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Motivation
What explains the spatial organization of economic activity in cities?

Traditional theories emphasize commuting between workplace and residence
▶ Classic monocentric and polycentric urban models

(Alonso-Mills-Muth; Fujita and Ogawa 1982; Lucas and Rossi-Hansberg 2002)
▶ Quantitative structural urban models

(Ahlfeldt, Redding, Sturm, Wolf 2015; Redding and Rossi-Hansberg 2017; Allen, Arkolakis and Li 2018; Tsivanidis 2019;
Owens, Rossi-Hansberg and Sarte 2020)

Many urban trips are related to consumption beyond commuting
▶ Bars, restaurants, coffee shops, theaters, cinemas, shopping, museums etc
▶ Consumption access affects workplace and residence decisions, goods and factor demand, and equilibrium

city structure

Questions:
▶ How important is consumption access for the spatial concentration of economic activity?
▶ How does consumption access affect the impact of transport improvements?
▶ Can consumption access explain the change of spatial demand in nontradable service during pandemic?
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This Paper
Documents patterns of commuting and non-commuting trips using new smartphone data for Japan

▶ Tracks GPS location every 5 minutes (minimum) from a mapping application (whenever phone on)
▶ Covers ≈ 0.5% of Japanese population
▶ Shows that non-commuting trips are frequent, related to nontradable service availability, occur within a

trip chain, and decline during the pandemic

Develops a quantitative general equilibrium urban model with commuting and non-commuting trips
▶ Model agents’ itinerary decision during a day (sequence of trip destinations)
▶ Embed this decision to a canonical quantitative urban model of commuting

Quantifies the role of consumption trips in spatial organization of economic activity
▶ Simulate/estimate high-dimensional itinerary decision by importance sampling method
▶ Consumption trips matter for agglomeration pattern and the impacts of transportation improvement
▶ Shows that our model accurately predicts the spatial patterns of the reduction of nontradable service

demand during the pandemic
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Related Literature
Internal structure of cities focusing on commuting

▶ Alonso-Mills-Muth, Fujita-Ogawa (1982), Fujita-Krugman (1995), Lucas-Rossi-Hansberg (2002),
Ahlfeldt-Redding-Sturm-Wolf (2015), Allen-Arkolakis-Li (2018), Monte-Redding-Rossi-Hansberg (2018),
Owens-Rossi-Hansberg-Sarte (2020), Dingel-Tintelnot (2020)

Consumption and amenities within cities
▶ Couture (2016), Diamond (2016), Glaeser-Kolko-Saiz (2001), Davis-Dingel-Monras-Morales (2018),

Couture-Gaubert-Handbury-Hurst (2019), Almagro-Domínguez-Iino (2019), Gorback (2019), Hoelzlein (2020),
Allen-Fuchs-Ganapati-Graziano-Madera-Montoriol-Garriga (2020)

Urban transport infrastructure
▶ Baum-Snow (2006), Duranton-Turner (2011, 2012), Heblich-Redding-Sturm (2020), Tsivanidis (2019), Severen (2019),

Allen-Arkolakis (2019), Fajgelbaum-Schaal (2019), Zarate (2021), Balboni-Bryan-Morten-Siddiqi (2021)

Using cell phone or smartphone data to capture urban trips
▶ Athey-Ferguson-Gentzkow-Schmidt (2018), Couture-Dingel-Green-Handbury (2021), Kreindler-Miyauchi (2021),

Atkin-Chen-Popov (2021), Gupta-Kontokosta-Van-Nieuwerburgh (2021), Buchholz-Doval-Kastl-Matejka-Salz (2021),
Barwick-Donaldson-Li-Lin-Rao (2021)

Consumer foot traffic and agglomeration
▶ Eaton-Lipscy (1982), Quinzii-Thisse (1990), Fujita-Thisse (1996), Relihan (2017), Shoag-Veuger (2018), Koster-Pasidis-van

Ommeren (2019), Benmelech-Bergman-Milanez-Mukharlyamov (2019)
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Smartphone GPS Data from Japan
Tracks anonymised GPS location every 5 minutes (minimum) from a mapping app (whenever phone
on)

