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1 Introduction

With the recent proliferation of data collection and uses in the digital economy, the under-

standing and statistical treatment of data stocks and flows is of interest among compilers

and users of national economic accounts. During the last revision of the System of National

Accounts (SNA) (United Nations 2010), which is the international standard for national

economic accounts, the treatment of data stocks and flows was a topic of discourse among

statistical agencies and international organizations, who ultimately settled on the treatment

of databases as a subcategory of software in capital formation (Ahmad 2004; Ahmad 2005).

Current global efforts for the next revision of the SNA, expected to be published in 2025,

have a renewed focus on the valuation and recording of the information content of databases

– i.e., the embedded data – in response to the presumed rapid increase in data stocks and

flows over the last decade and longer.

The value of data is implied in the profits and market values of some firms. In 2020, two of

the largest global data firms – Alphabet Inc. (Google) and Meta Platforms Inc. (Facebook)

– had a combined net income before tax of $81.3 billion, which amounted to 3.7 percent of

U.S. corporate profits before tax. In November 2021, the combined market capitalization of

the two firms was $2.9 trillion, which amounted to 7.5 percent of the market capitalization of

all S&P 500 firms.1 While the value of data may be implied in these measures, data stocks

and flows are not visible in national economic accounts under the current SNA treatment.

Moreover, understanding and measuring the value of data presents challenges to economic

statisticians.

In this paper, we measure the value of own-account data stocks and flows for the U.S.

business sector by summing the production costs of data-related activities implicit in occupa-

tions. Production costs include labor costs, capital costs, and intermediate consumption. To

estimate production costs, we apply a markup to an estimate of the wage bill for data-related
1Net income before tax comes from each firm’s 10-K filings with the U.S. Securities and Exchange Com-

mission for year-end December 31, 2020. Corporate profits come from BEA’s National Income and Product
Accounts table 6.17D. Market capitalizations come from YCHARTS (GOOG, FB) as of November 19, 2021.
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activities, which is consistent with the Bureau of Economic Analysis (BEA) methodology for

own-account software. Our method augments the traditional sum-of-costs methodology for

measuring other own-account intellectual property products (IPPs) in national economic ac-

counts by proxying occupation-level time-use factors using an a machine learning model and

the text of online job advertisements.

The occupation-level time-use factors can be decomposed into two components: 1) the

fraction of jobs in an occupation engaged in qualifying activities based on data-relevant skills

revealed in the job advertisement and 2) the average share of time allocated to the data-

relevant activities. Using online job advertisements from Burning Glass Technologies (BGT),

we identify which skills in the BGT taxonomy are relevant to data-related activities, including

data entry, storage, analysis, and management. The fraction of jobs in an occupation engaged

in qualifying activities is given by the fraction of BGT job advertisements that contain at

least one of the data-relevant skills. The average time allocation is based on the distance

of an occupation to known data-intensive occupations that serve as “landmark” occupations

(e.g., data entry keyers or statisticians). The landmark occupations are selected based on

the top 20 occupations by highest rates of job openings listing data-relevant skills. We

then train a doc2vec model on the job advertisement text for each occupation to obtain

a numerical representation of what the occupation-level job postings convey. Using the

numerical representation, we obtain occupation-level pair-wise distances to measure how

“close” or similar an occupation is to the landmark occupations. The product of the similarity

to a landmark occupation and the ratio of job openings with identified data-relevant skills

serves as the proxy for the occupation-level time-use factor. We then apply the time-use

factors to the product of average annual wages and annual number of employees by occupation

at the 3-digit North American Industry Classification System (NAICS) level available from

the U.S. Bureau of Labor Statistics (BLS) Occupational Employment and Wage Statistics

(OEWS) to calculate the wage bill for data-related activities.

The main challenges for measurement of own-account data stocks and flows that we
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address in the paper are similar to challenges imposed by other own-account IPPs that are

already included in capital formation in the SNA and the U.S. National Income and Product

Accounts (NIPAs). First, the scope of capital formation is not yet well-defined for own-

account data. Second, own-account data and other own-account IPPs are at risk of multiple

counting from sources such as overlap among categories of IPPs and non-rival use of data.

A third challenge is what proportions of the sum-of-costs should be accounted for by labor

costs, capital costs, and intermediate consumption in light of the role that capital services

play in the collection, storage, analysis, and management of data. Finally, own-account data

are not transacted in active markets, which means there are no observed transactions that

are useful for measuring prices and depreciation. We discuss each of these challenges and our

approach to addressing them in section 4 of the paper.

Our experimental results indicate that annual current-dollar investment in own-account

data assets for the U.S. business sector grew from $82.6 billion in 2003 to $159.5 billion in

2020, which yields an average annual growth rate of 3.9 percent. Cumulative current-dollar

investment for the period 2003–2020 was $2.1 trillion. Annual current-dollar investment in

own-account data for the period averaged 0.9 percent as a share of business sector value-

added, 4.4 percent as a share of investment in private fixed assets, and 15.6 percent as a

share of investment in IPPs. Likewise, the historical-cost net stock of data assets grew from

$201.0 billion in 2003 to $375.3 billion in 2020, which yields an average annual growth rate of

3.7 percent. The average annual growth rate in real data investment over the period was 4.1

percent, which yields an average annual increase in real business sector value-added growth

of only 1 basis point. In contrast, growth in real data investment is lower than growth in

real investment in IPPs and software, which yields a decline in average annual growth of real

investment in IPPs and software of 21 basis points and 120 basis points, respectively. For

NAICS sectors, the largest dollar investments were made in Finance and Insurance (NAICS

52) and Manufacturing (NAICS 31-33). The largest increase in average real value-added

growth by NAICS sector shows up for Management of Companies (NAICS 55).
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The next section summarizes the SNA background on the treatment of own-account data

stocks and flows and related literature. Section 3 provides details on our measurement,

including source data and methodologies. Section 4 identifies challenges associated with

measurement of own-account IPPs and how we address those challenges for own-account

data. Section 5 reports our core experimental results and some additional experimental

results of interest. Section 6 concludes.

2 National Accounts Background and Related

Literature

2.1 System of National Accounts

The 1993 version of the SNA includes only a brief paragraph on the inclusion of “large

databases that the enterprise expects to use in production over a period of time of more than

one year” as part of the computer software category of capital formation (United Nations

1993, paragraph 10.93). There is no mention of embedded information content (i.e., data)

in SNA 1993. Leading up to the 2008 version of the SNA, an SNA group of statistical

agencies and international organizations considered the inclusion of embedded data in capital

formation. To guide the discussions, Ahmad (2004) outlined two components of databases –

supporting software and data stored in the database – and summarized practical challenges

that countries encounter while trying to implement the vague SNA 1993 recommendation.

In light of the challenges, Ahmad (2005) described two definitions for databases considered

by the SNA group. One definition included the value of the information content to be stored

in databases as long as the information had a useful life of more than one year, and one

definition did not include the value of the information content. The group recommended

that the latter definition is preferable because the former definition would “open the door

to the capitalization of knowledge” (Ahmad 2005, p. 2). Based on the summary outlined in
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Ahmad (2005), the group primarily considered databases maintained by statistical agencies.

The recommendation that was ultimately written into SNA 2008 includes databases and

computer software as separate categories of intellectual property products in capital formation

(United Nations 2010, paragraphs 10.109–10.114). If a database is developed for own use,

SNA 2008 recommends a sum-of-costs approach to value the database. The sum-of-costs

includes the cost of preparing data in a format that conforms to the database but excludes

the cost of acquiring or producing the data. In addition, the sum-of-costs excludes the

value of the database management system (DBMS), which is included instead with computer

software. If a database is developed for sale or for license, the value should be determined

by the market price, which includes the value of the information content. Thus, SNA 2008

recommends an inconsistent treatment for data in capital formation depending whether a

database is developed for own use or for sale or license. In addition, the value of data acquired

or produced for inclusion in databases is not to be treated as intermediate consumption in the

sum-of-costs approach for own-account databases, which is inconsistent with the inclusion

of intermediate consumption in the usual sum-of-costs measurement. The overall conclusion

drawn by the SNA group was that if data is an asset, it is a non-produced asset whose value

should be limited in national accounts to measures of purchased goodwill. Thus, there should

be no value of data reflected in production measures.

2.2 U.S. National Accounts

The U.S. national accounts are consistent with the SNA recommendations on intellectual

property products, including computer software (U.S. Bureau of Economic Analysis 2020).

Similar to general practice in other countries, the U.S. accounts do not include a separation

between software and databases (i.e., the software that houses data) in published capital

stock and flow measures. The value of any data included in purchased software is included

in measures of investment and capital stock. The value of any data in own-account software

is excluded from measures of investment and capital stock.
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BEA estimates three categories of software: 1) prepackaged, 2) custom, and 3) own-

account. Benchmark estimates of prepackaged and custom software are determined using a

commodity flow method based on receipts reported in the U.S. Economic Census for Software

Publishers (NAICS 5112), Data Processing, Hosting and Related Services (NAICS 5182), and

Computer Systems Design and Related Services (NAICS 5415). For non-benchmark years,

estimates are based on receipts reported in the Census Bureau’s Service Annual Survey.

Benchmark estimates of own-account software are determined using a sum-of-costs method-

ology based on wage data in the BLS OEWS for four occupations - Computer Programmers,

Computer System Analysts, Software Developers (applications), Software Developers (sys-

tem software) - and based on the Economic Census. For non-benchmark years, estimates are

primarily based on the OEWS data. In addition to labor costs and intermediate consumption,

own-account software includes a cost for capital services (Chute et al. 2018).

