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Abstract 
A next generation of innovation in transformative grid modernization and renewables integration 
technologies is needed to further accelerate the decarbonization of electricity systems. Few 
studies have investigated the policy determinants of innovation in this sector to glean insights on 
how policy may support or hinder the development and deployment technologies. We argue that 
policies that were successful at supporting the first wave of renewables innovation may not be 
sufficient to produce similar results in grid modernization technologies. Smart grids technologies 
are of a different nature. Developing these technologies requires pooling knowledge from various 
domains, including electrical engineering, information and communications technologies, 
artificial intelligence, and more. Once developed, they are to be deployed within complex grid 
networks that are increasingly vulnerable to extreme weather shocks and load balancing 
challenges. Developing and deploying these technologies will therefore require enhanced 
coordination, but interoperable technology has the potential to generate the requisite network 
externalities to confront emerging grid management challenges. In this paper, we look at the 
effect of interoperability standards and at government R&D incentives in grid-related 
technologies and renewable energy technologies. We also investigate the role of internal and 
external knowledge stocks in the different technological domains smart grids innovation draws 
on. Using firm-level analysis, we find that standards have a negative effect on patenting activity, 
which suggests that standards may contribute to locking-in technology. We also find evidence of 
tradeoffs between government R&D incentives in grid technologies and in renewable energy. 
Finally, our analysis of knowledge stocks suggests that firms that innovate in smart grids do not 
necessarily have prior experience in IT innovation, but benefit from knowledge spillovers from IT 
firms.  
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Introduction  
 
Technological advances will be paramount for accelerating the energy transition and achieving 
decarbonization goals. Important technological breakthroughs in the past two decades made 
solar and wind energy cost competitive with conventional energy technologies (IEC/NEA, 2020).  
Integrating increasing amounts of renewable energy into electricity systems remains a challenge, 
due in part to the lack of preparedness of grid infrastructure. In most industrialized economies, 
grid infrastructure is ageing. Utilities fall short of keeping up with maintenance, let alone, 
investing in software and hardware to digitalize the grid. Without the adoption of “smart grids” 
technologies, efforts to further decarbonize energy systems may be jeopardized. 
 
Despite forecasted needs in this area, technology development has been small compared to 
other areas of green innovation (IEA, 2021). The development of innovation in smart grids is 
hindered by the types of market failures that generally afflict environmental innovation - 
environmental externalities and knowledge spillovers (Popp, 2010; 2019). But it faces additional 
coordination challenges because these technologies must be compatible to function within 
complex grid networks. In this paper, we hone-in on the role of interoperability standards, as a 
policy instrument to address these coordination dilemmas. We posit that standards may 
contribute to reducing the uncertainty faced by inventors if they provide requisite information 
about the technical specifications and guidelines inventors should follow to enhance the chances 
that their products will be interoperable with other devices on the market, and ultimately, have 
commercial value. If this mechanism prevails, we expect that standards will have a positive effect 
on patenting activity.  On the flip side, we consider the possibility that standards may contribute 
to locking-in technology. If this occurs prematurely, before technology has time to mature, 
standards may instead suppress patenting activity and act as a disincentive to test potential 
breakthrough ideas. In this paper, we find preliminary evidence of the latter.  
 
Smart grids are also an area of technology that calls for the pooling of expertise from various 
technological domains, as it involves developing digital applications to support the distribution 
and transmission of electricity. Firms that innovate in this space are diverse in terms of age, size 
and technological backgrounds. Given this, we ask whether firms’ prior experience innovating in 
the smart grid space and in related domains (electricity, ICTs, green technology) determines their 
success in patenting in smart grids, and whether the effect of standards varies across firms from 
different backgrounds. Our preliminary results indicate that firms who innovate in smart grids do 
not necessarily have prior experience in IT innovation, but benefit from knowledge spillovers 
from IT firms.  
 
In the next section, we start by reviewing the grid management challenges posed by climate 
change and the integration of renewables, as well as the interoperability challenge. Second, we 
review two literatures to which this paper contributes: the literature on green energy innovation 
and the literature on standards and innovation. We then discuss our hypotheses, data and 
methodology. To translate country-level explanatory policy and control variables to the firm-
level, we use information on firms’ patents in the pre-sample period to build weights for each 
firm’s main markets. Next, we present results from our firm-level analysis. We conclude with 



 

 3 

proposed next steps for testing more directly the technology lock-in hypothesis, and for further 
investigating the heterogeneous effects of standards across different types of firms, such as large 
electricity incumbents versus IT start-ups that are new to the green innovation and electricity 
innovation spaces.   
 
Motivation  
 
The challenge of load management in the face of renewables integration and climate change  
 
Energy systems are undergoing profound socio-technological transformations, which are 
displacing conventional ways of organizing electricity value chains (Stephens et al, 2013; Winfield 
and Weiler, 2018). Traditionally, the electricity sector was regulated as a natural monopoly, to 
achieve economies of scale in the face of the high capital investment costs of building power 
plants and grid infrastructure (Martinot, 2016; Stephens et al, 2013). Until a wave of deregulation 
in the 1990s, vertically-integrated utilities dominated electricity generation, transmission and 
retail distribution in most advanced industrialized countries.  Technological advances in 
renewable energy and green energy policies such as net metering, feed-in-tariffs, and renewable 
portfolio standards, have enabled the increasing penetration of distributed renewable electricity 
generation. With this trend, there has been a multiplication of electricity generators participating 
in wholesale and retail markets, connecting to the grid at different locations. This contrasts with 
the traditional way of organising the production and transportation of electricity - centralized 
production and top-down distribution - and increasingly poses novel load management 
challenges for utilities (Stephens et al, 2013; Lin et al, 2013; Winfield and Weiler, 2018, Brown et 
al, 2018).  
 
Increasingly, grid infrastructure must accommodate the two-way flow of electricity and data 
within a complex network of electricity generators, consumers and “prosumers”3. Utilities need 
to monitor and balance the load on the grid in real time to keep frequency within a narrow band 
and avoid brownouts and blackouts. Aging grid infrastructures were not originally built to 
accommodate such decentralized, two-way communication. In the traditionally vertically-
integrated system, information about load only needed to flow from the top down (Lin et al, 
2013).  With the multiplication of generators and the intermittent nature of renewable electricity 
generation, utilities are grappling with growing uncertainty about the supply and demand for 
electricity. Climate change, which is triggering an increase in the frequency of heat waves and 
cold spells, compounds the load balancing challenge. Extreme weather events result in sudden 
hikes in electricity demand and may even lead to equipment failure when infrastructure is unfit 
to withstand extreme temperatures, as shown in Texas in February 2021 (Winfeld and Weiler, 
2018; Martinot, 2016; Palensky and Kupzog, 2013; Stephens et al, 2013).  
 
“Smart” electrical equipment that enables the two-way exchange of data in real time, the 
forecasting of supply and demand for electricity, the monitoring of grid conditions and fault 

 
3 Actors that both buy and sell electricity on the grid, such as households with rooftop solar facilities participating 
in net metering programs. 
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detection, the automation of some load management decisions, the more flexible management 
of end-user demand, and more, can help meet these growing grid management challenges. These 
technologies have the potential to transform the grid in a way that will be amenable to and 
encourage the further integration of intermittent renewables, electric vehicles, and distributed 
storage units. In other words, the concept of the “smart grid” is more than the application of 
information and communications technologies to the grid. The aspiration– as it is presented by 
its champions - is to pave the way to a major socio-technical transition, one that will result in the 
emergence of a decentralized grid that supports decarbonization goals, all the while ensuring the 
secure and reliable provision of power in the face of increased pressures from climate change 
and intermittency in electricity generation.    
 
What makes the grid “smart”?  
 
At this stage however, the “smart grid” remains an aspiration. There is uncertainty surrounding 
technology development, and how socio-economic structures will adjust to future technological 
breakthroughs.  For this reason, the “smart grid” is a rather elusive and fuzzy concept. It has no 
clear and widely agreed-upon definition, and has been criticized for being a catch-all term 
(Muench et al, 2014; Stephens et al, 2013, Martinot, 2016). Many definitions focus on the role of 
smart grids in leveraging ICTs to achieve desired outcomes, such as more efficient grid 
management, more reliable power supply, and renewables integration (Martinot, 2016; Palensky 
and Kupzog, 2013; Lammers and Heldeweg, 2016). In their definition of the smart grid, Stephens 
and colleagues (2013), highlight the interplay between technology and social structures: “The 
term ‘smart grid’ is used to represent a variety of interlinked social and technological changes to 
electricity systems, particularly modernizing networks that link electricity producers and 
consumers through advanced information and communication technologies.” (Stephen et al, 
2013, p. 202). In the context of federal legislation in the United States, the Energy Independence 
and Security Act of 2007, Title XIII defines the smart grid as a set of 10 core characteristics and 
objectives: 
 

“(1) Increased use of digital information and controls technology to improve 
reliability, security, and efficiency of the electric grid. (2) Dynamic optimization of grid 
operations and resources, with full cyber-security. (3) Deployment and integration of 
distributed resources and generation, including renewable resources. (4) 
Development and incorporation of demand response, demand-side resources, and 
energy-efficiency resources. (5) Deployment of ``smart'' technologies (real-time, 
automated, interactive technologies that optimize the physical operation of 
appliances and consumer devices) for metering, communications concerning grid 
operations and status, and distribution automation. (6) Integration of “smart” 
appliances and consumer devices. (7) Deployment and integration of advanced 
electricity storage and peak-shaving technologies, including plug-in electric and 
hybrid electric vehicles, and thermal-storage air conditioning. (8) Provision to 
consumers of timely information and control options. (9) Development of standards 
for communication and interoperability of appliances and equipment connected to 
the electric grid, including the infrastructure serving the grid. (10) Identification and 
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lowering of unreasonable or unnecessary barriers to adoption of smart grid 
technologies, practices, and services.” (EISA, 2007)  

 
In summary, most definitions highlight the networked nature of electricity systems and the 
process of technological transformation within these complex webs of infrastructures and actors.  
 
The challenge of interoperability for unlocking network externalities  
 
Developing and deploying new technologies – software and hardware - across an increasingly 
complex and decentralized grid network is an evolved task. This will require investments by 
various actors located at different points on the grid. These investments could unlock important 
network externalities: the more users adopt these technologies, the more data and information 
about grid conditions will be exchanged, enabling more effective load management and reliable 
provision of power.  
 
Two challenges stand in the way of developing and deploying these technologies at the requisite 
scale for achieving network externalities. First, as a non-rivalrous but excludable “toll” good, the 
grid is prone to underinvestment. Under current electricity rate-making regulations, utilities have 
little incentives to make those investments because they are limited in their ability to recover 
costs and are facing declining revenues (Lowry et al, 2017, Mandel, 2015, Marques et al, 2013; 
Schwister and Fiedler, 2015; Brown and Salter, 2010; Brown et al, 2018; De Castro and Dutra, 
2013). It is unclear how the cost of these smart grids investments will be shared between utilities 
and other electricity system actors moving forward. Second, with technology development in the 
early stages, there is uncertainty about which innovations will emerge as winners. The usefulness 
of new smart grids technologies – which determines whether they get widely adopted - will be 
contingent upon ensuring interoperability between devices, developing common data sharing 
and security protocols, etc. Utilities might be reluctant to become early adopters because of 
concerns of obsolescence (Stephens et al, 2013; Schwister and Fiedler, 2015). In other words, 
uncertainty may suppress demand for smart grids technologies, and in turn, investments in 
research and development. Interoperability is also a concern for inventors: their inventions will 
be of little commercial value if they are incompatible with other devices on the market. The issue 
of compatibility therefore poses uncertainty for both utilities and inventors, potentially limiting 
the development and diffusion of smart grids technologies.  
 