▶ One of the most popular map app in Japan (Docomo Chizu NAVI )
▶ Each month ≈ 545,000 users (≈ 0.5% population) and ≈ 1,497,000,000 GPS points

NTT Docomo Inc. pre-processes original GPS data points
▶ Stay : no movement ≤ 100 meters for ≥ 15 minutes
▶ Home location: most frequent location (defined by the groups of geographically contiguous stays) in terms

of number of stays each month
▶ Work location: second most frequent location, ≥ 600 meters from home

⋆ Work location is not assigned for users with “unreliable" work location (e.g., if the user does not appear in work
location ≥ 5 days; ≈ 30% of users) detail

▶ Other location: all other stays that are neither home nor work location

We mostly focus on user-days in April 2019 whose:
▶ first and last stays of the day is at home (to avoid overnight travelers)
▶ whose workplace is assigned
▶ and whose home and work is within Tokyo metropolitan area
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Example of Stays (around Meiji Shrine)

Each grid is about 20 meter by 20 meter
Measure location at a fine level of spatial disaggregation
Track the movement of users through the park to the shrine

entire Tokyo metropolitan area
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Stays by Day

Work and non-work stays display expected patterns on weekdays v. weekends
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Validation of Home and Workplace Population Density
(A) Residential Location (B) Employment Location

Each dot: municipality in greater Tokyo metropolitan area
Approximate log-linear relationships between smartphone and census measures of residence and
workplace employment probabilities

residence by demographics workplace by industry commuting probability
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Reduced-form Evidence

Define a non-commuting trip as a trip to a stay that is neither a user’s home location nor her work
location

Establish the following properties of non-commuting trips

1 Non-commuting trips are frequent

2 Non-commuting trips are related to availability of non-tradable services

3 Non-commuting trips are closer to home on average than commuting trips

4 Non-commuting trips occur as a part of trip chains

5 Non-commuting trips are affected by pandemics
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1) Non-commuting trips are frequent

by date by hour travel survey
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2) Non-commuting trips are related to availability of non-tradable services

Horizontal axis: number of establishments for nontradable services by nontradable sector
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3) Non-commuting trips are closer to home than commuting trips
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4) Non-commuting trips occur as a part of trip chains

Trip chains ≡ a sequence of stays starting and ending at home by weekdays and weekends
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5) Non-commuting and commuting trips are affected by pandemics

(A) Number of Stays per Day (B) Median Distance of Stays from Home

On March 28, 2020, an “emergency order” has been announced in Tokyo prefecture
People are “encouraged” to stay at home unless “absolutely necessary”
Temporarily lifted on May 25, 2020

↓ in non-commuting & commuting stays (10-20%) and distance traveled table

Noncommuting stays ↓ in downtown areas, ↑ in suburban areas detail
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Model

Develop a quantitative urban model to examine the role of access to consumption of nontradable
services in spatial organization of economic activity

Two elements:

1 Agents’ itinerary decisions (sequence of trip destinations) given home and work locations

2 Embed this decision to a canonical quantitative urban model of commuting

15 / 30



Itinerary Decision
Multiple locations in the city: N ≡ {1, . . . , n}

An agent with home location h ∈ N and work location j ∈ {N ,∅} decide consumption itinerary I
▶ j = ∅ for non-workday or non-employed
▶ I ∈ Ihj : a (non-empty) ordered subset of N , must include j

In each destination, a bundle of nontradable services is provided at (amenity-adjusted) price index Pn
▶ Agents allocate consumption amount across visiting locations under CES utility with EoS σ

The agent chooses Iω such that:

Iω = max
I∈Ihj

(
∑
n∈I

P1−σ
n

)− 1
1−σ

T−1
I |hjϵωI

▶ TI |hj : total iceberg travel cost
▶ ϵωI : idiosyncratic preference shock
▶ TI |hj embrace travel cost saving through trip chains; e.g., allow for T{1,2}|hj < T{1}|hjT{2}|hj
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Itinerary Decision
Assume that ϵωI follows i.i.d. Fréchet distribution with dispersion parameter θ

