From Samurai to Skyscrapers: How Transaction Costs Shape Tokyo

Junichi Yamasaki (Kobe, Hitotsubashi TDB-CAREE)
Kentaro Nakajima (Hitotsubashi)
Kensuke Teshima (Hitotsubashi)
2021/Dec/15 NBER Japan Project
• City is the center of economic activities.
• Efficient use of the scarce land in the CBD can have a sizable impact on the functioning of the economy.
• Land ownership should be continuously allocated to the best usage at that time.
• One key type of land transaction is to change lot size by split or assembly. But, transaction costs might exist:
 • Land splitting may be costly because demolishing the buildings and finding multiple buyers to sell split land are needed.
 • Land assembling will also be costly because negotiation with multiple landowners is needed.
Motivation

• If transaction costs > benefit of optimal land use → lot size can persist and affect urban development in the long run

• Lot size persistence
 • Rural areas: lot size persistence disappears in 150 years (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021)
 • Can we expect the same pattern in cities? (Coase, 1960)
 • Benefit of optimal land use ↑ → Less persistent?
 • Transaction costs ↑ → More persistent?

• Urban development
 • Consequence of lot size persistence for urban development is understudied and can be different in space and time
 • Once tall buildings become available: tall buildings require large footprints and generate agglomeration benefits → premia
Motivation

• If transaction costs > benefit of optimal land use → lot size can persist and affect urban development in the long run

• Lot size persistence
 • Rural areas: lot size persistence disappears in 150 years (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021)
 • Can we expect the same pattern in cities? (Coase, 1960)
 • Benefit of optimal land use ↑ → Less persistent?
 • Transaction costs ↑ → More persistent?

• Urban development
 • Consequence of lot size persistence for urban development is understudied and can be different in space and time
 • Once tall buildings become available: tall buildings require large footprints and generate agglomeration benefits → premia
Motivation

• If transaction costs > benefit of optimal land use
 → lot size can persist and affect urban development in the long run

• Lot size persistence
 • Rural areas: lot size persistence disappears in 150 years (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021)
 • Can we expect the same pattern in cities? (Coase, 1960)
 • Benefit of optimal land use ↑ → Less persistent?
 • Transaction costs ↑ → More persistent?

• Urban development
 • Consequence of lot size persistence for urban development is understudied and can be different in space and time
 • Once tall buildings become available: tall buildings require large footprints and generate agglomeration benefits → premia
Motivation

- If transaction costs > benefit of optimal land use → lot size can persist and affect urban development in the long run

- Lot size persistence
 - Rural areas: lot size persistence disappears in 150 years (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021)
 - Can we expect the same pattern in cities? (Coase, 1960)
 - Benefit of optimal land use ↑ → Less persistent?
 - Transaction costs ↑ → More persistent?

- Urban development
 - Consequence of lot size persistence for urban development is understudied and can be different in space and time
 - Once tall buildings become available: tall buildings require large footprints and generate agglomeration benefits → premia
Motivation

• If transaction costs $>\text{ benefit of optimal land use}$
 \rightarrow lot size can persist and affect urban development in the long run

• Lot size persistence
 • Rural areas: lot size persistence disappears in 150 years (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021)
 • Can we expect the same pattern in cities? (Coase, 1960)
 • Benefit of optimal land use $\uparrow \rightarrow$ Less persistent?
 • Transaction costs $\uparrow \rightarrow$ More persistent?

• Urban development
 • Consequence of lot size persistence for urban development is understudied and can be different in space and time

 • Once tall buildings become available: tall buildings require large footprints and generate agglomeration benefits \rightarrow premia
Motivation

• If transaction costs > benefit of optimal land use
 → lot size can persist and affect urban development in the long run

• Lot size persistence
 • Rural areas: lot size persistence disappears in 150 years (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021)
 • Can we expect the same pattern in cities? (Coase, 1960)
 • Benefit of optimal land use ↑ → Less persistent?
 • Transaction costs ↑ → More persistent?

• Urban development
 • Consequence of lot size persistence for urban development is understudied and can be different in space and time
 • Once tall buildings become available: tall buildings require large footprints and generate agglomeration benefits → premia
Motivation

• If transaction costs > benefit of optimal land use
 → lot size can persist and affect urban development in the long run

• Lot size persistence
 • Rural areas: lot size persistence disappears in 150 years (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021)
 • Can we expect the same pattern in cities? (Coase, 1960)
 • Benefit of optimal land use ↑ → Less persistent?
 • Transaction costs ↑ → More persistent?

• Urban development
 • Consequence of lot size persistence for urban development is understudied and can be different in space and time
 • Once tall buildings become available: tall buildings require large footprints and generate agglomeration benefits → premia
Taller Buildings Have Larger Footprint
The Same Pattern in NYC

![Graph showing footprint vs. height group percentile]
Motivation

- If transaction costs > benefit of optimal land use
 → lot size can persist and affect urban development in the long run
- Lot size persistence
 - Rural areas: lot size persistence disappears in 150 years (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021)
 - Can we expect the same pattern in cities? (Coase, 1960)
 - Benefit of optimal land use ↑ → Less persistent?
 - Transaction costs ↑ → More persistent?
- Urban development
 - Consequence of lot size persistence for urban development is understudied and can be different in space and time
 - Once tall buildings become available: tall buildings require large footprints and generate agglomeration benefits → premia
Our study: History of Tokyo as a laboratory

- This study examines how the initial lot fragmentation affects urban development in the long run, in the context of central Tokyo.
- Natural experiment: release of local lords’ estates (daimyo yashiki) to the private market after 1868
 - Local lords (daimyo) are the chiefs of about 300 regional domains in Japan. They owned estates in Tokyo.
 - Estates of local lords before 1868: their lots are much larger than other area’s lots in Tokyo.
 - They lost their estates and the private sector took over them after 1868
 - Supply shock of larger lots to Tokyo.
 - Spread across Tokyo + a zoning episode for RD
Our study: History of Tokyo as a laboratory

• This study examines how the initial lot fragmentation affects urban development in the long run, in the context of central Tokyo.

