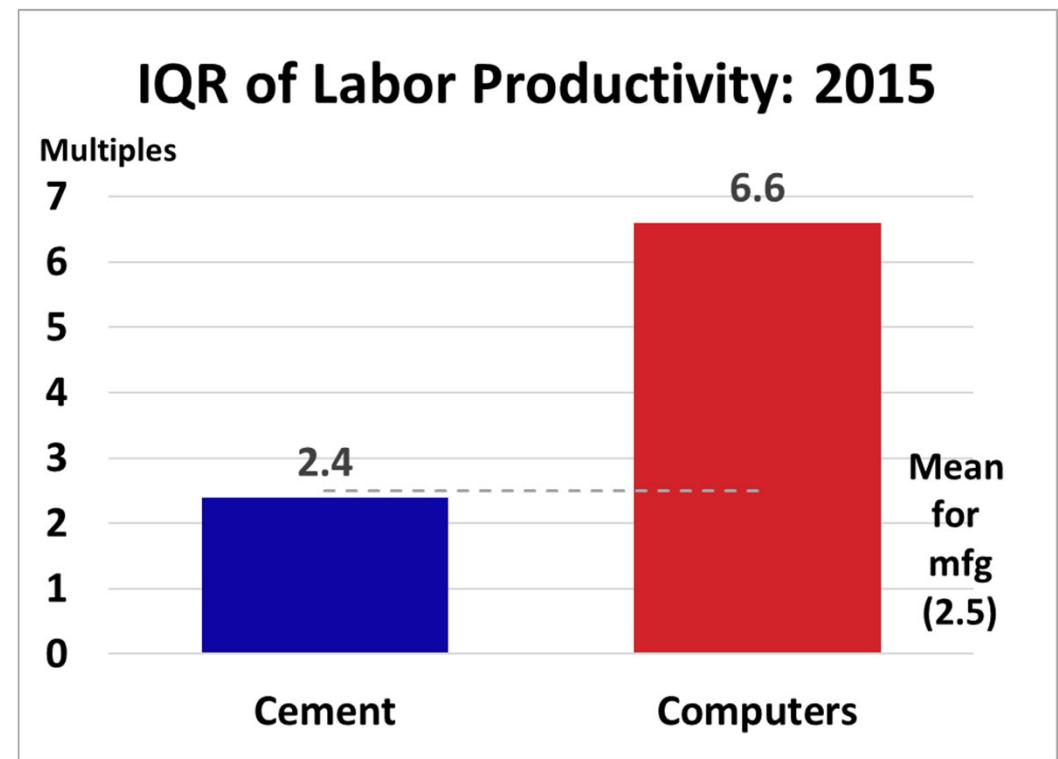


Opening the Black Box: Task and Skill Mix and Productivity Dispersion

March 17, 2022


G. Jacob Blackwood, Cindy Cunningham, Matthew Dey, Lucia Foster, Cheryl Grim, John Haltiwanger, Rachel Nesbit, Sabrina Wulff Pabilonia,
Jay Stewart, Cody Tuttle, and Zoltan Wolf

Disclaimer: This paper uses public domain DiSP data (the public domain data have been cleared by the Census Bureau Disclosure Review Board, Clearance Number: CBDRB-FY21-305). Any views expressed here are ours and do not necessarily reflect those of the BLS or the Census Bureau.

What do we know?

- Common finding in literature: productivity differences across establishments are large
- Many potential sources
 - Differences in technical efficiency and demand factors
 - Frictions and distortions
 - **Heterogeneity in production technology**
 - **Different degrees of technology adoption**