2.3 Related Literature

Two strands of literature provide additional context for this paper. The first is literature

on the value of data, which not only suggests that data has value but also suggests that

the value of data may, at least in part, be a result of a production process rather than non-

produced, which is the current perspective in national economic accounts. The second is

emerging literature from statistical agencies, international organizations, and other sources

that is beginning to recognize the likelihood that some data are produced assets and to

generate renewed focus for recording and valuing data stocks and flows.

2.3.1 Value of Data

Varian (2018) describes a data pyramid that is a variation of the data-information-knowledge-

wisdom (DIKW) hierarchy introduced by Ackoff (1989) and subsequently used in information

science and economics (Rowley 2007; Boisot and Canals 2004). The data pyramid is used to

illustrate the relationships among data that is stored as bits, information that is stored in
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documents, and knowledge that is stored in the human mind (Mokyr 2013). Related to the

data pyramid is the data value chain presented in OECD (2013) and subsequently expanded

in Moro Visconti et al. (2017). The data value chain illustrates a production process for

data from an unstructured form that has very little value to a structured form that can be

leveraged in a business model or other usage (Bakhshi et al. 2014). The stages of the chain

include collection, storage, processing, distribution, and usage. The Moro Visconti et al.

(2017) version of the data value chain focuses on business users at the last stage of the chain

with the monetization of data via a business model, which may be data-dependent or data-

neutral. Data-dependent business models, such as online platforms, rely heavily on data for

sources of revenue and profits (Li et al. 2019; Nguyen and Paczos 2020). Data-neutral firms

do not depend on data for revenue but can still realize benefits from data that help improve

existing products or offer new products. The OECD (2013) version of the data value chain

includes business users and also includes government, non-profit, and household users.

Hughes-Cromwick and Coronado (2019) outline the value of U.S. government data to

business decision-making. Likewise, the value of household data is evident in literature on

the economics of personal privacy, which has re-emerged as an area of interest as summarized

in Acquisti et al. (2016).

Farboodi and Veldkamp (2021) construct a growth model of the data economy in which

data is an information asset that contributes to growth by reducing uncertainty and helping

firms choose better production techniques via forecasts. The model demonstrates short-run

increasing returns due to a feedback loop within the firms. However, long-run diminishing

returns result in the absence of traditional technological progress in the Solow (1956) growth

model because better forecasts are not a tool that can logically sustain long-run growth.

In contrast to Farboodi and Veldkamp (2021) and Jones and Tonetti (2020) model data

contributing directly to productivity and generating long-run growth.
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2.3.2 Recording and Valuing Data Stocks and Flows

Under the second strand of literature, statistical agencies and international organizations are

renewing efforts to introduce guidelines for recording and valuing data as a produced asset

in national economic accounts. Ahmad and van de Ven (2018) and Reinsdorf and Ribarsky

(2020) provide background on the historical treatment of data stocks and flows and offer

preliminary thoughts on moving forward with changes to the SNA. Rassier et al. (2019)

also summarize considerations for treatment of data stocks and flows and present cursory

estimates of data-related flows based on official statistical sources for the U.S. economy.

Statistics Canada (2019b) carefully defines and categorizes data, databases, and data science

and presents experimental estimates for each category using a sum-of-costs measurement

methodology for the Canadian economy. Each of these previous efforts have resulted in

preliminary guidance that is currently being considered by the SNA community.

Goodridge et al. (2021) are the first to provide a harmonized set of cross-country estimates

for data assets in European Union countries and then estimate the contribution of data

capital deepening to growth in productivity. They find that about 43 percent of employment

engaged in capital formation of software and data is unaccounted for in measured own-account

software and databases, and the missing piece of capital formation is growing faster than

the measured piece. Goodridge et al. (2021) also provide a summary of previous economic

literature on information and knowledge.

3 Data and Methods

The SNA recommendation for valuing IPPs that lack an observable market transaction is

a cost-based approach including labor costs, capital costs, and intermediate consumption.

For market producers, capital costs include a net return to fixed assets (or “normal profit”)

in addition to consumption of fixed capital. Our strategy builds on BEA’s sum-of-costs

methodology for own-account software. Estimates of aggregate production costs for data-
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related output have the general form

𝐶𝑖,𝑡 = 𝛼 ∑ 𝜏𝜔𝑊𝜔,𝑖,𝑡𝐻𝜔,𝑖,𝑡 (1)

where for each occupation 𝜔, industry 𝑖, and year 𝑡, we calculate the wage bill by multi-

plying the annual number of employees (𝐻𝜔,𝑖,𝑡) by the average annual wage (𝑊𝜔,𝑖,𝑡) and

an occupation-specific time-use factor (𝜏𝜔) that reflects the time-effort that the occupation

allocates to data-related activities. The parameter 𝛼 is a markup that reflects employee

benefits (not included in the wage bill), capital costs, and intermediate consumption, which

yields the full production costs. The rest of this section discusses our estimation of each of

the elements in equation 1.

3.1 Employment and Wage Data

The U.S. Bureau of Labor Statistics (BLS) has 12 survey programs that provide informa-

tion on pay and benefits. We prioritize having wage data at an occupational level specific

enough to capture the activities of interest.2 The BLS Occupational Employment and Wage

Statistics (OEWS) program produces employment and wage estimates annually for around

800 occupations and is well-suited for our purpose. In addition, the historical data temporal

coverage dates back to the early 2000s, allowing us to generate a longer time series.

Occupational data collected by the U.S. federal statistical system is generally collected,

calculated, and disseminated based on the Standard Occupational Classification (SOC) sys-

tem. Employees are assigned to an occupation based on the work they perform and not on

their education or training. The OEWS data are an SOC-based occupational system that

uses SOC codes to assign occupations at levels for which the data are published. Some SOC

codes are aggregated into a single OEWS occupational code for reporting purposes. The

OEWS system allows the data to be linked to other systems such as the U.S. Department of
2https://beta.bls.gov/comparison-matrix
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Labor (DOL) Occupational Information Network (O*NET) (Hopson 2021).

The OEWS program reports data using the North American Industry Classification Sys-

tem (NAICS). We use estimates at the NAICS 3-digit subsector levels that are representative

of privately-owned business establishments, which excludes government and nonprofit insti-

tutions serving households (NPISH).3

To generate data-related employment and wage estimates for 2003–2020, we use model-

based estimates (Dey et al. 2019) for 2015–2019 and official estimates for the period 2003–2014

and for 2020 (U.S. Bureau of Labor Statistics 2021). We use estimates of the average annual

wage and annual number of employees for privately-owned establishments at the NAICS

3-digit level.

The wage series use several versions of the underlying occupational and industry systems

across time. In order to obtain a consistent time series, we use the OES 2019 hybrid structure

crosswalk and rely on the OES 2010–2011 classification crosswalk to account for the tempo-

rary codes in those two years. For example, if multiple occupations are aggregated in the

latest taxonomy (OES 2019), the estimated average annual wage is an average of available

wage data weighted by the employment estimates for the corresponding occupations. In cases

when an occupation is attributed to multiple 2019 codes, which may occur due to special

hybrid-code estimates, those are equally distributed among the corresponding 2019 codes.

The resulting series provide us the employment and wage numbers by year and industry.

3.2 Time-Use Factors

Time-use factors are important to the sum-of-costs methodology as they provide measures

of time-effort allocated to the activities of interest such as data-related activities. Time-use

factors have been used to examine quality of service, job satisfaction, and other outcomes in

various domains such as education, health, and security. For example, the OECD Teaching
3The sectors and subsectors identified as NPISH include Educational Services (NAICS 61), Health Care

and Social Assistance (NAICS 62), Arts, Entertainment and Recreation (NAICS 71), and Religious, Grant-
making, Civic, Professional, and Similar Organizations (NAICS 813).
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and Learning International Survey (TALIS) collects data on the time-use allocation of teach-

ers among categories: (1) Administrative and leadership tasks and meetings, (2) Curriculum

and teaching-related tasks and meetings, (3) Student interactions, (4) Parent or guardian

interactions, and (5) Interactions with local and regional community, business and industry.

In the area of health, studies have collected information on the share of time physicians spend

on direct care with patients or administrative work (Woolhandler and Himmelstein 2014).

While most data on time-use allocations is collected in surveys, other methods include direct

observation of the work performed such as rides with police officers (Parks et al. 1999).

For data as an asset, we estimate time-use factors using a methodology developed in

Blackburn (2021) for data-relevant skills, which are reflected in activities including entry,

storage, analysis, and management of data. Examples of specific activities include data

cleaning, data wrangling, data manipulation, and data science.

Following Blackburn (2021), the time-use factor 𝜏 can be decomposed as follows

𝜏𝜔 = 𝑙𝜔
𝐿𝜔

𝑠∗
𝜔 = 𝜌𝜔𝑠∗

𝜔 (2)

where the time-use factor for occupation 𝜔 is the product of the fraction of employees that

engage in activities of interest (𝜌𝜔) and an estimate of how much time the occupation allocates

to the activities (𝑠∗
𝜔). Without time-use factors, the sum-of-costs methodology relies on

identifying specific occupations assumed to best embody the activities of interest.