• Natural experiment: release of local lords’ estates (daimyo yashiki) to the private market after 1868

 • Local lords (daimyo) are the chiefs of about 300 regional domains in Japan. They owned estates in Tokyo.

 • Estates of local lords before 1868: their lots are much larger than other area’s lots in Tokyo.

 • → They lost their estates and the private sector took over them after 1868

 • → Supply shock of larger lots to Tokyo.

• Spread across Tokyo + a zoning episode for RD
Our study: History of Tokyo as a laboratory

- This study examines how the initial lot fragmentation affects urban development in the long run, in the context of central Tokyo.

- Natural experiment: release of local lords’ estates (daimyo yashiki) to the private market after 1868
 - Local lords (daimyo) are the chiefs of about 300 regional domains in Japan. They owned estates in Tokyo.
 - Estates of local lords before 1868: their lots are much larger than other area’s lots in Tokyo.
 - → They lost their estates and the private sector took over them after 1868
 - → Supply shock of larger lots to Tokyo.
 - Spread across Tokyo + a zoning episode for RD
This study examines how the initial lot fragmentation affects urban development in the long run, in the context of central Tokyo.

Natural experiment: release of local lords’ estates (daimyo yashiki) to the private market after 1868

- Local lords (daimyo) are the chiefs of about 300 regional domains in Japan. They owned estates in Tokyo.
- Estates of local lords before 1868: their lots are much larger than other area’s lots in Tokyo.
- → They lost their estates and the private sector took over them after 1868
- → Supply shock of larger lots to Tokyo.
- Spread across Tokyo + a zoning episode for RD
One example from a map in 1850s: Tamachi Station
Local lords’ estates are less-fragmented (1850s)
Those lots are less fragmented even today (2010)
And tall buildings (≥ 15 or ≥ 30 stories) are there (2011)
And tall buildings (> 15 or > 30 stories) are there (2011)
Large variation of building heights in a small area suggesting high land assembly costs.
Brief preview

• Local lords’ estates at the end of the 1850s → larger lots (OLS and Local randomization)
 • Lot size persistence only in the core area, suggesting that assembly frictions are more prevalent
 • Local lords’ estates at the end of the 1850s → taller buildings, and higher land prices today.
 • Before 1945: lots size was persistent, but had negative effect on land price (split cost)
 • Positive effect on firm productivity by tall buildings.
 • → The benefits of a larger lot size depend on the degree of the agglomeration economy.

• Land ownership at the initial stage of modern economic development affects the shape of a city today by land transaction costs.
Brief preview

• Local lords’ estates at the end of the 1850s → larger lots (OLS and Local randomization)
 • Lot size persistence only in the core area, suggesting that assembly frictions are more prevalent

• Local lords’ estates at the end of the 1850s → taller buildings, and higher land prices today.
 • Before 1945: lots size was persistent, but had negative effect on land price (split cost)
 • Positive effect on firm productivity by tall buildings.
 • → The benefits of a larger lot size depend on the degree of the agglomeration economy.

• Land ownership at the initial stage of modern economic development affects the shape of a city today by land transaction costs.
Brief preview

- Local lords’ estates at the end of the 1850s → larger lots (OLS and Local randomization)
 - Lot size persistence only in the core area, suggesting that assembly frictions are more prevalent
- Local lords’ estates at the end of the 1850s → taller buildings, and higher land prices today.
 - Before 1945: lots size was persistent, but had negative effect on land price (split cost)
 - Positive effect on firm productivity by tall buildings.
 - → The benefits of a larger lot size depend on the degree of the agglomeration economy.
- Land ownership at the initial stage of modern economic development affects the shape of a city today by land transaction costs.
• Local lords’ estates at the end of the 1850s → larger lots (OLS and Local randomization)
 • Lot size persistence only in the core area, suggesting that assembly frictions are more prevalent
• Local lords’ estates at the end of the 1850s → taller buildings, and higher land prices today.
 • Before 1945: lots size was persistent, but had negative effect on land price (split cost)
 • Positive effect on firm productivity by tall buildings.
 • → The benefits of a larger lot size depend on the degree of the agglomeration economy.
• Land ownership at the initial stage of modern economic development affects the shape of a city today by land transaction costs.
Brief preview

- Local lords’ estates at the end of the 1850s → larger lots (OLS and Local randomization)
 - Lot size persistence only in the core area, suggesting that assembly frictions are more prevalent
- Local lords’ estates at the end of the 1850s → taller buildings, and higher land prices today.
 - Before 1945: lots size was persistent, but had negative effect on land price (split cost)
 - Positive effect on firm productivity by tall buildings.
 - The benefits of a larger lot size depend on the degree of the agglomeration economy.
- Land ownership at the initial stage of modern economic development affects the shape of a city today by land transaction costs.
• Local lords’ estates at the end of the 1850s → larger lots (OLS and Local randomization)
 • Lot size persistence only in the core area, suggesting that assembly frictions are more prevalent
• Local lords’ estates at the end of the 1850s → taller buildings, and higher land prices today.
 • Before 1945: lots size was persistent, but had negative effect on land price (split cost)
 • Positive effect on firm productivity by tall buildings.
 • → The benefits of a larger lot size depend on the degree of the agglomeration economy.
• Land ownership at the initial stage of modern economic development affects the shape of a city today by land transaction costs.
• Coordination problems in (re)development (Hornbeck and Keniston, 2017; Owens et al., 2020)
• Formalization costs in slums (Harari and Wong, 2019; Michaels et al., 2021; Henderson et al., 2021)
• Project delays owing to litigation (Gandhi et al., 2021)
Literature (1) Transaction costs in urban land market

