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1 Introduction

During the first two decades of the twenty-first century, China emerged as a global economic power,

building on its growth miracle fueled by investment and production since its “open-door” policy

started in 1978. China became the top manufacturing nation in 2010, ending a 110-year U.S. lead.

China became the largest trading nation in goods in 2013 and the largest economy by purchasing

power parity (PPP) in 2014. While most of the time China was eager to learn from the West, it

is natural for sustained economic growth to translate into technological ambitions. As the U.S.

share of world research and development (R&D) has declined from 36.4% in 2000 to 25.6% in 2017,

China’s share has soared from 4.5% to 23.3% during this period (all in PPP terms).1 The year 2019

marked another milestone: China filed the largest number of international patent applications at

the World Intellectual Property Organization (WIPO).

China’s technological progress benefited from its integration with the developed world, espe-

cially the United States. Science and technology are more fluid at national borders than goods or

even people. Internet protocols, hardware design and manufacturing, software development and

deployment, and IT services and standards have, to varying degrees, evolved in a global system.

The last few years, however, have seen a rise in mutual distrust and actions to unwind the cur-

rent level of technological interdependence. The process toward two ecosystems with an increasing

degree of separation is now widely known as “decoupling.” While there have been fierce debates

among scholars and policymakers about the levels and consequences of decoupling, there has not

been a comprehensive academic study mapping the current state and dynamics of competition and

decoupling in technology between the two countries; nor has there been a study characterizing the

motives and impact of recent policies that directly or indirectly aim at decoupling. Our study aims

to fill the gap.

A central mission of this paper is to map out technology decoupling (i.e., the opposite of

integration) between the two nations over time, in the aggregate and across different technology

classes, based on measures developed anew. We calibrate decoupling by the propensity for domestic

patents in a technology area to cite foreign patents relative to citing their own. In simplified

1The source of data is the Educational, Scientific, and Cultural Organization of the United Nations.
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language, the extreme situation of “perfect decoupling” implies that patents filed in one country

never cite any patents in the other country, suggesting two segregated ecosystems of innovation.

In the other extreme of “perfect integration,” there is an utter absence of a “home bias” in patent

citations as if there were no national borders in technology. While the extent of decoupling is

symmetric with respect to both countries, one nation might depend more on the technology of

the other than the other way around. A related measure for China’s technological dependence on

the U.S. (which is the negative value of U.S. dependence on China) is based on the propensity of

Chinese patents citing U.S. ones relative to citations in the reverse direction.

Applying the measures at the aggregate level, we discover that U.S.-China technology decou-

pling has been declining steadily since 2000, the year before China acceded to the World Trade

Organization (WTO). In other words, growing integration of the two technological systems has

been the main theme in the twenty-first century. China’s technological dependence on the U.S.,

on the other hand, is hump-shaped, having peaked in 2009 at the end of the Great Recession.

Therefore, from China’s perspective, 2000-2009 was a decade of dependence-deepening integration

with the U.S.; while the next decade featured dependence-relaxing integration. Toward the last two

years of our sample (since 2018), we observe signs of increasing decoupling, but the time period is

yet too short to offer definitive inferences.

Achieving technological independence from the West, especially the U.S., has been a stated goal

of the Chinese government and reaffirmed by the current leader.2 Can China achieve independence

via decoupling? A panel vector autoregressive (panel VAR) analysis at the technology field-year

level uncovers a nuanced empirical relation. On the one hand, a lower level of China’s dependence

on the U.S. in a given technology class (by the three-digit codes of the International Patent Classi-

fication (IPC) system) predicts a higher level of decoupling in the coming year. On the other hand,

a higher level of decoupling predicts a higher level of dependence two years down the road. Such

a feedback loop suggests that overall, China has not been able to continue to reduce dependence

for an extended period of time without learning from and engaging with U.S. technology, even if

China had the desire to decouple after some success in reducing dependence.

2See Bloomberg report, “Xi Mobilizes China for Tech Revolution to Cut Dependence on West,” March 2, 2021.
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Such an interactive process echoes a technology-adoption-driven narrative. China’s techno-

logical advancement in recent decades relied heavily on adopting the cutting-edge technologies

developed at the global frontier, particularly the United States. Opening and integrating with the

world accelerated learning and innovation, followed by a declining dependence on U.S. technology

after the initial adoption. Afterward, China’s stronger domestic capability enabled a higher level

of technology decoupling from the U.S. This process is consistent with the first finding. How-

ever, technology decoupling creates a barrier for Chinese companies to further learn from their

foreign counterparts and to acquire knowledge at the same or a faster pace as the outside world.

In due time, Chinese companies could lag behind again when a new wave of technologies emerges

at the global frontier. In order to remain competitive, Chinese companies need to import foreign

technology, which raises the level of dependence. This process is consistent with the second finding.

Next, we assess the relation between decoupling and firm outcomes, which is a priori ambiguous

due to two opposing forces. Global technology integration facilitates knowledge spillover, which

complements and spurs domestic innovation (a “complementarity effect”). At the same time,

technology decoupling forces domestic firms to create instead of merely follow, and provides a

sheltered space for them to do so. Both factors provide stronger incentives for domestically oriented

innovation (a “substitution effect”). Our empirical analyses indicate that heightened U.S.-China

technology decoupling is followed by higher patenting outputs for Chinese firms, suggesting stronger

substitution effect than complementarity effect. However, firm efficiency and valuation suffer in

China, suggesting a cost for “reinventing the wheel” in a decoupling world. In contrast, the impact

of decoupling on U.S. firms has been much less pronounced, presumably because the U.S. is still in

the leading position in most fields.

Given the asymmetric effects of decoupling on firms in China and the U.S., we explore the

motives and consequences of policies that aim at technology integration or decoupling from both

countries. On the Chinese side, the “strategic emerging industries” (SEI) initiative launched in 2012

was among the most powerful technology-motivated industrial policies to this date. The leadership

in the two countries do not completely agree on the central mission of the initiative. According to

the narratives of both the Obama and Trump administrations, the major goal of China’s innovation-

3



promoting industrial policies was to achieve “self-sufficiency” by “domestic substitution of foreign

technologies.”3 The Chinese government, however, indicated that its policies were attempting to

achieve self-sufficiency without deviating from the global technical standards or advancing along a

different technological trajectory.4 Our empirical results lend more support to SEI being associated

with more technology integration instead of decoupling between China and the United States, and

China’s technological independence from the U.S. We further document that firms in technology

fields that are promoted by the SEI policy and receive government subsidies are associated with

lower patenting activities but higher productivity and market valuation. The combined results

reveal an inherent trade-off between fostering “indigenous innovation” in China and enhancing

firm efficiency.

Regarding policies on the U.S. side, we evaluate the impact of U.S. sanctions imposed via the

entity list of the U.S. Department of Commerce, which had hovered at a low level but have escalated

since 2014. Perhaps contrary to conventional wisdom, we find that U.S. sanctions against China,

as of 2019, have not been followed by decoupling in the targeted technology area. It is often said

that science and technology do not respect national boundaries, and U.S. government interventions,

short of more draconian measures, have not been strong enough to reverse the fundamental forces

driving global integration in recent decades. Since the “escalation period” of U.S. sanctions (post

2013), China has been pursuing more independence-oriented technological development. While

incurring moderate drops in patenting outputs and firm efficiency, Chinese firms in the sanctioned

sectors have also exhibited a boost in firm valuation, presumably because the Chinese government

has counteracted by buttressing the affected firms since 2014, making them symbols of national

resilience.

Our paper contributes to two broad strands of literature. The first is on U.S.-China economic

3For instance, see the 2010 report of the United States Chamber of Commerce (“China’s Drive for Indigenous
Innovation–A Web of Industrial Policies”) under the Obama administration, and the 2017 report of the United States
Chamber of Commerce (“Made in China 2025: Global Ambitions Built on Local Protections”) under the Trump
administration.

4A quote from China’s State Council (2010) said that “we will vigorously enhance integrated innovation and
actively participate in the international division of labor. We will strengthen the adoption, digestion, and absorption
of foreign technologies, making full use of global innovation resources.” See “Decision of the State Council On
Accelerating the Cultivation and Development of Strategic Emerging Industries,” published by the State Council.
This is the source link to this reference.
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relations. Most of the studies on U.S.-China economic relations work in areas related to production

and trade.5 While trade is a crucial aspect of the U.S.-China relationship, technological interdepen-

dence between the two countries has seen rising importance in the new economy, which, we believe,

would welcome a new study to provide empirical evidence based on combined data from both

countries. The second literature is on innovation, which has been largely based on single-country

(usually the U.S.) experience, even in a cross-country setting such as building on shocks from for-

eign sources.6 Finally, Bian et al. (2021) find that bilateral investment treaties between countries

contribute to the globalization of innovation. The literature on innovation in China has also been

emerging.7 As we indicated earlier, this study is the first to quantify technology decoupling and

to analyze how decoupling predicts future technology dependence, as well as the operating and

innovative performance of firms in both countries.8

The rest of the paper is organized as follows. Section 2 describes both patent systems and devel-

ops measures quantifying U.S.-China technology decoupling and China’s technological dependence

on the U.S. Section 3 evaluates the relationship between U.S.-China technology decoupling and firm

performance. In Section 4, we study how government interventions from both countries (China’s

industrial policies and U.S. sanctions against China) affect U.S.-China technology decoupling and

the performance of firms, especially Chinese firms. Section 5 concludes.

5For example, Autor et al. (2013) and Pierce and Schott (2016) find that rising Chinese imports cause higher
unemployment and lower wages in the U.S. Amiti et al. (2019) provide suggestive evidence that U.S. tariffs imposed
during the 2018 “trade war” were almost completely passed through to U.S. domestic prices. Cen et al. (2020)
document that both high birth rates of Chinese firms and high Chinese subsidies predict same-industry firm exits
and lower employment in the U.S.

6Hombert and Matray (2018) find that import competition from China leads to slower sales growth and lower
profitability of U.S. firms, though firms with larger R&D stock can alleviate such negative effects via product dif-
ferentiation. Akcigit et al. (2020) find that foreign corporate investments in Silicon Valley contribute to knowledge
spillovers to foreign investors. Bena and Simintzi (2021) find that U.S. firms operating in China decrease their process
innovations following the 1999 U.S.-China bilateral agreement.

7Fang et al. (2017) show that innovation increases after China’s state-owned enterprises are privatized, and this
increase is larger where protection for intellectual property rights is stronger. Wei et al. (2017) underscore the
indispensable role of innovation in fueling future growth of the Chinese economy and discuss numerous challenges for
China’s transition toward an innovation-driven economy. Exploiting staggered establishments of patent exchanges in
China, Han et al. (2020) find that patent trading promotes comparative-advantage-based specialization and enhances
firm performance.

8A paper in early stage (at this moment) that is close to ours is by Fang et al. (2021), which compares the quality
of Chinese patents with that of U.S. patents and explore how learning contributes to patent quality convergence
between the two countries.
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2 Measuring technology decoupling and dependence between the

U.S. and China

2.1 Overview: Patenting in the U.S. and China

The most crucial data inputs of this study are the combined patent-level databases from the two

countries, based on the full records from the United States Patent and Trademark Office (USPTO)

and the Chinese National Intellectual Property Administration (CNIPA). We focus on “utility

patents” granted at the USPTO (“U.S. patents” hereafter), which covers inventions that function

in a unique manner to produce a useful result and is commonly considered the default form of

patents.9 The counterparts in the CNIPA system are “invention patents” (“Chinese patents”

hereafter).10

Despite differences in many details, the patent examination procedures at USPTO and CNIPA

are mostly comparable. USPTO and CNIPA grant patents to both domestic and foreign assignees,

and neither of them discriminates based on the citizenship of applicants in regard to eligibility for

patent applications. At the USPTO, all foreign nationals are eligible for patent applications, while

CNIPA requires foreign nationals to have a residence or business office in China.11 Filing patents

at a foreign patent office is critical to protect the applicant’s intellectual property there, because,

according to the World Intellectual Property Organization (WIPO), “patents are territorial rights.”

That is, the exclusive rights are only applicable in the country or region in which a patent has been

filed and granted.12 At both patent offices, domestic and foreign applicants will go through three

major phases: Filing, examination, and the granting of patents.13 Importantly, patent examiners

9The other two lesser known categories are design patents and plant patents.
10The other two lesser known categories in the Chinese system are utility model patents and design patents.

Compared to these two categories, invention patents in China are subject to more rigorous examination and enjoy a
longer term of protection.

11According to China’s patent law, even without any habitual residence or business offices in China, foreign
nationals are still eligible to apply for patents at CNIPA as long as one of the following conditions is satisfied: (i)
their home country has signed a bilateral agreement with China to provide patent protection to the nationals of
each other; (ii) their home country and China have joined an international treaty to provide patent protection to the
nationals of each other; (iii) the patent law in their home country provides patent protection to Chinese nationals.

12There are two options to file a patent application in a foreign patent office. The applicants can directly file an
application at the national patent office of that country, or they can file an application via the Patent Cooperation
Treaty (PCT) route. Applicants can simultaneously seek protection for an invention in over 150 countries if they
follow the PCT route.

13Specific steps of each phase are illustrated in the flow chart of Figure IA1 in the Internet Appendix. These
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in both countries are required to search for prior art in both domestic and foreign patents during

the patent examination process.14

As an overview, Figures 1a and 1b plot the annual time-series of innovation inputs (R&D

expenditures)15 and outputs (patents) of the two countries. Apparent from both charts is that

China has rapidly ascended to becoming a global R&D and patenting powerhouse in the two recent

decades, challenging the U.S. leadership position at least in terms of these nominal metrics. While

the U.S. R&D expenditures more than octupled China’s level in 2000 and have been growing

steadily, China had almost closed the gap by 2020 with a steady annual growth rate of 13.9%.