The challenge of interoperability is paramount. Much of the policy discussion and literature on 
the issue of grid modernization has focussed on this issue (Güngör et al., 2011; Ho & O’Sullivan, 
2017; Fang et al., 2012; Li et al, 2017; Iqtiyanillham et al, 2017, Dantas et al, 2018; Tomain, 2012; 
Lin et al, 2013; Brown et al, 2018). For example, with the EISA Act of 2007, the United States 
launched a smart grids interoperability standardization process led by the National Institute of 
Standards and Technology. With Mandates M/441(2009) and M/490(2011), the European 
Commission has also instructed its standard-setting organizations to develop standards for smart 
meters and cybersecurity. Similarly, Germany, Canada, Korea and others OECD countries have 
issued policy roadmaps regarding standardization and interoperability (SCC, 2012; VDE/DKE, 
2010; KSGI, 2010).  
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With limited government intervention in other areas of smart grid policy-making4, governments 
have been active in putting the issue of interoperability standards development on the agenda 
of standard-setting organizations5. Standard-setting processes are typically industry-driven and 
led by technical experts, as they require detailed knowledge of state-of-the-art technology in 
fast-moving areas of technology (Baron and Spulber, 2018). Participation in these processes is 
voluntary and the standards issued by standard-setting organizations are non-binding, unless 
written into regulation (Baron and Schmidt, 2019; Baron and Spulber, 2018). This distinction is 
important to note: standards developed by SSOs are different from regulatory standards used by 
in command-and-control policy. Governments sometimes engage in these standard-setting 
processes and bring attention to certain issues. These processes can therefore be a space for 
governments to work alongside industry to define some parameters around technology 
selection.  By putting smart grids standardization on the agenda of standard-setting 
organizations, it may be that governments have prompted coordination efforts and discussions 
that would not have otherwise happened. For this reason, we conceive of standard-setting in the 
area of smart grids as a public policy, albeit one whose causal mechanism is radically different 
from command-and-control regulation.  In the next section, we argue that standardization, as a 
policy intervention, has not received the attention it deserves in the literature on green energy 
innovation. Given the policy attention the issue of interoperability standards development has 
received, we argue there is insufficient understanding of the mechanisms through which 
standards affect inventive activity in smart grids, nor any empirical evidence that they help in 
stimulating innovation.   
 
Contribution: gaps in the literatures on green innovation and on standards and innovation 
 
Literature on green energy innovation 
 
The dual externalities problem that afflicts green energy innovation is well documented in the 
literature (Popp, 2010; 2019). Environmental externalities are not accounted for in energy prices, 
disadvantaging renewable energy in the market since the prices do not capture the value of 
avoided damages in comparison to fossil fuels. In addition, there tends to be an under-
investment in innovation across all sectors, due to knowledge spillovers that prevent inventors 
from fully capturing the returns on their R&D investments (Popp, 2010; 2019). This dual 
externality problem justifies government intervention to stimulate inventive activity, through 

 
4 Other smart grids-related policy interventions include demonstration projects, mandatory smart meter roll-outs or 
targets, and reforms in utility rate-making to enable performance-based rate-making, time-based pricing and other 
rate-making scheme that encourage peak-shaving and demand-response. Government investments in research and 
demonstration projects have been sparse, the most well-known being the pilot project on Jeju Island in Korea, as 
well as 99 demonstration projects funded through the “Smart Grids Investment Grant (SGIG)” envelope of the 
American Recovery and Reinvestment Act (ARRA). Studies that have mapped relevant smart grids policies include: 
Lin et al, 2013; Iqtiyanillham et al, 2017; Dantas et al, 2018; Koenigs et al, 2013; Brown et al, 2018; Martinot, 2016; 
Winfield and Weiler, 2018; Palensky and Kupzog, 2013; Schiavo et al, 2013.  
5 Here standards refer to voluntary technical specification and guidelines, and not command-and-control policies. 
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various technology push and demand-pull policy instruments, and get closer to socially-optimal 
levels of investments.  
 
The most frequently used instruments in a policy-maker’s toolbox for supporting renewable 
energy include feed-in-tariffs, net metering, emissions-trading schemes, renewable portfolio 
standards, fiscal incentives for R&D and grants for research and demonstration projects. These 
policies change incentives to correct market failures at different levels and through different 
channels. For example, feed-in-tariffs subsidize renewable energy and eliminates uncertainty 
related to price fluctuation by offering renewable energy generators fixed price contracts. Net 
metering policies enable new actors to participate in electricity markets, by allowing 
homeowners that produce power from renewable source (such as rooftop solar photovoltaic) to 
feed their excess production on the grid for later consumption. Renewable portfolio standards 
act on the quantity side, rather than the price side, by fixing targets for renewable generation.   
 
The literature has extensively investigated the effect of these various environmental policies on 
innovation. For example, Fabrizi and colleagues (2018) investigate the effectiveness of R&D 
grants in stimulating green energy innovation. Popp (2002) and Newell and colleagues (1999) 
show that green innovation is responsive to changes in prices. This highlights the potential for 
carbon taxes to direct technological change away from fossil fuels. Johnstone and colleagues 
(2010) investigate the effect of environmental policy on green energy innovations. They find that 
tradable energy certificates are more effective at steering innovation in technologies that are at 
an advanced stage of technological development (closer to being competitive with fossil fuels), 
while feed-in-tariffs can support technological progress at earlier stages of development. Calel 
and Dechezleprêtre (2016) quantify the effects of the European emissions’ trading scheme on 
innovation.  
 
More recently, studies that use firm-level analysis have enabled a finer understanding of the 
policy, market conditions and firm-level characteristics that drive firms’ decisions to innovate 
away from fossil fuels. This literature is rooted in the directed technical change and induced 
innovation literature (Acemoglu et al, 2012; Popp, 2002), with a focus on the role of tax-inclusive 
energy prices, market size, and knowledge stocks. This approach enables comparisons across 
different types of firms, and the more precise identification of firms’ innovation behaviors, such 
as switching between green and dirty technologies. Aghion and colleagues (2016) first used this 
approach to study the global automotive industry. Their firm weights allow to capture firms’ 
unique exposure to changes in policies and market conditions, depending on their respective 
positioning in various markets and the differential timing of policies across markets. This allows 
for more precise identification of the effects from variables such as price and policy changes at 
the firm-level. The authors find that firms innovate more in clean energy when they face higher 
price-inclusive prices. The firm-level approach also allows to consider the internal and external 
knowledge stocks firms are exposed to. Aghion et al (2016) find evidence of path dependency 
from firms’ prior innovation experiences. The more experience firms have in clean technology, 
the more likely they are to continue innovating in this area, and vice-versa.  The authors find that 
path-dependence from exposure to external knowledge stocks also affects the decision to 
innovate in clean versus dirty energy.  Lazkano et al (2017) use a similar approach to study 



 

 8 

complementarities between innovation in energy storage technologies and innovation in 
renewable energy versus conventional energy technologies. They find that because storage 
enhances the elasticity of substitution between the two, firms that have experience with storage 
innovation also innovate more in both conventional energy and renewables. Finally, Noailly and 
Smeets (2015) use firm-level analysis to study firm heterogeneity in the electricity sector in a 
sample of more than 5000 European firms. They compare innovation activity within mixed firms 
and specialized firms and firms’ entry and exit from renewable energy and fossil fuel innovation. 
They find that most of the increase in European clean innovation is attributable to small, 
specialized firms. Rather than observing switching between renewables and fossil fuel innovation 
within firms, the authors find that the increase in the share of renewable innovation is due to the 
entry of firms specialized in renewables and the exit of firms specialized in fossil fuels. Consistent 
with this, they also find evidence of path dependency within firms that have large fossil fuel 
internal knowledge stocks.  
 
From the green innovation literature, in the past two decades we have gained a richer 
understanding of the effects of policy instruments that seek to redress markets failures and of 
how policy and market conditions affect firms’ innovation decisions.  However, there is little 
literature on the role and effectiveness of policies in redressing coordination challenges of the 
type encountered in the area of smart grids. Moreover, while there is an abundance of studies 
that have looked at innovation patterns in renewables, the empirical literature on smart grids 
innovation is scarce. We know very little about the state of innovation in this area, for example, 
who are the actors innovating in this area of technology, what are complementarities between 
the development of smart grid technologies and other critical areas of green innovation such as 
electric vehicles or electricity storage, and which areas of smart grid technologies are at a more 
advanced stage of development. Studies that have attempted to map innovation in the smart 
grids sector are limited to descriptive work (e.g, Marku and Zaitsava 2018), and document the 
penetration of ICT firms in the electricity innovation market.  
 
Literature on standards and innovation 
 
This paper also contributes to the literature on standards and innovation, in which recent 
empirical evidence about the effect of standards on inventive activity is limited6. A general 
definition for standards is formulated by the National Institute of Standards and Technology: “A 
standard is a document that contains technical specifications or other precise criteria to be used 
consistently as a rule, guideline, or definition of characteristics, to ensure that materials products, 
processes, personnel or services are competent and/or fit for their intended purposes(s)” (cited 
in Baron and Spulber, 2018, p.4). Beyond this general definition, standards can be classified along 
various dimensions. The literature makes the distinction between different types of standards 
that perform various functions and affect innovation through distinct channels.   
 

 
6 Recent empirical studies include Baron and Schmidt (2020) who find evidence that peaks in standardization are 
followed by the implementation of new inventions, which in turn explain some of the fluctuation in business 
cycles, and Baron and Pohlmann (2019) who map patents classes to standards classes. 



 

 9 

A first distinction is between de facto and formal standards. Rules and guidelines may emerge 
informally to become widely used within an industry. In this case, there is not necessarily a need 
for a formalized document, if industry actors already have a shared understanding of these 
guidelines and see the value in abiding by them. Companies may use various strategies such as 
contracting and advertising to incite others to use its technology as the industry standard (Baron 
and Spulber, 2018; Katz and Shapiro, 1986; Spulber, 2008). In this case, de facto standard may be 
sufficient for performing coordination functions. Often times however, standards are the product 
of formal consultative processes piloted by standard-setting organizations (SSOs), within which 
industry representatives coordinate over technology selection and adoption (Baron and Spulber, 
2018; Baron and Schmidt, 2020).  These standard-setting processes may be viewed as formal 
coordination technology selection mechanisms: standardization is a way to reduce uncertainty 
(Aggarwal et al, 2011), steer expectations about certain technologies (Lerner and Tirole, 2015) 
and stimulate the coordinated implementation of new technologies across an industry (Baron 
and Schmidt, 2020; Lerner and Tirole, 2015; Spulber 2018). In fact, there is empirical evidence 
that standard-setting organizations are effective at cooperatively selecting high value 
technologies. Rysman and Simcoe (2008) find that patents declared to be essential for the 
implementation of a standard (standard-essential patents, SEPs) receive more citations than non-
SEPs granted within the same industry and year.  
 
Standards developed by SSOs are usually open standards, and differ from proprietary standards 
(Baron and Spulber, 2018). Proprietary standards are “owned and controlled by a single firm or 
a group of firms and may be used only with the permission of the standard’s owner or owners” 
(Baron and Spulber, 2018, p.5). They often perform the function of ensuring product quality, 
especially across a firm’s networks of suppliers, and the owner of the standard can use 
intellectual property protection to exclude other firms from producing goods that conform with 
it.  Open standards may also require the use of patented technologies for conformance7 but they 
differ in that any firm can use those standards freely. The standards issued by standard-setting 
organizations typically belong to this category (Baron and Spulber, 2018). Open standards that 
are designed to facilitate interoperability, in particular, are useful for coordinating the work of 
independent firms, whose products are used as inputs in the manufacturing of complex 
technological products or in networked technologies, such as computers and smart phones. The 
information technology sector is a good example of industries where interoperability is crucial 
(Baron and Spulber, 2018).  
 