• Lot size persistence in the rural area (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021).
• The existing studies examine mostly rural/agricultural settings and find persistence disappears gradually (150 years, in the case of farms in Georgia).
• In contrast with these rural settings, we find strong lot size persistence in the urban setting, in particular the core area.
• Transaction costs are greater in the core urban areas, dominating the greater benefit of optimal land use.
 • A potential reason for higher transaction costs: holdout (Eckart, 1985; Miceli and Sirmans, 2007; Winn and McCarter, 2018).
• We also show the impact on firm productivity.
• Lot size persistence in the rural area (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021).
• The existing studies examine mostly rural/agricultural settings and find persistence disappears gradually (150 years, in the case of farms in Georgia).
• In contrast with these rural settings, we find strong lot size persistence in the urban setting, in particular the core area.
• Transaction costs are greater in the core urban areas, dominating the greater benefit of optimal land use.
 • A potential reason for higher transaction costs: holdout (Eckart, 1985; Miceli and Sirmans, 2007; Winn and McCarter, 2018).
• We also show the impact on firm productivity.
Lot size persistence in the rural area (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021).

The existing studies examine mostly rural/agricultural settings and find persistence disappears gradually (150 years, in the case of farms in Georgia).

In contrast with these rural settings, we find strong lot size persistence in the urban setting, in particular the core area.

Transaction costs are greater in the core urban areas, dominating the greater benefit of optimal land use.

A potential reason for higher transaction costs: holdout (Eckart, 1985; Miceli and Sirmans, 2007; Winn and McCarter, 2018).

We also show the impact on firm productivity.
Lot size persistence in the rural area (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021).

The existing studies examine mostly rural/agricultural settings and find persistence disappears gradually (150 years, in the case of farms in Georgia).

In contrast with these rural settings, we find strong lot size persistence in the urban setting, in particular the core area.

Transaction costs are greater in the core urban areas, dominating the greater benefit of optimal land use.

A potential reason for higher transaction costs: holdout (Eckart, 1985; Miceli and Sirmans, 2007; Winn and McCarter, 2018).

We also show the impact on firm productivity.
• Lot size persistence in the rural area (Bleakley and Ferrie, 2014; Smith, 2020; Finley et al., 2021).
• The existing studies examine mostly rural/agricultural settings and find persistence disappears gradually (150 years, in the case of farms in Georgia).
• In contrast with these rural settings, we find strong lot size persistence in the urban setting, in particular the core area.
• Transaction costs are greater in the core urban areas, dominating the greater benefit of optimal land use.
 • A potential reason for higher transaction costs: holdout (Eckart, 1985; Miceli and Sirmans, 2007; Winn and McCarter, 2018).
• We also show the impact on firm productivity.
• Historical dataset + Urban (Hanlon and Heblich, 2020)
 • Geographical origin: Saiz (2010), Harari (2020), Heblich et al. (2020)

• Our paper: historical lot fragmentation as an institutional origin of urban development.
• We offer a new channel of how history matters: lot size differences persist, but the positive effect of lot size arises only in the long run (reverse of fortune, cf. Nunn and Puga (2012)).
• Historical dataset + Urban (Hanlon and Heblich, 2020)
 • Geographical origin: Saiz (2010), Harari (2020), Heblich et al. (2020)

• Our paper: **historical lot fragmentation as an institutional origin of urban development.**

• We offer a new channel of how history matters: lot size differences persist, but the positive effect of lot size arises only in the long run (**reverse of fortune**, cf. Nunn and Puga (2012)).
• Land assembly and urban development
 • Short-term premia/discount of land assembly in the field data: White (1988), Brownstone and Vany (1991), Tabuchi (1996), and Brooks and Lutz (2016).
 • Our study examines the relationship between lot size and land prices based on a natural experiment.
 • and compares the relationship in different periods and locations to shed light on how lot size affect land prices.
• Land assembly and urban development
 • Short-term premia/discount of land assembly in the field data: White (1988), Brownstone and Vany (1991), Tabuchi (1996), and Brooks and Lutz (2016)
 • Our study examines the relationship between lot size and land prices based on a natural experiment.
 • and compares the relationship in different periods and locations to shed light on how lot size affect land prices.
• Economics of tall buildings (Liu et al., 2017; Ahlfeldt and McMillen, 2018; Ahlfeldt and Barr, 2020)
 • Agglomeration / productivity spillovers within buildings (Liu et al., 2017)
 • Floor price at the story level (Liu et al., 2018)
 • Higher land price → tall buildings (Ahlfeldt and McMillen, 2018)
 • Bedrock (Barr et al., 2011)

• Our study investigates lot fragmentation as an obstacle to constructing high rise buildings.
1 Introduction

2 Institutional Background

3 Data

4 Result

 Main Results

 Channels

 Core vs Non-core

 Before vs After the age of skyscraper

 Impact to firms by agglomeration

5 Conclusion
Very brief summary of history

- 1600: *Shogun* started to construct a city in a marsh.
- During the pre-modern era (1600–1868): 250-300 local feudal lords
 - Local lords typically had three estates (Larger lots)
 - Wives and kids stayed in Tokyo as hostages
 - "Alternate Attendance System": Lords had to come to Tokyo once a two years and stay for a year
 - Vassals stayed in Tokyo as well
- 1868: Two estates were expropriated → mostly released to the private market
- After WWII: heavy asset tax rate so that they had to sell the remaining one
Local lords as chiefs of local domains
Very brief summary of history

• 1600: *Shogun* started to construct a city in a marsh.
• During the pre-modern era (1600–1868): 250-300 local feudal lords
• Local lords typically had three estates (Larger lots)
 • Wives and kids stayed in Tokyo as hostages
 • "Alternate Attendance System": Lords had to come to Tokyo once a two years and stay for a year
 • Vassals stayed in Tokyo as well
• 1868: Two estates were expropriated → mostly released to the private market
• After WWII: heavy asset tax rate so that they had to sell the remaining one
Local lords owned estates in Tokyo (Map in the 1850s)
• 1600: *Shogun* started to construct a city in a marsh.
• During the pre-modern era (1600–1868): 250-300 local feudal lords
• Local lords typically had three estates (Larger lots)
 • Wives and kids stayed in Tokyo as hostages
 • "Alternate Attendance System": Lords had to come to Tokyo once a two years and stay for a year
 • Vassals stayed in Tokyo as well
• 1868: Two estates were expropriated → mostly released to the private market
• After WWII: heavy asset tax rate so that they had to sell the remaining one
Urbanization of old Tokyo