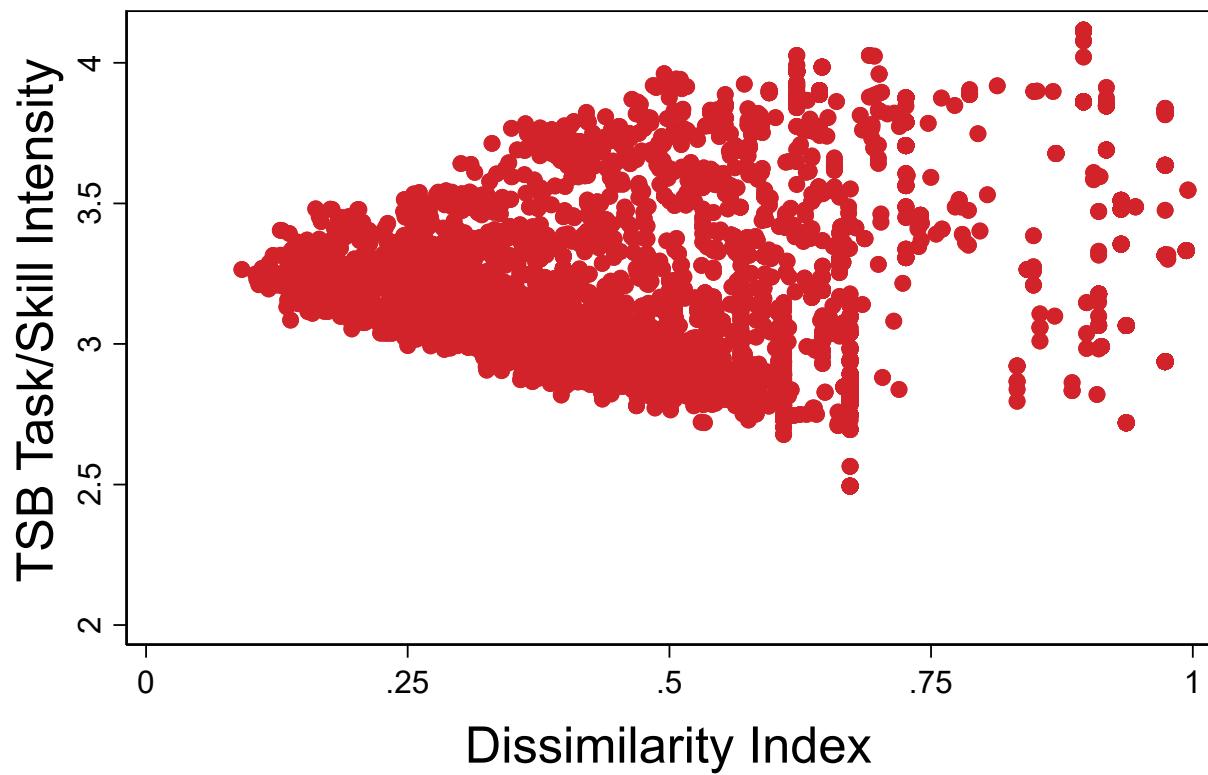
Inside the Black Box – Two Approaches

- Technology module in 2019 Annual Business Survey
 - AI, robotics, dedicated equipment, specialized software, and cloud computing
 - Acemoglu et al. (tomorrow)
- BLS Occupational Employment and Wage Statistics (OEWS) survey
 - Occupational mix (establishment-level)
 - Task/skill intensity (establishment-level)
 - Requires linking OEWS to Census microdata (started)

Occupational Employment and Wage Statistics

- Semi-annual survey—samples about 200,000 establishments each May and November
 - Wage and employment data on \approx 800 occupations
 - Full- and part-time wage and salary workers
 - Number of workers in each of 12 wage intervals
- Cross-section that is nationally representative on a 3-year basis, but includes “certainty” units, which are sampled every 3 years
- Our sample: 2000, 2005, 2008, 2011, 2014, 2017
- See paper for details of dataset construction

O*NET Data


- Information on tasks performed by each occupation (updated periodically)
- 5 composite tasks ala Acemoglu and Autor (2011)
 - Non-routine cognitive: analytical
 - Non-routine cognitive: interpersonal
 - Routine cognitive
 - Routine manual
 - Non-routine manual physical

Establishment-Level Task/Skill Intensity

- OEWS measure (TSB) = the average wage for the establishment if the establishment paid the national average wage for each occupation it employs
 - Tasks are bundled into occupations
 - Assumes that bundling matters
- O*NET measure (TSU) = the per worker average amount of each task (A&A, 2011) times the price of that task (based on a hedonic regression of national occupation wage (from OEWS) on task content
 - Task/skill intensity is simply the sum of tasks times the price of the tasks
 - Assumes that it does not matter who does what task
- Both measures combine tasks and skills