3.2.1 Online Job Advertisements

The method uses online job advertisement data from Burning Glass Technologies (BGT) to

estimate time-use factors for a broad range of occupations.4 The data not only contain the job

advertisement text but also enhancements, including deduplication, identified skills, degree
4Online job advertisements have been used in applications related to labor, education, and credential

research. Examples of online job advertisement providers include Burning Glass Technologies, Indeed, and
the National Labor Exchange (NLx) Research Hub. These providers collect job postings in “real-time” from
various websites.
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requirements, location, and information on the employer (e.g., industry). BGT also uses their

own-developed occupational auto-coders to identify the occupation of the job advertisement.5

Lancaster et al. (2021) look at the data quality, suitability, and representativeness of

BGT job advertisement data for research purposes. The study confirms several findings

in the literature such as the over-representation of certain occupation groups in the BGT

job advertisement data. One aspect of the BGT data that distinguishes them from other

alternatives is the focus on skills rather than occupations as the main unit of analysis for

understanding the job market (Burning Glass Technologies 2019). The BGT skills taxonomy

includes over 17,000 skills as well as various skill properties such as whether a skill refers to

data or software (or both).

The strategy uses the BGT job advertisement data to estimate equation 2. The first

component refers to the fraction of employees in an occupation who engage in data-related

activities. The concept is operationalized with the following definition:

̂𝜌𝜔 =
∑𝐿𝜔

𝑗=1 𝟙 ( ̂𝑦𝑗)
𝐿𝜔

(3)

where 𝟙 ( ̂𝑦𝑗) denotes ∃ 𝑠 ∶ 𝑠 ∈ 𝑆 such that 𝑠 is a subset of skills identified for job adver-

tisement 𝑦𝑗, and 𝑆 is the set of skills identified as data relevant. In other words, a ratio is

computed as the fraction of job advertisements with at least one of the data-relevant skills out

of all job advertisements (𝐿𝜔) for each occupation. Blackburn (2021) manually identified 203

BGT skills that are data relevant, which excludes any skill deemed a software skill as a way

to minimize potential overlap with capital formation in software. The top 80 data-relevant

skills by frequency are presented in table 1.

A two-step approach is used to estimate (𝑠∗
𝜔). The first step identifies the occupations

with the highest rate of employees engaged in data-related activities (𝜌𝜔) based on the BGT

skills. The top 20 occupations are denoted “landmark” occupations and assigned full time-
5The NLx Research Hub uses the O*NET SOC Code AutoCoder™ (https://www.onetsocautocoder.

com).
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Table 1: BGT skills identified as data relevant

3D Seismic Data Data Dictionary System
Accenture Data Governance Framework Data Documentation
Advanced Data Entry Data Encryption
Assessment Data Data Engineering
Big Data Data Entry
Big Data Analytics Data Entry Prioritization
Billing Data Analysis Data Evaluation
Biological Database Search Data Exploitation
Business Intelligence Data Modeling DFHSM
Cascading Big Data Applications Data Flow Diagrams (DFDs)
Climate Data Analysis Data Governance
Clinical Data Abstracting Data Integration
Clinical Data Analysis Data Integrity
Clinical Data Exchange Data Lakes / Reservoirs
CDISC Data Loss Prevention
Clinical Data Management Data Management
Clinical Data Review Data Management Platform (DMP)
Clinical Data Understanding Data Manipulation
Clinical Database Development Data Mapping
Clinical Research Data Accuracy and Integrity Data Migration
Cloud Security Data Protection And Privacy Data Mining
Columnar Databases Data Mining Industry Knowledge
Conceptual Data Models Data Modeling
Customer Data Integration Data Modeling Star / Snowflake Schema
Customer Service Database Data Multiplex System (DMS)
Data Acquisition Data Munging
Data Acquisition Systems Data Operations
Data Analysis Data Platform as a Service
Data and Safety Monitoring Board Data Pre-Processing
Data Architecture Data Privacy
Data Archiving Data Protection Industry Knowledge
Data Buffers Data Protection Planning
Data Capture Data Protection Strategy
Data Center Hardware Data Quality
Data Cleaning Data Quality Assessment
Data Collection Data Reports
Data Communications Data Science
Data compression Data Security
Data Conversion Data Security Classification

Note: Top 80 skills by frequency out of 203 data relevant skills identified manually.
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Table 2: Landmark occupations

O*NET SOC 2010 Description Time-use factor

43-9021.00 Data Entry Keyers 0.94
15-1111.00 Computer and Information Research Scientists 0.77
15-1141.00 Database Administrators 0.75
15-1199.06 Database Architects 0.72
19-1029.01 Bioinformatics Scientists 0.68
19-4061.00 Social Science Research Assistants 0.67
15-2041.00 Statisticians 0.66
15-1199.07 Data Warehousing Specialists 0.63
15-2041.01 Biostatisticians 0.63
15-1199.08 Business Intelligence Analysts 0.61
53-7073.00 Wellhead Pumpers 0.60
19-3022.00 Survey Researchers 0.59
43-9111.01 Bioinformatics Technicians 0.58
43-9111.00 Statistical Assistants 0.54
29-2092.00 Hearing Aid Specialists 0.54
15-2041.02 Clinical Data Managers 0.54
43-3021.01 Statement Clerks 0.50
51-8099.02 Methane/Landfill Gas Generation System Tech. 0.47
15-1199.05 Geographic Information Systems Technicians 0.44
33-3021.06 Intelligence Analysts 0.43

Note: For landmark occupations, the similarity to the nearest landmark is one, and thus the time-
use factor ̂𝜏𝜔 is the same as ̂𝜌𝜔.

effort. Table 2 shows the occupations determined to be “landmark” occupations. Many

of the occupations are obvious landmark candidates such as data entry keyers and various

research and analyst occupations. Some of the occupations are less obvious as landmarks. For

example, wellhead pumpers may not be an occupation immediately associated with data, but

their job activities rely on monitoring and assessing data in order to act on that information

promptly.

For non-landmark occupations, 𝑠∗
𝜔 is estimated as the cosine similarity to the closest

landmark occupation. Mathematically,

̂𝑠∗
𝜔 = max

𝑤 ∈ 𝕄
{ A𝜔 ⋅ A𝑤

‖A𝜔‖‖A𝑤‖
} (4)
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where 𝕄 is the set of landmark occupations, 𝐴𝜔 (i.e., omega) is a numerical representation

of occupation 𝜔, and 𝐴𝑤 (i.e., double-u) is the mathematical representation of occupation 𝑤

(i.e., one of the landmark occupations). The effective time-use factor then becomes

̂𝜏𝜔 = ̂𝜌𝜔 ̂𝑠∗
𝜔 =

∑𝐿𝜔
𝑗=1 𝟙 ( ̂𝑦𝑗)

𝐿𝜔
max
𝑤 ∈ 𝕄

{
̂A𝜔 ⋅ ̂A𝑤

‖ ̂A𝜔‖‖ ̂A𝑤‖
} . (5)

The estimate for the full production costs of data-related activities for a given industry 𝑖

at time 𝑡 is then as follows:

̂𝐶𝑖,𝑡 = 𝛼 ∑
𝜔∈Ω

⎡⎢
⎣

∑𝐿𝜔
𝑗=1 𝟙 ( ̂𝑦𝑗)

𝐿𝜔
(max

𝑤 ∈ 𝕄
{

̂A𝜔 ⋅ ̂A𝑤

‖ ̂A𝜔‖‖ ̂A𝑤‖
}) �̂�𝜔,𝑖,𝑡�̂�𝜔,𝑖,𝑡

⎤⎥
⎦

. (6)

3.2.2 Sample Design and Description

The BGT data enable observation of over 239 million job advertisements in the United States

for 2010–2019. The data include over a thousand O*NET SOC 2010 occupations. The data

are used to train an auto-coder model for O*NET SOC 2010 using job text to obtain the

numerical representation for each occupation such that we can compute pair-wise similarity

between occupations.

The sample design uses the occupation distribution across NAICS 3-digit subsectors

based on the annual number of employees in privately-owned establishment from OEWS

for 2015–2019. If observations available at the occupation-industry level are below the tar-

get (1,500 × percentage of occupations in a NAICS 3-digit subsector), all observations are

included. Otherwise, we sample from the valid observations a targeted sample of 1,500 obser-

vations equally distributed based on the sequential order of the job posting dates. We only

include occupations for which at least 100 job ads are available, meaning there is complete

information for the job text, job posting date (ISO 8601), O*NET SOC 2010, and NAICS

subsector. The sample design aims to be representative of the business sector in terms of

the occupation-industry interactions and composition as well as temporal changes, while also
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maintaining desirable properties for modeling, such as avoiding extreme unbalanced classes or

making inferences based on limited data. Our goal is different from traditional auto-coders,

which may emphasize some metric like accuracy and may prefer to focus on having better

performance for frequent occupations over having acceptable performance for less frequent

occupations.

Considering the observations with complete information (O*NET SOC 2010 and NAICS

3-digit codes are not always available), we sample occupations for which at least 100 obser-

vations are available and limit the observations included per occupation to around 1,500. We

also exclude military occupations (SOC major group 55) and those that are exclusive to the

public sector like legislators and postal service employees. The sample includes 959 O*NET

SOC 2010 occupational codes that have between 101 and 1,548 observations.

The final sample comprises 1.12 million observations for which we recover the job adver-

tisement text as well as the skills for each of the job advertisements. We split the dataset by

applying a clustered sampling design based on occupation-industry subsector with 90 percent

of the sample being used as the training set and 10 percent as the test set.