Another distinction is between voluntary standards and regulatory standards. Compliance is 
voluntary for standards developed by standard-setting organizations (Baron and Spulber, 2018). 
Governments may write standards into legislation. However, this concerns a minority of 
standards and no organization has collected information systematically on which standards have 
been included in legislation. For this reason, the database that we use for this paper does not 
allow us to identify which standards are mandatory within certain jurisdictions (Baron and 
Spulber, 2018). We therefore assume that the standards comprised in our sample are voluntary, 

 
7 In which case, SSOs have rules directing the holders of “standard-essential patents” to grant licenses using fair, 
reasonable and non-distriminatory terms (Baron and Spulber, 2018). 
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and that the mechanism at play is information provision rather than coercion. Given that the 
smart grids sector is in the early stages of technological development and is a fast-moving area 
of technology, we assume that government officials would exercise caution and refrain from 
picking and choosing which technical specifications should be mandatory.   
 
Another way of classifying standards is by the functions they perform. Interoperability standards, 
for example, perform a coordinating function in helping to ensure products and components are 
compatible. These are the standards we are interested in the context of this study. They help 
correct coordination failures to achieve network externalities. Quality standards are devised to 
ensure that products meet certain quality and safety requirements. Information standards 
provide product descriptions that help inform consumer’s choices. The latter two types of 
standards help correct market failures arising from transactions costs and asymmetries of 
information. Finally, variety reduction standards may be useful in cases where there is too much 
trivial differences between products in a market. Those standards help redress inefficiencies 
through increasing economies of scale (Swann, 2000; Tassey, 1999; DeVries, 1999).  
 
As briefly mentioned previously, concerns about competition and market power often arise in 
the discussion on the link between standards and patents. Much of the limited theoretical 
literature on the link between standards and patents has focused on concerns of competition 
and on ways to keep market power in check when inventions are deemed essential to the 
implementation of a standard (standard-essential patents) (Lerner and Tirole, 2015). SSO policies 
that require the licensing on reasonable terms can help mitigate this caveat. However, they often 
result in costly litigation (Lerner and Tirole, 2015). The literature also raises concerns about the 
possibility that standards may generate technology lock-in. However, according to Baron and 
Spulber (2018), this remains much of an open question, with the empirical literature finding 
mixed or inconclusive evidence of lock-in (they cite the work of: Spulber, 2008; Branove and 
Gandal, 2003; Angereau et al, 2006; Liebowitz and Margolis, 1990).  
 
To summarize, this paper seeks to contribute to two literatures. First, we contribute to the 
literature on green energy innovation by calling attention onto the role of standards in policy 
contexts where coordination failures - in addition to the usual environmental externalities and 
knowledge spillovers market failures – also threaten to suppress investment in the development 
and deployment technologies needed to accelerate decarbonization. This paper hones-in on a 
sector of green energy innovation that has been under-studied, and yet, that will be essential for 
steering the energy transition forward. This paper also seeks to advance our understanding of 
the channels through which standards affect innovation. We empirically investigate the effect of 
interoperability standards to gain insights into which mechanism is at play: information provision 
and uncertainty reduction, or technology lock-in. Given that this question has found no 
conclusive answer so far, our empirical findings also contribute to the literature on standards and 
innovation.  In the next section, we formulate research questions and formal hypotheses to be 
tested.  
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Research question, theory and hypotheses 
 
The broad research question that motivates this paper is: what are the policy determinants of 
smart grid innovation? More specifically, we hone-in on a specific mechanism and ask: what 
effects do interoperability standards have on innovation in smart grids?   
 
We posit that standards may affect innovation in three ways. The direction and magnitude of the 
effect may differ across the different channels: 

- The information hypothesis. First, in early stages of technological development, when no 
technical specifications and protocols have emerged as the norm in the industry, 
individual inventors face high uncertainty due to a lack of information. For their invention 
to have commercial value, they need to ensure it will be interoperable with other devices 
on the market. Standards can provide credible information about which technical 
specifications and protocols the industry has collaboratively selected and is likely to use 
in the future. Such information may reduce uncertainty for individual inventors, and some 
of the risks associated with R&D investments. This might translate into more inventive 
activity after a standard or set of standards has been released.   

- The technology lock-in hypothesis. Second, if standards are developed too early in the 
emergence of new sectors of technology, they may have the opposite effect of stifling 
innovation. Standards that recommend a certain technology or procedure before actors 
have had opportunities to test different ideas and concepts may quell experimentation 
and lock-in sub-par technology.   

- The endorsement hypothesis. Finally, standards may have a negligible effect on innovation 
if they merely formalize what the industry had already de facto adopted. Alternatively, 
formal standards may have heterogeneous effects across different types of inventors. De 
facto standards may be sufficient to stimulate R&D investments by electricity sector 
incumbents who have access to insider information. However, new entrants in this 
market may need to rely on formal standards to gain insights and information into which 
protocols and technical specification are broadly accepted before they make R&D 
investment decisions.  
 

Because these three channels work, at least in part, in opposing directions, the net impact of 
standards on smart grid innovation is ambiguous.  Standards may provide guidance to early 
innovators, but may also lock-in existing technological norms.  Co-ordination of innovation may 
provide information to potential new entrants in the market, or serve as a barrier to entry by 
establishing incumbent technology as the standard for a market.  Using firm-level patent data 
allows us to test for heterogeneous impacts across different types of firms.   
 
Model and variables 
 
We use firm-level patent data to measure smart grid innovation.  Our data includes all firms with 
at least one smart grid patent (defined below) for the years 2000-2016. Using methods first 
described in Noailly and Smeets (2015) and Aghion et al. (2016), we use pre-sample data on the 
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countries in which firms obtain patents to construct weights for the importance of each market 
to a firm.  This allows changes in standards, policies, and market conditions in a given country to 
have different impacts on different firms, allowing us to treat lagged values of these variables as 
plausibly exogenous.  No firm is influential enough to affect those variables in all the countries 
where it operates, yet it is reasonable to expect that a firm would consider the policy conditions 
- such as the level of standardization and government R&D incentives - in the main markets where 
it operates when making R&D investment decisions.  The use of these models to explore green 
innovation has grown in recent years, including Noailly and Smeets (2015) on renewable energy, 
Aghion et al. (2016) on the automotive sector, Lazkano et al. (2017) on energy storage, and 
Rosendaal and Vollebergh (2021) on emission standards.  Using firm-level data also allows us to 
test for heterogeneous impacts of standards on incumbent firms and new entrants.  
 
Our dependent variable is a count of successful smart grid patent applications filed by firm i in 
year t.  As patents vary in quality, we only include patent applications subsequently granted by 
at least one patent office.8  Because the dependent variable is a count of patents, we begin with 
a model using pseudo-maximum-likelihood Poisson regression.   
 

𝑝𝑎𝑡𝑒𝑛𝑡𝑠𝑖𝑡 = exp(𝛽0 + 𝛽1𝑆 𝑖𝑡−2 + 𝛽2𝑙𝑜𝑔 𝑅𝐺𝑖𝑡−2 + 𝛽3𝑙𝑜𝑔 𝑅𝑅𝑖𝑡−2 + 𝛽4 log 𝐾𝑆𝑖𝑡−2

+ 𝛽5 log  𝐾𝐺𝑖𝑡−2 + 𝛽6𝑙𝑜𝑔 𝐾𝐸𝑖𝑡−2 + 𝛽7𝑙𝑜𝑔 𝐾𝐼𝑖𝑡−2 + 𝛽8𝑙𝑜𝑔 𝐸𝑆𝑖𝑡−2

+ 𝛽9𝑙𝑜𝑔 𝐸𝐺𝑖𝑡−2 + 𝛽10𝑙𝑜𝑔 𝐸𝐸𝑖𝑡−2 + β11𝑙𝑜𝑔 𝐸𝐼𝑖𝑡−2 + β12𝑋 𝑖𝑡−2 + 𝑎𝑖 + 𝑦𝑡 + 𝑢𝑖𝑡 ) 
 
Where S is a count of standards, RG is government RD&D budgets in grid-related technologies, 
RR is government RD&D budgets in renewables, KS is a firm’s internal knowledge stocks in smart 
grids technologies, KG is a firm’s internal knowledge stocks in green innovation, KE is a firm’s 
internal knowledge stocks in electricity, KI is a firms’ internal knowledge stocks in information 
technologies, ES are external knowledge stocks in smart grids, EG are external knowledge stocks 
in green innovation, EE are external knowledge stocks in electricity, EI are external knowledge 
stocks in information technologies, X is a vector of control variables.  To represent firm-level fixed 
effects, ai, our main specification uses the pre-sample mean of patents.  As we explain below, 
this requires only weak exogeneity of the explanatory variables. Finally, y are year fixed effects. 
The right-hand side variables are lagged two-years to avoid reverse causality.   
 
Our main policy variables include the certification of standards and government R&D investments 
to which each firm i is exposed.  Described in more detail below, these variables are a weighted 
sum of the policy in  each country, c, in time, t, using time-invariant weights based on the market 
exposure of each firm in the pre-sample period.  The internal and external knowledge stocks 
proxy for both a firm’s own R&D experience and potential spillovers from other inventors, 

 
8 Noailly and Smeets (2015) also use granted patents. Other recent papers, including Aghion et al. (2016), Lazkano 
et al. 2017), and Rosendaal and Vollebergh (2021) use triadic patents (e.g. patent applications filed at the USPTO, 
European Patent Office, and Japanese patent office) to eliminate low-quality patents.  We do not do that for two 
reasons.  First, because of differences in the electricity grid in North American and Europe, we observed examples 
where smart grid patents were filed in multiple North American or European countries, but not on the other 
continent.  Second, we are interested in the effect of standards on new entrants.  New entrants will include smaller 
firms that may be less likely to file patent applications abroad. 



 

 13 

respectively. Our control variables include other factors that may influence demand for smart-
grid technology.  These include the percentage of electricity generation from renewable sources 
and the growth in electricity consumption from the previous year. Both increased renewable 
penetration and growth in electricity consumption may signal increased pressures on the grid. 
We include the logged value of household electricity prices as an increase in retail electricity 
prices may motivate consumers to seek solutions to better manage their electricity consumption, 
enroll in demand-response programs, etc. To account for changes in overall economic conditions 
in the markets where firms operate, we also include the logged value of GDP per capita. We 
include firm and year fixed effects to control for other potential unobservable firm-invariant and 
time-invariant confounding factors. 
 
Our estimation faces two additional challenges.  First, as the knowledge stocks are functions of 
lagged dependent variables, strict exogeneity does not hold.  In such cases, the standard Poisson 
fixed effects model may produce biased result.  As such, our main specification uses the pre-
sample mean of patenting activity to proxy for firm fixed effects (e.g., Blundell et al. 1995; Noailly 
and Smeets, 2015, Rosendaal and Vollebergh 2021).  While our dependent variable only includes 
smart-grids patents, for the pre-sample mean we include a wider range of relevant technologies, 
including patents pertaining to green innovation, electricity generation, information technology 
(IT), as well as smart grid patents.  Using the pre-sample mean requires assuming that a firm’s 
innovative activity is stationary and follows an AR(1) process. As smart grids are an emerging 
technology experiencing much patent growth over our sample period, such an assumption would 
be unrealistic for smart grid patents themselves.  Instead, the pre-sample mean can be thought 
of as the overall propensity to innovate for each firm.  Our regressions then ask how standards, 
R&D spending, and various demand-side factors specifically affect smart-grid patenting 
conditional on each firm’s overall propensity to innovate. 
 