Task/Skill Intensity and Dissimilarity Indexes

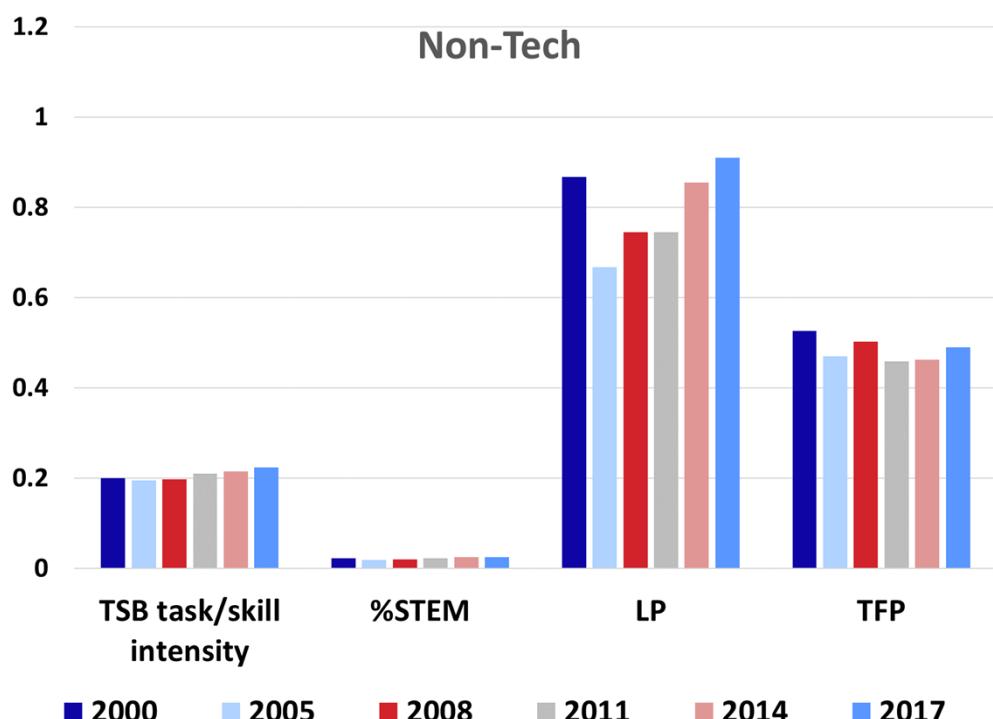
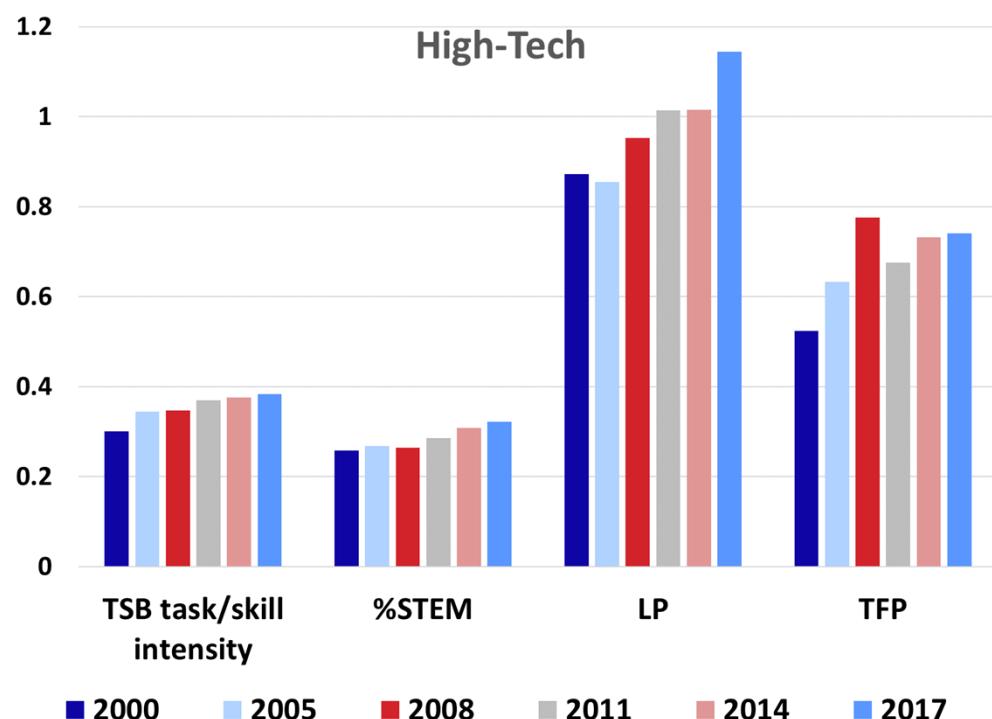
Semiconductor Manufacturing

Task Measures

- Five composite tasks (Acemoglu and Autor, 2011)
 - Non-routine cognitive: analytical
 - Non-routine cognitive: interpersonal
 - Routine cognitive
 - Routine manual
 - Non-routine manual physical
- %STEM occupations in the establishment