3.2.3 Machine Learning Model

The modeling approach uses the doc2vec (Le and Mikolov 2014) implementation in gensim

v4.0.1 (Řehůřek and Sojka 2010) for Python (van Rossum and Drake 2009) v3.8.5. The

modeling technique uses paragraph vectors to capture the semantics of documents as an

alternative to “bag-of-words” or “bag-of-n-grams” representations. In our case, each job

advertisement is represented not just by applying a tokenization to the text but by also

including indicators for each job advertisement. After training the model, each occupation

is represented by a multidimensional numerical abstraction. Once the model has been fitted,

we extract the features that are a 1,000-dimensional numerical representation of each O*NET

SOC 2010 code. The pair-wise cosine distance is then computed to obtain the occupation

similarity matrix. The similarity matrix allows us to find the most similar “landmark”
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occupation.

3.2.4 Validation

Model Validation. Occupation auto-coders are automated models that can predict oc-

cupation codes based on inputs such as job advertisements and job titles. One common

autocoder regarded as a gold standard is the O*NET-SOC AutoCoder™ developed by R.M.

Wilson Consulting, Inc. for the U.S. Department of Labor. There are various ways to eval-

uate the performance of a multi-class classifier. For example, the classifier accuracy claims

for the O*NET-SOC AutoCoder™ are stated based on the inputs whether it operates on a

job advertisement and job title or on just a job title. For job titles and job advertisement

text, the model accuracy for predicting O*NET SOC 2019 codes is 85 percent based on their

internal test results. Since the model is using just the unstructured job advertisement text,

we expect the performance to be lower than the gold standard using additional information.

Another consideration is that the labeled data are also based on the BGT auto-coder for

O*NET SOC 2010 codes which in turn contains errors from the BGT auto-coder. Given

the licensing terms and industry practices, properly assessing the performance of these tools

is difficult. For example, a measure of accuracy can be significantly driven by unbalanced

classes. Performing well for common occupations in a sample will result in better accuracy

even if the performance for many occupations is not as good if those occupations are less

common. For the purpose of obtaining a good numerical representation for each occupation,

it is more valuable to have good performance for many occupations rather than great perfor-

mance for a select few. One metric we compute is the unweighted average F1 score on our

test set (out-of-sample) of around 120,000 observations for which the model predictions yield

an estimate of 0.5 on a 959-dimensional classification problem.

Validation of Landmark Occupations. An alternative strategy for obtaining represen-

tative occupations and similarity between occupations is to use the O*NET program. The

O*NET tasks file provides estimates of how frequently certain occupations perform job work
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activities. For example, for the occupation data entry keyers (43–9021.00) in the O*NET

v26 data, there is a task relevant to data-related activities: “Compile, sort, and verify the

accuracy of data before it is entered”. For this occupational task, the O*NET data provide

a breakdown of how frequent the task is performed: Yearly or less (1.49), More than yearly

(0), More than monthly (2.67), More than weekly (41.69), Daily (18.6), Several times daily

(18.6), Hourly or more (35.54). Each task can then be assigned an indicator of whether it

is considered data-relevant or not and estimate a time-use factor for each occupation. Some

of the heuristics we employ include assigning the frequency for each task per occupation to

the category with the highest value (daily, several times daily, or hourly). At each of the

different frequency categories, we compute the fraction of tasks deemed data-relevant. We

then collapse the ratios assigning relative values of 10 percent, 20 percent, and 70 percent

to daily, several times daily, and hourly, respectively. This back-of-the-envelope heuristic is

used as an additional check on our rankings. To assess whether the landmark occupations

are reasonable, we compute the Spearman’s rank correlation coefficient and obtain a value

around 0.22. The correlation coefficient reveals a negligible correlation, but the machine

learning model seems to provide more reasonable rankings than the O*NET-based model.

3.2.5 Mapping Occupational Codes

Using equation 5, we obtain O*NET SOC 2010 level estimates for the time-use factors.

However, employment and wage data are collected and prepared with OEWS Employment

Projections (EP) 2019 codes. We use the crosswalk files to map the O*NET SOC 2010 codes

to the SOC 2010 codes and then to OEWS 2019 codes (see subsection 3.1 for additional

information on the process and data files). If multiple occupations are mapped to a single

OEWS-EP 2019 code, the time-use factor for that occupation is the mean value for all mapped

occupations. We then obtain time-use factor estimates for 736 OEWS 2019 occupation codes.

These estimates tend to be quite low with a mean lower than 10 percent and a 95 percent

quantile of 8 percent. The larger values are almost exclusive to the landmark occupations
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shown in table 2.

3.3 Markup and Additional Adjustments

Markup. We estimate the full production costs by multiplying the data-related wage bill

by a markup (i.e., the 𝛼 in equations 1 and 6) that is designed to reflect employee benefits,

capital costs, and intermediate consumption, none of which are included in the wage bill.

Observing publicly available information, firms engaged in data aggregation, data sales, and

other data-related activities appear generally to be classified to industries in Information

(NAICS 51), Professional, Scientific and Technical (PST) Services (NAICS 54), or Admin-

istrative & Support Services (NAICS 56).6 Based on these observations, we use NAICS 51,

NAICS 54, and NAICS 56 as the representative sectors for the markup in the full produc-

tion cost estimates. In particular, we calculate 𝛼 as a composite ratio of compensation,

intermediate consumption (exluding materials), consumption of fixed capital (CFC), and net

operating surplus to wages and salaries using data summed for select industries from BEA’s

annual industry accounts. In other words, the composite ratio is weighted by the size of the

chosen industries.

We consider calculating the composite ratio using BEA industry accounts data at the

NAICS 2-digit sector level - i.e., all industries in NAICS 51, 54, and 56 - or at a more de-

tailed subsector level of industries. The sector level yields a ratio that reflects a broader

representation of industries and may be driven by the production functions of products that

are not data-related. The latter feature assumes the production function of data assets re-

sembles the production functions of primary products for the representative industries. The

subsector level allows us to choose industries that are more explicitly engaged in the produc-

tion of data-related products and, thus, yields a ratio that more closely reflects the production
6For example, Axciom, Facebook, Localeze, and Burning Glass Technologies appear to be classified to

NAICS 51 industries. In addition, Alphabet, Foursquare, Infogroup, Nielsen, Automatic Data Processing Inc.
(ADP), The NPD Group, and International Data Corporation (IDC) all appear to be classified to NAICS
54 industries. Exceptions are the credit bureaus, which are classified to Administrative & Support Services
(NAICS 56) industries.
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functions of data-related products. The industries we choose from BEA’s industry accounts

include Data Processing, Internet Publishing and Other Information Services (NAICS 518),

Computer Systems Design and Related Services (NAICS 5415), and Administrative & Sup-

port Services (NAICS 561).

At the sector level, the annual ratios range from 2.91 to 3.11 for 2003–2020, with a simple

average of 3.03. At the subsector level, the annual ratios range from 2.22 to 2.61, with a

simple average of 2.42. For our core experimental results, we use the subsector average of 2.42

as a time-invariant lower bound markup for each year 2003–2020. In addition, we present

results using the sector average of 3.03 as a time-invariant upper bound markup for each

year.

Additional Adjustments. We do not have an estimate of own-account data output that

is used up in current production versus own-account data output that becomes capital for-

mation. Thus, we reduce the full production cost estimate by 50 percent to capture capital

formation.

We also adjust for potential overlap between data assets and R&D assets by reducing the

capital-formation-adjusted production cost estimates by 50 percent for R&D intensive indus-

tries (Galindo-Rueda and Verger (2016)), including industries in Chemical Manufacturing

(NAICS 325), Computer and Electronic Product Manufacturing (NAICS 334), Transporta-

tion Equipment Manufacturing (NAICS 336), Publishing (NAICS 511), and PST Services

(NAICS 541). Likewise, we adjust for overlap between own-account data and purchased data

by further reducing the adjusted production cost estimate for PST Services (NAICS 541) by

50 percent. Since we exclude software skills in our estimates of time-use factors, no additional

adjustment is required for potential overlap between data assets and software assets.

We choose 50 percent as a placeholder for each of the additional adjustments to reflect our

acknowledgement of the adjustments until future empirical evidence comes available. Table

3 summarizes by NAICS subsector the effective factors that are applied to the wage bill to

calculate investment in data assets for our core experimental results. Section 4 has more
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Table 3: Effective factors applied to the wage bill

NAICS Markup Capital formation R&D Purchased data Effective factor

325 2.42 0.50 0.50 N/A 0.605
334 2.42 0.50 0.50 N/A 0.605
336 2.42 0.50 0.50 N/A 0.605
511 2.42 0.50 0.50 N/A 0.605
541 2.42 0.50 0.50 0.50 0.3025
All other 2.42 0.50 N/A N/A 1.21

Note: The table summarizes by NAICS subsector the effective factors that are applied to the wage
bill to calculate the full production costs. All other excludes NPISH and general government: Edu-
cational Services (NAICS 61), Health Care and Social Assistance (NAICS 62), Arts, Entertainment
and Recreation (NAICS 71), Religious, Grantmaking, Civic, Professional, and Similar Organiza-
tions (NAICS 813), and Public Administration (NAICS 92).

discussion on the markup and additional adjustments.

4 Addressing Measurement Challenges

The main challenges for measurement of own-account data stocks and flows that we address

in the paper are similar to challenges imposed by other own-account IPPs that are already

included in capital formation in the SNA and the U.S. NIPAs. We identify here four challenges

and how we address the challenges for own-account data.