The probability that agents choose itinerary I is given by

ΛI |hj =

[(
∑n∈I P1−σ

n
)− 1

1−σ T−1
I |hj

]θ

∑ℓ∈Ihj

[(
∑n∈ℓ P

1−σ
n
)− 1

1−σ T−1
ℓ|hj

]θ

We define consumption access as the inverse of the expected price index net of travel cost and
idiosyncratic itinerary shock given agents home h and work j:

Ahj = ϱ

 ∑
ℓ∈Ihj

(
∑
n∈ℓ

P1−σ
n

)− θ
1−σ (

Tℓ|hj
)−θ

−
1
θ

Challenge: high-dimensionality of Ihj ⇒ importance sampling method
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General Equilibrium
Embed itinerary decision into a canonical GE urban model (e.g., Ahlfeldt et al 2015; Tsivanidis 2019) detail

Production
▶ Two sectors: tradables and nontradables
▶ Cobb-Douglas production function with labor and floor space
▶ Perfect competition for tradables, monopolistic competition & free entry for nontradables

Agents decide home location, work location, and sector based on wages, rents, residential amenity,
commuting cost, and anticipated consumption access

▶ Assume exogenous probability of going to workplaces, ξ = 5/7 in baseline

Labor market clearing ⇒ wages

Floor space market clearing ⇒ rents

Goods market clearing ⇒ nontradable prices

Amenity and productivity spillovers
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Simulating Consumers’ Itinerary Choice
Itinerary choice probability:

ΛI |hj =

[(
∑n∈I P1−σ

n
)− 1

1−σ T−1
I |hj

]θ

∑ℓ∈Ihj

[(
∑n∈ℓ P

1−σ
n
)− 1

1−σ T−1
ℓ|hj

]θ

▶ Challenge: high dimension of Ihj

Solution to curse of dimensionality: importance sampling method (Kloek-Fan-Dijk 1978, Ackerberg 2009)
1 Draw R itineraries {Ir} from auxiliary distribution Fhj(·), obtain empirical distribution EI |hj on Ihj
2 Weight each draw by the likelihood ratio between Fhj(I) and ΛI |hj

Λ̃I |hj =
EI |hjΛI |hj/Fhj(I)

∑ℓ∈IR
hj
E ℓ|hjΛI |hj/Fhj(ℓ)

=
EI |hj

[(
∑n∈I P1−σ

n
)− 1

1−σ T−1
I |hj

]θ
/Fhj(I)

∑ℓ∈IR
hj
E ℓ|hj

[(
∑n∈ℓ P

1−σ
n

)− 1
1−σ T−1

ℓ|hj

]θ
/Fhj(ℓ)

where IR
hj is a subset of Ihj sampled in Step 1.

Any Fhj(·) with common support as ΛI |hj ensures Λ̃I |hj → ΛI |hj as R → ∞; in practice “myopic
sequential choice” has good approximation detail
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Estimation Procedure

Parametrize travel cost as:
TI |hj = η|I | exp

(
ρDI |hj

)
▶ η: iceberg cost of stopping at one location
▶ ρ: semi-elasticity of travel cost with respect to travel time
▶ DI |hj : total travel time to follow itinerary I from home location h involving work location j

(DI |hj = DhI1 + ∑i=1,...,|I |−1 DIi Ii+1 + DI|I |h)

Estimation procedure:
1 Estimate parameters relevant for consumption itinerary choice {θ, σ, ρ, η, {Pn}}
2 Calibrate GE parameters
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Estimate parameters for consumption itinerary choice {θ, σ, ρ, η, {Pn}}
1 Estimate consumption location choice conditional on visiting only one location by PPML:

Λsingle
{n}|h∅ =

P−θ
n D−ρθ

{n}|h∅

∑ℓ∈N P−θ
ℓ D−ρθ

{ℓ}|h∅

.