Starting from fewer than one-thirteenth of the U.S. patenting volume at the beginning of the

twenty-first century, China managed to surpass the U.S. in 2015 and has since remained in the

lead.16 In addition to comparing the two nations as patent approval authorities, we also examine

the patenting activities based on the nationalities of the assignees. In both China and the U.S.,

domestic assignees account for the dominant shares of patents granted in their home countries.

Therefore, inferences are qualitatively similar if we define nationality based on assignees instead of

patenting authorities.17

[Insert Figure 1 here.]

2.2 Technology decoupling and dependence explained

The previous section previewed the changing global landscape of innovation in recent decades,

marked by China’s relentless growth in innovation and a resulting shrinking gap vis-à-vis the U.S.

procedures are based on information from IP5 Statistics Report, 2018 Edition.
14According to this instruction manual of the USPTO, “a comprehensive prior art search would also include

foreign patent publications and non-patent literature (newspapers, magazines, dissertations, conference proceedings,
and websites).” More information about foreign patents can be found in the section “Search International Patent
Offices” at the USPTO. In particular, USPTO provides a reference link to the Chinese patent office where machine
translation of Chinese patents is available. At the Chinese patent office, both domestic and foreign prior art should be
considered during the examination process for invention patents, according to the Guidelines for Patent Examination
issued by CNIPA.

15R&D expenditures of both China and the United States are based on information from the Educational, Scientific,
and Cultural Organization of the United Nations, and are measured in constant 2005 PPP dollars.

16China also became the top source of filing international patent applications at the World Intellectual Property
Organization (WIPO), taking the crown from the U.S. in 2019.

17In 2019, Chinese assignees account for 78.2% of patents granted in China and 4.7% of patents granted in the U.S.
Meanwhile, U.S. assignees account for 46.3% of patents granted in the U.S. and 5.1% of patents granted in China.
For more detail, please see Section 5 in the Internet Appendix.
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The dynamics naturally invited the question of whether or to what extent the U.S. still dominates

China in technology—overall and in specific sectors. Moreover, despite the recent attempts of

technology decoupling by the two nations, there has not been a well-defined metric to quantify the

degree of decoupling, its variation across different sectors, and the impact of such attempts on the

performance of firms in both countries. Thus the first necessary step of our study is to develop a

measurement framework which could quantify decoupling and dependence in technology between

the two nations.

The desire to decouple requires pre-existing, one-sided or mutual dependence in technology;

however, the two concepts are distinct and warrant separate measurement. Generally, we hope

that a measure for “technology decoupling” will capture the extent to which countries apply differ-

ent technological standards and, relatedly, advance along different technological trajectories with

little need to build on each other’s work. The level of decoupling does not directly speak to the

relative competitiveness of the two nations. Vaccination against COVID-19 provides one example

of technology decoupling. Sinovac of China developed its “inactivated vaccine” by exposing the

body’s immune system to de-activated viral particles. On the U.S. side, Moderna and Pfizer present

“mRNA vaccines,” tricking the body into making viral proteins that train and trigger the immune

system.

In comparison, the notion of “technology dependence” in this study hinges critically on a coun-

try’s one-sided reliance on foreign technology to advance its own. High dependence is thus usually

associated with a weaker competitive situation in that particular area. For example, though China

led in the 5G technology in the 2010s, the key players, such as Huawei, relied on key chips made

with U.S. technology. Prior and concurrent studies analyzing the U.S.-China technology relations

have mostly focused on the dependence aspect, or relative competitiveness (e.g., Fang et al. (2021)),

instead of decoupling.

2.3 Measuring technology decoupling and dependence

This section develops measures of technology decoupling and dependence by mapping them to the

propensity of a domestic patent citing a foreign patent relative to citing a domestic one. Pioneered
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by Jaffe et al. (1993), patent citations have been commonly adopted by researchers as an objective

metric for the impact and knowledge spillover of patented inventions. Though patents consist of

one segment of innovation and are known to have limitations (Moser (2013)), they remain the most

comprehensive and objective data source for the innovation literature, and form the basis for our

measures of technology decoupling and dependence.18

We start with a few notations to build up to the main measures. First, pc,u is the propensity

for Chinese patents to cite a U.S. patent relative to citing a Chinese one; analogously, pu,c is the

propensity for U.S. patents to cite Chinese patents relative to citing U.S. patents. More specifically,

pc,u =
nc,u/xu
nc,c/xc

, pu,c =
nu,c/xc
nu,u/xu

.

In the expressions above, nc,u (nc,c) is the number of citations Chinese patents make on U.S.

patents (Chinese patents), nu,c (nu,u) is analogously defined. Because the number of citations

tends to increase as the patent stock grows, we normalize the citation numbers by xc and xu,

which are the total number of patents granted at the national offices of the referenced patents. The

relative magnitude of pc,u and pu,c quantifies the propensity for a domestic patent to cite a foreign

patent relative to its propensity to cite a domestic patent.

With the expressions, we are able to provide a visualization of decoupling and dependence,

presented in Figure 2. The horizontal and vertical axes measure pu,c and pc,u, respectively. The

state of “complete decoupling,” or an absolute lack of integration, is associated with the origin and

corresponds to the scenario where domestic patents in either country never cite any patents in the

other. This is because, presumably, each has its own ecosystem that is enclosed from the other.

The opposite scenario of “complete integration” corresponds to the point I with (1, 1) coordinates

(i.e., pc,u = pu,c = 1) where domestic patents cite a patent in the other country with the same

probability as citing a domestic patent. That is, technology embedded in patents in the other

country is just as relevant (to the extent to justify a reference) to that produced domestically such

that there is an absence of “home bias” for domestic technology. Any point interior of the box

18Note there are different notions of “decoupling” between the two economies. We focus on knowledge-spillover-
based decoupling which does not directly shed light on decoupling in other areas such as supply chains.
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indicates a partial integration or imperfect decoupling.

[Insert Figure 2 here.]

The 45-degree line in Figure 2 is the state of parity. Any point on this diagonal line satis-

fies pc,u = pu,c, that is, the propensity for Chinese patents to cite the U.S. patents is exactly

reciprocated, though the degree of integration/decoupling varies. In the triangular area above the

45-degree line, Chinese patents are more likely to build on U.S. patents than the other way around,

or, pc,u > pu,c. We thus label this region as China’s (relative) dependence on U.S. technology, or,

“U.S. leading.” By the same argument, the triangular area below the line is the “China leading”

region. In the extreme, the corner (0, 1) ((1, 0)) represents absolute “U.S. dominance” (“China

dominance”).

Any interior point in Figure 2 represents a unique combination of the extent of decoupling

and that of dependence. We will use the point P (interior of the upper triangle) in the figure to

illustrate how to quantify such a combination. As a first step, a projection of P onto the 45-degree

parity line arrives at point Q. By construction, the vector
−→
PQ is orthogonal to the 45-degree line.19

The norm of
−→
QI (i.e., the projection of

−→
PI onto the par line) captures the degree of U.S.-China

technology decoupling; while the norm of
−→
PQ (i.e., the rejection of

−→
PI from the par line) reflects

China’s technological dependence on the U.S.

Quantifying the norms of the vectors in Figure 2, and hence the resulting measures, now become

relatively straightforward. The measure for decoupling simply becomes
||
−→
QI||√

2
.20 A higher value of

Decoupling(US & CN) stands for a higher degree of technology decoupling, or a lower degree of

integration, between the two countries. The measure is bounded between 0 (perfect integration)

and 1 (perfect decoupling). Even though one country may have a stronger desire to decouple from

the other, the outcome of decoupling is symmetric or mutual between the two countries.

Next, the degree of China’s technological dependence on the U.S., graphically becomes
√

2||
−→
PQ||

in the U.S.-leading region and −
√

2||
−→
PQ|| in the China-leading region in Figure 2.21 The dependence

19In this setting, two vectors are said to be orthogonal if and only if their inner product is zero and at least one
of them is a non-zero vector.

20Division by
√

2 is for normalization so that the measure is bounded between zero and unit.
21Multiplication by

√
2 is for normalization purpose.
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measure, bounded between −1 and 1, is asymmetric between the two countries. A positive sign

of Dependence(CN on US) indicates that China depends more on U.S. technology than the other

way around, or that the U.S. maintains a leading position. When Dependence(CN on US) = 1 (or

−1), the U.S. (or China) is in absolute dominance. For the ease of notation, “dependence” refers

to China’s dependence on the U.S. unless otherwise specified for the rest of the paper.

We note that the degree of decoupling imposes ranges on the level of dependence. In the

extreme of perfect decoupling, dependence becomes moot and is hence zero; and in the other

extreme of perfect integration, the two countries must be on parity and hence dependence (which

is on a relative scale) is also zero, the neutral value. Moving from the extreme points toward the

middle of the 45-degree line in Figure 2, the range of permissible values of dependence increases.

We thus also develop a conditional version of the dependence measure that is free from such a

functional restriction. More specifically, let P ′ be the intersection point of the extension of the

vector
−−→
QP and the vertical axis. Then ||QP ′|| is the maximum level of dependence conditional

on the level of decoupling. We thus define the level of dependence conditional on decoupling, or

Dependence|Decoupling(CN on US), to be
−−→
QP/||QP ′||, which is bounded between -1 and 1 and

orthogonal to Decoupling (except when the measure is not defined in the two extreme states of

perfect decoupling or integration).

2.4 U.S.-China technology decoupling in the 21st century

The measures developed in the previous section allow us to quantify the history and the current state

of U.S.-China technology decoupling and dependence. If we group all patents by county (U.S. and

China), we are able to map the aggregate time series into three “screenshots” in Figure 3: 2000 (the

year before China’s entry to the WTO), 2009 (the end of the Great Recession), and 2019 (the end

of our sample period, which coincides with open attempts of decoupling). All three observations fall

toward the lower left above the 45-degree line, indicating that the two countries have mostly been

running separate systems with China exhibiting more dependence on U.S. technology.22 The change

22The fact that English (but not Chinese) is a global language could contribute to a citation bias in favor of U.S.
patents. Nevertheless, the USPTO puts much effort into facilitating U.S. patents to cite foreign ones (from China and
other countries). First, the USPTO has access to almost all foreign patent documents through exchange agreements.
Second, according to the instruction manual of the USPTO patent examiners, the examiners can request (human)
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over time, however, is also informative. Since 2000, China moved first toward more integration with,

and more dependence on U.S. technology during the first decade, and then reduced its dependence

while furthering integration with the U.S. during the second decade.

[Insert Figure 3 here.]

Figure 4 offers a different presentation of the same history, and in more detail. In this chart,

the horizontal axis is time in the calendar year, and the right (left) vertical axis marks the measure

of decoupling (dependence). Between 2003 and 2006, backward citation information is missing

for the overwhelming majority of Chinese patents in our sample. These years are thus dropped

in this figure. During the full sample period since 2000, technology decoupling has been falling

steadily. In other words, the general trend is for technologies in the two countries to become more

integrated, conforming to the general theme of globalization.23 China’s technological dependence

on the U.S., however, is hump-shaped over time, with the turning point being around the end of the

Great Recession (2009). The combined evidence suggests that the first decade of the twenty-first

century was characterized by dependence-deepening integration between the two countries, that is,

technology in China became more dependent on U.S. technology during the integration process.

During the second decade since 2010, the continued technology integration has been accompanied

by China’s declining dependence on the U.S.

[Insert Figure 4 here.]

The aggregate states of decoupling and dependence shown thus far may have masked hetero-

geneity across different technology sectors. Therefore, we also examine ten high-tech fields defined

by Webb et al. (2019), which include (by the order of the number of total patents): Smartphones,

translation of all patents that are cited in the reference or being considered for citation. Third, the translations are
readily available for virtually all foreign languages (including Chinese) into English. Moreover, an English-language
advantage, if it exists, would indeed be a real factor that favors English-speaking countries in general. Finally, the
language issue should not impact cross-sectional nor time-series relations.

23To put U.S.-China decoupling in global perspective, we plot the time series of U.S.-EU decoupling in the Internet
Appendix Figure IA15. Two features emerge. First, panel A of Figure IA15 suggests the U.S.-EU pair has been
at a much higher level of integration with the average decoupling measure of 0.51, in comparison with 0.93 for the
U.S.-China pair. Second, when we re-scale the decoupling levels of the two pairs to be on a similar footing in panel
B, the two lines appear to be largely parallel, suggesting that the decoupling pattern in Figure 4 has not, up until
2019, deviated from the global trend though U.S.-China remains far more decoupled than U.S.-EU.

12



semiconductors, software, pharmaceuticals, internal combustion engines, machine learning, neural

networks, drones, cloud computing, self-driving cars. For completeness, we group all other patents

into the “non-high tech” field. Figure 5 plots the states of decoupling (corresponding to
||
−→
QI||√

2
in

Figure 2) and conditional dependence (corresponding to
−−→
QP/||QP ′|| in Figure 2) for the technology

sectors in years 2000, 2009, 2015, and 2019.24

[Insert Figure 5 here.]

Among the ten high-tech fields, China’s dependence on the U.S. is the greatest in pharmaceu-

ticals, semiconductors, software, and smartphones, but their dependence levels are decreasing over

time. Except for software, most of the highly decoupled fields are also relatively new technology

sectors, such as neural networks, cloud computing, and self-driving cars, due to a variety of rea-

sons from geopolitical sensitivities to different legal infrastructure.25 The grant year of the first

patent in each field marks a natural division between old and new technologies: While internal

combustion engines, pharmaceuticals, semiconductors, smartphones, and software are pre-existing

technologies, machine learning, neural networks, drones, cloud computing, and self-driving cars are

new entrants after 2008. Figure 6 compares the decoupling and dependence levels between old and

new technologies.26 It shows that the new technology fields exhibit both more decoupling and a

steeper drop in China’s dependence on the U.S. Particularly worth noting is the “drones” sector,

whose dependence measure turned negative—i.e., China took the leadership—in 2019.27

[Insert Figure 6 here.]