4.1 Scope of Costs in Capital Formation

The scope of costs to include in capital formation is important for own-account data and

other own-account IPPs.7 The stages of the data value chain (OECD 2013; Moro Visconti

et al. 2017) yield insights into activities that underlie the production process for data –

including collection, storage, processing, distribution, and usage – some of which are reflective

of costs that embody capital formation. The scope that has been recently introduced by the
7For example, OECD (2010) identifies eight stages of activities in the production of own-account software:

feasibility analysis, functional analysis, detailed analysis, programming, tests, documentation, training, and
maintenance. Of the eight stages, only costs for functional analysis, detailed analysis, programming, tests,
and documentation are within scope for capital formation.
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OECD (2021) is whether capital formation should include both recording and processing

costs and the costs of procuring access to data or only include recording and processing

costs. Procurement costs may include either explicit purchases or the value of “free” digital

products exchanged for access.8 OECD (2021) considers recording and processing costs to be

production activities that could result in capital formation. However, they call into question

whether procurement costs should be considered production activities or simply costs to

improve the quantity or quality of access for a more valuable data asset, and thus, outside

the production boundary.

We address this challenge by identifying skills in the BGT taxonomy that are relevant

to data-related activities, including data entry, storage, analysis, and management. These

skills are embodied by the occupations that underlie our estimates of the data wage bill.

In addition, we reduce the full production cost estimate for data by 50 percent to account

for data-related output that is used up in the current period and never becomes capital

formation.9

4.2 Multiple Counting

Own-account data and other own-account IPPs are at risk of multiple counting from several

sources.

4.2.1 Overlap Among Categories of IPPs

One source of multiple counting is overlap among categories of IPPs that are separately

measured, such as data, software, and research and development (R&D).
8The latter procurement costs are identified in Farboodi and Veldkamp (2021) as a measurement challenge,

and their model moves beyond price-based valuation by assigning a value to goods and data that have a zero
transaction price.

9Another approach would be to use a depreciation rate for data that reflects a more rapid decline in value
of investment flows as a result of obsolescence. However, such an approach would disregard the accounting
difference between intermediate consumption and capital formation.
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Software. We address overlap between data and software by estimating the time-use factors

for data, which are intentionally based on unique data-relevant skills that are distinguishable

from software-relevant skills.10 For comparison with data-relevant skills presented in table 1,

table 4 presents the top 80 BGT skills identified as software relevant. Likewise, table 5 shows

the top time-use factors for occupations engaged in software-related activities to compare

with landmark occupations for data reported in table 2.

While tables 1 and 4 demonstrate no overlap for BGT skills by design, there is overlap

of seven occupations with high time-use factors in tables 2 and 5. The occupations that

show up in both tables include Business Intelligence Analysts, Computer and Information

Research Scientists, Database Administrators, Database Architects, Data Warehousing Spe-

cialists, Geographic Information Systems Technicians, and Statisticians. In addition, the

time-use factors sum to more than 100 percent for the first five occupations, which implies

the occupations may be used to measure either data- or software-related activity but not

both. However, there is no overlap between landmark occupations for data and the four

occupations BEA currently uses to estimate own-account software.

Overlap is expected when activities are intertwined. One example is software and R&D.

Based on the 2018 Business Enterprise Research and Development Survey (BERD) table 19,

$165.6 billion (37.5 percent) of domestic R&D was software products and embedded software

R&D.11 In the NIPAs, this overlap is included with R&D investment and excluded from

software investment. There may also be job activities at the intersection of data, software,
10We also considered completely excluding from the data wage bill the wages of the four occupations that

BEA uses to estimate own-account software–Computer Programmers, Computer System Analysts, Software
Developers (applications), and Software Developers (system software). However, the time-use factors for
these four occupations are modest - each less than 20 percent - and we think the occupations may reasonably
embody some data-related activities that accompany own-account software development.

11According to guidance in the BERD survey, R&D activity in software includes 1) software development or
improvement activities that expand scientific or technological knowledge and 2) construction of new theories
and algorithms in the field of computer science. Likewise, the BERD survey requires that R&D activity
in software exclude 1) software development that does not depend on scientific or technological advance,
such as supporting or adapting existing systems, adding functionality to existing application programs, and
routine debugging of existing systems and software, 2) creation of new software based on known methods
and applications, 3) conversion or translation of existing software and software languages, and 4) adaptation
of a product to a specific client, unless knowledge that significantly improved the base program was added
in that process.
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Table 4: BGT skills identified as software relevant

.NET Microsoft Sql Server Integration Services (SSIS)
Active Server Pages (ASP) Microsoft Visio
Agile Development Middleware
AJAX MySQL
Amazon Web Services (AWS) Object-Oriented Analysis and Design (OOAD)
AngularJS Oracle
Apache Hadoop Oracle PL/SQL
Apache Tomcat PERL Scripting Language
Apache Webserver Platform as a Service (PaaS)
Application Design Python
ASP.NET Relational DataBase Management System (RDBMS)
Atlassian JIRA Ruby
C++ Salesforce
COBOL SAP
Computer Engineering SAS
Crystal Reports Scrum
Debugging Shell Scripting
Eclipse Software Architecture
Enterprise Resource Planning (ERP) Software as a Service (SaaS)
Extensible Markup Language (XML) Software Development
Extensible Stylesheet Language XSL Software Engineering
Firmware Software Testing
Git SQL
HTML5 SQL Server
Hypertext Preprocessor (PHP) SQL Server Reporting Services (SSRS)
IBM WEBSPHERE Systems Analysis
Informatica Systems Development Life Cycle (SDLC)
Java Teradata DBA
Java Server Pages (JSP) Transact-SQL
JavaScript Unified Modeling Language (UML)
JavaScript Object Notation (JSON) UNIX
jQuery UNIX Shell
JUnit User Acceptance Testing (UAT)
Linux User Interface (UI) Design
Microsoft Access Visual Basic
Microsoft Azure Visual Studio
Microsoft C# VMware
Microsoft Operating Systems Waterfall
Microsoft Project WebLogic
Microsoft SQL Windows Server

Note: Top 80 software skills by frequency identified from landmark occupations.
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Table 5: Top time use factors for software

O*NET SOC 2010 Description Time use factor

15-1133.00 Software Developers, Systems Software 0.95
15-1132.00 Software Developers, Applications 0.94
15-1131.00 Computer Programmers 0.85
15-1121.00 Computer Systems Analysts 0.82
15-1134.00 Web Developers 0.65
15-1199.02 Computer Systems Engineers/Architects 0.60
15-1199.08 Business Intelligence Analysts 0.55
15-1199.06 Database Architects 0.55
15-1141.00 Database Administrators 0.52
15-1199.01 Software Quality Assurance Engineers and Testers 0.52
15-1199.09 Information Technology Project Managers 0.50
15-1143.00 Computer Network Architects 0.49
13-1111.00 Management Analysts 0.48
15-1199.07 Data Warehousing Specialists 0.46
15-1111.00 Computer and Information Research Scientists 0.45
15-1142.00 Network and Computer Systems Administrators 0.41
15-1199.00 Computer Occupations, All Other 0.40
15-1122.00 Information Security Analysts 0.40
11-3021.00 Computer and Information Systems Managers 0.39
17-2061.00 Computer Hardware Engineers 0.38
15-1199.04 Geospatial Information Scientists and Techs 0.38
15-1199.03 Web Administrators 0.37
15-1152.00 Computer Network Support Specialists 0.37
15-1151.00 Computer User Support Specialists 0.36
15-2041.00 Statisticians 0.34
13-2099.01 Financial Quantitative Analysts 0.32
15-1199.11 Video Game Designers 0.32
15-1143.01 Telecommunications Engineering Specialists 0.32
17-3029.07 Mechanical Engineering Technologists 0.30
17-1011.00 Architects, Except Landscape and Naval 0.30
13-2051.00 Financial Analysts 0.28
15-1199.10 Search Marketing Strategists 0.28
13-1081.02 Logistics Analysts 0.28
17-2199.08 Robotics Engineers 0.27
27-1021.00 Commercial and Industrial Designers 0.27
27-3042.00 Technical Writers 0.27
17-3031.02 Mapping Technicians 0.27
15-1199.05 Geographic Information Systems Technicians 0.27

Note: Bold occupations denote landmark occupations that are by design the same occupations
BEA currently uses to estimate own-account software.
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and R&D, such as software programming to prepare a data set for research. Observing

independently-estimated time-use factors that together exceed 100 percent is not problematic

in itself for our estimates because we know that own-account software estimation is limited

to four specific occupations with relatively low time-use factors. However, the outcome does

suggest an incentive to jointly estimate own-account data and own-account software to ensure

consistency and prevent double counting if the scope of own-account software is expanded to

include more occupations in the future.

Research & Development. In contrast to software, the BGT skills dataset does not

include R&D-relevant skills to distinguish them from data-relevant skills, which may yield

some overlap between data assets and R&D assets. For example, Goodridge et al. (2021)

and Statistics Canada (2019a) both argue that data science activities meet the SNA and

OECD (2015) definition of R&D. However, Goodridge et al. (2021) suggest that data science

is not included in measured R&D in practice by some countries because R&D is generally

measured based on surveys designed for known performers of traditional scientific R&D

activities. Likewise, Statistics Canada (2019a) suggests that the survey they use to measure

R&D needs to be examined for updates because the survey was developed years ago and is

biased toward the selection of firms engaged in more traditional forms of R&D activities,

such as pharmaceutical firms, and biased away from a growing number of firms in diverse

industries engaged in data science activities.