Second, because of the novel nature of smart grid technology, our sample includes many new 
firms who were not actively patenting in the pre-sample period. To accommodate these firms 
when using the pre-sample mean, we include a dummy variable for firms with no patents in the 
pre-sample.  Additionally, we explore the potential role of standards on new entrants by 
estimating two zero-inflated Poisson models. One uses a balanced panel and the other, and 
unbalanced panel that accounts for the timing of each firm’s entry and exit from the market, 
proxied by their first and last year of patenting activity in relevant technologies (green innovation, 
electricity generation, information technology, smart grids).  The zero-inflated Poisson model 
first uses a logit model to predict whether a firm has any patents in a given year (e.g., the 
extensive margin).  Then, a Poisson model (using pre-sample means to proxy the firm fixed effect) 
is used to predict the number of patents per firm in a given year (e.g., the intensive margin). 
 
Data sources  
 
A contribution of this paper is to pool data from two distinct sources, including a novel database 
on Technology Standards and Standard Setting Organizations (SSOs), to empirically investigate 
the effect of standardization on inventive activity in the area of grid modernization. Few studies 
have empirically investigated the link between standards and innovation (Baron and Pohlmann, 
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2018; Baron and Schmidt, 2019), nor the policy determinants of innovation in smart grids. To 
address this gap, we use standards data from the Searle Center on Law, Business, and Economics 
at Northwestern University, in conjunction with patent data from the European Patent Office 
(EPO).  
 
Overall, our sample includes firms from 19 countries: Austria, Australia, Canada, Switzerland, 
Czech Republic, Germany, Denmark, Spain, Finland, France, United Kingdom, Italy, Japan, Korea, 
Netherlands, Norway, Sweden, Turkey and the United States. Some OECD countries were 
excluded due to incomplete data on standards and household electricity prices. The sample 
period is 2000-2016. We begin in the late 1990s because there was little invention in the area of 
smart grids prior to the early 2000s, and we end the sample in 2016 to avoid truncation bias due 
to the lag between patent application and grant. We exclude patents by applicants that are not 
firms, such as universities, government agencies and non-governmental organizations, and only 
keep patents that were granted in at least one of the sample countries. A total of 3,084 firms and 
13,844 distinct patent families are included the sample, and we find 1,867 instances of country 
standards accreditations during the 2000-2016 period. 
 
Standards data 
 
The Searle Center’s database provides information on standard documents released by 600 
standard-setting organizations around the world (international and domestic SSOs), including 
standards’ release date, version history, international equivalences, amendments, withdrawals 
and references. To identify which standards are relevant for the smart grid, we use lists available 
online via the International Electrotechnical Commission (IEC), the European standardization 
organizations (CEN, CENELEC, ETSI), and the Smart Electric Power Alliance (SEPA). Including lists 
collated by international, European and North American sources ensures we have adequate 
geographical coverage of the countries in our sample. The IEC curates a list of international 
standards that it deems of core or high importance for the smart grid, mapped onto a conceptual 
schema of the smart grid. As part of European Commission Mandates M/441 and M/490, the 
CEN, CENELEC and ETSI also curate a list of standards that are relevant to the electrical grid. 
Finally, in the United States, the Catalogue of Standards developed through a national standard-
setting process launched with the Energy Independence and Security Act (EISA) of 2007 is curated 
by the SEPA. The SEPA and IEC lists are more restrictive, while the “interoperability tool” collated 
by the European organizations lists standards that are of more general relevance to the electricity 
sector, and not always specific to smart grid applications.  To limit our sample to standards that 
are of core or high relevance to smart grids technologies, we use the IEC and SEPA lists as our 
starting point, find their equivalents in the European context, and complete with European 
standards on advanced metering infrastructure developed in response to Mandate M/411.  
 
We then use an algorithm developed by Schmidt and Steingress (2019) to find all instances of 
country-level equivalences for these standards in the Searle Centre database. This algorithm fills-
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in gaps that arise because of different timing of standard accreditations9.  Schmidt and Steingress’ 
algorithm cross-references information to identify with greater completeness instances of 
standards harmonizations across countries -- that is, standards released by national and 
international SSOs that have been declared to be equivalent.  This allows to identify the timing 
of smart grids standards accreditations across our sample countries.   
 
Many standards are composed of multiple parts. We count instances of standards accreditations 
at the part level. As technology evolves, new parts are sometimes added to existing standards.  
We conceptualize those as evidence that SSOs and industry are actively coordinating to address 
emergent technological challenges and opportunities. This warrants counting the release of new 
parts as stand-alone events. Conversely, not all parts of the standards included in our list are of 
high relevance to the smart grids. Counting standards at the part level allows us to filter out less 
relevant parts and reduce the noise in our measure of standards accreditations.  In addition, we 
do not count standards revisions. While revisions might indicate that a standard remains in use 
and relevant, we make a conceptual distinction between the first time a standard is released – 
which indicates attention to standardization needs in novel areas -  and the release of a new 
version of an existing standards – which indicates a maintenance level of coordination to ensure 
the standard remains up-to-date with the latest technological developments.  
 
Having obtained a list of relevant smart-grid standards accredited by each country, we create two 
alternative measures of standardization for each country.  The first is simply a count of standards 
accredited in country c in year t.  Results using this variable can be interpreted as an event-study 
approach – how does the accreditation of new standards in a firm’s markets affect innovation.  
The second is a cumulative count of all smart grid standards accredited in country c up to and 
including year t.  This count can be interpreted as a proxy for the level of standardization in a 
given market.  We use the first measure in our baseline results and the second measure in our 
robustness checks. 
 
Patent data 
 
To capture innovation, we use patent data from the European Patent Office’s PATSTAT database. 
It is common in the literature to use patent data to proxy for inventive activity. Because patents 
are filed early in the research and development process, they provide a good indication of when 
the inventive activity took place. However, because there is a lag between the moment a patent 
is filed, and the moment it is granted and appears in the database, our sample ends in 2016 to 
avoid truncation bias.  
 
To identify patents that are relevant for the smart grid, we rely on the Cooperative Patent 
Classification (CPC), a patent classification system jointly developed by the European Patent 
Office and the United States Patent and Trademark Office and launched in 2013 to achieve more 

 
9 For example, SSO B may be declaring its standard to be equivalent to SSOs A and C, but SSO A only declares its 
standard as being equivalent to country C, because B had not yet accredited the standard when A reported the 
information (Schmidt and Steingress, 2019). 
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precise and consistent tagging across country patent offices10. The Y class on cross-cutting 
technologies classifies environmental technologies at a very granular level, including patents 
relevant for the smart grid. We extract patents that belong to 4 areas of smart grid technology: 
1) systems integration and efficiency (CPC classes Y02E 40/70 and Y04S 10), 2) use in buildings 
(CPC classes Y02B 70/3* and Y02B 90/2*), 3) ICT applications to smart grids (CPC classes Y04S 
40* and Y04S 50*), and 4) end-user applications (Y04S 20). Annex 1 presents the full description 
of these categories. We then identify firms with at least one successful patent application 
between 2000 and 2016.   
 
We count patents at the level of the patent family: a patent granted in multiple countries counts 
as one invention. We keep patents that were granted in at least one of our sample countries. 
Because we assume firms make R&D investment decisions based on the policies and economic 
conditions of the markets where they do business, we include all companies that have at least 
one granted smart grid patent in the 19 countries in our sample, regardless of the location of 
their inventors and applicants. In most cases, inventors and applicants are also located in those 
countries, and there is strong geographical overlap between a firm’s markets – defined as the 
countries where it has granted patents – and where its R&D and related investment decisions 
take place.  
 
Internal knowledge stocks 
 
To obtain knowledge stocks for these firms, we collect patents for these firms going back to 1977.  
As smart grids technology may draw on multiple disciplines, we construct four knowledge 
stocks11: smart grids12, renewable energy13, electricity generation14, or information technology 
(IT)15. We aggregate patent filings from each year into an internal stock of knowledge for each 
firm. These stocks represent the firm’s past patenting history and are the internal knowledge 

upon which future innovation can build.  Defining  as the depreciation rate of knowledge and 
Pijt as the successful patent applications in technology j filed by firm i in year t, the internal 
knowledge stock, KINT is: 

𝐾𝑖𝑗𝑡
𝐼𝑁𝑇 = (1 − 𝛿)𝐾𝑖𝑗𝑡−1

𝐼𝑁𝑇 + 𝑃𝑖𝑗𝑡 

 

 
10 Older patents were also retroactively classified under the CPC. 
11 Given the interdisciplinary nature of smart grid innovation, there is overlap between these categories. Patents 
are typically tagged under several different CPC classes, and may appear in more than one of our 4 categories.  In 
these cases, we count the as an invention in each of the categories.   
12 CPC classes: Y02B 70/30, Y02B 70/3225, Y02B 70/34, Y02B 90/20, Y02E 40/70, Y04S 10, Y04S 40, Y04S 50, Y04S  
30, Y04S  20. 
13 CPC classes: Y02, Y04 
14 CPC classes: H, F21, F02C, F2B 
15 CPC classes: G06, G01S, G02F, G08B, G08G, G09G, G10L, G11B, G11C, H01P, H01Q, H01P, H01Q, H03B, H03C, 
H03D, H03F, H03G, H03H, H03J, H03K, H03L, H03M, H04H, H04J, H04K, H04L, H04N, H04Q, H04R, H04S, H04W, 
G01V3, G01V8, G02B6, G09B5, G09B7, G09B9, H01L2, H01L3, H01L4, H01S5, H04B1, H04B5, H04B7, H04M1, 
H04M3, B82Y10, G01V15, H01B11, H04M15, H04M17, G07F7/08, G07F7/09, G07F7/10, G07F7/11, G07F7/12, 
B81B7/02, G07G 1/12, G07G 1/14. 
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We use a 15% depreciation rate as our base case.  When taking logs, we add one to all knowledge 
stocks and include four dummy variables indicating when each knowledge stock equals 0. 
 
External knowledge stocks 
 
External knowledge stocks capture the potential for spillovers from innovations external to the 
firm. Following Aghion et al. (2016), the external spillovers to which each firm is exposed depends 
on the countries where its inventors are located.  Multinational companies have scientists 
working in multiple locations in multiple countries.  The inventor address on the patent reveals 
where the inventive activity associated with that particular patent took place. Using all of a firm’s 
patents in our relevant technology categories, we calculate weights for each country using a time-
invariant share of the number of inventors on firm i’s patents located in country c, 𝑤𝑖𝑐

𝐾.  This gives 
us the stock of external knowledge: 

𝐾𝑖𝑗𝑡
𝐸𝑋𝑇 = ∑ 𝑤𝑖𝑐

𝐾𝐾𝑖𝑐𝑗𝑡
𝐸𝑋𝑇

𝑐

 , 

where  

𝐾𝑖𝑐𝑗𝑡
𝐸𝑋𝑇 = (1 − 𝛿)𝐾𝑖𝑐𝑗𝑡−1

𝐸𝑋𝑇 + 𝑃𝑐𝑗𝑡 − 𝑃𝑖𝑐𝑗𝑡 

 
represents a stock of knowledge that includes patents granted to other inventors in country c at 
time t.  Thus, the external knowledge stock assumes that firms are exposed to spillovers in each 
of the countries where they have inventive activity, and places the greatest weight on spillovers 
from countries where they do most of their inventive activity. 
 
Note that Pcjt includes all patents granted in the relevant patent classes for technology j in country 
c at time t, not just those assigned to the firms in our sample.  This includes patents that may be 
assigned to public sector organizations such as universities or government laboratories.  We 
include spillovers from multiple technologies since smart grid innovations may arise in multiple 
sectors.  This set-up allows for spillovers from all innovations in relevant fields.  For example, 
spillovers from relevant IT knowledge need not only come from IT firms that actively patent in 
smart grids. Our external knowledge stock allows for this possibility. 16 
 
Control variables 
 
The control variables come from two sources, which compile statistics on various aspects of 
energy systems: the International Energy Agency (IEA) statistics and the British Petroleum 
Company’s Statistical Review of World Energy. Data on government R&D expenditures in relevant 
energy technologies17, on domestic net electricity consumption, on household electricity prices 

 
16 This calculation differs slightly from the spillover pool used in Aghion et al. (2016), which starts with a weighted 
sum of all other firm’s internal knowledge, weighted by the share of patents for each company in country c.  This 
limits spillovers to come from other firms in their sample.  Aghion et al. (2016)’s paper looks at a single well-
defined industry, making such an assumption reasonable in their setting.  It is not here. 
17 We include two types of energy R&D.  R&D potentially applying to smart grid includes categories 62 (electricity 
transmission and distribution), 63(energy storage), 69(unallocated other power and storage techs) and 71 (energy 
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and on gross domestic product are from the IEA. Data on electricity generation from renewable 
sources is from BP. 
 