- Business activities increased in old Tokyo after WWII.
- Daytime population increased from 3M to 4.7M.
 - Residential population did not increase so much.
- Tall buildings increased.
 - No skyscrapers before 1965
 - Kasumigaseki building in 1965 = 36 stories, 147 m
Introduction

Institutional Background

Data

Result

Main Results

Channels

Core vs Non-core

Before vs After the age of skyscraper

Impact to firms by agglomeration

Conclusion
Data spanning 150 years

- Various data sources including digitizing new data
 - Local lords’ estates in the 1850s
 - Buildings of today (shape, height, sector, ..)
- We aggregate all of these information at the 100 m*100 m cell level.
1 Introduction

2 Institutional Background

3 Data

4 Result

 Main Results

 Channels
 Core vs Non-core
 Before vs After the age of skyscraper

 Impact to firms by agglomeration

5 Conclusion
Various Identification Strategies

- OLS conditional on geographical controls
- Higher local lords estate’s share → In 2011, larger lot size, more tall buildings, and higher land prices.
- RD using zoning policy
Various Identification Strategies

• OLS conditional on geographical controls
• Higher local lords estate’s share → In 2011, larger lot size, more tall buildings, and higher land prices.
• RD using zoning policy
The left and center area were initially developed. The right zone was developed later.
In 1970
In 2011
RD using the Tokugawa’s Planning using the left and center zones.

The left and center area were initially developed. The right zone was developed later.
Local Lords' Estates Share

Sample average within bin

Polynomial fit of order 4
RD results

Number of Lots in 2008-2011

- Sample average within bin
- Polynomial fit of order 4
Sample average within bin
Polynomial fit of order 4

Stories (aboveground) in 2011
RD results

Number of Buildings \geq 30 Stories in 2011

- Sample average within bin
- Polynomial fit of order 4
RD results

Log Land Price in 2012

- Sample average within bin
- Polynomial fit of order 4
1 Introduction

2 Institutional Background

3 Data

4 Result
 Main Results
 Channels
 Core vs Non-core
 Before vs After the age of skyscraper
 Impact to firms by agglomeration

5 Conclusion
Core vs Non-core

Log Land Price in 2012

Polynomial fit of order 4

Sample average within bin

Log Land Price in 2012

Polynomial fit of order 4

Sample average within bin
Before the age of skyscraper: Lots were larger

![Graph showing the number of lots in 1912 with a polynomial fit of order 4. The graph includes sample average within bin and polynomial fit of order 4.](image-url)
But land price was lower
Reverse of fortune

Log Land Price in 1912

- Sample average within bin
- Polynomial fit of order 4

Log Land Price in 1931

- Sample average within bin
- Polynomial fit of order 4
Reverse of fortune

Log Land Price in 1912

Log Land Price in 1972

- Sample average within bin
- Polynomial fit of order 4
Reverse of fortune

Log Land Price in 1912

Log Land Price in 1983

* Sample average within bin
* Polynomial fit of order 4
Reverse of fortune

Log Land Price in 1912

Log Land Price in 2012

Sample average within bin
Polynomial fit of order 4

Sample average within bin
Polynomial fit of order 4
Summary so far

- Local lords’ estates at the end of the 1850s → larger lots, taller buildings, and higher land prices today. (OLS and Local randomization)

- Mechanism
 - Lot size persistence only in the core area where assembly frictions are more prevalent
 - Before 1945: lots size was persistent, but had negative effect on land price (split cost)

- The benefits of a larger lot size depend on the degree of the agglomeration economy.

- Lot fragmentation at the initial stage of modern economic development can affect the shape of a city today.

- Any effect on firm productivity through agglomeration benefits?
Summary so far

• Local lords’ estates at the end of the 1850s → larger lots, taller buildings, and higher land prices today. (OLS and Local randomization)

• Mechanism
 • Lot size persistence only in the core area where assembly frictions are more prevalent
 • Before 1945: lots size was persistent, but had negative effect on land price (split cost)

• The benefits of a larger lot size depend on the degree of the agglomeration economy.

• Lot fragmentation at the initial stage of modern economic development can affect the shape of a city today.

• Any effect on firm productivity through agglomeration benefits?
Summary so far

- Local lords’ estates at the end of the 1850s → larger lots, taller buildings, and higher land prices today. (OLS and Local randomization)
- Mechanism
 - Lot size persistence only in the core area where assembly frictions are more prevalent
 - Before 1945: lots size was persistent, but had negative effect on land price (split cost)
- The benefits of a larger lot size depend on the degree of the agglomeration economy.
- Lot fragmentation at the initial stage of modern economic development can affect the shape of a city today.
- Any effect on firm productivity through agglomeration benefits?
Summary so far

• Local lords’ estates at the end of the 1850s → larger lots, taller buildings, and higher land prices today. (OLS and Local randomization)

• Mechanism
 • Lot size persistence only in the core area where assembly frictions are more prevalent
 • Before 1945: lots size was persistent, but had negative effect on land price (split cost)

• The benefits of a larger lot size depend on the degree of the agglomeration economy.

• Lot fragmentation at the initial stage of modern economic development can affect the shape of a city today.