▶ Identifies ρθ and {Pθ
n}

2 Calibrate ρ from existing value-of-time estimates (Couture 2016; Couture et al 2019):
▶ Identifies θ and {Pn}

3 Estimate σ using the relationship between estimated price index Pn and number of varieties (proxied
by number of nontradable establishments MnS):

log Pn − log pn = β0 + β1 logMnS + ϵn

where pn is the observed variety-specific price (use official food price index); β1 = −1/(σ − 1);
instrument MnS by number of establishments in 1980

4 SMM to estimate η targeting the average number of stays per day
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Estimate parameters for consumption itinerary choice: Results

Spatial unit: 240 municipalities in Tokyo metropolitan area

Draw 100 importance samples for each home-work

Assume maximum number of stays per day = 5

Parameters Value Source / Target
ρ 1.62 Value of time (Couture, Gaubert, Handbury, Hurst 2020)
θ 1.93 Gravity equation (conditional on single location visit)
σ 5.82 Gravity equation (conditional on single location visit) and number of establishments
η 4.86 Average number of stays per day
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Model Fit

(i) targeted moments (ii) untargeted moments
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Calibration of General Equilibrium Parameters

Parameter Description Value Source
ϕ dispersion of Fréchet shocks for residence and workplace choice 1.22 Commuting gravity equation
αS expenditure share for nontradable sector 0.6 Data
αH expenditure share for residential floor space 0.25 Data
αT expenditure share for tradable sector 0.15 Data
ξ probability of going to workplaces 0.71 5 days / week

βS labor share in production for nontradable sector 0.8 Data
βT labor share in production for tradable sector 0.8 Data
ηW elasticity of production spillover in tradable sector 0.17 βS/(σ − 1)
ηB elasticity of residential amenity spillover 0 Ahlfeldt-Pietrostefani (2019) (Conservative)
µ share of capital for floor space production 0.75 Ahlfeldt et al (2015)
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Counterfactual Simulations

Answer following questions about the quantitative role of consumption access through counterfactuals:

1 How does consumption access affect the impact of transport improvements?

2 Can our model explain the change of peoples’ movement patterns during pandemic?

other counterfactuals to change travel cost
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Transportation Infrastructure
Assess impacts of public transit that was developed in Tokyo metropolitan areas after 1980 map

Counterfactuals to remove these public transit (increase of travel time)

▶ Second row: omit consumption access (αS = 0)
▶ Third row: assume that agents have to go home for every destination
▶ Recalibrate the model for each scenario

The table shows the following regression coefficients (× 100) and the aggregate changes of welfare

∆ log Ln = β log Ln + ϵn, ∆ log Rn = β log Rn + ϵn

∆ Employment Concentration (%) ∆ Residence Concentration (%) ∆ Welfare (%) ∆ Welfare Relative to Baseline (%)
(1) Baseline -2.3 -1.9 -7.9 100
(2) No Consumption Trips -1.7 -1.5 -6.6 84
(3) No Trip Chains -2.0 -1.7 -7.3 92

Omitting consumption access and/or trip chains leads to underestimation of the effects on spatial
concentration and welfare gains from transportation improvement
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Pandemic

Can our model explain the change of peoples’ movement patterns during pandemic by the change of
limited set of structural parameters?

Estimate the “short-run effect” of “emergency order” from 3/28-5/25 in 2020
▶ Calibrate the baseline model using April 2019 data
▶ Change two parameters:

1 ρ (value of time): use April 2020 data to fit the gravity equation of consumption travel conditional on visiting only
one location (fix θ)

2 ξ (probability of going to work): change as observed in the data (No effect on productivity or labor supply)

▶ Run counterfactuals without changing GE objects ({Pn,wn, Rn, Ln,Qn})
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Model accurately predicts change of spatial nontradable service demand

additional statistics map
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Conclusions

What explains the spatial organization of economic activity in cities?
▶ Traditional theories emphasize commuting between workplace and residence
▶ Many urban trips are related to consumption beyond commuting

We use smartphone data to provide new evidence on the prevalence and characteristics of
non-commuting trips

We develop a quantitative spatial model to examine the implications of consumption access for the
spatial organization of economic activity

▶ Consumption trips matter for agglomeration pattern and the impacts of transportation improvement
▶ Model accurately predicts the change of spatial travel patterns during the pandemic
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Thank You
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Appendix
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Number of Days with Stays with and without Workplace Assignment go back