Constructing weighted policy variables and controls 
 
Our policy and control variables are collected at the country level.  Many of the firms in our 
sample operate in multiple markets, and will be affected differently by policy changes in each 
country depending on how important each market is to them.  We follow the standard approach 
in the environmental innovation literature (e.g., Noailly and Smeets 2015, Aghion et al. 2016, 
Lazkano et al. 2017, and Rosendaal and Volebergh 2021) and construct firm-specific weights 
based on the countries that they patent in during the pre-sample period (1977-1999).  Using the 
pre-sample period makes the weights weakly exogenous, as they do not change in response to 
changes in policy in potential markets.  These time-invariant weights identify markets to which 
firms actively participate.  To account for market size, we weight each market by GDP0.35, using 
the average GDP for each country in the last five years of the pre-sample (Dechezlepretre et al. 

2021, Rosendaal and Volebergh 2021).18  Defining  𝑤𝑐𝑖
𝑃𝐴𝑇 as the share of firm i’s pre-sample 

patents filed in country c, the weight becomes: 

𝑤𝑐𝑖 =
𝑤𝑐𝑖

𝑃𝐴𝑇𝐺𝐷𝑃𝑐
0.35

∑ 𝑤𝑐′𝑖
𝑃𝐴𝑇𝐺𝐷𝑃𝑐′

0.35
𝑐′≠𝑐

 

 
We build weights based on all the markets in which a firm has patented in relevant CPC classes, 
and not only in our 19 sample countries.  
 
Note that this weight differs from the weight used for the external knowledge stock, as the shares 
are based on where a firm opts to market its goods, rather than where its inventors are located.  
Coelli et al (2022, cited in Dechezlepretre et al. 2021) show that such weights explain well 
bilateral trade flows and firm exports.  Because smart grids are an emerging technology, most 
firms have few smart-grid patents during the pre-sample period.  Thus, as we did when 
calculating the pre-sample mean for each company, we use patents in green innovation, 
electricity generation, or information technology (IT), as well as smart grid patents, when 
calculating the weights. 
 
Our data include 2,030 firms without any pre-sample patents.  For these firms, we use a weighted 
average (based on total patents in relevant technology areas) of the weights from other firms 
located in the same country.  This assumes that firms in a given country are likely to operate in 
similar sets of countries – e.g., European firms are likely to patent within Europe and Canadian 
firms are likely to also patent in the U.S.  This assumption is more likely to apply to larger new 
firms that operate internationally.  New firms that are large innovators in the area of smart grids 

 
system analysis).  We also include R&D expenditures on renewable energy (Group 3 Renewable Energy Sources), 
which is both a signal of green intentions and suggests a need for technology to integrate renewables into the grid. 
18 Dechezlepretre et al. (2021) suggest the exponent of 0.35, saying that it fits estimates of the elasticity of exports 
to GDP of the home country found by Eaton, Kortum, and Kramarz (2011). We include robustness checks using an 
exponent of 1, as in Aghion et al. (2016). 
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include Voltalis, a French firm founded in 2006 that sells residential energy management devices 
and now operates in several European markets. In the period between 2006 and 2016, Voltalis 
produced 197 patented inventions (counted at the patent family level). Because we have no pre-
sample data for Voltalis, we assume that its main markets are the same as other French firms, on 
average. Similarly, the company Ubitricity, founded in Berlin in 2008 has become one of the larger 
electric vehicle charging suppliers in Europe. Between 2008 and 2016, is has produced 120 
patented inventions19. Again, in our main specification, we assume that the relevant markets for 
Ubitricity are the same as the average German firm. In robustness checks, we assume that the 
firm only operates in their home country.  Such an assumption is more likely to be the case for 
smaller firms. 
 
Descriptive statistics 
 
We choose the years 2000-2016 as our sample period. As an emergent area of technology, little 
patenting activity occurred in smart grids prior to 2000, but it has grown rapidly since.  Figure 1. 
shows patenting activity for the period 1996-2016, comparing trends in global patenting, to 
patenting in our sample countries by all types of applicants (universities, companies, individuals, 
etc.), and in our sample countries by our sample firms only.  
 
Globally, smart grids patenting takes off in the early 2000s and peaks in the early 2010s. While 
global patenting levels off in 2013-2014, patenting activity in our sample countries peaks in 2011 
and subsequently declines. Nevertheless, these figures show that the bulk of patenting occurs in 
our sample countries, giving us satisfying coverage of the universe of smart grids patenting 
despite our data limitations. Figure 1 also shows that most of the patents granted in these 
countries were filed by our sample firms.  Excluding individual, university, governmental and non-
governmental organization applicants does not substantially alter the overall trend.   
 

 
19 These include inventions that were tagged in at least one of our smart grids CPC classes, as we excluded CPC 
classes pertaining only to electric vehicles. However, many of these inventions are tagged under several CPC 
classes, therefore inventions that are relevant to EV and other areas of the smart grids would have been included 
in our count of relevant patents.  
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Figure 1. Trends in smart grids patenting 

  
 
When decomposing patenting in key national markets, we observe a similar trend. Figure 2 shows 
smart grids patenting in the United States, Germany, Japan and Korea for the years 1996-2016 
for our sample firms.   
 
Figure 2. Patenting trends in select markets 
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In these markets, patenting increases rapidly starting in the mid-2000s and peaks in the years 
2010-2011-2012, depending on the country. The subsequent decrease in patenting activity is 
more pronounced in Japan and Korea20.  
 
Standards accreditations peak later than smart grids patenting. Figure 3 shows the annual count 
of standard accreditations in our sample countries. Because we are interested in the timing at 
which different countries have accredited different standards, in this figure we count standard 
accreditations at the country level21. When decomposing trends in standardization in select key 
markets, we observe high variation in the timing of accreditation of standards across countries. 
Figure 4 shows the count of standards accreditation for the years 1996-2016 in the United States, 
Germany, Japan and Korea.  
 
 
Figure 3. Smart grids standards accreditations in sample countries  

 
 
 

 
20 Country-level counts of patents in Figures 1 and 2 were computed using the country of the inventor and weighted 

for the number of inventors on a patent. These counts only include granted patents.  
21 Each time a country accredits a standard, it gets counts as one. If a same standard was accredited in different 
countries (in the same or in a different year), it is counted multiple time. 
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Figure 4. Smart grids standards accreditations in select markets 

 
 
Our final descriptive statistics show how knowledge stocks in smart grids compare to knowledge 
stocks in other relevant technological domains. Conceptually, these external stocks capture the 
pool of knowledge that has accumulated in a given year, and that is available for inventors to 
built on. Knowledge stocks in smart grids (right axis) are modest relative to larger, more mature 
industries. However, smart grids is a sector of technology that draws on knowledge from various 
areas of technology. Figure 5 shows that the pool of relevant knowledge from other sectors upon 
which smart grids inventors may draw is much larger. It also shows that these knowledge stocks 
experienced a spurt in the mid-2000s and again in the early 2010s in electricity and information 
technologies. As expected, knowledge stocks in green innovation have increased steadily 
between 2000-2016, with a period of more rapid growth around the time of the Great Recession 
stimulus programs.  Consistent with figures 1 and 2, the smart grids knowledge stocks see rapid 
growth in the past decade. 
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Figure 5. Country-level knowledge stocks in sample countries22  

 
 
Results and discussion 
 
Zero-inflated model 
 
Our main model uses zero-inflated Poisson regression on an unbalanced panel, to account for 
firms’ different timing of entry and exit from the market. To control for firm-level unobservable 
heterogeneity, we use firms’ average annual count of patents in the pre-sample period to proxy 
for fixed effects, along with a dummy identifying firms that were inactive in the pre-sample 
period. The ZIP model first estimates the probability that a firm will patent in a given year 
(extensive margin), and conditional on whether the firm is likely to patent that year, it estimates 
the effect of our explanatory variables on the firms’ level of patenting (intensive margin). The 
coefficients from the extensive margin reveal the probability that the firm has zero patents.  We 
use this model as our main specification because of the nature of our data. Our sample contains 
a majority of small firms that scantly patent, and therefore our data contains a high volume of 
excess zeros.  A zero-inflated Poisson models assumes these excess zeros are generated by a 

 
22 The patent counts used to construct country knowledge stocks assign patents to countries using information on 
the location of inventors. Patent counts were also weighted by the number of inventors per patent. Figure 5 shows 
the sum of country knowledge stocks in our 19 sample countries.  
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separate process – the decision to patent or not, rather than the decision of how much to patent. 
In our context, it is more appropriate for explaining the excess zeros for these small infrequent 
innovators than the alternative fixed effects Poisson and pre-sample means Poisson estimators 
we present next.  
 
Table 1. Regression results from Zero-inflated Poisson regressions 

  Zero-inflated Poisson, unbalanced   Zero-inflated Poisson, balanced 

Variables Intensive margin Extensive margin  Intensive margin Extensive margin 

            

Standards -0.035** 0.015**  -0.035** 0.012 

 (0.014) (0.008)  (0.014) (0.008) 

RD&D smart grid 0.145** 0.019  0.145** 0.056 

 (0.063) (0.036)  (0.063) (0.036) 

RD&D renewables -0.374*** -0.028  -0.374*** -0.073* 

 (0.080) (0.045)  (0.080) (0.044) 

Int. knowledge stocks – smart grids 0.691*** -1.347***  0.692*** -1.334*** 

 (0.037) (0.049)  (0.037) (0.050) 

Int. knowledge stocks – green tech 0.097*** -0.269***  0.097*** -0.228*** 

 (0.029) (0.021)  (0.029) (0.021) 

Int. knowledge stocks – electricity 0.023 -0.133***  0.023 -0.105*** 

 (0.035) (0.026)  (0.035) (0.026) 

Int. knowledge stocks – ICTs -0.082*** -0.014  -0.082*** 0.010 

 (0.031) (0.022)  (0.031) (0.022) 

Ext. knowledge stocks – smart grids 0.350*** -0.366***  0.350*** -0.248*** 

 (0.136) (0.080)  (0.136) (0.074) 

Ext. knowledge stocks – green tech -0.431*** 0.099  -0.431*** 0.031 

 (0.140) (0.087)  (0.140) (0.083) 

Ext. knowledge stocks – electricity -0.343*** 0.158**  -0.343*** 0.018 

 (0.108) (0.073)  (0.108) (0.064) 

Ext. knowledge stocks – ICTs 0.420*** 0.080  0.420*** 0.118 

 (0.128) (0.078)  (0.128) (0.074) 

      
Observations 35,289 35,289  52,428 52,428 

Log-likelihood -58324 -58324   -60254 -60254 
 Note: The variables RD&D expenditures in grid-related technologies and in renewables technologies are logged and 
converted into 2015 real USD. All regressions include the firms’ average yearly patents in the pre-sample period, a 
complete set of year dummies and a dummy for firms with no patents in the pre-sample period. The knowledge stocks are 
logged (after adding 1) and we include dummies for internal knowledge stocks that are equal to zero. Country-level control 
variables were also weighted and included in all regressions: the share of electricity production from renewables, the 
growth in electricity consumption, logged household electricity prices (USD/MWh, real 2015 USD) and logged GDP per 
capita (real 2015 USD). All variables are lagged by 2 time periods. Regressions start in 2000 and end in 2016. Robust 
standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 
 

 

     
 

To identify the years in which a firm is active, in the unbalanced panel we use the date of its first 
and last patent in all relevant technological domains (smart grids, green innovation, electricity, 
information technologies). We opt for this approach because smart grids are an emergent area 
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of technology and we are interested in capturing effects for firms that are newcomers to this field 
but have experience innovating in other domains.  Table 1 shows regression results for our main 
model, against results for the same Zero-inflated Poisson model on a balanced panel.  
 
