. In addition, subjects who report being familiar with economics or finance also exhibit a

smaller gap. These results suggest that better comprehension of the subject matter is associated

with a smaller inference-forecast gap.

A.5 Framing

In different versions of the Baseline treatment, we show that the gap is robust to several changes

in the framing of the signal and forecast outcome. First, we frame the signal as the firm’s revenue

growth (rather than stock price growth); we find the same gap. Second, in the three forecast parts,

we ask subjects to make predictions about the previous signal instead of the next signal; we find an

inference-forecast gap that is quantitatively smaller but still significant at 5% level. Table A8 show

these results in regressions.

A.6 Regression analysis
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Table A6: The inference-forecast gap under various sample restrictions

Update

Full sample “Reasonable” updates Correct priors
“Reasonable” updates &

exclude modal behaviors

(1) (2) (3) (4)

Forecast Revision 14.801∗∗∗ 5.398∗∗∗ 10.642∗∗∗ 0.593

(2.429) (1.403) (2.683) (1.409)

Rational Update 1.012∗∗∗ 0.561∗∗∗ 0.923∗∗∗ 0.777∗∗∗

(0.078) (0.049) (0.077) (0.102)

Problem FE Yes Yes Yes Yes

Subject FE Yes Yes Yes Yes

Observations 2960 1956 2190 438

R2 0.339 0.474 0.366 0.513

Notes: *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by subject. This table presents results for our Baseline treatment. Each observation corresponds either
to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer minus
the (objective) prior if the signal is greater than 50, the opposite if it is smaller than 50. Rational Update is the update
prescribed by Bayes’ rule (and the Law of Iterated Expectation). Observations with the signal equal to 50 are excluded.
In Column (2), based on the full sample, we further drop observations with the forecast revision answer outside the
[0, 100] range and observations with at least one update that is in the opposite direction as the signal. In Column (3),
based on the full sample, we further drop observations with an incorrect answer for Inference Prior or Forecast Prior.
In Column (4), based on the subsample in Column (2), we further exclude observations in which the inference answer
or the forecast revision answer is classified into one of the three modes: non-updates, exact representativeness, and
perfect extrapolation.
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Table A7: Heterogeneity of the inference-forecast gap across demographics

Update

Forecast Revision 21.464∗∗∗

(4.658)

Male × Forecast Revision -1.579

(4.783)

College × Forecast Revision 2.835

(4.690)

Investor × Forecast Revision -1.445

(5.123)

Familiar with Stats × Forecast Revision -2.290

(4.640)

Familiar with Econ × Forecast Revision -9.176∗

(5.314)

High Comprehension × Forecast Revision -9.705∗∗

(4.540)

Male 2.006

(1.689)

College -1.348

(1.852)

Investor 3.548∗

(1.958)

Familiar with Stats 3.157

(1.978)

Familiar with Econ -3.139

(2.326)

High Comprehension 5.006∗∗

(1.925)

Rational Update 0.987∗∗∗

(0.074)

Problem FE Yes

Observations 2960

R2 0.149

Notes: *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors are clustered by subject. This
table presents results for our baseline treatment. Each observation corresponds either to an inference answer or a forecast-0revision answer. We
define the dependent variable, Update, as the answer minus the (objective) prior if the signal is greater than 50, the opposite if it is smaller than
50. Rational Update is the update prescribed by Bayes’ rule (and the Law of Iterated Expectation). Observations with the signal equal to 50 are
excluded. We define Male as 1 if the subject indicates their gender as Male; the base group is thus Female or Others. We define College as 1 if
the subject has a bachelor’s or postgraduate degree. We define Investor as 1 if the subject indicates that they have investments in stocks or mutual
funds. We define Familiar with Stats as 1 if the subject indicates that they are familiar with probability theory and statistics. We define Familiar
with Econ as 1 if the subject indicates that they are familiar with economics or finance. We define High Comprehension as 1 if the subject correctly
answers all comprehension questions in one pass.
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Table A8: Heterogeneity of the inference-forecast gap across alternative framing

Update

Stock price vs. revenue Next vs. last signal

(1) (2)