• Any effect on firm productivity through agglomeration benefits?
Summary so far

- Local lords’ estates at the end of the 1850s → larger lots, taller buildings, and higher land prices today. (OLS and Local randomization)

Mechanism

- Lot size persistence only in the core area where assembly frictions are more prevalent
- Before 1945: lots size was persistent, but had negative effect on land price (split cost)

- The benefits of a larger lot size depend on the degree of the agglomeration economy.
- Lot fragmentation at the initial stage of modern economic development can affect the shape of a city today.
- Any effect on firm productivity through agglomeration benefits?
Summary so far

- Local lords’ estates at the end of the 1850s → larger lots, taller buildings, and higher land prices today. (OLS and Local randomization)

- Mechanism
 - Lot size persistence only in the core area where assembly frictions are more prevalent
 - Before 1945: lots size was persistent, but had negative effect on land price (split cost)

- The benefits of a larger lot size depend on the degree of the agglomeration economy.

- Lot fragmentation at the initial stage of modern economic development can affect the shape of a city today.

- Any effect on firm productivity through agglomeration benefits?
Summary so far

- Local lords’ estates at the end of the 1850s → larger lots, taller buildings, and higher land prices today. (OLS and Local randomization)

- Mechanism
 - Lot size persistence only in the core area where assembly frictions are more prevalent
 - Before 1945: lots size was persistent, but had negative effect on land price (split cost)

- The benefits of a larger lot size depend on the degree of the agglomeration economy.

- Lot fragmentation at the initial stage of modern economic development can affect the shape of a city today.

- Any effect on firm productivity through agglomeration benefits?
1 Introduction

2 Institutional Background

3 Data

4 Result

Main Results

Channels

Core vs Non-core

Before vs After the age of skyscraper

Impact to firms by agglomeration

5 Conclusion
Firm-level micro data to investigate agglomeration benefits

• TFP will increase in two ways (Combes et al., 2012).
 • Firm selection (competition -> less productive firms will exit)
 • cutoff in the lower tail
 • Productivity gain by agglomeration (knowledge spillover, thicker labor markets, etc)
 • shift to the right and/or thicker upper tail

• We use firm-level data collected by a major Japanese credit research company (Teikoku Databank).
 • Cover the most of the Japanese firms
 • Revenue per worker (proxy of TFP)
 • Location of HQ
The upper tail is thicker and the lower tail does not show clear cutoff.
Larger impacts in the upper tail using 2017

<table>
<thead>
<tr>
<th>Percentile</th>
<th>95% CI in 2017</th>
<th>Effect in 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Impacts are smaller in 1993 when buildings were shorter.
Impacts becomes similar when controlling for stories

<table>
<thead>
<tr>
<th>Percentile</th>
<th>95% CI in 2017</th>
<th>Effect in 2017</th>
<th>95% CI in 1993</th>
<th>Effect in 1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>-.15</td>
<td>-.1</td>
<td>-.05</td>
<td>0</td>
</tr>
<tr>
<td>.25</td>
<td>-.1</td>
<td>-.1</td>
<td>-.05</td>
<td>0</td>
</tr>
<tr>
<td>.5</td>
<td>-.05</td>
<td>0</td>
<td>.05</td>
<td>.1</td>
</tr>
<tr>
<td>.75</td>
<td>.1</td>
<td>.1</td>
<td>.15</td>
<td>.2</td>
</tr>
<tr>
<td>.9</td>
<td>.2</td>
<td>.2</td>
<td>.25</td>
<td>.5</td>
</tr>
</tbody>
</table>

Percentile

95% CI in 2017 Effect in 2017 95% CI in 1993 Effect in 1993
Robustness Checks

• Main results: Local loads estates → Larger lot size → Skyscrapers → Higher land price
 • Public infrastructure, not skyscrapers? → Table A.11 and A.12 in the paper
 • Block size, not lot size? → Table A.13 and A.14
 • Initial land price, not lot size? → Table A.15 and A.16
 • Coefficient stability analysis → Table A.5 and A.7
• Construction technology and office economy after WWII → Larger lots are more valued
 • Destruction by bombing in WWII? (This might affect results about inside vs outside the core area as well) → Table A.16–A.19.
 • Transform of military land use to non-military land use? → Table A.20 and A.21
 • Loss of their political privilege & tax base increase? → Table A.22 and Table A.23
Summary

- Local lords’ estates at the end of the 1850s → larger lots (OLS and Local randomization)
 - Lot size persistence only in the core area, suggesting that assembly frictions are more prevalent
- Local lords’ estates at the end of the 1850s → taller buildings, and higher land prices today.
 - Before 1945: lots size was persistent, but had negative effect on land price (split cost)
 - Positive effect on firm productivity by tall buildings.
 - → The benefits of a larger lot size depend on the degree of the agglomeration economy.
- Land ownership at the initial stage of modern economic development affects the shape of a city today by land transaction costs.
Local lords’ estates at the end of the 1850s → larger lots (OLS and Local randomization)

• Lot size persistence only in the core area, suggesting that assembly frictions are more prevalent

Local lords’ estates at the end of the 1850s → taller buildings, and higher land prices today.

• Before 1945: lots size was persistent, but had negative effect on land price (split cost)
• Positive effect on firm productivity by tall buildings.
• → The benefits of a larger lot size depend on the degree of the agglomeration economy.

Land ownership at the initial stage of modern economic development affects the shape of a city today by land transaction costs.
Summary

- Local lords’ estates at the end of the 1850s → larger lots (OLS and Local randomization)
 - Lot size persistence only in the core area, suggesting that assembly frictions are more prevalent
- Local lords’ estates at the end of the 1850s → taller buildings, and higher land prices today.
 - Before 1945: lots size was persistent, but had negative effect on land price (split cost)
 - Positive effect on firm productivity by tall buildings.
 - → The benefits of a larger lot size depend on the degree of the agglomeration economy.
- Land ownership at the initial stage of modern economic development affects the shape of a city today by land transaction costs.
Summary

- Local lords’ estates at the end of the 1850s → larger lots (OLS and Local randomization)
 - Lot size persistence only in the core area, suggesting that assembly frictions are more prevalent
- Local lords’ estates at the end of the 1850s → taller buildings, and higher land prices today.
 - Before 1945: lots size was persistent, but had negative effect on land price (split cost)
 - Positive effect on firm productivity by tall buildings.
 - The benefits of a larger lot size depend on the degree of the agglomeration economy.
- Land ownership at the initial stage of modern economic development affects the shape of a city today by land transaction costs.
Summary