We can further apply the methodology to more granular levels, such as at the three-digit

International Patent Classification (IPC) code level. While the U.S. was in strict dominance in

virtually all tech sectors in 2000, about 42.9% of the tech classes have evolved into China-leading

by 2019. The tech fields in which the U.S. retains leadership include information storage, electronic

24Some sectors with new technologies (e.g., neural network) are missing in the top panels because there are no
patent grants in these fields in the earlier years.

25Google announced that it scrapped its Cloud Initiative in China, citing, among other reasons, the privacy and
data sovereignty concerns.

26The comparison starts from 2007 because of the missing citations for the Chinese patents between 2003 and
2006.

27One Chinese firm, Da-Jiang Innovations (DJI), accounts for over 70% of the global drones market.
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circuitry, and combustion engines, where the dependence measures range from 0.24 to 0.38. Tech

sectors in which China has the greatest lead include pelts and leather, the metallurgy of iron, and

treatment of alloys and non-ferrous metals, where the dependence measures range from −0.95 to

−0.19. The most decoupled tech fields include building; agriculture, forestry, and husbandry; and

construction of roads, railways, and bridges, where the measures of decoupling range from 0.96 to

0.97. Finally, the most integrated technology classes are pelts and leather; information storage;

and metallurgy of iron, where the measures of decoupling range from 0.47 to 0.81.28

One common challenge facing all patent-based research, as well as a consensus, is that patents

are inaccurate measures but remain the most reliable barometer of innovation, especially at the

aggregate level. Our measures of decoupling and dependence capture the connectedness and relative

competitiveness of innovation of the two nations by the extent of any asymmetry in mutual citations.

The measures therefore extract quality instead of relying on the sheer quantity of patent approvals.29

We reconcile our method with related literature, e.g., Akcigit et al. (2020), that resorts to the stock

of knowledge proxied by a country’s share of patents in a technology field among multiple countries.

We verify that these two types of measures are significantly correlated in our sample, that is, China

exhibits lower dependence on the U.S. in a technology sector for which the share of China-filed

patents out of U.S.-and-China total is higher.30 It is worth noting, however, that the relationship

between our dependence measure and the share of Chinese patents became attenuated over time, as

the number of Chinese patents soared. The pattern uncovered in our study (e.g., in Figure 4) is also

consistent with the findings by Fang et al. (2021), based on new-word search in patent abstracts,

that China came forward in the share of patents with “frontier words” during the same sample

period, though it is still much lower than the U.S. level. The two methods are complementary, and

our method allows an integrated analysis of both decoupling and dependence.

28For more detail, please see Section 5 in the Internet Appendix. Table IA2 reports the top and bottom ten
technology classes sorted by the measure of technology decoupling between 2017 and 2019. Table IA3 shows the ten
tech classes in which China has the strongest and the weakest dependence on the U.S. Figure IA16 is the cross-sectional
analog of Figure 2 at the three-digit IPC level for years 2000, 2009, and 2019.

29A large literature has shown that a substantial number of patents are of dubious scientific value in both nations
(Cohen et al. (2019), Liang (2012), Prud’homme and Zhang (2017)). The construction of our measures thus mitigates
the influence of uncited, presumably low-quality patents. As an alternative approach to gauge patent quality, Kelly
et al. (2021) assess the importance of a patent based on its textual similarity to previous and subsequent inventions.

30For more details, see Internet Appendix Figure A1.
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2.5 Relation between decoupling and dependence

Based on the construction and overview of the decoupling and dependence measures, this section

examines the relation between decoupling and dependence in more detail as they capture distinct

aspects of the relation between the two nations in the technology space. More specifically, we resort

to the following panel vector autoregressive (VAR) model to assess the inter-temporal and mutual

relations:31

yi,t = yi,t−1B1 + yi,t−2B2 + · · ·+ yi,t−pBp + γi + εi,t,

where yi,t is a (1×2) vector of the dependent variables (i.e., technology decoupling and dependence).

γi is a vector of technology-class-specific fixed effect and εi,t is a vector of the error disturbances.

The coefficients, B1, B2, ···, Bp, are (2×2) matrices to be estimated. In order to have a well-identified

system, we make the following assumptions about the innovations in the residual terms that are

common in the literature applying the VAR model: E(εi,t) = 0, E(ε′i,tεi,t) = Σ, and E(ε′i,tεi,s) = 0

for all t > s. Last, the panel fixed effects are removed by forward orthogonal deviation transforma-

tion proposed by Arellano and Bover (1995). Results are reported in Table 1.

[Insert Table 1 here.]

In Table 1, the dependent variables are U.S.-China decoupling in odd-numbered regressions

and China’s technological dependence on the U.S. in even-numbered regressions. Each pair of

regressions is simultaneously estimated. Lagged variables of both measures, up to two lags, appear

in all regressions. In regressions (1) and (2), both the decoupling and dependence measures are in

their original scale. Because the two variables are correlated in our sample (with the full sample

concurrent correlation coefficient of -0.12), columns (3) and (4) explore a specification in which

the dependence measure is residualized against the decoupling measure so that the two measures

are orthogonalized concurrently by construction. Both specifications in Table 1 yield qualitatively

similar results.

31We also report a reduced-form OLS regression as a diagnostic test of their dynamic relationship in Table IA4 in
the Internet Appendix.
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While the persistence of each dependent variable is expected, the cross effects turn out to be

quite intriguing. A lower level of dependence predicts a higher level of decoupling in the next

year; but a higher level of decoupling predicts a higher level of dependence two years later. Both

relations pass the Granger causality test at the 5% level. In other words, a technology field for

which China does not strongly depend on the U.S. is more likely to face decoupling; but then

the decoupling results in heightened dependence further down the road, reverting the tendency

for decoupling.32 The dynamics echo a technology-adoption-driven narrative of China’s recent

technological progress. The nation’s technological advancement had relied heavily on adopting the

cutting-edge technologies developed at the global frontier, particularly in the United States. After

a wave of learning and adoption, China’s technological dependence on the U.S. declined; and a

stronger domestic technological capability enables a higher level of technology decoupling with the

U.S. On the other hand, technology decoupling can create a barrier for Chinese companies to learn

from their foreign counterparts which hinders further progress; making China lag again when a

new wave of more advanced technologies arrived. Such a zigzag process suggests a tension between

China’s desire and its inability to progress independently, and also explains its growing integration

with the rest of the world, including the U.S., over time despite the mutual distrust.

The high-speed railway (HSR) development in China could showcase such a dynamic relation-

ship between decoupling and dependence. Between 2004 and 2006, the Ministry of Railway in

China purchased a series of high-speed trains from leading foreign HSR manufacturers, under the

condition that their HSR technologies were also transferred as part of the deals.33 Under such a

technology transfer agreement, each high-speed train was required to be built by a joint venture

between a foreign train producer and a Chinese local partner. After cooperating with foreign pro-

ducers, Chinese producers swiftly gained the capability to build their own high-speed trains, and

afterward, built a more decoupled transit system from the original exporting countries.

32The impulse-response functions (IRF) from the VAR model using the Cholesky decomposition, plotted in Figure
IA17 in the Internet Appendix, allow us to evaluate the response to shocks in decoupling and dependence where
the shocks could originate in either series. The inferences are consistent whether the exogenous shock is assumed to
originate from decoupling (Panels A and B), or assumed to come from dependence (Panels C and D).

33The main foreign HSR manufacturers in these deals are Siemens, Alstom, Bombardier Inc., and Kawasaki Heavy
Industries.
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3 Decoupling and firm performance

3.1 Overview of sample U.S. and Chinese firms

In this section, we turn our focus onto the impact of technology decoupling on the innovation and

general performance of firms in both countries. A priori, neither the direction of the impact, nor

its symmetry (or the lack thereof) between the two nations, is clear. To answer these questions, we

assemble panels of firms in the U.S. and China. Restricted by information availability, the sample

is limited to publicly traded companies that file at least one patent between 2007 and 2019.34 On

the China side, financial statements and trading information of firms come from the China Stock

Market and Accounting Research (CSMAR) database. We then merged the CSMAR data with

the Chinese patent database by matching company names, accounting for the unique features of

the Chinese language during the merging process. On the U.S. side, we merged the U.S. patent

database to Compustat using the procedure developed in Kogan et al. (2017).35 Firm information

for both countries is accessed via Wharton Research Data Services (WRDS). We exclude firms in

the financial industry following the common practice.

Following the literature in corporate finance and innovation, we resort to the following mea-

sures as dependent variables capturing firm general and innovation-specific performance. The first

measure is Innovation Output, measured as the natural logarithm of one plus the number of patent

applications a firm files (and eventually granted) in that year. The second measure, Innovation

Quality, is the relative citation strength of the patents, defined as the number of citations the

patents (a firm owns) has received by 2019, divided by the average number of citations received

by patents in its cohort (i.e., patents applied in the same year and the same technology class).

Such an adjustment makes the quality comparable for patents from different time vintages and

technology classes. The firm-year level measure is the relative citation strength averaged over all

the patents applied by the firm in a given year. The third measure is the natural logarithm of a

firm’s total factor productivity, TFP , following the method developed in Ackerberg et al. (2015).36

34Following Fang et al. (2018), our sample period starts from 2007 because publicly listed firms in China were not
required to disclose certain important accounting information (e.g., R&D expenditures) prior to 2007.

35This is the source link to the data updated to 2019.
36The estimation method proposed in Ackerberg et al. (2015) addresses the functional dependence problem in
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The TFP estimation is based on a Cobb–Douglas production function where output is proxied

by a firm’s total revenue. Inputs include capital and labor, approximated by total assets and the

total number of employees. Following the standard practice in the literature, intermediate inputs

are approximated by cash payments for raw materials and service for Chinese firms, and by total

expense minus labor expense for U.S. firms.37 Finally, firm valuation is proxied by the inverse of

Tobin’s Q, or 1/Q, approximated by the ratio of the sum of the book value of debt and equity to

the sum of the market value of equity and book value of debt.38

Standard firm characteristics variables included in the regression are defined as follows. Assets

is a firm’s book value of assets (in natural logarithm). Age is the natural logarithm of one plus

number of years since a Chinese firm is founded39 or a U.S. firm’s first appearance in the public

company databases. R&D is defined as a firm’s R&D expenditures scaled by sales (with missing

values imputed as zero). Capex is the ratio of firm capital expenditures to the book value of assets.

PP&E is the ratio of property, plant, and equipment to book value of assets, a measure for asset

tangibility. Leverage is the ratio of total debt to total assets, both in book value. For the sample

of Chinese firms, Subsidy is the amount of subsidies (scaled by sales) that a firm receives from

the government.40 The detailed definitions of all variables are listed in Table A1 in the Appendix.

Unless otherwise specified, all potentially unbounded variables are winsorized at the 1% extremes.

The summary statistics for the Chinese firms and U.S. firms with at least one patent are provided

in the Appendix. Table A2 shows that the average patent-filing Chinese firm in our sample is about

15 years old since birth and has an asset of RMB 10.74 billion (about US$ 1.66 billion). The average

Chinese firm in the sample files about four patents each year and is in a technology sector with

a decoupling measure valued at 0.92. R&D expenditures amount to 3.7% of firm sales, capital

expenditures amount to 5.8% of firm assets, subsidies amount to 2.7% of firm sales, and net value

previous studies.
37The proxy variables used in TFP estimation for the sample of Chinese firms follow the practice developed by

Giannetti et al. (2015). For the sample of U.S. firms, total expense is Revenue minus Operating Income Before
Depreciation and Amortization. When a firm’s labor expense is missing in Compustat, we multiply the average wage
per employee within its industry by the number of its employees, following the practice of Bennett et al. (2020).

38We adopt the inverse, rather than the original scale of, Q because equity book values may get arbitrarily small
or even negative, resulting in erratic Q values.

39Such information is disclosed in China.
40Such information is disclosed by Chinese firms but not available for U.S. firms. Moreover, subsidy received by

U.S. firms is not a focus of this study.

18



of property, plant, and equipment accounts for 23.0% of firm assets, on average. Finally, the average

firm features a leverage ratio of 40.8% and an inverse of Tobin’s Q of 0.54. Analogously, Table A3

shows that the average patent-filing U.S. firm in our sample is about 22 years old as a public

company and has an asset of US$ 9.21 billion. The average firm also faces a technology decoupling

measure of 0.92 and files about 30 patents each year. The average U.S. firm features a capex ratio

of 3.8%, a PP&E ratio of 19.2%, a leverage ratio of 21.1%, and an inverse of Tobin’s Q of 0.56.

3.2 Decoupling, innovative activities, and firm performance

The impact of U.S.-China technology decoupling on firm innovation and performance is, a priori,

ambiguous due to two opposing forces. On the one hand, global technology integration facilitates

knowledge dissemination, allowing firms better access to foreign technology that is state-of-art, and

complements and spurs domestic innovation. We term this negative relation between technology

decoupling and domestic innovation as the “complementarity effect.” On the other hand, some

domestic firms may strengthen their local dominance if sheltered from foreign competition, and

may innovate more by “reinventing the wheel.” We define this positive relation between technology

decoupling and domestic innovation as the “substitution effect.”