Stock Price × Forecast Revi-
sion

14.858∗∗∗

(3.465)

Revenue × Forecast Revision 14.761∗∗∗

(3.161)

Revenue 4.316∗∗

(1.726)

Next × Forecast Revision 15.998∗∗∗

(2.651)

Last × Forecast Revision 9.779∗∗

(4.875)

Last 1.804

(2.380)

Rational Update 0.991∗∗∗ 0.994∗∗∗

(0.075) (0.074)

Problem FE Yes Yes

Observations 2960 2960

R2 0.138 0.136

Notes: *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by subject. This table presents results for our Baseline treatment. Each observation corresponds either
to an inference answer or a forecast-revision answer. We define the dependent variable, Update, as the answer minus
the (objective) prior if the signal is greater than 50, the opposite if it is smaller than 50. Rational Update is the update
prescribed by Bayes’ rule (and the Law of Iterated Expectation). Observations with the signal equal to 50 are excluded.
In the first two columns, we explore heterogeneity of the effects depending on whether we frame the signal as stock
price growth or revenue growth. In the last two columns, we explore heterogeneity of the effects depending on whether
we ask about the expectation of the next signal or the last signal in Forecast Revision.
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Table A9: The inference-forecast gap across different treatments

Update

Baseline × Forecast Revision 14.801∗∗∗

(2.341)

Cross-variable × Forecast Revision 19.198∗∗∗

(3.304)

Nudge × Forecast Revision 18.640∗∗∗

(2.962)

Obvious Connection × Forecast Revision -0.644

(2.932)

Cross-variable -1.167

(1.555)

Nudge -4.218∗∗∗

(1.552)

Obvious Connection -1.881

(2.308)

Rational Update 0.942∗∗∗

(0.051)

Problem FE Yes

Observations 6362

R2 0.148

Notes: *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors are
clustered by subject. In this table, we pool the data from our Baseline treatment, Cross-variable Forecast treatment,
Nudge treatment, and Obvious Connection treatment. Each observation corresponds either to an inference posterior or
an extrapolation posterior. Each observation corresponds either to an inference answer or a forecast-revision answer.
We define the dependent variable, Update, as the answer minus the (objective) prior if the signal is greater than 50,
the opposite if it is smaller than 50. Rational Update is the update prescribed by Bayes’ rule (and the Law of Iterated
Expectation). Observations with the signal equal to 50 are excluded.
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Table A10: The inference-forecast gap in Binary Signal treatment

Update

Forecast Revision 3.632∗

(1.992)

Rational Update 0.532∗∗∗

(0.074)

Problem FE Yes

Subject FE Yes

Observations 2240

R2 0.204

Notes: *, **, and *** indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Standard errors
are clustered by subject. This table presents results for the Binary Signal treatment. Each observation corresponds
either to an inference posterior or an forecast-revision posterior. Each observation corresponds either to an inference
answer or a forecast-revision answer. We define the dependent variable, Update, as the answer minus the (objective)
prior if the signal is up, the opposite if it is down. The updates of forecast revision answers are normalized by
Pr(up|G)−Pr(up|B) so that they are comparable to the inference updates. Rational Update is the update prescribed
by Bayes’ rule.
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B Additional Analysis on Modes of Behavior

In this section, we provide additional analysis on the modes of behavior in Inference and Fore-

cast Revision in the baseline treatment.

B.1 Problems with asymmetric priors

Table B1 quantifies the prevalence of the modal behaviors in problems with asymmetric priors.

The overall pattern is similar to that for problems with symmetric priors: non-updates are prevalent

in both Inference and Forecast Revision, while exact representativeness and naive extrapolation

show up almost exclusively in the latter.