- Local lords’ estates at the end of the 1850s → larger lots (OLS and Local randomization)
 - Lot size persistence only in the core area, suggesting that assembly frictions are more prevalent
- Local lords’ estates at the end of the 1850s → taller buildings, and higher land prices today.
 - Before 1945: lots size was persistent, but had negative effect on land price (split cost)
 - Positive effect on firm productivity by tall buildings.
 - → The benefits of a larger lot size depend on the degree of the agglomeration economy.
- Land ownership at the initial stage of modern economic development affects the shape of a city today by land transaction costs.
Summary

- Local lords’ estates at the end of the 1850s → larger lots (OLS and Local randomization)
 - Lot size persistence only in the core area, suggesting that assembly frictions are more prevalent
- Local lords’ estates at the end of the 1850s → taller buildings, and higher land prices today.
 - Before 1945: lots size was persistent, but had negative effect on land price (split cost)
 - Positive effect on firm productivity by tall buildings.
 - → The benefits of a larger lot size depend on the degree of the agglomeration economy.
- Land ownership at the initial stage of modern economic development affects the shape of a city today by land transaction costs.
Holdout seems a common problem for big cities
RD results

<table>
<thead>
<tr>
<th>Panel</th>
<th>Outcome Variable</th>
<th>Local Lords’ Estates Zone</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel I: Local Lords’ Estates Share (N: 351)</td>
<td></td>
<td>0.542***</td>
<td>0.538***</td>
<td>0.468***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0803)</td>
<td>(0.0755)</td>
<td>(0.0822)</td>
<td></td>
</tr>
<tr>
<td>Panel A: Number of Lots in 1872 (N: 350)</td>
<td></td>
<td>-12.14***</td>
<td>-11.97***</td>
<td>-10.79***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.896)</td>
<td>(1.777)</td>
<td>(2.059)</td>
<td></td>
</tr>
<tr>
<td>Panel B: Number of Lots in 2008-2011 (N: 352)</td>
<td></td>
<td>-23.74***</td>
<td>-24.29***</td>
<td>-22.22***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7.128)</td>
<td>(5.781)</td>
<td>(6.297)</td>
<td></td>
</tr>
<tr>
<td>Panel C: Number of Buildings in 2011 (N: 351)</td>
<td></td>
<td>-10.06**</td>
<td>-11.16***</td>
<td>-10.60***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.446)</td>
<td>(3.866)</td>
<td>(3.656)</td>
<td></td>
</tr>
<tr>
<td>Panel D: Stories (aboveground) in 2011 (N: 351)</td>
<td></td>
<td>2.159***</td>
<td>2.317***</td>
<td>2.020**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.746)</td>
<td>(0.715)</td>
<td>(0.873)</td>
<td></td>
</tr>
<tr>
<td>Panel E: Number of Buildings >= 30 Stories in 2011 (N: 351)</td>
<td></td>
<td>0.114*</td>
<td>0.126**</td>
<td>0.124***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0452)</td>
<td>(0.0512)</td>
<td>(0.0469)</td>
<td></td>
</tr>
<tr>
<td>Panel F: Log Land Price in 2012 (N: 341)</td>
<td></td>
<td>0.179</td>
<td>0.443*</td>
<td>0.343*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.333)</td>
<td>(0.244)</td>
<td>(0.202)</td>
<td></td>
</tr>
</tbody>
</table>

Distance from the Center (Castle) | No | Yes | Yes |
West of the Yamanote line | No | Yes | Yes |
Mean of Altitude | No | No | Yes |
S.D. of Altitude | No | No | Yes |
Earthquake Risk | No | No | Yes |

Standard errors allowing within-300 m correlation are in parentheses. * p<0.10, * p<0.05, ** p<0.01, *** p<0.001. N shows the maximum sample size. Sample size varies across the outcome variables.
FAR / Block Size / Road Width (Local Randomization)