We empirically investigate the effect of technology decoupling with the following firm-year level

panel regressions, separately for U.S. and Chinese firms:

yi,j,t = Decouplingj,t−1 × β1 + Decouplingj,t−2/3 × β2 + δ′Xi,j,t−1 + γi + γt + εi,j,t (1)

In equation (1), the dependent variable yi,j,t, indexed by firm i, technology class j, and year t,

is one of the following performance metrics: Innovation Output (the logarithm of total number of

patents filed that were eventually approved), Innovation Quality (the relative citation strength),

TFP (the logarithm of total factor productivity), and 1/Q, the inverse of Tobin’s Q. The key

independent variables are Decoupling, our measure of U.S.-China technology decoupling, measured

at the technology class-year level. Decouplingj,t−1 (our decoupling measure lagged by one year)

is included to evaluate the short-run effects of decoupling, and Decouplingj,t−2/3 (the average

decoupling measure in lagged two and three years) is incorporated to assess the effects in the
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intermediate run.41 Because the dependent variable (performance) is at the firm level while the key

independent variable (Decoupling) is at the technology class level, we match a firm to a unique IPC

group that hosts the highest number of patents owned by the firm.42 X represents the vector of firm

characteristic variables introduced in Section 3.1, and are set to lag the dependent variable by one

year. γt refers to country-specific year fixed effect that absorbs shocks to the aggregate economy,

and γi refers to firm fixed effect which absorbs unobserved and time-invariant firm heterogeneity.

εi,j,t is the error term. The estimation is conducted separately for Chinese firms and U.S. firms,

respectively.

Start with Chinese firms reported in Table 2. Column (1) of Table 2 uncovers that increasing

technology decoupling in a technology field is associated with significantly (at the 1% level) higher

domestic patenting outputs in the same field a year later, and the effect mostly dies out two years

down the road. Quantity aside, the patent quality, as measured by the relative citation strength,

does not exhibit a significant change; but if anything, the coefficients (in column (2)) are positive

on lagged Decoupling. Hence, the boom in innovation outputs does not come at the cost of

quality. These results indicate that the substitution effect of technology decoupling is stronger

than its complementarity effect for the Chinese firms in the short term (one-year horizon). The last

two columns of Table 2, however, reveal the dark side of decoupling in the longer term. Although

“reinventing the wheel” appears to boost domestic firm innovation output, a heightened decoupling

is associated with lower firm productivity and valuation (significant at the 1% level) over a horizon

of two to three years. To put the estimates into context, consider a hypothetical increase in U.S.-

China technology decoupling of 0.0685 or 7.4% of the sample mean, a number picked to mimic the

reverse of the aggregate change in the level of decoupling from 2000 to 2019. Such a change would

be associated with a 13.1% increase in Chinese firm patenting activity one year later, but a 2.1%

drop in firm TFP and an increase of inverse Tobin’s Q by 0.028 (or 5.2% of the sample average)

over a horizon of two to three years.

41Results are qualitatively similar if we consider the lagged two to five years as the intermediate term.
42About 89.1% of patent-filing Chinese firms can be mapped to a unique IPC by the number of patents they have

filed. For firms that could be mapped into multiple IPC classes due to ties in the number of patents, we further
sort by (i) number of citations received, (ii) number of claims, and (iii) number of citations made, in that order. A
patent is attributed pro-rata if there are multiple assignees. When there are N assignees for a patent, we assume
each assignee owns 1

N
share of the patent.
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[Insert Table 2 here.]

The effects of technology decoupling on the U.S. firms, examined in Table 3, are less pronounced

in comparison. There is no detectable relation between lagged decoupling and innovation output,

innovation quality, or productivity. Further, the U.S. firms do not suffer any productivity losses

for having to do more “reinventing the wheel.” This is presumably because U.S. firms, so far,

are primarily at the world innovation frontier and losing complementary technology from China

inflicts little damage on their current productivity. However, U.S. firms also experienced a drop in

valuation, with about half the magnitude of the effect incurred by Chinese firms. Therefore, the

stock market, being forward-looking, believes that decoupling does not benefit U.S. firms in the

long run: They are losing part of the product market as a result of decoupling, in addition to the

loss due to reduced technology and talent exchanges. Finally, it is worth noting that U.S.-China

decoupling is, for China, a likely proxy (though to a lesser extent) for its decoupling with the rest

of the Western world; while bilateral decoupling has no bearing on the tendency for the U.S. to

decouple with other tech-important nations. Such an asymmetry contributes to the more one-sided

effect of decoupling on firm productivity and valuation in the two countries.

[Insert Table 3 here.]

4 Government policies and decoupling

As rising income, and hence labor costs, gradually erode China’s advantage as the “world’s factory,”

the Chinese government has introduced major industrial policies to foster “indigenous innovation”

in China to enhance technology leadership and firm competitiveness. Meanwhile, the perception of

China as a competitive threat also prompted U.S. sanctions against China. This section conducts

the first large-sample empirical test on whether China’s industrial policies accomplished goals, as

stated by China or perceived by the U.S.; and whether the U.S. sanction succeeded in decoupling

as intended.
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4.1 Have China’s industrial policies encouraged decoupling?

4.1.1 The strategic emerging industries (SEI) initiative and decoupling

No other centralized industrial policy better showcases China’s ambition in technology than the

“Strategic Emerging Industries (SEI)” initiative launched in 2012. In this initiative, the Chinese

government identified seven high-tech sectors as “strategic emerging industries:” energy-efficient

and environmental technologies, next-generation information technology, biotechnology, high-end

equipment manufacturing, new energy, new materials, and new-energy vehicles. Such industries

were put in the front row to receive government support from R&D grants to matching benefits in

top talent recruiting. These SEI-related industries have since come to the center stage of the ongoing

debate on the causes and consequences of U.S.-China technology decoupling. As underscored by

the State Council of China, “enhancing the ability of indigenous and independent innovation is

key to the SEI-promotion policies.”43 According to the commentaries from both the Obama and

the Trump Administrations, the major goal of China’s innovation-promoting industrial policies is

perceived to be achieving “self-sufficiency” by “domestic substitution of foreign technologies.”44

As a first step, we identify whether a technology class is SEI-related by cross-checking with the

SEI list obtained from China’s National Bureau of Statistics (NBS). China’s NBS published an

SEI list of 359 industries at four-digit codes based on the Chinese Industrial Classification (CIC)

system in 2012. We map each four-digit-CIC industry to the three-digit IPC code using the CIC-

IPC concordance table obtained from CNIPA. Then we apply the following difference-in-difference

setup to quantify the relationship between the SEI-promotion policy and U.S.-China technology

decoupling at the technology class (i)-year(t) level for the sample period of 2007–2019:

yi,t = β1 × SEIi × Postt + δ′Xi,t−1 + γi + γt + εi,t (2)

In equation (2), the dependent variable yi,t features technology decoupling and dependence at the

43See “Decision of the State Council On Accelerating the Cultivation and Development of Strategic Emerging
Industries,” published by the State Council. This is the source link to this reference.

44For instance, see the 2010 report of the United States Chamber of Commerce (“China’s Drive for Indigenous
Innovation–A Web of Industrial Policies”) under the Obama Administration and the 2017 report of the United States
Chamber of Commerce (“Made in China 2025: Global Ambitions Built on Local Protections”) under the Trump
Administration.
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technology class-year level. Fixed effects for both technology class and year are included. The

dummy variable SEIi equals one if technology class i is promoted by the SEI and zero otherwise.

The dummy variable Postt takes the value of one after 2012 and zero otherwise. X is a vector of

control variables including the number of patents granted at CNIPA and USPTO (both in natural

logarithms) in each field and each year, and lags the dependent variable by one year. Technology

class and year fixed effects absorb SEIi and Postt on their own. The coefficient β1 is of key interest

as it captures the changes in technology decoupling and dependence after the policy shock of the

sectors exposed to the SEI policy, relative to the unexposed. Results are reported in Table 4.

[Insert Table 4 here.]

Columns (1) and (2) of Table 4 show that the SEI-exposed sectors experienced significantly (at

the 5%) more decline in both decoupling and dependence. The extra decline in decoupling amounts

to 0.013, or 1.4% of the sample mean; and that in dependence is 0.019, or 30.1% of the sample

mean. In both regressions, variables corresponding to the number of patents granted at CNIPA and

USPTO have opposite signs. High patent output in China is followed by more decoupling and less

dependence in the following year, but the effect of patent activities in the U.S. runs in the opposite

direction. Three out of the four coefficients are significant at the 1% level. The last column of the

table presents residualized Dependence (see explanations in Section 2.5) as a dependent variable as

a sensitivity check. Results are similar and even stronger, suggesting that the impact on dependence

is not driven by the concurrent correlation with decoupling.

Results teach us that China’s SEI-promotion policy was followed by technology integration

instead of decoupling with the United States. Such an outcome is more consistent with the stated

objectives of the policymakers in China. As outlined by China’s State Council (2010), China “will

vigorously enhance integrated innovation and actively participate in the international division of

labor,” and “will strengthen the adoption, digestion, and absorption of foreign technologies, making

full use of global innovation resources.”45 Though various industrial policies in China are designed

to indigenize innovation, such a goal is to be achieved by more integration with the global standards

45See “Decision of the State Council On Accelerating the Cultivation and Development of Strategic Emerging
Industries” published by the State Council. This is the source link to this reference.
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and more adoption of the global state of the art. For instance, the State Council endorses various

measures to foster global scientific and technological cooperation.46

Perhaps more importantly, results also indicate that China’s technological dependence on the

U.S. drops precipitously (by an average of 30.1%) in industries post SEI coverage, by a magnitude far

exceeding the change in decoupling. That is, strong industrial policy, implemented via integration

with the U.S. (and the rest of the developed world), was associated with remarkable reduction

in China’s technological dependence on the U.S. This finding is consistent with the U.S. “self-

sufficiency” narrative for China’s industrial policy, but such self-sufficiency is achieved by China’s

technology integration with the U.S. instead of decoupling.

4.1.2 SEI and firm performance

In light of the impact of the SEI-promotion policy on U.S.-China technology decoupling and China’s

technological dependence on the U.S., we next explore the SEI’s impact on firm performance. For

this purpose, we collect additional information on government subsidies at the firm-year level from

firms’ financial statements.47 We then conduct the following triple-difference regression at the firm

(i)-technology class(j)-year(t) level covering the period of 2007–2019:

yi,j,t = β1 × SEIj × Postt ×High Subsidyi,j + β2 × SEIj × Postt

+ δ′Xi,j,t−1 + γi + γt + εi,j,t (3)

In equation 3, the sample construction, the dependent variable, the fixed effects, and the recurring

variables are the same as in Table 2. What is new is that among firms within the SEI-promoted tech-

nology sectors, we classify “high subsidy” firms as those with government subsidies (scaled by firm

sales) during 2007–2011 (pre-SEI) above the sample median. A dummy variable High Subsidyi,j

46To be specific, the State Council encourages foreign enterprises and research institutions to (i) set up R&D
facilities in China, (ii) participate in technology demonstration projects in China, (iii) jointly apply for Chinese
research grants with Chinese partners, and (iv) jointly establish global technology standards with Chinese partners.
The State Council also supports Chinese enterprises and research institutions to (i) provide outsourcing R&D services
to foreign enterprises, (ii) set up R&D facilities overseas, (iii) apply for foreign patents, and (iv) participate in
establishing global technology standards.

47After “Accounting Rules of China’s Enterprises (2006),” all listed firms in China must disclose the government
subsidy they receive in the footnotes of their financial statements.
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is coded accordingly, which is a firm-specific and time-invariant indicator. Because High Subsidyi,j

is a subset of SEIj , the double term High Subsidyi,j × Postt is subsumed. The coefficient of key

interest is that of the triple interaction term SEIj × Postt × High Subsidyi,j . Table 5 reports the

results.

[Insert Table 5 here.]

The coefficient (except the one in column (3)) on SEIj × Postt turn out to be statistically

insignificant with or without the additional triple term. That is, merely operating in technology

sectors that are covered by the SEI does not induce significant positive changes in the innovation

and general performance of the firms. However, the coefficients associated with the triple interac-

tion terms SEIj × Postt × High Subsidyi,j (reported in the even-numbered regressions of Table 5)

demonstrate that the SEI-promotion policy is indeed associated with significant (at the 1% level)

changes in performance (except for innovation quality) among firms that received a high level of

direct government support. Compared with their low-subsidy counterparts, the highly subsidized

firms operating in SEI-promoted technology sectors end up filing 11.7% fewer patents, but their

productivity increases by 5.2% and inverse Q decreases by 0.0303 (or 5.6% of the sample average).

Such a combination suggests that firms supported by the government in fact allocate fewer resources

into original research but achieve better production efficiency.

To trace out the dynamics of the SEI policy, we expand equation (3) to the following setup with

key terms interaction with year dummies around SEI:

yi,j,t =
∑
τ

(β1,τ × SEIj ×High Subsidyi,j × Tτ ) +
∑
τ

(β2,τ × SEIj × Tτ )

+ δ′Xi,j,t−1 + γi + γt + εi,j,t (4)

That is, we interact both SEIj and SEIj × High Subsidyi,j with a full set of year dummies (i.e.,

Tτ ). We then plot the estimates for β1,τ for each of the dependent variables in Figure 7. Year 0

corresponds to 2012, the event year of the SEI-promotion policy.

[Insert Figure 7 here.]
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Figure 7 displays any pre-existing trends before the SEI. It seems that patenting activities were

already declining and firm TFP were already rising in the highly subsidized SEI targeted sectors, but

the changes in the continuing direction become statistically significant post SEI. In the other two

variables, there were no discernable pre-trends. Patent quality does not see significant improvement

afterward. Firm valuation experiences a significant uptick (or inverse Q decreases) right after the

policy shock. If the stock market is fairly efficient and incorporates all forward-looking information,

then the result suggests that investors expect value improvement for the policy-treated firms.