The sign and significance of the coefficient on the standards variables provides some empirical 
support for our technology lock-in hypothesis. Conditional on patenting, exposure to one 
additional standard decreases a firm’s patenting activity by 3.5 percent. This result is both 
statistically significant and economically substantial. Our results suggests that more 
standardization  discourage firms from entering the smart grids innovation space (with the caveat 
that this coefficient is statistically significant only in our unbalanced model). When firms 
nevertheless enter, standards cause them to reduce their patenting activity. It therefore does 
not appear that standards provide useful information to industry newcomers that might have 
helped with overcoming an informational disadvantage from their lack of experience or business 
relations, nor that standards help reduce uncertainty for inventors already in this space, by giving 
direction to technology development. It could be that standards merely confirm what has 
become widely accepted practice by industry actors, and get formalized only after an area of 
technology has matured. If this were the case, we would see an upward trend in patenting in 
years prior to standard adoption, with the adoption of standards coinciding with a slowdown in 
patenting activity. It may also be that standards, if they are overly prescriptive, limit the range of 
ideas and concepts that inventors set out to test. Firms would not expend resources on R&D for 
inventions that conflict with prevailing industry standards and stand little chances to be 
commercialized successfully, unless they think they can dislodge the dominant paradigm. To 
pinpoint the mechanism that explains our empirical results, in a later part of this section, we 
present some preliminary analyses of heterogeneous effects for older firms and newer firms. In 
future iterations of this paper, we intend to conduct further analyses to more directly probe for 
the mechanisms hypothesized above.  
 
Other noteworthy results from Table 1 include the coefficients on our two other policy variables: 
public R&D expenditures in grid-related areas and public R&D expenditures in renewable energy. 
As expected, we find that public investment in areas related to the electrical grid, such as 
electricity transmission and distribution, has a statistically significant positive effect on patenting 
activity. We also find that when governments provide more R&D incentives to renewables, 
patenting activity in smart grids decreases. Taken together, these results are interesting because 
they are indicative of a tradeoff between R&D in smart grids and R&D in renewables. In other 
words, there may be competition, rather than complementarities, for allocating R&D 
investments across the two sectors. It may be that firms that invest in R&D in renewables are the 
same that do R&D in smart grids technologies. When confronted to the decision of which 
research to conduct they may have to prioritize one at the expense of the other, and chose the 
areas in which they can take advantage of government incentives. That public R&D only works at 
the extensive margin is consistent with this explanation – public R&D investments change the 
mix of innovation in innovative firms, but are not attracting new innovation in a given 
technological space.This has important policy implications for overall innovation policy for the 
decarbonization of energy systems.  If there is indeed a tradeoff, policy-makers should be mindful 
to avoid unintended consequences. The bulk of public support has historically gone to R&D in 
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renewables, which has now reached some degree of maturity.  To further integrate renewables 
and decarbonize energy systems, we also need to develop technologies for integrating 
renewables on the grid. If the bulk of the support goes to renewables, policies may inadvertently 
slow down the development of these.  
 
A third set of notable results from Table 1 concern knowledge stocks. As expected, having prior 
experience patenting in the areas of smart grids and green technology has a positive effect on 
future patenting.  Interestingly, internal knowledge stocks in information technologies is 
associated with a decrease in patenting activity, whereas external stocks in this same category is 
associated with an increase in patenting. This suggests that large information technology firms 
are not the ones doing smart grids R&D, but that when smart grids or green tech firms are 
surrounded by IT companies, they benefit from knowledge spillovers. In other words, being 
exposed to large stocks of external IT knowledge might be sufficient to meet the IT knowledge 
needs of smart grid technology development.  External knowledge stocks in smart grids are also 
positively associated with smart grids patenting, indicating that firms do not only benefit from 
their own experience in smart grids innovation, but also from the experience of other similar 
firms that operate in the same national markets. However, the negative and statistically 
significant coefficients on the green technology and electricity knowledge stocks suggest some 
possible crowding out of smart grids innovation in markets where many firms are active in these 
areas of technology.   
 
Overall, our results are robust across both specifications, which indicates that using a balanced 
panel does not bias results substantially: the ZIP model in and of itself works well at dealing with 
excess zeros even when we do not correct for some firms entering the market after the start of 
the sample period or exiting before the end of the sample period.  
 
Pre-sample mean estimator and fixed effects Poisson regressions 
 
Table 2 compares the results from our main zero-inflated Poisson specification with alternative 
specifications: a pre-sample mean Poisson estimator and a fixed effect Poisson estimator. The 
pre-sample mean estimator uses the mean of firms’ patenting activity in the pre-sample period, 
along with a dummy variable identifying firms that were inactive in the pre-sample period and a 
full set of year dummy variables. Generally, the results from this model do not meaningfully differ 
from the results in our ZIP models, in which we also use the pre-sample mean of the dependent 
variable to proxy for firm fixed effects. This provides reassurance that the pre-sample mean 
estimation strategy is robust to using different specifications for dealing with excess zeros and 
the varying timing of firms’ entry and exit in the market. One difference is that our main ZIP 
models provide more precision on the policy variable RD&D budgets in grid-related technologies.  
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Table 2. Regression results from pre-sample mean estimator and fixed-effects Poisson 

Variables Pre-sample mean Poisson Fixed Effects Poisson 

      

Standards -0.038*** -0.026* 

 (0.012) (0.014) 

RD&D smart grid 0.069 0.035 

 (0.056) (0.097) 

RD&D renewables -0.258*** -0.019 

 (0.070) (0.162) 

Int. knowledge stocks – smart grids 0.885*** -0.442*** 

 (0.035) (0.120) 

Int. knowledge stocks – green tech 0.236*** 0.102 

 (0.027) (0.152) 

Int. knowledge stocks – electricity 0.091*** 0.223* 

 (0.035) (0.115) 

Int. knowledge stocks – ICTs -0.053* 0.296** 

 (0.032) (0.121) 

Ext. knowledge stocks – smart grids 0.520*** 0.423 

 (0.128) (0.289) 

Ext. knowledge stocks – green tech -0.471*** -0.703 

 (0.142) (0.502) 

Ext. knowledge stocks – electricity -0.416*** 2.313*** 

 (0.101) (0.732) 

Ext. knowledge stocks – ICTs 0.466*** 0.760 

 (0.126) (0.770) 

   

Observations 52,428 52,428 

Log-likelihood  -69537 

Pseudo R-squared 0.524  
Number of companies 3,084 3,084 

Note: The variables RD&D expenditures in grid-related technologies and in renewables are logged and 
converted into 2015 real USD. The pre-sample means estimator regression includes firms’ average yearly 
patents in the pre-sample period and a complete set of year dummies. The fixed effect Poisson regression 
includes firm and year fixed effects. Both models include a dummy for firms with no patents in the pre-
sample period. The knowledge stocks are logged (after adding 1) and we include dummies for internal 
knowledge stocks that are equal to zero. Country-level control variables were also weighted and included 
in both regressions: the share of electricity production from renewables, the growth in electricity 
consumption, the logged value of household electricity prices (USD/MWh, real 2015 USD) and the logged 
value of GDP per capita (real 2015 USD). All variables are lagged by 2 time periods. Regressions start in 
2000 and end in 2016. Robust standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 

 

The zero-inflated Poisson model with pre-sample mean and the pre-sample mean Poisson 
estimator produce consistent results under conditions of weak exogeneity, allowing us to relax 
the strict exogeneity assumption required by the Poisson fixed effect model. Results from our 
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fixed effects Poisson model confirm our concerns that this model would produce biased results 
because our knowledge stocks variables violate the strict exogeneity assumption. While the 
direction and magnitude of our policy variables are not substantially altered, results for our 
knowledge stocks variables change considerably under the fixed effects model, illustrating the 
bias that results from requiring strict exogeneity to hold.  
 
Heterogeneous effects  
 
Here we consider the possibility that aggregate estimates conceal differences in the effect of our 
explanatory variables for different types of firms, which could have important policy implications. 
For example, it may be that standards help smaller firms or industry newcomers overcome an 
informational disadvantage and penetrate new technology markets, but that they do not help 
larger firms or industry incumbents in the same way. Similarly, it may be that government 
support for R&D is more important in steering the R&D decisions of resource-constrained start-
ups and small firms than large firms with substantial R&D budgets.  Analyzing heterogeneous 
effects may also allow us to glean some insights about how knowledge spillovers affect different 
types of firms: it may be that small firms benefit more from knowledge spillovers in cross-
sectional technologies than large firms.  
 
As a preliminary step in our heterogeneity analysis, we compare effects for large firms and small 
firms. This is a crude categorization of firms, that does not do justice to the multiple dimensions 
in which firms differ, such as the combination of their size, age, and technological background. 
For example, it may be particularly interesting to investigate the effects of our policy variables 
on large electricity incumbents, small IT or green tech start-ups, or on new green tech firms that 
have grown rapidly.  In later iterations of the paper, we will conduct more sophisticated analyses 
that take these nuances into account.  
 
In the regressions in Table 3, we define large firms as those with more than 100 patents in 
relevant CPC classes23 during the period 1977-2016.  The distribution of firm size in our sample is 
highly skewed towards small firms, with the majority (1,908) having fewer than 20 patents in 
relevant CPC classes. The bulk of patenting activity therefore occurs within large firms. We use 
our unbalanced zero-inflated Poisson specification on a sample of 687 large firms, and on a 
sample of 2,387 small firms. We compute results separately, allowing for all the coefficients to 
vary across the two samples.  
 
This estimation does not allow us to draw conclusions about the effect of standards for small 
firms, as the estimated coefficients are small and imprecise.  It may be that the competing effects 
of technology lock-in and information cancel each other out for small firms However, our results 
confirm that standards have a negative effect on the patenting activity of large firms.   
 