Table B1: Modes of behavior in Baseline treatment: subsample with asymmetric priors

Mode Criterion for answer Inference Forecast Revision

Non-update = prior 29.9% 23.2%

Exact Representativeness = 100 if s0 > 50, = 0 if s0 < 50 4.4% 15%

Naive Extrapolation = s0 3.5% 9.1%

No Inference-Forecast Gap

(excluding non-updates)

inference = forecast revision

(6= prior)
3.8%

Unclassified 60.7% 51.9%

Observations 341 341

Notes: The column titled “Criterion for answer” shows the criterion for an answer to be classified into a given mode.
Note that an answer may be classified into more than one mode. The percentages in the last two columns are the
fractions of answers in each mode in Inference and Forecast Revision. Observations with signal equal to 50 are
excluded.

In forecast revision problems with symmetric priors, an alternative interpretation of answers

classified as exact representativeness is that subjects form expectations solely based on the ex-post

more likely state. This interpretation is distinguishable from the representativeness interpretation in

problems with asymmetric priors. To illustrate, consider a forecast revision problem in which the

prior belief Pr(G) is 20% and the realized signal s0 is only slightly above 50. Because the signal
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is good news, the representative state is G. However, because the signal contradicts the prior and

is relatively weak, the ex-post more likely state (judged from the subject’s own inference) could

still be B. Therefore, this problem allows us to tell whether subjects, when revising forecasts, are

more likely to focus exclusively on the representative state or the ex-post more likely state.

We focus on a subsample of observations in which the objective prior is asymmetric, the re-

ported inference prior and forecast prior are both correct, the signal direction is opposite to the

prior direction, and both the inference answer and its rational benchmark are between the prior and

50. Within this subsample, five forecast revision answers equal the expected outcome of the repre-

sentative state, whereas none equal the expected outcome of the ex-post more likely state. While

the sample size is too small to draw any definitive conclusion, the result nevertheless suggests that

subjects are more likely to focus on the representative state when they revise forecasts.

B.2 Relaxing criteria for classification

Table B2 shows the prevalence of behavioral modes when we relax the classification criteria

to allow for errors within [−4, 4]. Compared to the results with strict classification criteria (Table

5), the fraction of answers in each mode increases only slightly, and the overall qualitative pattern

remains the same.

B.3 Subject-part–level classification

To study the consistency of behavior within subjects, we conduct a classification exercise on

the subject-part level. Specifically, a subject is classified into a type in a part (Inference or Forecast

Revision) if more than half of her answers in that part are classified into the corresponding mode.

Table B3 shows the joint distribution of types across the two parts. The numbers of subjects clas-

sified in the two parts are 73 and 81, and the marginal distribution of types in each part resembles

that of the answer-level classification. On the relationship between types in the two parts, many

subjects are non-updaters in both parts. Meanwhile, subjects classified as exact representativeness

and naive extrapolation in Forecast Revision are mostly unclassified in Inference.
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Table B2: Modes of behavior in Baseline with relaxed criteria for mode classification

Mode Criterion for answer Inference Forecast Revision

Non-update ≈ prior 35.7% 23.3%

Exact Representativeness ≈ 100 if s0 > 50, ≈ 0 if s0 < 50 5.3% 20.6%

Naive Extrapolation ≈ s0 3.9% 13.5%

No Inference-Forecast Gap

(excluding non-updates)

inference ≈ forecast revision

(6≈ prior)
7.8%

Unclassified 51.3% 41%

Observations 1480 1480

Notes: The column titled “Criterion for answer” shows the criterion for an answer to be classified into a given mode.
The ≈ sign means that the criterion allows for errors within [−4, 4]. Note that an answer may be classified into more
than one mode. The percentages in the last two columns are the fractions of answers in each mode in Inference and
Forecast Revision. Observations with signal equal to 50 are excluded.

Table B3: Joint distribution of Inference types and Forecast Revision types in Baseline

Forecast Revision type

Inference type Non-update
Exact Repre-
sentativeness

Naive
Extrapolation

No Inference-
Forecast

Gap
Unclassified Total

Non-update 23 1 1 0 17 41

Exact Representativeness 2 2 0 1 22 26

Naive Extrapolation 4 0 0 0 9 13

No Inference-Forecast Gap 0 1 0 2 0 2

Unclassified 19 0 1 0 101 121

Total 48 3 2 2 149 202

Notes: This table shows the number of subjects that are classified into each type in Inference and Forecast Revision.
Note that a subject may be classified into more than one type in a part.