Correlations Between Task/Skill Measures

Correlation of TSB task/skill intensity (OEWS) with:	Manufacturing			
	All	High-Tech	Non-Tech	Non-Mfg
TSU task/skill intensity (O*NET)	0.77	0.91	0.74	0.70
Non-routine cognitive: Analytical	0.75	0.90	0.72	0.70
Non-routine cognitive: Interpersonal	0.58	0.57	0.58	0.48
Routine cognitive	-0.36	-0.57	-0.31	-0.18
Routine manual	-0.65	-0.83	-0.61	-0.33
Non-routine manual physical	-0.57	-0.83	-0.51	-0.29
%STEM workers	0.61	0.82	0.56	0.36



Dispersion Measures

- Using establishment task/skill measures, calculate employment-weighted dispersion measures for each industry and each year in our sample
 - Interquartile Range (IQR)
 - 90-10 range (in paper—not presented here)
- Dataset of IQRs for each dispersion measure, where each observation is an industry-year
- Productivity dispersion measures are from DiSP
 - Employment weighted IQRs
 - Industry-year observations

Within-Industry Dispersion

	Mean IQR		
	All Mfg	High-Tech	Non-Tech
TSB (OEWS)	0.24	0.35	0.21
TSU (O*NET)	0.15	0.19	0.14
%STEM workers	0.08	0.28	0.02
Labor prod.	0.84	0.97	0.80
TFP	0.53	0.67	0.49