 
 

 
23 We used the same CPC classes as before: smart grids, green energy, electricity, ICTs. 
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Table 3. Regression results by firm size  

  Large firms   Small firms 

Variables Intensive margin Extensive margin  Intensive margin 
Extensive 

margin 

            

Standards -0.054*** 0.032**  0.007 0.008 

 (0.017) (0.014)  (0.016) (0.010) 

RD&D smart grid 0.059 0.080  0.231*** 0.040 

 (0.093) (0.062)  (0.064) (0.046) 

RD&D renewables -0.290*** 0.012  -0.459*** -0.072 

 (0.103) (0.073)  (0.083) (0.060) 

Int. knowledge stocks – smart grids 0.742*** -1.201***  0.368** -1.486*** 

 (0.038) (0.054)  (0.185) (0.098) 

Int. knowledge stocks – green tech 0.093*** -0.203***  -0.087 -0.163*** 

 (0.034) (0.024)  (0.078) (0.057) 

Int. knowledge stocks – electricity 0.070* 0.005  -0.030 -0.280*** 

 (0.040) (0.032)  (0.059) (0.050) 

Int. knowledge stocks – ICTs -0.097** -0.053*  -0.049 0.013 

 (0.038) (0.028)  (0.058) (0.047) 

Ext. knowledge stocks – smart grids 0.243 -0.165  0.394** -0.366*** 

 (0.246) (0.154)  (0.180) (0.097) 

Ext. knowledge stocks – green tech -0.368* 0.169  -0.453** 0.036 

 (0.211) (0.148)  (0.211) (0.110) 

Ext. knowledge stocks – electricity -0.331* 0.216  -0.134 0.206** 

 (0.182) (0.148)  (0.140) (0.090) 

Ext. knowledge stocks – ICTs 0.541*** -0.265*  0.173 0.106 

 (0.195) (0.147)  (0.146) (0.097) 

      

Number of firms 687 687  2,387 2,387 

Observations 11,163 11,163  24,126 24,126 

Log-likelihood -29879 -29879  -26379 -26379 

Note: These regressions use the same specification as our main results: zero-inflated Poisson with an unbalanced panel. 
The variables RD&D expenditures in grid-related technologies and in renewables are logged and converted into 2015 
real USD. The regressions include the firms’ average yearly patents in the pre-sample period, a complete set of year 
dummies and a dummy for firms with no patents in the pre-sample period. The knowledge stocks are logged (after adding 
1) and we include dummies for internal knowledge stocks that are equal to zero. Country-level control variables were 
also weighted and included in this regression: the share of electricity production from renewables, the growth in 
electricity consumption, the log of household electricity prices (USD/MWh, real 2015 USD) and the log of GDP per capita 
(real 2015 USD). All variables are lagged by 2 time periods. The regression starts in 2000 and ends in 2016. Robust 
standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Another intuitive result concerns the effect of government R&D incentives in grid-related 
technologies. This effect is positive for small firms, which are assumably in greater need of 
government support. We do not detect an effect for R&D incentives in grid-related technologies 
in large firms. The effect of public R&D incentives to renewables is negative for both small and 
large firms. This indicates a possible redirecting of R&D towards renewables at the expense of 
R&D in smart grids in both small and large firms. We find that this effect is stronger for small 
firms, which is also tenable and consistent with the previous result: we expect government 
incentives to have less influence on the R&D investment decisions of large firms.   
 
The heterogeneity analysis also reveals some interesting nuances regarding the effect of 
knowledge stocks. Internal knowledge stocks in smart grids, green technology and electricity are 
positive and statistically significant for large firms, whereas electricity internal knowledge stocks 
were not statistically significant in our aggregate results. This seems to corroborate our 
expectation that large firms innovating in the smart grids space are electricity sector incumbents.  
In addition, the negative and statistically significant coefficient on the external knowledge stocks 
in electricity (only statistically significant for large firms) also suggests these firms may not need 
knowledge spillovers from other firms, if they already have abundant internal knowledge in this 
area. Being active in markets where many firms patent in the electricity sector may instead lead 
to competition and crowding out.   
 
The coefficient on smart grids internal stocks is also of greater magnitude for large firms than in 
our aggregate results. It is not surprising that large firms have accumulated greater patent stocks 
upon which they can continue to build. Conversely, the coefficient is of smaller magnitude for 
small firms. Internal knowledge stocks in smart grids are nevertheless important for small firms.  
In fact, they are the only internal knowledge stocks that matter at the intensive margin for these 
firms. However, internal green tech and electricity knowledge does increase entry for small firms.  
This suggests that small firms are more specialized and less diversified than large firms, and is in 
accord with our expectations.  
 
Finally, our findings about knowledge stocks in information technologies only hold in the large 
firm sample: large firms that innovate in the smart grids space are predominantly electricity 
companies and not IT companies, but they benefit from spillovers from IT companies. It does not 
appear that small firms benefit from knowledge spillovers from IT companies: it could be that 
some of these firms are new, highly specialized IT companies that do not need knowledge 
spillovers in this area. If they are new/small with little accumulated patents, the effect from their 
internal knowledge stocks in IT technologies may be difficult to detect.   
 
In future iterations of this paper, we intend to probe more directly for the relations hypothesized 
above. A first step will be to categorize firms in a more sophisticated way. This would enable us 
to test some of the suppositions made above, for example, about large electricity incumbents, IT 
start ups or green tech start-ups. To accomplish this, our next steps will involve 1) better 
identifying the age of the firm and its relevant timing of entry in the smart grids space, and 2) 
better identifying firms’ predominant expertise based on past patenting activity outside of smart 
grids.  
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Robustness checks 
 
We verify that our research decisions are not driving the results presented in this paper, 
especially the assumptions we had to make when building policy weights for firms without pre-
sample data, about which depreciation rate is appropriate for the knowledge stocks and which 
GDP weighting is suitable when accounting for market size in our policy weights. We also test 
whether our results are robust to using an alternative measure of our standards variable. We find 
that our results are robust to using different measures for these variables.  
 
The robustness checks presented below use our main specification: an unbalanced zero-inflated 
Poisson model, with the average pre-sample mean of the dependent variable to proxy for firm 
fixed effects, a dummy variable that identifies firms with no pre-sample data, and year dummies.  
 
Policy weights  
We constructed policy weights based on the ratio of patents a firm has in the markets it patented 
in during the pre-sample period, in broader relevant categories24. It is a feature of the sector we 
are studying that several firms are too new to have patents prior to 2000. For these firms, we 
had to make assumptions. In our main specification, we assume that the main markets for these 
firms are the average markets of all other companies from the same home country for which we 
have pre-sample data. In this robustness check, we instead assume that those firms conduct all 
their business in their home country and therefore that only the policies and economic conditions 
in their home country is relevant. In other words, we assign a weight of one to these companies’ 
home country. Note that some firms drop when conducting this robustness check.  Thus, in Table 
4 we first verify (columns 3 and 4) that our results hold for our main specification when using this  

 
24 We use broader categories – smart grids, green innovation, electricity, information technology – because smart 
grids is a new sector of technology with little patenting activity pre-2000. Using only smart grids patents would not 
allow us to build the weights.  



 

 

Table 4. Robustness check: alternative weighting of the policy variables  
  Main specification   Main weights on restricted sample   Alternative weights 

Variables Intensive margin Extensive margin  Intensive margin Extensive margin  Intensive margin Extensive margin 

                  

Standards -0.035** 0.015**  -0.043*** 0.018**  -0.021** 0.005 

 (0.014) (0.008)  (0.014) (0.008)  (0.009) (0.004) 

RD&D smart grid 0.145** 0.019  0.142** 0.016  0.060 -0.001 

 (0.063) (0.036)  (0.067) (0.037)  (0.042) (0.018) 

RD&D renewables -0.374*** -0.028  -0.412*** -0.016  -0.237*** 0.037 

 (0.080) (0.045)  (0.081) (0.046)  (0.050) (0.024) 

Int. knowledge stocks – smart grids 0.691*** -1.347***  0.693*** -1.328***  0.713*** -1.354*** 

 (0.037) (0.049)  (0.034) (0.050)  (0.039) (0.050) 

Int. knowledge stocks – green tech 0.097*** -0.269***  0.105*** -0.256***  0.081*** -0.260*** 

 (0.029) (0.021)  (0.029) (0.021)  (0.030) (0.021) 

Int. knowledge stocks – electricity 0.023 -0.133***  0.006 -0.147***  0.040 -0.147*** 

 (0.035) (0.026)  (0.038) (0.027)  (0.036) (0.027) 

Int. knowledge stocks – ICTs -0.082*** -0.014  -0.074** -0.006  -0.089** 0.005 

 (0.031) (0.022)  (0.034) (0.023)  (0.035) (0.023) 

Ext. knowledge stocks – smart grids 0.350*** -0.366***  0.394*** -0.368***  0.205 -0.267*** 

 (0.136) (0.080)  (0.148) (0.090)  (0.174) (0.091) 

Ext. knowledge stocks – green tech -0.431*** 0.099  -0.374*** 0.037  -0.212 -0.096 

 (0.140) (0.087)  (0.143) (0.094)  (0.159) (0.097) 

Ext. knowledge stocks – electricity -0.343*** 0.158**  -0.547*** 0.228**  -0.235 0.123 

 (0.108) (0.073)  (0.144) (0.094)  (0.172) (0.091) 

Ext. knowledge stocks – ICTs 0.420*** 0.080  0.557*** 0.057  0.341** 0.159* 

 (0.128) (0.078)  (0.156) (0.096)  (0.149) (0.096) 

         
Observations 35,289 35,289  33,292 33,292  33,073 33,073 

Number of firms 3,084 3,084  2,849 2,849  2,849 2,849 

Log-likelihood -58324 -58324   -53392 -53392   -53493 -53493 

Note: All three models use zero-inflated Poisson with an unbalanced panel that accounts for firms’ entry and exit years. The variables RD&D expenditures in grid-
related technologies and in renewables are logged and converted into 2015 real USD. All regressions include the firms’ average yearly patents in the pre-sample 
period, a complete set of year dummies and a dummy for firms with no patents in the pre-sample period. The knowledge stocks are logged (after adding 1) and 
we include dummies for internal knowledge stocks that are equal to zero. Country-level control variables were also weighted and included in all regressions: the 
share of electricity production from renewables, the growth in electricity consumption, the log of household electricity prices (USD/MWh, real 2015 USD) and the 
log of GDP per capita (real 2015 USD). All variables are lagged by 2 time periods. Regressions start in 2000 and end in 2016.  Robust standard errors are included 
in parentheses. *** p<0.01, ** p<0.05, * p<0.1 



 

 

Table 5. Robustness check: alternative depreciation rate for knowledge stocks 

Unbalanced ZIP, 20% depreciation 

Variables Intensive margin Extensive margin 

      

Standards -0.035** 0.016** 

 (0.014) (0.008) 

RD&D smart grid 0.144** 0.022 

 (0.063) (0.036) 

RD&D renewables -0.368*** -0.033 

 (0.078) (0.045) 

Int. knowledge stocks – smart grids 0.696*** -1.370*** 

 (0.037) (0.050) 

Int. knowledge stocks – green tech 0.097*** -0.279*** 

 (0.029) (0.021) 

Int. knowledge stocks – electricity 0.033 -0.137*** 

 (0.034) (0.027) 

Int. knowledge stocks – ICTs -0.087*** -0.014 

 (0.031) (0.023) 

Ext. knowledge stocks – smart grids 0.330** -0.363*** 

 (0.132) (0.078) 

Ext. knowledge stocks – green tech -0.440*** 0.099 

 (0.135) (0.085) 

Ext. knowledge stocks – electricity -0.333*** 0.152** 

 (0.109) (0.073) 

Ext. knowledge stocks – ICTs 0.438*** 0.083 

 (0.126) (0.078) 

Observations 35,289 35,289 

Log-likelihood -58075 -58075 

Note: This model uses the same specification as our main specification: zero-inflated Poisson with an unbalanced 
panel that accounts for firms’ entry and exit years. The variables RD&D expenditures in grid-related technologies 
and in renewables technologies are logged and converted into 2015 real USD. The regression includes the firms’ 
average yearly patents in the pre-sample period, a complete set of year dummies and a dummy for firms with no 
patents in the pre-sample period. The knowledge stocks are logged (after adding 1) and we include dummies for 
internal knowledge stocks that are equal to zero. Country-level control variables were also weighted and included 
in this regression: the share of electricity production from renewables, the growth in electricity consumption, the 
log of household electricity prices (USD/MWh, real 2015 USD) and the log of GDP per capita (real 2015 USD). All 
variables are lagged by 2 time periods. The regression starts in 2000 and ends in 2016. Robust standard errors are 
included in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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smaller sample.25  Columns 5 and 6 show the effect of alternative weights.  The effect of 
standards is somewhat smaller, with standards decreasing patenting by about 2 percent.  The 
effect at the intensive margin becomes insignificant.  The effect of other variables remains similar 
across specifications. 
 
Depreciation rate 
Another research decision we made pertains to the choice of the depreciation rate we apply to 
our external and internal knowledge stocks variables. In our main specification, we use a 15% 
depreciation rate, which implies that older patents stay longer in the stocks. In Table 5, we allow 
knowledge stocks to depreciate faster, at a rate of 20%. Both rates are commonly used in the 
literature, and using one or the other does not substantively alter our results.  
 