Many devices with missing workplace assignments are not used every day
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Log Difference of Day- and Night-time Population go back

Log Difference between Day-time and Night-time population is greater during weekdays than during
weekends
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Coverage of Smartphone Users by Residential Location back

Divide municipalities into 10 strata (23 wards in central Tokyo aggregated into one unit)
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Coverage of Smartphone Users by Employment Location back
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Validation of Commuting Flows go back

Commuting probabilities decay at a similar rate with distance in smartphone and census data

Gravity regression including workplace fixed effects, residence fixed effects and indicator variables
for distance grid cells
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Stays by Day go back

Work and non-work stays display expected patterns on weekdays v. weekends
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Stay by Hour go back

go back to by days
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Frequency of Stays | Smartphone vs. Travel Survey go back
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Non-commuting trips by destination sectors of non-tradable services go back

For each 500 meter grid cell, compute the employment share of each service sector in total service sector employment using
separate economic census data

If a non-commuting trip to a grid cell is observed, we allocate that trip to a service sector probabilistically using the shares of
sectors in service employment in that grid cell

If no service-sector employment in the mesh, assign "Z Others."
40 / 30



Trip Chains | Weekdays vs. Weekends go back
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5) Non-commuting trips are affected by pandemics

Type of Stay All Weekday Non-Weekday
(A): Percentage Change of Number of Stays per Day 2019-2020
(1) All −13.3 −10.3 −20.3
(2) Work −6.4 −10.7 −1.4
(3) Non-work −16.7 −10.0 −24.6
(B): Percentage Change of Median Distance of Stays from Home 2019-2020
(4) Work −0.7 −1.2 −0.4
(5) Non-work −3.2 −2.8 −4.3
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5) Non-commuting trips are affected by pandemics

(C) Non-Work Stays within Work Trip Chain (D) Non-Work Stays outside Work Trip Chain

During weekdays, reduction of non-commuting stays through work trip chains (Panel C)

During weekends, reduction of non-commuting stays outside work trip chains (Panel D)
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Reduction of foot traffic in downtown during pandemic
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Agents’ Residential and Workplace Choice
Sectors: k ∈ T , S for tradable goods and nontradable services

Indirect utility with home h, work j and sector k:

Uhjkω = wjkBhÃαS

hj Q
−αH

h TW
hj ϵWhjkω

Anticipated consumption access:

ÃαS

hj = ξAαS

hj + (1− ξ)AαS

h∅

▶ ξ is the probability of going to work during the day

Assuming the Fréchet distribution for ϵWhjkω , probability of choosing (h, j, k) is:

Ωhjk =

(
wjkBhQ−αH

h ÃαS

hj τW
hj

)ϕ

∑h′,j′ ∑k∈{K,S}

(
wj′k′BhQ

−αH

h′ ÃαS
h′j′τ

W
h′j′

)ϕ
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Production: Nontradable Sector

Monopolistic competition + free entry

Marginal cost for a firm is given by
ci =

1
aiS

wβS

iS Q
1−βS

i ,

Firms have to pay f Si unit of output to enter, determine entry as:

MiS =
1
fiS

1
σ − 1

(
LiS
βS

)βS ( HiS

1− βS

)1−βS

Price index is given by
Pi = pi (MiS)

1
1−σ =

1
AiS

wβS

iS Q
1−βS

i ,

where
AiS = ãiS (LiS)

βS
σ−1 (HiS)

1−βS
σ−1
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Production: Tradable sector

Tradable good produced using labor and floor space in each location i according to constant returns
to scale technology under perfect competition

PTi =
1

AT
i,k

wβT

i Q1−βT

i , 0 < βT < 1

Tradable good is costlessly traded and chosen as the numeraire

PTi = PT = 1 for all i ∈ N

Marshallian externality:

AiT = aiT

(
LiT
Ki

)ηW

47 / 30



Floor Space Supply

Land is owned by absentee landlord

Perfectly competitive developers supply floor space for residential and business purposes in each
location