<table>
<thead>
<tr>
<th>Panel I: Local Lords' Estates</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Lords' Estates Zone</td>
<td>0.443***</td>
<td>0.389***</td>
<td>0.454***</td>
<td>0.420***</td>
<td>0.381***</td>
</tr>
<tr>
<td></td>
<td>(0.0868)</td>
<td>(0.0848)</td>
<td>(0.0853)</td>
<td>(0.0828)</td>
<td>(0.0803)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel A: Number of Lots in 1872</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Lords' Estates Zone</td>
<td>-10.45***</td>
<td>-10.08***</td>
<td>-10.56***</td>
<td>-9.598***</td>
<td>-9.391***</td>
</tr>
<tr>
<td></td>
<td>(2.081)</td>
<td>(1.914)</td>
<td>(2.116)</td>
<td>(2.006)</td>
<td>(1.956)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Number of Lots in 2008-2011</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(6.481)</td>
<td>(5.886)</td>
<td>(6.435)</td>
<td>(5.766)</td>
<td>(5.284)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C: Number of Buildings in 2011</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Lords' Estates Zone</td>
<td>-10.04***</td>
<td>-7.780**</td>
<td>-9.878**</td>
<td>-6.486**</td>
<td>-4.662</td>
</tr>
<tr>
<td></td>
<td>(3.834)</td>
<td>(3.328)</td>
<td>(3.846)</td>
<td>(3.143)</td>
<td>(2.935)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel D: Stories (aboveground) in 2011</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Lords' Estates Zone</td>
<td>2.578***</td>
<td>2.302***</td>
<td>2.660***</td>
<td>2.169***</td>
<td>2.143***</td>
</tr>
<tr>
<td></td>
<td>(0.872)</td>
<td>(0.757)</td>
<td>(0.848)</td>
<td>(0.746)</td>
<td>(0.653)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel E: Number of Buildings >= 30 Stories in 2011</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Lords' Estates Zone</td>
<td>0.129**</td>
<td>0.117**</td>
<td>0.124**</td>
<td>0.121**</td>
<td>0.106**</td>
</tr>
<tr>
<td></td>
<td>(0.0538)</td>
<td>(0.0497)</td>
<td>(0.0527)</td>
<td>(0.0486)</td>
<td>(0.0446)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel F: Log Land Price in 2012</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Lords' Estates Zone</td>
<td>0.350</td>
<td>0.128</td>
<td>0.331</td>
<td>0.158</td>
<td>-0.0104</td>
</tr>
<tr>
<td></td>
<td>(0.218)</td>
<td>(0.160)</td>
<td>(0.221)</td>
<td>(0.170)</td>
<td>(0.148)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance from the Center (Castle)</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>West of the Yamanote line</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Mean of Altitude</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>S.D. of Altitude</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Earthquake Risk</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FAR Regulation</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Block Size</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Road Width</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Standard errors are in parentheses. We allow a within-300 m correlation in error terms. + $p < 0.1$, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. FAR Size is the average area of blocks (land surrounded by roads). Road Width consists of the average road width and the proportion of roads more than 12 m wide.
Controlling for Public Infrastructure (Local Randomization)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel I: Local Lords’ Estates Share</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Lords’ Estates Zone</td>
<td>0.468***</td>
<td>0.432***</td>
<td>0.472***</td>
<td>0.466***</td>
<td>0.430***</td>
</tr>
<tr>
<td></td>
<td>(0.0822)</td>
<td>(0.0786)</td>
<td>(0.0807)</td>
<td>(0.0777)</td>
<td>(0.0744)</td>
</tr>
<tr>
<td>Panel A: Number of Lots in 1872</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Lords’ Estates Zone</td>
<td>-10.79***</td>
<td>-9.935***</td>
<td>-10.76***</td>
<td>-10.69***</td>
<td>-9.602***</td>
</tr>
<tr>
<td></td>
<td>(2.059)</td>
<td>(2.042)</td>
<td>(2.040)</td>
<td>(2.164)</td>
<td>(2.099)</td>
</tr>
<tr>
<td>Panel B: Number of Lots in 2008-2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Lords’ Estates Zone</td>
<td>-22.22***</td>
<td>-16.16***</td>
<td>-22.03***</td>
<td>-22.47***</td>
<td>-15.79***</td>
</tr>
<tr>
<td></td>
<td>(6.297)</td>
<td>(5.523)</td>
<td>(6.256)</td>
<td>(5.648)</td>
<td>(5.021)</td>
</tr>
<tr>
<td>Panel C: Number of Buildings in 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Lords’ Estates Zone</td>
<td>-10.60***</td>
<td>-7.362***</td>
<td>-10.52***</td>
<td>-11.10***</td>
<td>-7.557***</td>
</tr>
<tr>
<td></td>
<td>(3.656)</td>
<td>(3.154)</td>
<td>(3.622)</td>
<td>(3.246)</td>
<td>(2.824)</td>
</tr>
<tr>
<td>Panel D: Stories (aboveground) in 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Lords’ Estates Zone</td>
<td>2.020**</td>
<td>1.897**</td>
<td>2.048**</td>
<td>1.975**</td>
<td>1.796**</td>
</tr>
<tr>
<td></td>
<td>(0.873)</td>
<td>(0.766)</td>
<td>(0.890)</td>
<td>(0.851)</td>
<td>(0.727)</td>
</tr>
<tr>
<td>Panel E: Number of Buildings >= 30 Stories in 2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Lords’ Estates Zone</td>
<td>0.124***</td>
<td>0.120***</td>
<td>0.126***</td>
<td>0.117***</td>
<td>0.112**</td>
</tr>
<tr>
<td></td>
<td>(0.0469)</td>
<td>(0.0462)</td>
<td>(0.0473)</td>
<td>(0.0478)</td>
<td>(0.0454)</td>
</tr>
<tr>
<td>Panel F: Log Land Price in 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Lords’ Estates Zone</td>
<td>0.343*</td>
<td>0.173</td>
<td>0.354*</td>
<td>0.366*</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td>(0.202)</td>
<td>(0.168)</td>
<td>(0.201)</td>
<td>(0.193)</td>
<td>(0.166)</td>
</tr>
<tr>
<td>Panel G: Log Land Price in 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Lords’ Estates Zone (Core)</td>
<td>0.827***</td>
<td>0.544**</td>
<td>0.836***</td>
<td>0.699***</td>
<td>0.427**</td>
</tr>
<tr>
<td></td>
<td>(0.228)</td>
<td>(0.212)</td>
<td>(0.233)</td>
<td>(0.215)</td>
<td>(0.194)</td>
</tr>
<tr>
<td>Local Lords’ Estates Zone (Non-core)</td>
<td>-0.237</td>
<td>-0.227</td>
<td>-0.225</td>
<td>-0.0475</td>
<td>-0.0603</td>
</tr>
<tr>
<td></td>
<td>(0.275)</td>
<td>(0.264)</td>
<td>(0.268)</td>
<td>(0.274)</td>
<td>(0.250)</td>
</tr>
</tbody>
</table>

Road Width No Yes No No Yes
Hospital, University, and Parks No No Yes No Yes
Distance to Nearest Station in 2018 and 1950 No No No Yes Yes
Distance from the Center (Castle) Yes Yes Yes Yes Yes
West of the Yamanote line Yes Yes Yes Yes Yes
Mean of Altitude Yes Yes Yes Yes Yes
S.D. of Altitude Yes Yes Yes Yes Yes
Earthquake Risk Yes Yes Yes Yes Yes

Standard errors are in parentheses. We allow a within-300 m correlation in the error terms. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.