For R&D measures in the U.S. national accounts, the survey used to collect information

on performance of business R&D is the BERD survey.12 The 2019 BERD survey explicitly

includes software development or improvement activities that expand scientific or techno-

logical knowledge and construction of new theories and algorithms in the field of computer
12The 2019 BERD survey defines research and development as follows: “Research is defined as experimental

or theoretical work undertaken primarily to acquire new knowledge or understanding of phenomena and
observable facts. Research may be either “basic”, where the goal is primarily to acquire new knowledge or
understanding of a given topic without a specific commercial application in mind, or “applied”, where the
goal is to solve a specific problem or meet a specific commercial objective. Development is defined as the
systematic use of research and practical experience to produce new or improved goods, services, or processes.
In simple terms, the intended output of research is ideas and the intended output of development is products.”
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science. In addition, the 2019 BERD survey asks respondents to report the percentage of do-

mestic R&D expenditures paid for and performed by them that was for artificial intelligence

(AI), which includes speech recognition, machine vision, machine learning, text analytics,

and natural language generation and processing. Thus, data science may not be absent in

practice from the BERD survey and may be included in BEA’s measures of R&D based on

the BERD survey.

To adjust for potential overlap between data and measured R&D in our estimates, we

reduce the capital-formation-adjusted production cost estimate by 50 percent for R&D inten-

sive industries (Galindo-Rueda and Verger 2016), including Chemical Manufacturing (NAICS

325), Computer and Electronic Product Manufacturing (NAICS 334), Transportation Equip-

ment Manufacturing (NAICS 336), Publishing Industries (NAICS 511), and Professional, Sci-

entific, and Technical Services (NAICS 541).13 Consistent with the suggestions of Goodridge

et al. (2021) and Statistics Canada (2019b), the resulting dollar adjustments for these indus-

tries are modest.14

4.2.2 Non-Rival Use of Data

Another source of multiple counting is overlap between own-account data and purchased data,

which is also a source of multiple counting for software and R&D. We address this challenge

by further reducing the adjusted production cost estimate by 50 percent for PST Services

(NAICS 541), which we determine to be the NAICS code used by most data aggregators and

brokers and is the NAICS code with the highest data wage bill (prior to adjustment) under
13We also consider completely excluding from the data wage bill the wages of four SOC 2010 occupations

that appear to be R&D occupations based on “research” in the descriptions: Computer and Information
Research Scientists (SOC 15–1111), Operations Research Analysts (SOC 15–2031), Survey Researchers (SOC
19–3022), and Social Science Research Assistance (SOC 19–4061). However, we think the occupations may
reasonably embody some data-related activities that accompany R&D, and we are not able to determine if
excluding these four occupations based on “research” is as comprehensive as adjusting the R&D intensive
industries.

14The resulting dollar adjustment for 2020 is $29.4 billion or approximately 5.75 percent of business R&D
investment in the U.S. national accounts.
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our methodology.15

Finally, a source of multiple counting that has been cited as a concern specifically for data

as an asset is that the same piece of information can be used in multiple databases. However,

a single piece of information is transformed when it is added to a record with other pieces

of information. Likewise, we are not valuing pieces of information but rather the activities

associated with making the information available in a record, which is unique to every firm

for own-account measures.

4.3 Measuring Capital Costs

A challenge that may be more relevant (but not unique) to data stocks and flows is how

to measure the capital cost component of the sum-of-costs. There is a question of what

proportions of the sum-of-costs should be accounted for by labor costs, capital costs, and

intermediate consumption, given the role of capital services in the collection, storage, analysis,

and management of data.

For our core experimental results, we apply a conservative markup of 2.42 to the wage

bill as explained in section 3.3. In addition, we apply an alternative markup of 3.03 to

the wage bill, which we treat as an upper bound result. Since the markups are weighted

composite ratios of compensation, intermediate consumption (excluding materials), CFC,

and net operating surplus, we can decompose the markups into the proportionate share of

each component in the sum-of-costs. The decomposition is presented in table 6.

Aside from the overall numeric difference between the two markups - i.e., 2.42 and 3.03

- table 6 demonstrates two important differences between the two markups that result from

the NAICS levels chosen for each. First, the ratios for labor costs (i.e., compensation) are

the same between the two markups (i.e., 1.17). Second, the ratios for capital costs (i.e., net

operating surplus plus CFC) and intermediate consumption are both higher for the upper

bound markup, which yields higher proportionate shares of capital costs and intermediate
15The reduction for PST Services (NAICS 541) to adjust for non-rival use of data is in addition to the

reduction of 50 percent to adjust for R&D overlap.
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Table 6: Weighted composite ratios for full sum-of-costs

Subsector (lower bound) Sector (upper bound)
Ratio Share (%) Ratio Share (%)

Compensation 1.17 48 1.17 38
Intermediate consumption 0.78 32 1.07 35
Consumption of fixed capital 0.18 8 0.29 10
Net operating surplus 0.29 12 0.50 17
Markup 2.42 3.03

Note: All data are from BEA’s annual industry accounts. Intermediate consumption excludes
materials. The lower bound column reports the simple average for 2003-2020 of each annual measure
summed for NAICS 518, 5415, and 561 divided by annual wages and salaries summed for the same
subsectors. The upper bound column reports the simple average for 2003–2020 of each annual
measure summed for NAICS 51, 54, and 56 divided by annual wages and salaries summed for the
same sectors.

consumption and a lower proportionate share of labor costs for the upper bound markup.

A gap of 10 percentage points exists in the proportionate shares of labor costs between the

lower- and upper-bound markups, and the gap is offset by 7 percentage points attributable

to capital costs and 3 percentage points attributable to intermediate consumption.

4.4 Prices and Depreciation

Own-account data are not transacted in active markets, which means there are no observed

transactions that are useful for measuring prices and depreciation. While measuring prices

and depreciation for own-account data is beyond the scope of this paper, we utilize inter-

national guidelines and U.S. practice for deflating and depreciating own-account software

and databases as a starting point for deflating and depreciating own-account data, which

reflects the inclusion of own-account data as a subcategory of software and is consistent with

preliminary guidance emerging from the SNA community’s current work on revising the SNA.

Prices. In the absence of deflators for own-account software, OECD (2010) recommends

that deflators for custom software be used as a proxy until own-account software deflators

are developed. In addition, OECD (2010) suggests three options for own-account database
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deflators. One option is to use a price index of a related activity for which there is a price

index of reasonable quality. The other two options are an input cost index, one with zero

productivity growth and another with an adjustment based on productivity growth of a

similar industry.

BEA does not compile a price index for own-account databases because own-account

databases are not measured separately from own-account software in the U.S. NIPAs. For

own-account software, BEA currently compiles a price index from a weighted average of

the prepackaged software price and a BEA input cost index (U.S. Bureau of Economic

Analysis 2020). The input cost index is compiled from BLS data on wage rates for Computer

Programmers and Computer System Analysts and the intermediate consumption associated

with the production of software. The input cost index reflects an explicit adjustment for

changes in productivity that is based primarily on a BLS multifactor productivity index.16

To address the lack of prices for own-account data, we propose using BEA’s current price

index for own-account software as a proxy to deflate current-dollars. In the future, an input

cost index with a productivity adjustment could be developed specifically for data.

Depreciation. OECD (2009) recommends several options for determining depreciation

parameters for an asset class, which generally requires information on prices or service lives.

One option uses information on the service life and makes an additional assumption about

the functional form of the depreciation pattern. A functional form that is commonly used

for pragmatic reasons is the geometric model of depreciation, which yields a pattern of

constant percentage decline in an asset’s value. In the absence of econometric estimates

of the geometric depreciation rate, the geometric depreciation rate can be estimated using a

simple declining balance method as 𝛿 = 𝑅 / 𝑆, where 𝑅 is an estimated declining balance

rate and 𝑆 is an average service life (Hulten and Wykoff 1996). The declining balance rate
16When BEA first introduced capital measures of own-account software into the NIPAs in 1999, an input

cost index was compiled from a weighted average of compensation rates for Computer Programmers and
Computer System Analysts and the intermediate consumption associated with their work (Moulton and
Sullivan 1999). No productivity adjustment was made.
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may be either estimated econometrically or is sometimes assumed to be 2. For software

and databases, OECD (2010) recommends the average service life be obtained by surveying

software users, surveying software suppliers, or hiring software consultants.

BEA does not compile a measure of depreciation for own-account databases but does

compile a measure of depreciation for own-account software in the U.S. Fixed Assets Accounts

(FAAs). To estimate depreciation for own-account software, BEA uses a 5-year service life

and a declining balance rate of 1.65 to determine the geometric depreciation rate. The

service life is based on estimates of the relationship between computer expenditures and

software expenditures, anecdotal evidence about how long software is used before replacement

(including an informal survey of business uses of software), and tax-law-based service lives of

software.17 The declining balance rate is borrowed from the Hulten-Wykoff methodology that

is used for most equipment in the FAAs (Hulten and Wykoff 1981; Hulten, McCallum, et al.

1981; Wykoff and Hulten 1979; Fraumeni 1997). To address the lack of depreciation rate for

own-account data, we use BEA’s current geometric depreciation rate of 0.33 for own-account

software as a proxy.