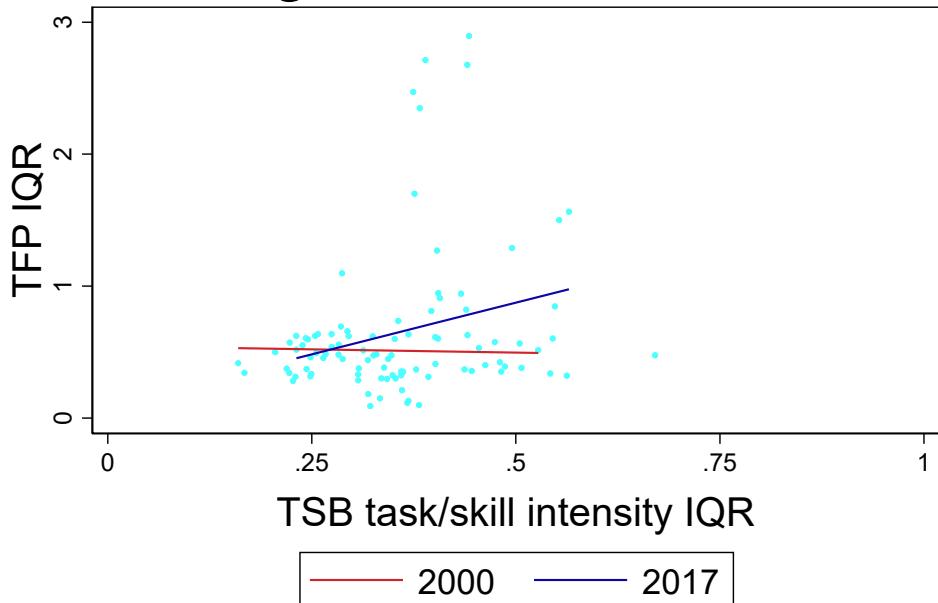
Mean IQR by Year and High-/Non-Tech

Correlations Between IQRs of T/S Measures

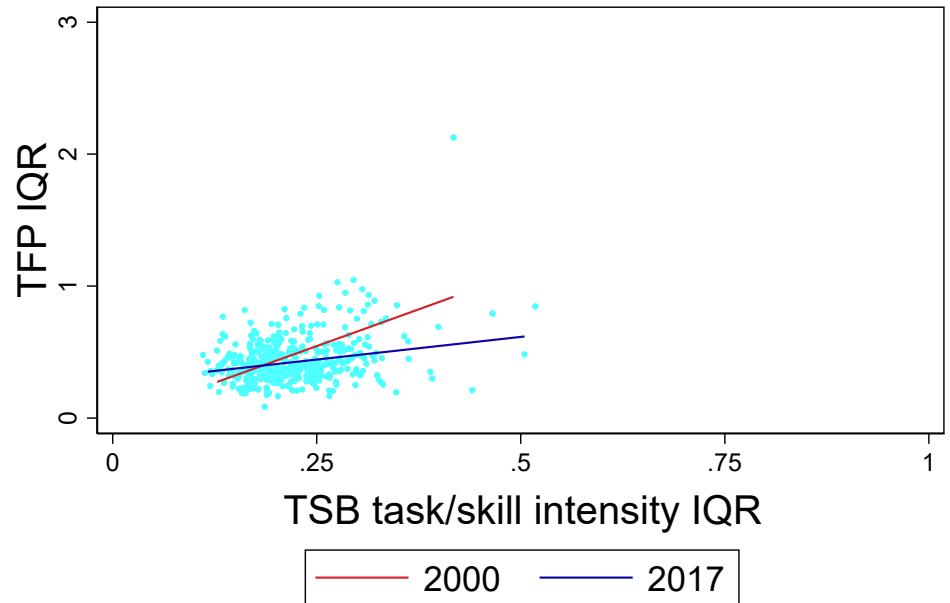
IQR correlations between TSB (OEWS) and:	Manufacturing		
	All	High-Tech	Non-Tech
TSU task/skill intensity (O*NET)	0.75	0.86	0.59
Non-routine cognitive: Analytical	0.75	0.87	0.56
Non-routine cognitive: Interpersonal	0.06	0.21	0.23
Non-routine manual physical	0.57	0.55	0.37
%STEM workers	0.82	0.84	0.25

IQR Correlations: T/S Measures and Productivity

	Labor Productivity			Total Factor Productivity		
	All Mfg	High-Tech	Non-Tech	All Mfg	High-Tech	Non-Tech
<i>Panel A. IQR dispersion</i>						
TSB task/skill intensity (OEWS)	0.52	0.40	0.33	0.45	0.32	0.26
TSU task/skill intensity (O*NET)	0.42	0.31	0.31	0.31	0.23	0.14
Non-routine cognitive: Analytical	0.44	0.32	0.37	0.31	0.18	0.21
Non-routine cognitive: Interpersonal	-0.09	-0.08	-0.03	-0.08	-0.21	0.10
Non-routine manual physical	0.28	0.12	0.13	0.24	0.04	0.17
%STEM workers	0.44	0.24	0.01	0.45	0.29	-0.05


IQR Associations

	Labor Productivity			Total Factor Productivity		
	All Mfg	High-Tech	Non-Tech	All Mfg	High-Tech	Non-Tech
TSB task/skill intensity (OEWS)	2.40 [0.27]	2.82 [0.17]	1.37 [0.11]	1.98 [0.21]	2.30 [0.11]	0.77 [0.07]
TSU task/skill intensity (O*NET)	3.25 [0.17]	3.87 [0.11]	1.53 [0.1]	2.30 [0.10]	2.82 [0.06]	0.49 [0.02]
Non-routine cognitive: Analytical	1.07 [0.20]	1.24 [0.12]	0.58 [0.14]	0.72 [0.10]	0.69 [0.05]	0.23 [0.05]
Non-routine cognitive: Interpersonal	-0.44 [0.03]	-1.38 [0.06]	-0.11 [0.01]	-0.30 [0.01]	-2.33 [0.09]	0.14 [0.01]
Non-routine manual physical	0.67 [0.08]	0.52 [0.05]	0.18 [0.02]	0.57 [0.07]	0.10 [0.02]	0.17 [0.03]
%STEM	1.34 [0.20]	0.99 [0.09]	0.03 [0.01]	1.30 [0.21]	1.32 [0.10]	-0.24 [0.00]


Bivariate regression results: Coefficient [R-squared]

IQR: TFP and TSB Task/Skill Intensity

High-tech Industries

Non-tech Industries

Summary of Main Findings

- Considerable dispersion in both task/skill intensity measures
 - More dispersion in the TSB (OEWS) measure
 - More dispersion in high-tech industries
 - Dispersion in high-tech industries has increased over time
- Strong positive relationship between IQRs of task/skill intensity and labor productivity and TFP
 - Correlation is stronger for the TSB (OEWS) measure
 - Correlations are higher in high-tech industries
 - Dispersion in the TSB measure explains about 25 percent of the variation in LP dispersion and 20 of the variation of TFP dispersion

Next Steps – Linking OEWS and ASM

- Joint distribution of productivity and task/skill intensity
- Can we identify clusters of technology types by looking at differences in occupation mix?
- Incorporate occupation data into measures of establishment-level TFP
 - Task/skill intensity (TSB vs. TSU – does bundling matter?)
 - Occupations as factors of production