The inverse supply function for floor space is

Qi = ψiH
1−µ

µ

i

▶ Hi : total floor space in location i
▶ ψi : exogenous characteristics of land space
▶ 1− µ: share of land used for floor space construction
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Endogenous Amenity

Amenity of location n endogenously depends on the residential density

Bn = bn

(
Rn
Kn

)ηB

where Rn is the total measure of residents in location n.
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Market Clearing

Floor space market clearing:
Hi = Hi,U + ∑

k∈K
Hi,k

▶ Hi,U : residential floor space consumption
▶ Hi,k : commercial floor space allocated for sector k

Nontradeable service market clearing:

PnSAnS

(
LnS
βS

)βS ( HnS

1− βS

)1−βS

= αS ∑
h,j,k

∑
I
wjkΩhjkΛ̃I |jhΨn|I

go back
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Practical Choice of Auxiliary Distribution for Importance Sampling go back

1 For each h and j, randomly sample (1) total number of stays and (2) number of stays before and after
the stop to workplace j (if any) from the observed distribution in the data.

2 Determine the i-th location ni starting from i = 1. When the i-th location of the day is at workplace
(j), set the stay location ni such that ni = j. When the i-th location of the day is not at workplace,
assume that agents myopically choose the first location without considering subsequent stays.
Namely, denoting the itinerary up to (i− 1)-th stay by Ii−1, we sample ni from the following
distribution:

Πi
ni =

[(
∑n∈{ni,Ii−1} P

1−σ
n

)− 1
1−σ T−1

{ni,Ii−1}|hj

]θ

∑ℓ∈N

[(
∑n∈{ℓ,Ii−1} P

1−σ
n

)− 1
1−σ T−1

{ℓ,Ii−1}|hj

]θ

3 Repeat Step 2 for all stops.
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Fit to Targeted and Untargeted Moments

Data Model
(i) targeted moments
(1) ∆ log number of work stay per user-day -0.06 -0.06
(2) ∆ Gravity coefficient conditional on visiting only one location -0.27 -0.27

(ii) untargeted moments
(1) ∆ log number of total stay per user-day -0.08 -0.11
(2) ∆ log number of nonwork stay within work trip chains -0.19 -0.22
(3) ∆ log number of nonwork stay outside work trip chains -0.10 -0.11
(4) ∆ log median log distance to nonwork destinations within work trip chains -0.28 -0.31
(5) ∆ log median log distance to nonwork destinations outside work trip chains -0.21 -0.19
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Model predicts the reduction of nontradable service demand in downtown

(i) Data (ii) Model

go back
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Counterfactuals: Travel Cost and Spatial Concentration
Counterfactually decrease travel time for commuting, consumption travel, and both, by 20%

Show the following regression coefficients (× 100)

∆ log Ln = β log Ln + ϵn, ∆ log Rn = β log Rn + ϵn

∆ Employment Concentration (%) ∆ Residence Concentration (%)
(1) Decrease Only Commuting Time -6.5 -9.7
(2) Decrease Only Consumption Travel Time 2.7 3.2
(3) Decrease All Travel Time -3.7 -6.6

Commuting time ↓⇒ more dispersion (e.g., Baum-Snow 2007; Tsivanides 2019; Heblich, Redding,
Sturm 2021)

Consumption travel time ↓⇒ more concentration
▶ Complementarity between work locations and consumption trips through trip chains
▶ Lower consumption travel cost makes downtown workplaces more attractive due to consumption access ↑
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Counterfactuals: Trip Chains and Spatial Concentration

Counterfactually shut down trip chains
▶ First row: Assume that agents cannot make detour for consumption trips on the way to work
▶ Second row: Assume that agents have to go home for every destination

∆ Employment Concentration (%) ∆ Residence Concentration (%)
(1) Only Shut Down Trip Chains through Work -3.9 -1.3
(2) Shut Down All Trip Chains -5.2 -1.8

Trip chains leads to agglomeration (e.g., Eaton-Lipscy 1982, Fujita-Thisse 1996)
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Map of Public Transit in Tokyo Metropolitan Area
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