The smartphone industry in China in the past decade could serve as a poster-child of the

patterns uncovered from the regressions. Rising from humble backgrounds, numerous Chinese

smartphone makers (e.g., Huawei, Xiaomi, and Vivo) have swiftly ascended to become world in-

dustry leaders. Surpassing Apple in 2018, Huawei became the second-largest smartphone maker in

the world. The success of Chinese smartphone makers is in part attributed to their seamless inte-

gration into the global supply chain. Instead of decoupling from the world and creating a different

“Chinese standard,” they adapted to the global technology standard and strove to participate in

the standard-setting process. And by doing so these Chinese enterprises enjoyed easy access to

cutting-edge foreign technologies and key inputs (particularly semiconductors) from foreign sup-

pliers. The globally integrated supply chain of semiconductors contributes to accelerating the rise

of Chinese smartphone makers, but is also responsible for disincentivizing them to develop the

domestic semiconductor industry, leading to Huawei’s plight after it was denied access to foreign

suppliers in 2020.

Our findings speak to an intrinsic non-congruence between the two major policy objectives

(i.e., indigenous innovation versus firm competitiveness) of the Chinese government. To the extent

that China has yet to arrive at the world technology frontier, technology integration will provide

better access to the global frontier and enhance firm efficiency, but at the same time, it may also

dampen the incentives for indigenous innovation in China. Conversely, U.S.-mandated technology

decoupling, which we will analyze next, can force Chinese firms into indigenous innovation, but at

the cost of sacrificing firm efficiency associated with “reinventing the wheel.”
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4.2 U.S. sanctions against China and decoupling

Amid rising political and economic tensions between the United States and China, the U.S. govern-

ment has escalated its sanctions against some Chinese entities, aiming at technology decoupling,

or even a “deadly blow to the Chinese technology champion” as some media have forecasted.48

This section studies whether U.S. sanctions are followed by U.S.-China technology decoupling and

deteriorating performance of the affected Chinese firms, where we trace out sanctions based on

the entity list issued by the Bureau of Industry and Security (BIS) of the U.S. Department of

Commerce.

4.2.1 U.S. entity list

According to the Export Administration Regulations (EAR) of the United States, the entity list

issued by the BIS is “a list of names of certain foreign persons–including businesses, research

institutions, government and private organizations, individuals, and other types of legal persons–

that are subject to specific license requirements for the export, re-export and/or transfer (in-

country) of specified items.” The entity list is a primary instrument for the U.S. government to

impose sanctions against foreign entities. The list for this study spans between 1997 (the first year

when it was issued) and 2019. After excluding the individual people sanctioned on the entity list,

there are 163 unique Chinese entities and they are primarily corporations, universities or research

institutions, and government agencies in China. We are able to pinpoint the precise Chinese names

for 158 (96.9%) of these sanctioned entities.

To assess how U.S. sanctions affect U.S.-China technology decoupling, we identify the primary

technology class of each sanctioned Chinese entity by merging the entity list with the Chinese

patent data, using the algorithm delineated in Section 3.1. For all subsidiaries on the entity list,

we use their parent companies or organizations in the merging process.49 Though U.S. sanctions

were traditionally motivated by military concerns (e.g., nuclear technology, aerospace and defense

technology), they have increasingly covered civil and commercial technologies (e.g., supercomputers,

48See CNN report, “New sanctions deal ‘lethal blow’ to Huawei,” August 18, 2020.
49For instance, both “Shanghai Huawei Technologies Co., Ltd.” and “Beijing Huawei Digital Technologies Co.,

Ltd.” are coded as “Huawei Technologies Co., Ltd.” in the merging process.
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communications technology, semiconductors, and artificial intelligence). By this algorithm, 75.4%

of the Chinese entities on the list can be merged with the Chinese patent data, and be classified to

a primary technology class at the three-digit IPC level.

We define a technology class to be exposed to U.S. sanctions in a given year if at least one

entity associated with this technology class was sanctioned in that year. To illustrate how U.S.

sanctions against China evolved in recent decades, we plot the number of sanctioned Chinese

entities on the list and the number of technology classes exposed to U.S. sanctions in Figure 8. The

first entity list was introduced by the Clinton administration in 1997 and only one Chinese entity

(Chinese Academy of Engineering Physics) was included in that list. After a moderate increase

in the late 1990s, both the number of Chinese entities and technology classes exposed to U.S.

sanctions remained virtually flat through the Bush administration and the first term of the Obama

administration. The second term of the Obama administration, however, witnessed a structural

break in U.S. sanction policies, and the surge continued into the Trump administration. Therefore,

we refer to the period post 2013 as the sanction “escalation period” in our subsequent analyses.

[Insert Figure 8 here.]

4.2.2 U.S. sanctions and U.S.-China technology decoupling/dependence

U.S. sanctions against Chinese entities explicitly aimed at decoupling in the affected technology ar-

eas. Have the attempts achieved the goal? Exploiting the staggered introductions of U.S. sanctions

against China, we investigate this question with the following difference-in-difference setup at the

technology class (j)-year(t) level covering the period of 2007–2019:

yj,t = β1 × Post Sanctionj,t + β2 × Post Sanctionj,t × Escalation Periodt

+ δ′Xj,t−1 + γj + γt + εj,t (5)

The empirical setup above is analogous to our analysis of the SEI-promotion policy in Section 4.1.1.

The sample construction, dependent variables, the fixed effects, and the recurring variables in this

setup are the same as that in equation 2 of the SEI analysis. The dummy variable Post Sanctionj,t
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is equal to one if at least one Chinese entity associated with this technology class had been sanc-

tioned before that year. In light of the structural break of U.S. sanction policies against China

demonstrated in Figure 8, we introduce a dummy variable Escalation Periodt (which takes the

value of one if t is after 2013) in equation (5) to detect whether the effects of U.S. sanctions have

changed over time. Results are reported in Table 6 in which the odd-numbered columns omit

Post Sanctionj,t × Escalation Periodt while the even-numbered columns report the full regression.

[Insert Table 6 here.]

Perhaps contrary to intuition, the results in column (1) suggest that U.S. sanctions in a tech-

nology class were associated with a significant (at the 1% level) decrease in the decoupling measure

by 0.0156 (or 1.7% of sample mean) in that technology class. Results in column (2) further confirm

that this negative relationship between U.S. sanctions and technology decoupling has not signifi-

cantly changed even after the sanctions escalated after 2013. Admittedly, the regression results are

correlational which do not rule out the possibility that U.S. sanctions targeted sectors that would

have seen far more integration in their absence. Nevertheless, the outcome indicates that U.S. in-

terventions up to 2019 have not reversed the technology integration in recent decades as economic

activities and technology exchanges run their own courses. Since China joined the WTO in 2001,

U.S. international trade in goods with China has soared by 4.6 times by 2019.50 During the 2019-

2020 academic year, about 373,000 Chinese students (35% of all international students) studied

in the United States, constituting the top source of international students in U.S. campuses.51 A

significant share of Chinese students returned home post-graduation. Since China’s opening-up in

1978, 4.9 million Chinese students have completed their studies overseas and 4.2 million returned

to China.52 Such strong economic ties and talent flows have fostered technology exchanges fluid at

national boundaries and are difficult for the government to unwind short of draconian measures.

The effects of U.S. sanctions on China’s technological dependence on the U.S. are, on the other

hand, ambiguous due to two opposing forces. By depriving Chinese firms of U.S. technologies and

components, U.S. sanctions may weaken their technological capability and in consequence, China

50Source: The U.S. Census Bureau.
51Source: The Institute of International Education.
52Source: The Ministry of Education of China.
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may depend more on the U.S. down the road. On the other hand, losing access to U.S. technologies

also forces and encourages Chinese firms to create their own innovations, reducing dependence on

the U.S. Column (3)–(6) of Table 6 suggest the second force dominates: U.S. sanctions are negatively

correlated with China’s technological dependence on the U.S. and this negative relationship is

particularly driven by the “escalation period.” Such a result is consistent with the narrative that

the sanctions have encouraged or even forced China to become more technologically independent

from the U.S.53

Comparing the effects of China’s SEI-promotion policy in Table 4 with the effects of U.S.

sanctions against China in Table 6, we learn that integration-oriented government intervention (i.e.,

China’s SEI-promotion policy) can accelerate the momentum of U.S.-China integration, whereas

decoupling-oriented government intervention (i.e., U.S. sanctions against China) has yet to reverse

the fundamental forces driving U.S.-China integration. Due to the recency of most sanctions, our

sample has limited power for longer-term inferences. We look forward to extending the analyses as

more years of data become available.

4.2.3 U.S. sanctions and firm performance

Next we analyze to what extent sanctions impact the performance of affected firms. The following

regression at the firm (i)-year(t) level covering 2007–2019 hopes to shed light on the question:

yi,j,t = β1 × Post Sanctionj,t + β2 × Post Sanctionj,t × Escalation Periodt

+ δ′Xi,j,t−1 + γi + γt + εi,j,t (6)

Though the panel is at the firm-year level, each firm is triple-indexed by firm (i)-technology class

(j)-year(t) so that the firm could be matched to its primary technology class using the same

algorithm as in Section 3.2. The sample construction, dependent variables, the fixed effects, and

the recurring variables in this setup mirror our firm-level SEI analysis in equation (3), while variable

Post Sanctionj,t and Escalation Periodt are the same as in equation (5). Results are reported in

53See Wire China’s interview with Willy C. Shih (a professor of management practice at Harvard Business School),
“Willy Shih on Why the U.S Needs to Run Faster,” April 19, 2020, and the Bloomberg report, “New U.S. Restrictions
Will Help Make China Great Again,” December 18, 2020.
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Table 7.

[Insert Table 7 here.]

Column (1) and (5) of Table 7 shows that U.S. sanctions in a technology class were associated

with an 8.7% drop in patenting output and a 1.8% decline in TFP of firms in that technology

class. Moreover, column (2) and (6) suggest that this negative relationship was not unique to the

“escalation period.” In other words, it is not a recent phenomenon that Chinese firms suffered

from a decline in innovation output and firm productivity after they were denied access to U.S.

technologies and inputs. There has not been a significant change in innovation quality post sanction

(columns (3) and (4)). Though column (7) shows no significant relation between sanctions and firm

valuation, column (8) unveils the opposing effects of sanctions before 2014 and since then: While

valuation of Chinese firms in the sanctioned sectors suffered during the first period, the valuation of

similar firms has enjoyed a boost in the second period. In both periods, the relations are significant

at the 5% level or less.

One explanation for the changing firm outcomes post sanction could be attributed to adaptive

responses from the Chinese government and businesses to U.S. sanctions as sanctions became more

aggressive and widespread. Prior to 2014, U.S. sanctions were sporadic but inflicted damages

on the entities in the sanctioned sectors. As U.S. sanctions expanded from specialized military

technologies to more civil and commercially oriented technologies, the affected businesses tend to

be more nimble in market places and the Chinese government also started to counter-intervene by

bolstering firms targeted by U.S. sanctions.54 Firms sanctioned by the U.S. in some cases sought

“national symbol” status in an ideologized sentiment. In the end, up to 2019 the sanctions have

not crippled the targeted firms relative to other firms. We look forward to extending the analysis

when more data post 2019 become available.

54For example, China’s Anti-Foreign Sanctions Law passed in June 2021 establishes a legal ground to retaliate
against foreign sanctions.
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5 Conclusion

By integrating comprehensive patent data from the U.S. and China, we develop new measures to

quantify the time-varying technology decoupling and dependence between the U.S. and China, in

the aggregate and specific technology classes. The first two decades of the 21st century witnessed

a steady increase in technology integration (or less decoupling), but China’s dependence on the

U.S. increased (decreased) during the first (second) decade. In the cross-section, a higher level of

decoupling in a given technology field predicts more patent outputs in the same sector in China,

but lower firm productivity and valuation in the longer term. In contrast, the impact of decoupling

on U.S. firms is less noticeable. Analyzing government policies in both nations, we find that

China’s innovation-promoting industrial policies are associated with both more integration and

less dependence down the road, but the process is embedded with an intrinsic trade-off between

the two major policy objectives (i.e., indigenous innovation versus firm competitiveness) of the

Chinese government. On the other side, U.S. sanctions against China have not led to U.S.-China

decoupling but have spurred more independent technological development in China. The findings

suggest that policies can leverage the momentum, but are hard to reverse the trend, of global

technology integration.
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Figure 1: R&D expenditures and patents granted, U.S. vs China

R&D expenditures of both China and the United States are measured in billion 2005 PPP dollars in figure

1a. “Chinese patents” in figure 1b refer to invention patents granted at the Chinese National Intellectual

Property Administration (CNIPA). “U.S. patents” in figure 1b refer to utility patents granted at the United

States Patent and Trademark Office (USPTO). The number of patents is expressed in thousands in figure

1b.

(a) R&D Expenditures

(b) Patents Granted
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Figure 2: Measures of technology decoupling and dependence

This diagram visualizes how we construct our measures of U.S.-China technology decoupling and China’s

dependence on the U.S. The vertical axis (pc,u) is a proxy of the propensity for Chinese patents to cite a

U.S. patent relative to citing a Chinese one. The horizontal axis (pu,c) is a proxy of the propensity for U.S.

patents to cite a Chinese patent relative to citing a U.S. one. Reflecting the state of parity, the 45-degree line

is defined as the “par line.” The triangular area above (below) the 45-degree line is defined as “U.S.-leading”

(“China-leading”) region. Projecting point P onto the 45-degree line, we decompose the vector
−→
PI into two

orthogonal vectors
−→
PQ and

−→
QI. The vector

−→
QI (i.e., the projection of

−→
PI on the par line) captures the degree

of U.S.-China technology decoupling. The vector
−→
PQ (i.e., the rejection of

−→
PI from the par line) reflects

China’s technological dependence on the U.S.
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Figure 3: U.S.-China technology decoupling and dependence, 2000, 2009, and 2019

This figure is the empirical analog of Figure 2. The vertical axis (pc,u) is a proxy of the propensity for

Chinese patents to cite a U.S. patent relative to citing a Chinese one. The horizontal axis (pu,c) is a proxy

of the propensity for U.S. patents to cite a Chinese patent relative to citing a U.S. one. To highlight critical

turning points of the transition, we zoom in on three crucial years: 2000 (the year before China joined the

World Trade Organization), 2009 (the end of the Great Recession), and 2019 (the end of our sample period).
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Figure 4: U.S.-China technology decoupling and dependence, 2000–2019

This figure characterizes how U.S.-China technology decoupling and China’s technological dependence on

the U.S. evolved between 2000 and 2019. The right vertical axis in this figure is our measure of U.S.-China

technology decoupling, and the left vertical axis is our measure of China’s technological dependence on the

U.S. Both measures are defined in Section 2.3. The subperiod of 2003-2006 was skipped due to unreliable

data specific to this time period.