U.S. Army Air Force bombing in WWII
Physical Capital Plays Little Role (Local Randomization)

<table>
<thead>
<tr>
<th>Panel</th>
<th>Description</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Local Lords’ Estates Share (N: 351)</td>
<td>0.512***</td>
<td>0.502***</td>
<td>0.443***</td>
<td>0.440***</td>
</tr>
<tr>
<td></td>
<td>Local Lords’ Estates Zone</td>
<td>(0.0808)</td>
<td>(0.0846)</td>
<td>(0.0868)</td>
<td>(0.0882)</td>
</tr>
<tr>
<td>A</td>
<td>Number of Lots in 1872 (N: 350)</td>
<td>-11.61***</td>
<td>-10.02***</td>
<td>-10.39***</td>
<td>-9.002***</td>
</tr>
<tr>
<td></td>
<td>Local Lords’ Estates Zone</td>
<td>(1.808)</td>
<td>(1.611)</td>
<td>(2.080)</td>
<td>(1.812)</td>
</tr>
<tr>
<td></td>
<td>Local Lords’ Estates Zone</td>
<td>(5.965)</td>
<td>(5.849)</td>
<td>(6.481)</td>
<td>(6.228)</td>
</tr>
<tr>
<td>C</td>
<td>Number of Buildings in 2011 (N: 351)</td>
<td>-10.73***</td>
<td>-9.881***</td>
<td>-10.04***</td>
<td>-9.304***</td>
</tr>
<tr>
<td></td>
<td>Local Lords’ Estates Zone</td>
<td>(4.087)</td>
<td>(3.530)</td>
<td>(3.834)</td>
<td>(3.367)</td>
</tr>
<tr>
<td>D</td>
<td>Stories (aboveground) in 2011 (N: 351)</td>
<td>2.820***</td>
<td>2.399***</td>
<td>2.578***</td>
<td>2.285***</td>
</tr>
<tr>
<td></td>
<td>Local Lords’ Estates Zone</td>
<td>(0.751)</td>
<td>(0.669)</td>
<td>(0.872)</td>
<td>(0.823)</td>
</tr>
<tr>
<td>E</td>
<td>Number of Buildings >= 30 Stories in 2011 (N: 351)</td>
<td>0.127***</td>
<td>0.100**</td>
<td>0.129**</td>
<td>0.110**</td>
</tr>
<tr>
<td></td>
<td>Local Lords’ Estates Zone</td>
<td>(0.0578)</td>
<td>(0.0465)</td>
<td>(0.0538)</td>
<td>(0.0458)</td>
</tr>
<tr>
<td>F</td>
<td>Log Land Price in 2012 (N: 341)</td>
<td>0.445*</td>
<td>0.405*</td>
<td>0.350</td>
<td>0.342</td>
</tr>
<tr>
<td></td>
<td>Local Lords’ Estates Zone</td>
<td>(0.265)</td>
<td>(0.244)</td>
<td>(0.218)</td>
<td>(0.221)</td>
</tr>
</tbody>
</table>

WWII Destruction | No | Yes | No | Yes |
Distance from the Center (Castle) | No | No | Yes | Yes |
West of the Yamanote line | No | No | Yes | Yes |
Mean of Altitude | No | No | Yes | Yes |
S.D. of Altitude | No | No | Yes | Yes |
Earthquake Risk | No | No | Yes | Yes |

Standard errors are in parentheses. We allow a within-300 m correlation in error terms. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
Controlling for Block Size or FAR (OLS)

<table>
<thead>
<tr>
<th>Panel Order</th>
<th>Panel Name</th>
<th>Local Lords’ Estates Zone</th>
<th>Local Lords’ Estates Zone (Core)</th>
<th>Local Lords’ Estates Zone (Non-core)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel I</td>
<td>Local Lords’ Estates Share</td>
<td>0.468***</td>
<td>0.478***</td>
<td>0.412***</td>
</tr>
<tr>
<td></td>
<td>Panel A: Number of Lots in 1872</td>
<td>-10.79***</td>
<td>-10.90***</td>
<td>-10.09***</td>
</tr>
<tr>
<td></td>
<td>Panel B: Number of Lots in 2008-2011</td>
<td>-22.22***</td>
<td>-21.60***</td>
<td>-18.25***</td>
</tr>
<tr>
<td></td>
<td>Panel C: Number of Buildings in 2011</td>
<td>-10.60***</td>
<td>-10.43***</td>
<td>-8.457***</td>
</tr>
<tr>
<td></td>
<td>Panel D: Stories (aboveground) in 2011</td>
<td>2.020**</td>
<td>2.082**</td>
<td>2.019**</td>
</tr>
<tr>
<td></td>
<td>Panel E: Number of Buildings >= 30 Stories in 2011</td>
<td>0.124***</td>
<td>0.120***</td>
<td>0.121**</td>
</tr>
<tr>
<td></td>
<td>Panel F: Log Land Price in 2012</td>
<td>0.343*</td>
<td>0.323</td>
<td>0.165</td>
</tr>
<tr>
<td></td>
<td>Panel G: Log Land Price in 2012</td>
<td>0.827***</td>
<td>0.806***</td>
<td>0.454**</td>
</tr>
</tbody>
</table>

Block Size
- No

FAR Regulation
- No

Distance from the Center (Castle)
- Yes

West of the Yamanote line
- Yes

Mean of Altitude
- Yes

S.D. of Altitude
- Yes

Earthquake Risk
- Yes

*Standard errors are in parentheses. We allow a within-300 m correlation in the error terms. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$.*
Acknowledgement

• We all belong to TDB-CAREE and thank Teikoku Databank for providing us access to their dataset.

• This study is supported by Research Grant from Nomura Foundation, Research Grant from Japan Center for Economic Research, Research Grant from Kikawada Foundation, and Grant for Groundbreaking Young Researchers from Suntory Foundation.

• We thank for Tokyo Metropolitan government, Research Center for Property Assessment System, International Research Center for Japanese Studies, Takashi Kirimura, and Bizbase Inc. for the permission of using their data.