GDP weighting  
In our main specification we weight our policy weights by GDP to the power of 0.35, based on 
Dechezlepretre et al.’s (2021) suggestion that this value fits estimates of the elasticity of exports 
to GDP of the home country found by Eaton, Kortum, and Kramarz (2011). In Table 6 we weight 
by simple GDP (e.g. using an exponent of 1), as in Aghion et al. (2016).  This alternative GDP 
weight places more importance on the size of each market. This changes the magnitude of our 
coefficients but does not alter our results meaningfully, as the signs and significance levels of our 
variables remain unchanged. The one exception is the effect of standards at the extensive margin, 
which is estimated less precisely and becomes insignificant. 
 
Cumulative stocks 
Finally, in Table 7 we conduct a robustness check using an alternative measure of our standards 
explanatory variables: a cumulative count of standards. Instead of capturing response to the 
addition of one standard, the model below captures patenting response to the entire stock of 
standards – or overall level of standardization – in a country in a given year. Again, except for the 
extensive effect of standards, using this measure does not alter our results in a meaningful way.  
 
  

 
25 When assuming firms with no pre-sample data only operate in their home country, some firms drop from the data 
set for two reasons.  First, we have a minority of firms for which the home country is outside of our sample countries. 
Those firms were included in our sample in our main specification because they had granted patents in some of our 
sample countries and we assigned them the average weights from firms from the same home country for which we 
had pre-sample data. Therefore, in our main specification, some of the weights we have for these firms are in our 
sample countries. However, these firms drop when we assign their home country to be their only market. The second 
reason why some firms drop out of the sample in this robustness check is due to missing values in our electricity 
price variable. We are missing values for Sweden for the years 1998-2006 and for Australia for the year 2005-2011. 
In the main specification, our weighting ignores the missing values when computing the weighted average price for 
a firms’ markets. We are therefore nevertheless able to construct a value for electricity price for these firms. In our 
robustness check, we have missing values for companies from Australia and Sweden for these years. We therefore 
drop these firms altogether from the robustness check. 
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Table 6. Robustness check: alternative GDP weighting for policy weights 
Unbalanced ZIP, alternative GDP weight 

Variables Intensive margin Extensive margin 

    

Standards -0.052*** 0.013 

 (0.019) (0.010) 

RD&D smart grid 0.263*** 0.015 

 (0.080) (0.046) 

RD&D renewables -0.565*** -0.049 

 (0.099) (0.057) 

Int. knowledge stocks – smart grids 0.669*** -1.359*** 

 -0.031 (0.049) 

Int. knowledge stocks – green tech 0.098*** -0.264*** 

 (0.028) (0.021) 

Int. knowledge stocks – electricity 0.039 -0.143*** 

 (0.033) (0.026) 

Int. knowledge stocks – ICTs -0.090*** -0.008 

 (0.030) (0.022) 

Ext. knowledge stocks – smart grids 0.427*** -0.429*** 

 (0.129) (0.069) 

Ext. knowledge stocks – green tech -0.558*** 0.172** 

 (0.140) (0.084) 

Ext. knowledge stocks – electricity -0.325*** 0.152** 

 (0.106) (0.067) 

Ext. knowledge stocks – ICTs 0.445*** 0.094 

 (0.120) (0.078) 

Observations 35,289 35,289 

Log-likelihood -57925 -57925 

Note: This model uses the same specification as our main specification: zero-inflated Poisson with an 
unbalanced panel that accounts for firms’ entry and exit years.  The variables RD&D expenditures in grid-related 
technologies and in renewables are logged and converted into 2015 real USD. The regression includes the firms’ 
average yearly patents in the pre-sample period, a complete set of year dummies and a dummy for firms with 
no patents in the pre-sample period. The knowledge stocks are logged (after adding 1) and we include dummies 
for internal knowledge stocks that are equal to zero. Country-level control variables were also weighted and 
included in this regression: the share of electricity production from renewables, the growth in electricity 
consumption,  the log of household electricity prices (USD/MWh, real 2015 USD) and the log of GDP per capita 
(real 2015 USD). All variables are lagged by 2 time periods. The regression starts in 2000 and ends in 2016. 
Robust standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table 7. Robustness check: alternative measure of the standards variable  

Unbalanced ZIP, cumulative count of standards  

 Intensive margin Extensive margin 

Standards (cumulative) -0.012*** 0.000 

 (0.003) (0.002) 

RD&D smart grid 0.146** 0.008 

 (0.061) (0.036) 

RD&D renewables -0.453*** -0.026 

 (0.080) (0.047) 

Int. knowledge stocks – smart grids 0.687*** -1.345*** 

 (0.037) (0.049) 

Int. knowledge stocks – green tech 0.100*** -0.268*** 

 (0.029) (0.021) 

Int. knowledge stocks – electricity 0.027 -0.132*** 

 (0.036) (0.026) 

Int. knowledge stocks – ICTs -0.086*** -0.016 

 (0.031) (0.022) 

Ext. knowledge stocks – smart grids 0.267** -0.369*** 

 (0.132) (0.081) 

Ext. knowledge stocks – green tech -0.342** 0.091 

 (0.142) (0.089) 

Ext. knowledge stocks – electricity -0.283** 0.167** 

 (0.110) (0.074) 

Ext. knowledge stocks – ICTs 0.361*** 0.081 

 (0.136) (0.080) 

Observations 35,289 35,289 

Log-likelihood -58236 -58236 

Note: This model uses the same specification as our main specification: zero-inflated Poisson with an 
unbalanced panel that accounts for firms’ entry and exit years. The variables RD&D expenditures in grid-
related technologies and in renewables technologies are logged and converted into 2015 real USD. All 
regressions include the firms’ average yearly patents in the pre-sample period, a complete set of year 
dummies and a dummy for firms with no patents in the pre-sample period. The knowledge stocks are logged 
(after adding 1) and we include dummies for internal knowledge stocks that are equal to zero. Country-level 
control variables were also weighted and included in all regressions: the share of electricity production from 
renewables, the growth in electricity consumption, the log of household electricity prices (USD/MWh, real 
2015 USD) and the log of GDP per capita (real 2015 USD). All variables are lagged by 2 time periods. 
Regressions start in 2000 and end in 2016. Robust standard errors are included in parentheses. *** p<0.01, 
** p<0.05, * p<0.1 

 

 

 

 

 

 

 

 

 
Conclusion  
The primary goal of this paper is to quantify the effect of interoperability standards on patenting 
activity. Our focus on standards is motivated by the unique challenges faced by the next 
generation of technologies for decarbonizing electricity systems. Smart grid technologies can 
help grid operators grapple with growing load management challenges from climate change and 
intermittent renewable sources. To unlock potential network externalities, these technologies 
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will need to be compatible.  Standards are one tool policymakers can use to give direction to 
technology development to facilitate interoperability. In this paper we find that, on the contrary, 
standards decrease patenting activity in smart grids. We hypothesize that this occurs through a 
technology lock-in mechanism. However, this does not necessarily imply that standards are 
detrimental to innovation in general. It may be that standards have different effects at different 
stages of the innovation process. For example, while standards slow down patenting activity, on 
the flip side, it could be that they accelerate the deployment of technologies. Considerations of 
the tradeoffs between technology development and diffusion, and of the optimal timing for 
introducing standards during the innovation process, is paramount for policy and left for future 
research. 
 
A second notable finding from this paper concerns the tradeoff between public R&D incentives 
in grid-related technologies and in renewables. This finding has important policy implications. As 
renewable energy technologies mature –after receiving substantial support in their infancy stage 
and beyond -policy makers may want to make decisions about which nascent technologies they 
should support next to meet the future needs of the energy transition. If there are tradeoffs 
between R&D incentives to smart grids and renewables to the extent that public investment in 
one might undermine innovation in the other, policy-makers should proceed with caution when 
deciding how to allocate public R&D resources and choosing when the time is ripe to transition 
resources from one area to the other. 
 
Finally, the literature on smart grids innovation is scarce, and little is known about the inventors 
active in this space. We find that there is a heterogeneous mix of small and large firms, new and 
established firms, and firms from varied technological backgrounds. We glean further insights 
from analyzing the effect of internal and external stocks on the patenting activities of these firms. 
Because smart grids innovation - as a cross-sectoral area of technology - requires drawing on 
knowledge from diverse fields, we look beyond knowledge stocks in smart grids and include 
knowledge stocks in an array of broader technological domains. We find that firms who innovate 
in this space do not necessarily have prior experience in information technologies, as long as they 
can benefit from knowledge spillovers from IT firms.  Our results also suggest that there is 
crowding out of smart grids innovation in markets where many firms innovate in green tech. 
Moving forward, we will conduct heterogeneity analyses to gain further insights into which 
knowledge stocks matter for different types of firms, and to better understand the effect of our 
policy variables on different firm profiles. This may provide insights that are relevant for policy. 
Policy-makers may be interested in learning which firms benefit most from certain policy 
interventions and how to tailor policy to different types of firms to achieve desired innovation 
outcomes. For example, governments may be concerned with attracting and supporting new 
entrants in this space. They may be concerned with effectively targeting which start-up 
companies have the potential to become trailblazers in this space, or how they might incentivize 
large electricity incumbent firms to do more R&D in this area. The analyzes we intend to conduct 
moving forward may provide some insights relevant to these questions. 
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Annex 1. Sectors of smart grids technologies 
 

Technology Corresponding patent class (Cooperative Patent Classification) 

Systems integration 
and efficiency 

Y02E 40/70: Smart grids as climate change mitigation technology 
in the energy generation sector. 
 

Y04S 10/00: Systems supporting electrical power generation, 
transmission or distribution (and all its subclasses: 10/12, 10/123, 
10/126, 10/14, 10/16, 10/18, 10/20, 10/22, 10/30, 10/40, 10/50, 
10/52) 

Smart grids in 
buildings 

Y02B 70/30: Systems integrating technologies related to power 
network operation and communication or information 
technologies for improving the carbon footprint of the 
management of residential or tertiary loads, i.e. smart grids as 
climate change mitigation technology in the buildings sector(…) 
(and all of its subclasses: 70/3225, 70/34) 
 

Y02B 90/20: Smart grids as enabling technology in the buildings 
sector.(This category overlaps with Y04 S 20*) 

ICTs applications to 
smart grids  

Y04S 40/00: Systems for electrical power generation, 
transmission, distribution or end-user application management 
characterised by the use of communication or information 
technologies, or communication or information technology 
specific aspects supporting them (and all of its subclasses: 40/12, 
40/121, 40/124, 40/126, 40/128, 20/18, 40/20).  
 

Y04S 50/00: Market activities related to the operation of systems 
integrating technologies related to power network operation and 
communication or information technologies (and all of its 
subclasses: 50/10, 50/12, 50/14, 60/16). 

End-user 
applications 

Y02S 20/00: Systems supporting the management or operation of 
end-user stationary applications, including also the last stages of 
power distribution and the control, monitoring or operation of 
management systems at the local level (and all of its subclasses: 
20/12, 20/14, 20/20, 20/221, 20/222, 20/242, 20/244, 20/246, 
20/248, 20/30).   

  *Note: these definitions are from the European Patent Office’s Cooperative Patent Classification. A patent can 
be tagged under multiple categories. In most cases, the broad sectors of technology are enough to capture all 
the sub-classes under which a patent is tagged. When it is not the case, and a patent is tagged under 2 distinct 
sectors of technology, the patent will count as 1 in each category (i.e. it will be counted twice, for example, as 
an innovation in buildings and an innovation in ICTs, and included in the patent count of each of the two 
regressions). The full definitions of the CPC scheme may be found here: 
https://www.cooperativepatentclassification.org/cpcSchemeAndDefinitions/table  
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