39



Figure 5: Decoupling and dependence, ten high-tech fields

In this figure, we plot the states of decoupling and conditional dependence (both measures are defined in

Section 2.3) in selected years of 2000, 2009, 2015, and 2019. The ten high-tech fields are defined by Webb

et al. (2019). All other patents are grouped into the “non-high tech” field.

(a) Year: 2000 (b) Year: 2009

(c) Year: 2015 (d) Year: 2019
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Figure 6: Decoupling and dependence, new vs. old technologies

In this figure, we compare the states of decoupling, dependence, and conditional dependence between new

and old technologies among the ten high-tech fields. The ten high-tech fields are defined by Webb et

al. (2019). A technology is considered new if the grant year of its first patent is after 2008, which include

machine learning, neural networks, drones, cloud computing, and self-driving cars. Old fields include internal

combustion engines, pharmaceuticals, semiconductors, smartphones, and software.

(a) Decoupling

(b) Dependence

(c) Conditional Dependence
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Figure 7: SEI policy and firm performance, dynamic effects

We trace the dynamics of the SEI policy in the following regression at the firm (i)-year(t) level covering the

period of 2007–2019:

yi,j,t =
∑
τ

(β1,τ × SEIj ×High Subsidyi,j × Tτ ) +
∑
τ

(β2,τ × SEIj × Tτ ) + δ′Xi,j,t−1 + γi + γt + εi,j,t

Firms are also indexed by technology class (j) so that each of them could be matched to their primary

technology class. SEIj equals one if technology class j is promoted as an SEI and zero otherwise. Within the

SEI-promoted technology sectors, High Subsidyi,j equals one if the subsidy-to-sales ratio of firm i is above

the sample median. Tτ is a set of year dummies ranging from four years before to four years after the SEI

policy shock. All other variables are defined in Table A1. The Figures plot the estimates for β1,τ for the

following dependent variables: Innovation Output in Figure 7a, Innovation Quality in Figure 7b, TFP in

Figure 7c, and 1/Q in Figure 7d.

(a) Innovation Output (b) Innovation Quality

(c) Firm TFP (d) Inverse of Tobin’s Q
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Figure 8: Number of entities and tech classes exposed to U.S. sanctions

This figure plots the number of sanctioned Chinese entities on the U.S. entity list and the number of technol-

ogy classes involved in U.S. sanctions each year from 1997 to 2019. We identify the primary technology class

of each sanctioned Chinese entity by the patents they file. A technology class is considered being involved

in sanction in a given year if at least one sanctioned entity is associated with this technology class.
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Table 1: Technology Decoupling and Dependence, Panel VAR

This table reports estimation results from the following panel VAR model:

yi,t = yi,t−1B1 + yi,t−2B2 + · · ·+ yi,t−pBp + γi + εi,t,

where yi,t is a (1×2) vector of dependent variables (i.e., technology decoupling and dependence as defined in

Table A1). In columns (1) and (2), both the decoupling and dependence measures are in their original scale.

In columns (3) and (4), the variable “dependence” is residualized against “decoupling.” γi is a (1× 2) vector

of technology-class-specific panel fixed effect and εi,t is a (1 × 2) vector of the error terms. B1, B2, · · ·, Bp

are (2 × 2) matrices to be estimated and we assume they are common across all technology classes. We

make the following assumptions about the innovations: E(εi,t) = 0, E(ε′i,tεi,t) = Σ, and E(ε′i,tεi,s) = 0 for

all t > s. The panel fixed effects are removed by forward orthogonal deviation transformation proposed by

Arellano and Bover (1995). Standard errors are reported in the parentheses. *** denotes significance at the

one percent level, ** at the five percent level, and * at the 10 percent level.

Decoupling Dependence Decoupling Dependence

(1) (2) (3) (4)

Decoupling, t− 1 0.724*** 0.286 0.863*** 0.564

(0.214) (0.471) (0.287) (0.693)

Decoupling, t− 2 0.488*** 0.708*** 0.466*** 0.730**

(0.114) (0.261) (0.118) (0.292)

Dependence, t− 1 -0.158** 0.336* -0.189* 0.239

(0.0788) (0.179) (0.0966) (0.238)

Dependence, t− 2 0.155*** 0.502*** 0.153*** 0.545***

(0.0472) (0.111) (0.0476) (0.123)

Observations 1,055 1,055 1,055 1,055

Residualization No No Dependence Dependence
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Table 2: Technology Decoupling and Firm Performance, Chinese Firms

The regressions in this table examine the relationship between U.S.-China technology decoupling and the

performance of Chinese firms. All variables are defined in Table A1. In all regressions, the control variables

are lagged by one year. All regressions include year fixed effect and firm fixed effect. Robust standard errors

are reported in the parentheses. *** denotes significance at the one percent level, ** at the five percent level,

and * at the 10 percent level.

Innovation Output Innovation Quality TFP 1/Q

(1) (2) (3) (4)

Decoupling, t− 1 1.906*** 0.558 0.0992 0.0403

(0.566) (0.655) (0.140) (0.0966)

Decoupling, t− 2/3 0.911 0.852 -0.306* 0.404***

(0.668) (0.753) (0.177) (0.125)

Assets 0.0647*** -0.0204 -0.0144** 0.124***

(0.0177) (0.0189) (0.00574) (0.00358)

Age -0.0739 0.0904 0.0358 -0.0109

(0.0828) (0.0804) (0.0219) (0.0152)

Capex -0.0597 0.255 -0.341*** -0.00793

(0.157) (0.209) (0.0447) (0.0279)

PP&E -0.183** 0.00552 0.115*** 0.0480***

(0.0834) (0.101) (0.0261) (0.0166)

Leverage -0.00319 -0.158** 0.0173 -0.0471***

(0.0607) (0.0730) (0.0207) (0.0128)

R&D -0.196 -0.122 -0.610*** -0.160***

(0.301) (0.358) (0.0885) (0.0535)

Subsidy 0.287 -0.123 -0.568*** 0.110***

(0.218) (0.280) (0.0704) (0.0420)

Observations 15,594 15,594 15,594 15,594

Adjusted R-squared 0.607 0.189 0.651 0.810

Firm fixed effect Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes
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Table 3: Technology Decoupling and Firm Performance, U.S. Firms

The regressions in this table examine the relationship between U.S.-China technology decoupling and the

performance of U.S. firms. All variables are defined in Table A1. In all regressions, the control variables are

lagged by one year. All regressions include year fixed effect and firm fixed effect. Robust standard errors are

reported in the parentheses. *** denotes significance at the one percent level, ** at the five percent level,

and * at the 10 percent level.

Innovation Output Innovation Quality TFP 1/Q

(1) (2) (3) (4)

Decoupling, t− 1 0.080 -1.176 -0.258 -0.212

(0.574) (0.738) (0.238) (0.159)

Decoupling, t− 2/3 0.016 -0.338 -0.112 0.222**

(0.310) (0.459) (0.131) (0.097)

Assets 0.119*** -0.042 -0.015 0.087***

(0.017) (0.026) (0.013) (0.006)

Age -0.025 -0.168*** 0.010 0.054***

(0.043) (0.060) (0.025) (0.014)

Capex 0.434* 0.137 -0.184 -0.345**

(0.235) (0.269) (0.213) (0.164)

PP&E 0.201 -0.121 0.249*** 0.257***

(0.134) (0.169) (0.089) (0.055)

Leverage -0.185*** -0.068 0.138*** -0.058***

(0.045) (0.067) (0.039) (0.015)

R&D 0.000 -0.003 -0.022*** -0.001*

(0.001) (0.002) (0.002) (0.001)

Observations 14461 14461 14461 14461

Adjusted R-squared 0.85 0.34 0.80 0.66

Firm fixed effect Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes
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Table 4: SEI-Promotion Policy and Technology Decoupling

This table reports estimation results from the following difference-in-difference regression on the relationship

between the SEI-promotion policy and U.S.-China technology decoupling at the technology class (i)-year(t)

level for the sample period of 2007–2019:

yi,t = β1 × SEIi × Postt + δ′Xi,t−1 + γi + γt + εi,t

The dependent variable features technology decoupling and dependence as defined in Table A1. The dummy

variable SEIi equals one if technology class i is promoted by the SEI and zero otherwise. The dummy variable

Postt takes the value of one after 2012 and zero otherwise. The dependent variable is U.S.-China technology

decoupling in column (1), China’s technological dependence on the U.S. in column (2), and dependence

measure residualized against the decoupling measure in column (3). In all regressions, the control variables

are lagged by one year, and year fixed effect and technology class fixed effect are included. Robust standard

errors are reported in the parentheses. *** denotes significance at the one percent level, ** at the five percent

level, and * at the 10 percent level.

Decoupling Dependence Dependence, Residualized

(1) (2) (3)

SEI × Post -0.0130*** -0.0190** -0.0286***

(0.00389) (0.00899) (0.00806)

ln(Patents granted in China) 0.0179*** -0.0396*** -0.0264***

(0.00411) (0.00902) (0.00878)

ln(Patents granted in the U.S.) -0.0157* 0.0860*** 0.0743***

(0.00833) (0.0149) (0.0182)

Observations 1,370 1,370 1,370

Adjusted R-squared 0.732 0.818 0.756

Technology class fixed effect Yes Yes Yes

Year fixed effect Yes Yes Yes
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Table 5: SEI-Promotion Policy and Firm Performance

This table reports estimation results from the following regression relating the SEI policy and Chinese firm perfor-

mance covering the period of 2007–2019:

yi,j,t = β1 × SEIj × Postt ×High Subsidyi,j + β2 × SEIj × Postt + δ′Xi,j,t−1 + γi + γt + εi,j,t

The regression is at the firm (i)-year(t) level but each firm is also indexed by technology class (j) so that it could

be matched to its primary technology class. SEIj equals one if technology class j is promoted as an SEI and zero

otherwise. Postt takes the value of one after 2012 and zero otherwise. Within the SEI-promoted technology sectors,

“High Subsidyi,j” equals one if the subsidy-to-sales ratio of firm i is above the sample median. All other variables

are defined in Table A1. In all regressions, the control variables are lagged by one year, and year fixed effect and

technology class fixed effect are included. Robust standard errors are reported in the parentheses. *** denotes

significance at the one percent level, ** at the five percent level, and * at the 10 percent level.

Innovation Output Innovation Quality TFP 1/Q

(1) (2) (3) (4) (5) (6) (7) (8)

SEI × Post -0.122 -0.665*** -0.180** -0.496*** 0.00738 0.119*** 0.00928 -0.130***

(0.101) (0.0714) (0.0917) (0.0699) (0.0333) (0.0202) (0.0247) (0.0142)

SEI × Post × 1{High Subsidy} -0.117*** -0.0404 0.0520*** -0.0303***

(0.0243) (0.0290) (0.00627) (0.00434)

Assets 0.0831*** 0.103*** -0.0117 0.00314 -0.0133** -0.0152*** 0.130*** 0.133***

(0.0168) (0.0176) (0.0178) (0.0185) (0.00547) (0.00567) (0.00347) (0.00366)

Age -0.0183 0.0196 0.0540 0.0416 0.0311 0.0206 -0.00567 -0.00311

(0.0778) (0.0784) (0.0789) (0.0797) (0.0208) (0.0209) (0.0147) (0.0149)

Capex -0.0690 -0.0490 0.231 0.194 -0.347*** -0.351*** -0.0259 -0.0514*

(0.150) (0.163) (0.196) (0.210) (0.0439) (0.0479) (0.0272) (0.0299)

PP&E -0.139* -0.176** 0.0247 -0.0355 0.120*** 0.117*** 0.0572*** 0.0585***

(0.0789) (0.0826) (0.0947) (0.0978) (0.0250) (0.0258) (0.0162) (0.0171)

Leverage -0.0306 -0.0352 -0.134* -0.0738 0.0100 -0.00355 -0.0576*** -0.0552***

(0.0577) (0.0607) (0.0700) (0.0724) (0.0200) (0.0208) (0.0125) (0.0133)

R&D -0.0415 -0.0595 -0.203 -0.362 -0.688*** -0.716*** -0.188*** -0.196***

(0.292) (0.306) (0.343) (0.359) (0.0861) (0.0898) (0.0531) (0.0566)

Observations 16,310 13,569 16,310 13,569 16,310 13,569 16,310 13,569

Adjusted R-squared 0.603 0.613 0.190 0.197 0.642 0.641 0.803 0.797

Firm fixed effect Yes Yes Yes Yes Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
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Table 6: U.S. Sanctions and Technology Decoupling

This table reports estimation results from the following regression relating U.S. sanctions against Chinese

entities and technology decoupling/dependence covering the period of 2007–2019:

yj,t = β1 × Post Sanctionj,t + β2 × Post Sanctionj,t × Escalation Periodt + δ′Xj,t−1 + γj + γt + εi,t

The dependent variable features technology decoupling and dependence that are defined in Table A1.