5 Results

5.1 National Aggregates

5.1.1 Experimental Current-Dollar and Historical-Cost Estimates

Experimental estimates for aggregate business sector current-dollar investment in data assets

for 2003–2020 are presented in figure 1. The band in the figure reflects current-dollar levels

and the bars reflect current-dollar growth rates. The lower bound uses a markup of 2.42, and

the upper bound uses a markup of 3.03. With the lower markup, estimated current-dollar

investment in 2003 is $82.6 billion and in 2020 is $159.5 billion. Growth of current-dollar
17A summary of BEA’s depreciation estimates is available at: https://apps.bea.gov/national/pdf/

BEA_depreciation_rates.pdf.
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Figure 1: Current-dollar annual investment in data assets
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Note: The band in the figure reflects current-dollar levels and the bars reflect current-dollar growth rates.
The lower bound uses a markup of 2.42, and the upper bound uses a markup of 3.03.

investment is as high as 8.9 percent for 2004 and as low as −1.7 percent for 2010. The

average annual growth rate in current-dollar investment for 2004–2020 is 3.9 percent. Prior

to the recession of 2007–2009, the average annual growth rate for 2004–2007 was 5.9 percent,

which declined to 3.2 percent for 2008–2020. Average annual growth for the ten-year period

2011–2020 was 4.3 percent.

Current-dollar investment in data assets as a share of current-dollar business sector value-

added is reported in figure 2. With the lower markup, the share of data investment for the

period averages 0.9 percent of business sector value-added. With the higher markup, the

share of data investment averages 1.2 percent of business sector value-added.

We also report current-dollar investment in data assets as a share of current-dollar invest-

ment in IPPs in figure 3 and as a share of current-dollar investment in private fixed assets in

figure 4. In figure 3, lower bound data investment as a share of investment in IPPs declines

over the period from 17.2 percent in 2003 to 13.4 percent in 2020 - the share averages 15.6

percent for the period. In figure 4, lower bound data investment as a share of investment in

private fixed assets is 4.3 percent in 2003 and 4.5 percent in 2020 with some variation over

the period - the share averages 4.4 percent for the period.
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Figure 2: Investment in data assets as a share of business sector value-added
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Note: Numerator is the current-dollar annual investment in data assets. Denominator is the current-dollar
annual investment in data assets plus business sector value-added from line 2 of U.S. Bureau of Economic
Analysis, “National Income and Product Accounts: Table 1.3.5. Gross Value Added by Sector”. The lower
bound uses a markup of 2.42, and the upper bound uses a markup of 3.03.

Figure 3: Investment in data assets as a share of investment in IPPs
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Note: Numerator is the current-dollar annual investment in data assets. Denominator is the current-dollar
annual investment in data assets plus investment in IPPs from line 1 of U.S. Bureau of Economic Analysis,
“Fixed Assets Accounts: Table 3.7I. Investment in Private Intellectual Property Products by Industry”,
adjusted to exclude NPISH by subtracting lines 66, 67, and 72. The lower bound uses a markup of 2.42, and
the upper bound uses a markup of 3.03.
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Figure 4: Investment in data assets as a share of investment in private fixed assets
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Note: Numerator is the current-dollar annual investment in data assets. Denominator is the current-dollar
annual investment in data assets plus investment in private fixed assets from line 1 of U.S. Bureau of Economic
Analysis, “Fixed Assets Accounts: Table 3.7ESI. Investment in Private Fixed Assets by Industry”, adjusted
to exclude NPISH by subtracting lines 66, 67, and 72. The lower bound uses a markup of 2.42, and the upper
bound uses a markup of 3.03.

Experimental estimates for aggregate business sector historical-cost net stocks of data

assets for 2003–2020 are presented in figure 5. The historical-cost net stocks are calculated

using a perpetual inventory method (PIM) with geometric depreciation. The PIM is a sum

of annual depreciated historical-cost investment in data assets. Annual historical-cost in-

vestment in data assets prior to 2003 is backcast using the annual growth in current-dollar

investment in own-account software as an indicator. Depreciation of annual historical-cost

investment is calculated using BEA’s depreciation rate for own-account software of 0.33, as-

suming new investment in data assets is placed in service at midyear. The calculation for

annual depreciated historical-cost investment, i.e., net stock 𝑁, in year 𝑡 for investment 𝐼

placed in service in year ℎ can be summarized as follows

𝑁𝑡,ℎ = 𝐼ℎ (1 − 𝛿
2

) (1 − 𝛿)𝑡−ℎ . (7)

The band in figure 5 reflects historical-cost levels and the bars reflect historical-cost
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Figure 5: Historical-cost annual net stock of data assets
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Note: The band in the figure reflects historical-cost levels and the bars reflect historical-cost growth rates.
The lower bound uses a markup of 2.42, and the upper bound uses a markup of 3.03.

growth rates. The lower bound uses a markup of 2.42, and the upper bound uses a markup

of 3.03. With the lower markup, estimated historical-cost net stock in 2003 is $201.0 billion

and in 2020 is $375.3 billion. Growth of historical-cost net stocks is as high as 5.5 percent for

2007 and as low as 0.9 percent for 2010. The average annual growth rate in historical-cost

net stocks for 2004–2020 is 3.7 percent.

We report the historical-cost net stocks of data assets as a share of the historical-cost

net stocks of IPPs in figure 6 and as a share of the historical-cost net stocks of private fixed

assets in figure 7. In figure 6, lower bound data stocks as a share of IPP stocks decline over

the period from 12.8 percent in 2003 to 10.1 percent in 2020 - the share averages 11.5 percent

for the period. In figure 7, lower bound data stocks as a share of private fixed assets stocks

is 1.3 percent in 2003 and 1.2 percent in 2020 with some variation over the period - the share

averages 1.2 percent for the period.

5.1.2 Real Growth

We compare the log growth in real U.S. aggregate measures with and without our experi-

mental estimates of business sector investment in data assets for 2004–2020. Real aggregate
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Figure 6: Stock of data assets as a share of aggregate IPPs
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Note: Numerator is the historical-cost annual net stock of data assets. Denominator is the historical-cost
annual net stock of data assets plus historical-cost net stock of IPPs from line 1 of U.S. Bureau of Economic
Analysis, “Fixed Assets Accounts: Table 3.3I. Historical-Cost Net Stock of Private Intellectual Property
Products by Industry”, adjusted to exclude NPISH by subtracting lines 66, 67, and 72. The lower bound
uses a markup of 2.42, and the upper bound uses a markup of 3.03.

Figure 7: Stock of data assets as a share of aggregate private fixed assets

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

2017
2018

2019
2020

Year

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
h

a
r
e
 (

%
)

Note: Numerator is the historical-cost annual net stock of data assets. Denominator is the historical-cost
annual net stock of data assets plus historical-cost net stock of private fixed assets from line 1 of U.S. Bureau
of Economic Analysis, “Fixed Assets Accounts: Table 3.3ESI. Historical-Cost Net Stock of Private Fixed
Assets by Industry”, adjusted to exclude NPISH by subtracting lines 66, 67, and 72. The lower bound uses
a markup of 2.42, and the upper bound uses a markup of 3.03.
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Table 7: Growth in real measures with and without investment in data assets (%)

Average Cumulative
With data W/o data Δ With data W/o data Δ

Markup of 2.42
Data 4.07 69.13
Value-added 1.74 1.73 0.01 27.92 27.74 0.18
IPPs 4.84 5.06 −0.21 77.50 80.90 −3.40
Software 6.38 7.58 −1.20 102.08 121.30 −19.23

Markup of 3.03
Data 4.07 69.13
Value-added 1.75 1.73 0.02 27.99 27.74 0.25
IPPs 4.80 5.06 −0.26 76.80 80.90 −4.10
Software 6.19 7.58 −1.40 98.96 121.30 −22.34

Note: The table reports average and cumulative log growth rates in real data investment along
with changes in growth for business sector real value-added, private sector real investment in IPPs,
and private sector real investment in software with and without data investment for 2004–2020.
Price indexes for own-account software are used as a proxy for own-account data and aggregate
price indexes are recalculated using Törnqvist expenditure shares.

measures include business sector value-added, private sector investment in IPPs, and private

sector investment in software. We use the price index for own-account software as a proxy

for own-account data and recalculate measured aggregate prices using Törnqvist expenditure

shares. We report average and cumulative annual growth in table 7.

With the lower markup, the largest annual growth rate in real data investment is 10.6

percent for 2004 and the smallest is -1.1 percent for 2009. The average annual growth in

real data investment for 2004–2020 is 4.1 percent and the cumulative annual growth for the

period is 69.1 percent. When data investment is added to business sector value-added, the

average annual change in real value-added over the period is an increase of 1 basis point, and

the cumulative annual change is an increase of 18 basis points. Results are similar with the

higher markup.

In contrast to business sector value-added, growth in real investment in IPPs and in

software are both higher than real data investment. When data investment is added, the
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average and cumulative growth in real measures decline. With the lower markup, the decline

in average annual growth in real investment in IPPs for 2004–2020 is 21 basis points (i.e.,

0.21 percentage point) and in cumulative average annual growth is 340 basis points (i.e., 3.4

percentage points). The decline in average annual growth in real investment in software for

the period is 120 basis points (i.e., 1.2 percentage points) and in cumulative average annual

growth is 1,923 basis points (i.e., 19.2 percentage points). The declines are steeper with the

higher markup.

The changes in growth of business sector real value-added and private sector real in-

vestment in IPPs and software all reflect the modest growth in measured own-account data

investment for the period.18

5.2 NAICS Sector Aggregates

5.2.1 Experimental Current-Dollar Estimates

Experimental estimates for current-dollar investment in data assets by NAICS sector for

2003–2020 are presented in table 8. Table 9 reports the average annual growth in current-

dollar investment in data assets by NAICS sector for 2004–2020. The current-dollar estimates

as a share of current-dollar value-added by NAICS sector for 2003–2020 are shown in figure 8.