B.4 Modes of behavior in other treatments

This subsection presents results on the modal behaviors in four treatments: Cross-variable

Forecast, Binary Signal, Nudge, and Obvious Connection.
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Table B4: Modes of behavior in Cross-variable Forecast

Mode Criterion for answer Inference Forecast Revision

Non-update = prior 35.7% 23.3%

Exact Representativeness = 100 if s0 > 50, = 0 if s0 < 50 5.3% 20.6%

Naive Extrapolation = s0 3.9% 13.5%

No Inference-Forecast Gap

(excluding non-updates)

inference = forecast revision

(6= prior)
7.8%

Unclassified 51.3% 41%

Observations 748 748

Notes: The percentages in the last two columns are the fractions of answers in each mode in Inference and Forecast
Revision. Observations with signal equal to 50 are excluded.

Table B5: Modes of behavior in Binary Signal

Part Mode Criterion for answer % of answers

Both
No Inference-Forecast Gap

(excluding non-updates)
Equation (7) 3.5%

Inference

Non-update Pr(θ|s0) = Pr(θ) 27.1%

Exact Representativeness
Pr(G|s0) = 100% if s0 = up

Pr(G|s0) = 0 if s0 = down
3.1%

Unclassified 67.6%

Forecast

Revision

Non-update Pr(s1|s0) = Pr(s1) 19.8%

Exact Representativeness
Pr(s1|s0) = Pr(s1|G) if s0 = up

Pr(s1|s0) = Pr(s1|B) if s0 = down
17.4%

Unclassified 60.6%

Observations 1120

Notes: The percentages in the last column are the fractions of answers in each mode for each part.
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Table B6: Modes of behavior in Nudge

Mode Criterion for answer Inference Forecast Revision

Non-update = prior 53.4% 22%

Exact Representativeness = 100 if s0 > 50, = 0 if s0 < 50 2.7% 17.9%

Naive Extrapolation = s0 3.6% 9.1%

No Inference-Forecast Gap

(excluding non-updates)

inference = forecast revision

(6= prior)
11.3%

Unclassified 32.6% 44.2%

Observations 715 715

Notes: The percentages in the last two columns are the fractions of answers in each mode in Inference and Forecast
Revision. Observations with signal equal to 50 are excluded.

Table B7: Modes of behavior in Obvious Connection

Mode Criterion for answer Inference Forecast Revision

Non-update = prior 35.3% 34%

Exact Representativeness = 100 if s0 > 50, = 0 if s0 < 50 5.5% 13%

Naive Extrapolation = s0 4.6% 4.6%

No Inference-Forecast Gap

(excluding non-updates)

inference = forecast revision

(6= prior)
16.4%

Unclassified 42.9% 37.4%

Observations 238 238

Notes: The percentages in the last two columns are the fractions of answers in each mode in Inference and Forecast
Revision. Observations with signal equal to 50 are excluded.
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C Beliefs without signal realization

In this section, we present results from the parts of our experiment in which subjects do not

see any signal realization: Inference Prior, Forecast Prior, and Expectation Formation. Figure C1

shows the distribution of answers in Inference Prior and Forecast Prior. The majority of answers

are correct, with the fraction of correct answers larger under symmetric priors. Subjects are more

likely to report incorrect priors in Forecast Prior than in Inference Prior. The distribution of errors

is mostly unsystematic.

Like Forecast Prior, the experimental part Expectation Formation asks about subjects’ ex-

pectations of the outcome without seeing any signal realization. The unique feature of this part,

however, is that the distribution over states in an expectation-formation problem for each subject is

set to match the posterior over states reported by this subject in the corresponding inference prob-

lem. Figure C2 shows how much expectation-formation answers deviate from the correct answers

prescribed by the LIE in the Baseline treatment and the Nudge treatment. The errors are mostly

small and unsystematic.
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Figure C1: Distributions of answers in Inference Prior and Forecast Prior in Baseline
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Figure C2: Deviations from LIE in expectation-formation problems

Notes: Standard errors are clustered by subject.
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