Post Sanctionj,t is equal to one if technology class j had been exposed to U.S. sanctions prior to year t

and zero otherwise. Escalation Periodt takes the value of one after 2013 and zero otherwise. Odd-numbered

columns of the table omit Post Sanctioni,t × Escalation Periodt while the even-numbered columns report

the full regression. In all regressions, the control variables are lagged by one year, and year fixed effect

and technology class fixed effect are included. Robust standard errors are reported in the parentheses. ***

denotes significance at the one percent level, ** at the five percent level, and * at the 10 percent level.

Decoupling Dependence Dependence, Residualized

(1) (2) (3) (4) (5) (6)

Post Sanction -0.0156*** -0.0162*** -0.00516 0.00881 -0.0167* -0.00317

(0.00347) (0.00397) (0.00852) (0.00964) (0.00988) (0.0102)

Post Sanction × Escalation Period 0.000574 -0.0145** -0.0141**

(0.00306) (0.00652) (0.00610)

ln(Patents granted in China) 0.0161*** 0.0161*** -0.0412*** -0.0416*** -0.0293*** -0.0296***

(0.00412) (0.00413) (0.00896) (0.00899) (0.00880) (0.00884)

ln(Patents granted in the U.S.) -0.0125 -0.0126 0.0889*** 0.0904*** 0.0797*** 0.0811***

(0.00821) (0.00838) (0.0152) (0.0156) (0.0182) (0.0187)

Observations 1,370 1,370 1,370 1,370 1,370 1,370

Adjusted R-squared 0.731 0.731 0.817 0.817 0.754 0.755

Technology class fixed effect Yes Yes Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes Yes Yes
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Table 7: U.S. Sanctions and Performance of Chinese Firms

This table reports estimation results from regressions relating U.S. sanctions and the performance of Chinese firms

covering the period of 2007–2019:

yi,j,t = β1 × Post Sanctionj,t + β2 × Post Sanctionj,t × Escalation Periodt + δ′Xi,j,t−1 + γi + γt + εi,j,t

The regression is at the firm (i)-year(t) level but each firm is also indexed by technology class (j) so that it could

be matched to its primary technology class. Post Sanctionj,t is equal to one if technology class j had been exposed

to U.S. sanctions prior to year t and zero otherwise. Escalation Periodt takes the value of one after 2013 and zero

otherwise. All other variables are defined in Table A1. In all regressions, the control variables are lagged by one year,

and year fixed effect and firm fixed effect are included. Robust standard errors are reported in the parentheses. ***

denotes significance at the one percent level, ** at the five percent level, and * at the 10 percent level.

Innovation Output Innovation Quality TFP 1/Q

(1) (2) (3) (4) (5) (6) (7) (8)

Post Sanction -0.0867** -0.0774* -0.00167 0.0286 -0.0178* -0.0237** 0.00159 0.0160**

(0.0388) (0.0469) (0.0442) (0.0537) (0.00942) (0.0116) (0.00639) (0.00771)

Post Sanction × Escalation Period -0.0113 -0.0367 0.00716 -0.0174***

(0.0315) (0.0368) (0.00818) (0.00531)

Assets 0.0828*** 0.0830*** -0.0118 -0.0112 -0.0138** -0.0139** 0.130*** 0.130***

(0.0168) (0.0168) (0.0178) (0.0178) (0.00544) (0.00545) (0.00347) (0.00347)

Age -0.0166 -0.0146 0.0545 0.0610 0.0270 0.0257 -0.00516 -0.00204

(0.0778) (0.0779) (0.0789) (0.0790) (0.0207) (0.0208) (0.0147) (0.0147)

Capex -0.0711 -0.0695 0.231 0.237 -0.337*** -0.338*** -0.0273 -0.0248

(0.150) (0.150) (0.196) (0.196) (0.0438) (0.0438) (0.0272) (0.0272)

PP&E -0.141* -0.141* 0.0222 0.0227 0.121*** 0.121*** 0.0572*** 0.0575***

(0.0789) (0.0789) (0.0946) (0.0946) (0.0249) (0.0249) (0.0162) (0.0162)

Leverage -0.0253 -0.0248 -0.132* -0.131* 0.0112 0.0109 -0.0578*** -0.0571***

(0.0577) (0.0577) (0.0701) (0.0700) (0.0199) (0.0199) (0.0125) (0.0125)

R&D -0.0832 -0.0751 -0.196 -0.170 -0.581*** -0.586*** -0.203*** -0.190***

(0.294) (0.294) (0.347) (0.347) (0.0856) (0.0858) (0.0533) (0.0532)

Subsidy 0.219 0.218 -0.0487 -0.0519 -0.589*** -0.588*** 0.0813* 0.0798*

(0.213) (0.213) (0.269) (0.269) (0.0698) (0.0698) (0.0420) (0.0420)

Observations 16,310 16,310 16,310 16,310 16,310 16,310 16,310 16,310

Adjusted R-squared 0.603 0.603 0.190 0.190 0.645 0.645 0.803 0.804

Firm fixed effect Yes Yes Yes Yes Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes Yes Yes Yes Yes
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Appendix

Figure A1: Technology dependence and Chinese patent share

This figure shows the relationship between our measure of technology dependence and the measure developed

in Akcigit et al. (2020) (i.e., the number of Chinese patents divided by the sum of the number of Chinese

patents and the U.S. patents). We regress our measure of China’s technological dependence on the U.S.

against the share of Chinese patents each year at the technology class-year level, and plot the estimates of

each cross-sectional regression by year in this figure.
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Table A1: Variable Definition

Variable Definition

Decoupling A measure of technology decoupling between the U.S. and China, developed in Section 2.3

Dependence China’s technological dependence on the U.S., developed in Section 2.3

Innovation Output The natural logarithm of one plus the number of patent applications

a firm files (and is eventually granted)

Innovation Quality The number of citations a patent has received by 2019, divided by

the average number received by patents in its cohort (i.e., patents applied

in the same year and in the same technology class)

TFP The natural logarithm of total factor productivity estimated

by the method of Ackerberg, Caves, and Frazer (2015)

1/Q The ratio of the sum of the book value of debt and equity to

the sum of the market value of equity and book value of debt

Assets The natural logarithm of the book value of total assets

Age The natural logarithm of one plus age since founding (IPO) for Chinese (U.S.) firms

R&D R&D expenditures divided by sales; missing values are imputed zero

Capex Capital expenditures divided by book value of total assets

PP&E Net value of property, plant, and equipment divided by

book value of total assets

Leverage Book value of total debt divided by book value of total assets

Subsidy The amount of government subsidies divided by sales
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Table A2: Descriptive Statistics, Chinese Companies

The sample includes all publicly listed Chinese companies that filed at least one patent between 2007 and

2019. The table reports the summary statistics of main variables that are defined in Table A1. To facilitate

the economic interpretations of the following variables, we report the summary statistics of Innovation Output

in terms of the number of patents, Assets in terms of billions of RMB, and Age in terms of the number of

years. All potentially unbounded variables are winsorized at the 1st and 99th percentiles.

Mean Standard Deviation p25 Median p75 Observations

(1) (2) (3) (4) (5) (6)

Decoupling 0.920 0.0309 0.896 0.924 0.942 16,310

Innovation Output (number of patents) 3.855 10.27 0 0 2.500 16,310

Innovation Quality 0.426 0.881 0 0 0.526 16,310

Assets (billion RMB) 10.74 28.22 1.396 2.859 7.005 16,310

Age (number of years) 14.58 5.435 11 14 18 16,310

R&D 0.0371 0.0417 0.00228 0.0316 0.0487 16,310

Capex 0.0577 0.0495 0.0212 0.0435 0.0792 16,310

PP&E 0.230 0.153 0.112 0.198 0.319 16,310

Leverage 0.408 0.206 0.242 0.398 0.561 16,310

Subsidy 0.0273 0.0383 0.00538 0.0138 0.0316 16,310

1/Q 0.538 0.262 0.328 0.501 0.722 16,310

TFP 0.136 0.288 -0.0444 0.124 0.307 16,310
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Table A3: Descriptive Statistics, U.S. Companies

The sample includes all publicly listed U.S. companies that filed at least one patent between 2007 and 2019.

The table reports the summary statistics of main variables that are defined in Table A1. To facilitate the

economic interpretations of the following variables, we report the summary statistics of Innovation Output

in terms of the number of patents, Assets in terms of billions of U.S. dollars, and Age in terms of the number

of years. All potentially unbounded variables are winsorized at the 1st and 99th percentiles.

Mean Standard Deviation p25 Median p75 Observations

Decoupling .916 .0304 .895 .918 .937 19833

Innovation Output (number of patents) 30.1 106 0 1 10 19918

Innovation Quality .579 1.19 0 0 .69 19918

Assets (billion USD) 9.21 24.6 .133 .718 4.64 19918

Age (number of years) 22.3 19.3 9 17 30 19918

R&D 1.29 6.56 .00693 .0543 .181 19320

Capex .0377 .0417 .0129 .0258 .0487 19898

PP&E .19 .19 .0545 .123 .259 19916

Leverage .211 .236 .00369 .161 .318 19791

1/Q .556 .354 .291 .489 .748 19918

TFP 2.17 1.2 1.57 2.2 2.65 19118
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Internet appendix

Internet appendix for “Mapping U.S.-China Technology Decou-

pling, Innovation, and Firm Performance”

Patent examination procedures, U.S. vs China

Figure IA1 shows a comparison of the patent examination procedures at the United States Patent

and Trademark Office (USPTO) and the Chinese National Intellectual Property Administration

(CNIPA). Despite subtle differences in implementation, the patent examination procedures at

USPTO and CNIPA are comparable to each other. At both patent offices, both domestic ap-

plicants and foreign applicants will go through three major phases: Filing, examination, and the

granting of patents. At both USPTO and CNIPA, patent examiners are required to search for prior

art in both domestic and foreign patents during the patent examination process.

[Insert Figure IA1 here.]

Patenting activities by nationalities of patent assignees

After comparing nations as patent approval authorities, we compare patenting activities in the two

countries further based on the nationalities of the assignees as shown in Figure IA2. Panel A com-

pares the number of Chinese patents granted to assignees with the U.S. and Chinese nationalities.

Panel B presents the mirror image for the U.S. patents. The two figures demonstrate a common

and familiar home bias, but also reveal different dynamics. Panel A shows that there were no

significant differences in the number of Chinese patents granted to Chinese and U.S. assignees in

the early 2000s, but Chinese assignees outpaced U.S. assignees since 2010 and have dominated as

the recipients of Chinese-approved patents in recent years. Panel B shows that although patenting

activities by Chinese assignees have been in the strict minority in the U.S., their representation in

the total number of U.S. patents has risen from 0.03% in 2000 to 4.7% in 2019.

[Insert Figure IA2 here.]
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After providing the aggregate evidence, we resort to a regression framework to gauge the relative

level of patenting activities in both systems and by both nationals from micro data. More specifi-

cally, we estimate the following stacked panel regression at the technology class (i), the nationality

of the assignees (a), the nationality of the patent office (p), and year (t) level:

yi,a,p,t = β0 + β1 × 1{US Assignees}+ β2 × 1{US Patents}

+ β3 × 1{US Assignees} × 1{US Patents}+ γi + γt + γi,t + εi,a,p,t (IA1)

The sample for the regression above includes all patents granted at CNIPA and USPTO, stacked

into one panel spanning the time period of 2000-2019. The dependent variable yi,a,p,t is the natural

logarithm of one plus the number of patents granted at patent office p in technology class i to

assignees with nationality a in year t. The classification of technology classes is based on the

three-digit codes of the International Patent Classification (IPC) system. γt represents the year

fixed effect to absorb the aggregate time trend. γi, the technology class fixed effect, is included

to control for all time-invariant, unobserved heterogeneity at the technology class level. Finally,

to account for potential time-varying heterogeneity, we also add the technology class-year fixed

effect, γi,t. The patents office index p ∈ {US Patents,Chinese Patents} and the assignee index

a ∈ {US Assignees,Chinese Assignees}. The dummy variables 1{US Assignees} and 1{US Patents}

are defined accordingly.

In equation IA1, coefficient β1 captures the technological advantage of U.S. assignees, in terms

of their total patenting activities in China, over Chinese assignees. That is, a negative estimate

of β1 implies that the Chinese assignees lead the U.S. ones in the Chinese patenting system. The

technological advantage of U.S. assignees over their Chinese counterparts in filing U.S. patents is,

instead, captured by β1 + β3, where a positive estimate suggests that the U.S. assignees are the

leading force in filing U.S. patents. As a difference-in-difference estimate, β3 corresponds to the

advantage that the U.S. assignees enjoy in filing U.S. patents relative to their advantage in filing

Chinese patents.

Table IA1 reports the regression results for the full sample in column (1), and in four-year sub-
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periods in columns (2) to (6). It shows that patenting by Chinese assignees over the full sample

period is 1.75 times higher than that of their U.S. counterparts in terms of Chinese patents, whereas

patenting of U.S. assignees is 3.42 times higher than that of their Chinese counterparts in terms

of U.S. patents. The subsample analyses show that the relative advantage changes over time. U.S.

assignees steadily lag further behind their Chinese counterparts in the China system over time; at

the same time, their lead in the U.S. system also wanes over time at about the same rate. The

time trend is visualized in Figure IA3. Overall, Chinese assignees grow their share in both patent

systems at about the same rate, though assignees of each nationality have maintained their lead in

the patent system of the respective country.

[Insert Table IA1 here.]

[Insert Figure IA3 here.]

We next explore potential heterogeneity across different technology fields and focus specifically

on ten crucial high-tech sectors outlined in Webb et al. (2019): Smartphones, semiconductors, soft-

ware, pharmaceuticals, internal combustion engines, machine learning, neural networks, drones,

cloud computing, self-driving cars. To uncover heterogeneities across technology classes, we esti-

mate the U.S. patenting advantage in each high-tech field between 2000 and 2019 and the results

are visualized in Figure IA4.55 Applying the same methodology as those in Figure IA3, we estimate

the U.S. patenting advantage in each technology class and in each sub-period in Figure IA5–IA14.