Since our methodology starts with an estimate of the occupation-based wage bill, results by

NAICS sector reflect industries that employ occupations engaged in data-related activities.

For the period 2003–2020, table 8 shows the total current-dollar investment in data was

$2.1 trillion. The largest dollar investments were made in Finance and Insurance ($354

billion), Manufacturing ($283 billion), Professional, Scientific and Technical (PST) Services

($214 billion), and Administrative Services ($214 billion). The smallest dollar investments

were made in Agriculture, Mining, Utilities, and Other Services.
18Goodridge et al. (2021) report labor productivity with and without data investment for 13 European

Union countries and find a modest average increase in labor productivity of only 5 basis points with data
investment for 2011–2016. The largest average annual increase by country is 9 basis points attributable to
Germany, and largest average annual decrease by country is 9 basis points attributable to Estonia.
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Table 8: Current-dollar investment in data assets by NAICS sector 2003–2020

NAICS Description ($B)
11 Agriculture, Forestry, Fishing and Hunting 3
21 Mining, Quarrying, and Oil and Gas Extraction 27
22 Utilities 27
23 Construction 80
31-33 Manufacturing 283
42 Wholesale Trade 194
44-45 Retail Trade 132
48-49 Transportation and Warehousing 76
51 Information 207
52 Finance and Insurance 354
53 Real Estate and Rental and Leasing 46
54 Professional, Scientific, and Technical Services 214
55 Management of Companies and Enterprises 195
56 Administrative & Support and Waste Management & Remediation Services 214
72 Accommodation and Food Services 31
81 Other Services (except Public Administration) 27

Total 2,110

Note: Current-dollar estimates summed for 2003–2020 by NAICS sector. Estimates for NPISH
and general government are excluded: Educational Services (NAICS 61), Health Care and Social
Assistance (NAICS 62), Arts, Entertainment and Recreation (NAICS 71), Religious, Grantmaking,
Civic, Professional, and Similar Organizations (NAICS 813), and Public Administration (NAICS
92).

Table 9 demonstrates that average annual growth in current-dollar investment in data

assets was as low as 2.2 percent for Retail Trade and as high as 6.4 percent for Management

of Companies. Average annual growth rates by NAICS sector exceeded the aggregate average

annual growth rate of 3.9 percent for Mining (5.1 percent), Construction (4.1 percent), Trans-

portation and Warehousing (4.2 percent), Finance and Insurance (4.1 percent), Real Estate

(4.3 percent), PST Services (4.9 percent), and Management of Companies (6.4 percent).

In figure 8, the three largest shares of NAICS sector value-added show up for Management

of Companies (NAICS 55), Administrative Services (NAICS 56), and Finance and Insurance

(NAICS 52). Shares of sector value-added above 1.0 percent also show up for Information

(NAICS 51), Wholesale Trade (NAICS 42), and PST services (NAICS 54). The small-

est shares of NAICS sector value-added show up for Agriculture (NAICS 11), Real Estate
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Table 9: Average annual growth in current-dollar investment in data assets by NAICS sector
2004–2020

NAICS Description (%)
11 Agriculture, Forestry, Fishing and Hunting 3.6
21 Mining, Quarrying, and Oil and Gas Extraction 5.1
22 Utilities 2.8
23 Construction 4.1
31-33 Manufacturing 2.3
42 Wholesale Trade 3.0
44-45 Retail Trade 2.2
48-49 Transportation and Warehousing 4.2
51 Information 3.8
52 Finance and Insurance 4.1
53 Real Estate and Rental and Leasing 4.3
54 Professional, Scientific, and Technical Services 4.9
55 Management of Companies and Enterprises 6.4
56 Administrative & Support and Waste Management & Remediation Services 3.6
72 Accommodation and Food Services 2.7
81 Other Services (except Public Administration) 3.1

Note: Annual log growth rates for current-dollar investment averaged for 2004–2020 by NAICS
sector.

(NAICS 53), Accommodation and Food Services (NAICS 72), and Other Services (NAICS

81).

5.2.2 Real Growth

We compare the log growth in real value-added for NAICS sectors with and without our

experimental estimates of business sector investment in data assets for 2004–2020. We use

the price index for own-account software as a proxy for own-account data and recalculate

measured NAICS sector prices using Törnqvist expenditure shares. We report average and

cumulative annual growth in real value-added growth by NAICS sector in table 10.

Consistent with the result for business sector real value-added in table 7, the change in

average annual growth is positive for each NAICS sector except Information (NAICS 51).

When data investment is added, the three largest increases in average real value-added growth

show up for Management of Companies (NAICS 55, 13 basis points), Administrative Services
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Figure 8: Investment in data assets as a share of value-added by NAICS sector
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Note: Numerator is the current-dollar annual investment in data assets summed for 2003–2020. Denominator
is the current-dollar annual investment in data assets plus NAICS sector value-added summed for 2003–2020
from the U.S. Bureau of Economic Analysis, “Interactive Access to Industry Economic Accounts Data: Table
1 Value Added by Industry”.

(NAICS 56, 4 basis points), and Finance and Insurance (NAICS 52, 4 basis points). Increases

in cumulative real value-added growth are also largest for those three NAICS sectors. The

smallest increases in average and cumulative real value-added growth show up for Agriculture

(NAICS 11), Mining (NAICS 21), Information (NAICS 51), and Real Estate (NAICS 53).

5.2.3 Non-profit Institutions Serving Households

While core experimental results for the paper are limited to the business sector, table 11

reports supplemental experimental results for current-dollar investment in data assets for

NAICS sectors that represent the NPISH sector.

For the period 2003–2020, table 11 shows the total current-dollar investment in data

by NPISH was $551 billion. The largest dollar investments were made in Health Care and

Social Assistance ($326 billion), which is second only to Finance and Insurance in the business

sector. The second largest dollar investments by NPISH were made in Educational Services

($157 billion).
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Table 10: Growth in real value-added with and without investment in data assets by NAICS
sector (%)

Average Cumulative
NAICS With data W/o data Δ With data W/o data Δ

11 2.26 2.25 0.00 38.35 38.33 0.02
21 3.36 3.35 0.00 57.08 57.02 0.06
22 1.85 1.84 0.01 31.44 31.32 0.12
23 −0.84 −0.88 0.03 −14.33 −14.93 0.59
31-33 1.40 1.39 0.01 23.77 23.62 0.15
42 1.30 1.28 0.02 22.15 21.79 0.36
44-45 0.92 0.91 0.01 15.66 15.46 0.20
48-49 1.29 1.26 0.03 21.92 21.46 0.46
51 5.51 5.53 −0.02 93.66 94.01 −0.35
52 1.75 1.71 0.04 29.81 29.15 0.66
53 1.91 1.90 0.00 32.44 32.38 0.06
54 3.00 2.97 0.03 51.00 50.49 0.52
55 2.46 2.33 0.13 41.78 39.53 2.25
56 2.43 2.39 0.04 41.24 40.64 0.60
72 −0.69 −0.70 0.01 −11.69 −11.91 0.21
81 −1.07 −1.09 0.02 −18.18 −18.49 0.31

Note: The table reports average and cumulative log growth rates in real value-added by NAICS
sector with and without data investment for 2004–2020. Price indexes for own-account software are
used as a proxy for own-account data and NAICS price indexes are recalculated using Törnqvist
expenditure shares.

Table 11: Current-dollar investment in data assets for NPISH 2003–2020

NAICS Description ($B)
61 Educational Services 157
62 Health Care and Social Assistance 326
71 Arts, Entertainment, and Recreation 21
813 Religious, Grantmaking, Civic, Professional, and Similar Organizations 47

Total 551

Note: Current-dollar estimates summed for 2003–2020.
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6 Conclusions

In this paper, we measure the value of own-account data stocks and flows for the U.S. business

sector by summing the production costs of data-related activities implicit in occupations. In

our experimental estimates, we find that annual current-dollar investment in own-account

data assets for the U.S. business sector grew from $82.6 billion in 2003 to $159.5 billion

in 2020, which yields an average annual growth of 3.9 percent. Cumulative current-dollar

investment for the period 2003–2020 was $2.1 trillion. Overall, our results indicate that

business sector investment in own-account data grew only a bit faster than other business

sector economic activity and slower than business sector investment in other IPPs.

The method we use in the paper augments the traditional sum-of-costs methodology for

measuring other own-account intellectual property products in national economic accounts

by proxying occupation-level time-use factors using a machine learning model and the text of

online job advertisements. The method appears to be a feasible method for identifying occu-

pations engaged in data-related activities and for estimating the time-effort that occupations

allocate to data-related activities. The time-use factors we develop for occupations engaged

in own-account data appear to have some overlap with the time-use factors we develop for

occupations engaged in own-account software, which suggests an incentive to jointly esti-

mate own-account data and own-account software to ensure consistency and prevent double

counting if the scope of own-account software is expanded to include more occupations in

the future.

In the future, we plan to expand the scope of estimation to include the NPISH and

government sectors. In addition, this paper focuses on estimating current-dollar values and

uses the price index and depreciation rate for BEA’s measures of own-account software as

proxies to calculate real growth rates and net stocks, respectively. Thus, an important area of

development in the future will be a price index and depreciation rate specific to own-account

data. Likewise, an important area for further development will be estimates of purchased data

assets and more precise adjustments for capital formation and overlap with R&D investment.
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