[Insert Figure IA4–IA14 here.]

If we attribute national advantage to the nationality of the assignees, we observe that the

U.S. advantage remains strong in pharmaceutical, internal combustion engines, semiconductors,

and smartphones. While the advantage is dwindling in semiconductors, it has been strengthened

in internal combustion engines. In several “neck-and-neck” technologies, patent assignees in each

country enjoy an advantage in filing patents in their home countries, but their gap is fairly small.

Such neck-and-neck technologies include several cutting-edge fields, such as AI-algorithm-related

55In such technology class-level regressions, there are only year fixed effects but no technology class fixed effects
and technology class-specific year fixed effects.
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technologies (e.g., machine learning and neural networks), AI-application-related technologies (e.g.,

self-driving cars and drones), and cloud computing. In software patenting, both Chinese assignees

and U.S. assignees are characterized by a huge advantage in their home countries. Moreover, the

home-country advantages have been growing over time, which is suggestive evidence that each

country increasingly advances along its own technological trajectory, and, thus, may lead to two

distinct or parallel technological paradigms.

Technology decoupling at the technology class level

In this section, we report the cross-sectional evidence of technology decoupling and dependence at

the technology class level. Table IA2 reports the top and bottom ten technology classes sorted by

the measure of technology decoupling between 2017 and 2019. Table IA3 shows the ten tech classes

in which China has the strongest (weakest) dependence on the U.S.

We apply the measures to each of the technology classes at the three-digit International Patent

Classification (IPC) codes in Figure IA16. That is to say, we plot pc,u against pu,c for each technol-

ogy class (at three-digit IPC codes) and highlight the industry profiles in each of the three critical

years (i.e., 2000, 2009, 2019). Echoing the anti-decoupling trend in the aggregate data, all featured

technology classes in Figure IA16 tend to move toward the complete integration point over time.

Almost all technology classes started near the origin (low integration and low dependence). Most of

them rose further above the 45-degree line in 2009, suggesting stronger U.S. technology leadership.

By 2019, however, these technology classes became more evenly distributed on both sides of the

45-degree line, indicating a more balanced mutual dependence between the two nations.

[Insert Table IA2 here.]

[Insert Table IA3 here.]

[Insert Figure IA16 here.]
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Figure IA1: Patent examination procedures, U.S. vs China

This flow chart is a comparison of the patent examination procedures at the United States Patent and

Trademark Office (USPTO) and the Chinese National Intellectual Property Administration (CNIPA). The

source of this flow chart is IP5 Statistics Report, 2018 Edition.
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Figure IA2: Patents granted, Chinese vs U.S. assignees

We compare the number of Chinese patents (panel A) and U.S. patents (panel B) granted to Chinese

assignees and U.S. assignees. “Chinese patents” in this figure refers to invention patents granted at the

Chinese National Intellectual Property Administration (CNIPA). “U.S. patents” in this figure refers to

utility patents granted at the United States Patent and Trademark Office (USPTO). The number of patents

is expressed in thousands in both figures.

(a) Chinese Patents Granted

(b) U.S. Patents Granted
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Figure IA3: U.S. advantage in patenting, dynamics

We estimate the following “stacked” panel regressions to gauge the U.S. advantage in patenting:

yi,a,p,t = β0 + β1 × 1{U.S. Assignees}+ β2 × 1{U.S. Patents}

+ β3 × 1{U.S. Assignees} × 1{U.S. Patents}+ γi + γt + γi,t + εi,a,p,t

In this regression, we stack two samples of patents granted at CNIPA and USPTO into a balanced panel.

The subscript i indexes for a technology class, a indexes for the nationality of the patent assignees, p indexes

for the patent office, and t indexes for year. The dependent variable yi,a,p,t is the natural logarithm of one

plus the number of patents granted at patent office p in technology class i to assignees with nationality a

in year t. We focus on patents granted at two patent offices and granted to assignees in two countries, so

p ∈ {U.S. Patents,Chinese Patents} and a ∈ {U.S. Assignees,Chinese Assignees}. 1{U.S. Assignees} takes

the value of one (zero) for the U.S (Chines) patent assignees. 1{U.S. Patents} equals one (zero) for patents

granted at the U.S. (Chinese) patent office. The patenting advantage of U.S. assignees over their Chinese

counterparts in filing Chinese (U.S.) patents is captured by β1 (β1 + β3). A positive estimate of the U.S.

patenting advantage indicates that the U.S. assignees have an advantage over their Chinese counterparts in

filing patents. A negative estimate of the U.S. patenting advantage implies that the Chinese assignees are

taking a leading position in filing patents.

61



Figure IA4: U.S. advantage in patenting, tech class heterogeneity

We estimate the U.S. patenting advantage in ten high-technology fields between 2000 and 2019, and the

results are visualized in this figure. Following Webb et al. (2019), we identify patents in these technological

fields by their CPC codes, patent titles, and abstracts. For completeness, we group all other patents into

the “non-high tech” field. A positive estimate of the U.S. patenting advantage indicates that the U.S.

assignees have an advantage over their Chinese counterparts in filing patents. A negative estimate of the

U.S. patenting advantage implies that the Chinese assignees are taking a leading position in filing patents.

“Chinese patents” in this figure refers to invention patents granted at the Chinese National Intellectual

Property Administration (CNIPA). “U.S. patents” in this figure refers to utility patents granted at the

United States Patent and Trademark Office (USPTO).
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Figure IA5: U.S. patenting advantage, software

Figure IA6: U.S. patenting advantage, machine learning
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Figure IA7: U.S. patenting advantage, neural networks

Figure IA8: U.S. patenting advantage, self-driving cars
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Figure IA9: U.S. patenting advantage, drones

Figure IA10: U.S. patenting advantage, cloud computing
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Figure IA11: U.S. patenting advantage, pharmaceuticals

Figure IA12: U.S. patenting advantage, internal combustion engines

66



Figure IA13: U.S. patenting advantage, semiconductors

Figure IA14: U.S. patenting advantage, smartphones
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Figure IA15: Technology decoupling, U.S.-China vs U.S.-EU

We compare U.S.-China decoupling with U.S.-EU decoupling in this figure. The technology decoupling

measures are plotted on one common axis in panel IA15a and they are plotted on two separate axes in panel

IA15b.

(a) Decoupling comparison on one common axis

(b) Decoupling comparison on two separate axes
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Figure IA16: Propensity to cite foreign patents relative to citing domestic patents

In this figure, we plot pc,u against pu,c for each technology class at three-digit IPC codes. In each figure, the

vertical axis (pc,u) is a proxy of the propensity for Chinese patents to cite a U.S. patent relative to citing a

Chinese one. The horizontal axis (pu,c) is a proxy of the propensity for U.S. patents to cite a Chinese patent

relative to citing a U.S. one. To highlight critical turning points of the transition, we zoom in on three

crucial years: 2000 (the year before China joined WTO), 2009 (the end of the Great Recession), and 2019

(the end of our sample period). The outlier with an exceptionally large value of pu,c in 2019 is technology

class C14 (skins; hides; pelts or leather).

(a) 2000 (b) 2009

(c) 2019
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Figure IA17: Technology decoupling and dependence, impulse response functions

To visualize the dynamic interactions between technology decoupling and dependence, we plot the results of

the impulse-response functions (IRF) in this figure. All sub-figures are orthogonalized IRF results based on

Cholesky decomposition. To address the concern for concurrent correlation between these two measures, the

IRF analysis is based on the residualized measure of technology decoupling and dependence. The exogenous

shock is the innovation of decoupling in Figure IA17a and IA17b, and the exogenous shock is the innovation

of dependence in Figure IA17c and IA17d. We evaluate how China’s technological dependence on the U.S.

affects U.S.-China decoupling in Figure IA17a and IA17c, and we assess how U.S.-China decoupling affects

China’s technological dependence on the U.S. in Figure IA17b and IA17d.

(a) Effect of Dependence On Decoupling
Shock: Innovation of Decoupling

(b) Effect of Decoupling On Dependence
Shock: Innovation of Decoupling

(c) Effect of Dependence On Decoupling
Shock: Innovation of Dependence

(d) Effect of Decoupling On Dependence
Shock: Innovation of Dependence
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Table IA1: U.S. Advantage In Patenting, Dynamics

We estimate the following “stacked” panel regressions to gauge the U.S. advantage in patenting:

yi,a,p,t = β0 + β1 × 1{US Assignees}+ β2 × 1{US Patents}

+ β3 × 1{US Assignees} × 1{US Patents}+ γi + γt + γi,t + εi,a,p,t

In this regression, we stack two samples of patents granted at CNIPA and USPTO into a balanced panel.

The subscript i indexes for a technology class, a indexes for the nationality of the patent assignees, p indexes

for the patent office, and t indexes for year. The dependent variable yi,a,p,t is the natural logarithm of one

plus the number of patents granted at patent office p in technology class i to assignees with nationality a in

year t. The patenting advantage of U.S. assignees over their Chinese counterparts in filing Chinese (U.S.)

patents is captured by β1 (β1 + β3). A positive estimate of the U.S. patenting advantage indicates that

the U.S. assignees have an advantage over their Chinese counterparts in filing patents. A negative estimate

of the U.S. patenting advantage implies that the Chinese assignees are taking a leading position in filing

patents. Standard errors are reported in the parentheses. *** denotes significance at the 1 percent level, **

at the 5 percent level, and * at the 10 percent level.

ln(# of Patents + 1)

Full Sample 2000–2003 2004–2007 2008–2011 2012–2015 2016–2019

(1) (2) (3) (4) (5) (6)

1{US Assignees} -1.751*** -0.549*** -1.075*** -1.918*** -2.334*** -2.882***

(0.0293) (0.0619) (0.0592) (0.0552) (0.0523) (0.0529)

1{US Patents} -3.225*** -2.224*** -2.899*** -3.387*** -3.691*** -3.922***

(0.0293) (0.0619) (0.0592) (0.0552) (0.0523) (0.0529)

1{US Assignees} × 1{US Patents} 5.171*** 4.955*** 5.023*** 5.296*** 5.239*** 5.344***

(0.0415) (0.0875) (0.0838) (0.0780) (0.0739) (0.0749)

Observations 10,480 2,096 2,096 2,096 2,096 2,096

R-squared 0.862 0.848 0.864 0.892 0.912 0.916

Tech class fixed effect Yes Yes Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes Yes Yes

Tech class × year fixed effect Yes Yes Yes Yes Yes Yes
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Table IA2: Most Decoupled vs Most Integrated Tech Classes, Top Ten

Panel A reports the top ten most decoupled technology classes at three-digit International Patent Classi-

fication (IPC) codes during the last three years of our sample (i.e., 2017–2019). Panel B reports the top

ten most integrated technology classes. ‘Tech decoupling” refers to the measure of technology decoupling

between the United States and China.

IPC Technological Fields Tech Decoupling

Panel A. Most Decoupled Tech Classes, Top Ten

E04 building 0.969

A01 agriculture; forestry; animal husbandry; hunting; trapping; fishing 0.964

E01 construction of roads, railways, or bridges 0.963

B09 disposal of solid waste; reclamation of contaminated soil 0.961

B44 decorative arts 0.960

E02 hydraulic engineering; foundations; soil-shifting 0.960

F42 ammunition; blasting 0.957

B07 separating solids from solids; sorting 0.956

B02 crushing, pulverising, or disintegrating; preparatory treatment of grain for milling 0.952

G07 checking-devices 0.952

Panel B. Most Integrated Tech Classes, Top Ten

C14 skins; hides; pelts or leather 0.474

G11 information storage 0.783

C21 metallurgy of iron 0.806

B81 microstructural technology 0.807

G03 photography; cinematography; analogous techniques using waves 0.808

other than optical waves; electrography; holography

H03 basic electronic circuitry 0.831

F01 machines or engines in general; engine plants in general; steam engines 0.843

F02 combustion engines; hot-gas or combustion-product engine plants 0.845

B06 generating or transmitting mechanical vibrations in general 0.848

G02 optics 0.856
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Table IA3: U.S.-Leading vs China-Leading Tech Classes, Top Ten

Panel A reports the top ten U.S.-leading technology classes at three-digit International Patent Classification

(IPC) codes during the last three years of our sample (i.e., 2017–2019). Panel B reports the top ten China-

leading technology classes. “Tech dependence” refers to China’s technological dependence on the United

States.

IPC Technological Fields Tech Dependence

Panel A. U.S.-Leading Tech Classes, Top Ten

G11 information storage 0.38

H03 basic electronic circuitry 0.24

A42 headwear 0.24

F02 combustion engines; hot-gas or combustion-product engine plants 0.24

F01 machines or engines in general; engine plants in general; steam engines 0.21

C40 combinatorial technology 0.20

A61 medical or veterinary science; hygiene 0.19

G03 photography; cinematography; analogous techniques using waves 0.18

other than optical waves; electrography; holography

A43 footwear 0.17

F41 weapons 0.15

Panel B. China-Leading Tech Classes, Top Ten

C14 skins; hides; pelts or leather -0.95

C21 metallurgy of iron -0.34

C22 metallurgy; ferrous or non-ferrous alloys; treatment of alloys or non-ferrous metals -0.19

D06 treatment of textiles or the like; laundering; flexible materials not otherwise provided for -0.16

C05 fertilisers; manufacture thereof -0.15

C30 crystal growth -0.13

C01 inorganic chemistry -0.11

C04 cements; concrete; artificial stone; ceramics; refractories -0.09

F22 steam generation -0.09

C13 sugar industry -0.06
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Table IA4: Technology Decoupling and Dependence, OLS

The regressions in this table are based on panel data at the three digit IPC-year level and the sample

period is 2007-2019. All regressions in this table are based on OLS models. We incorporate technology class

fixed effects and year fixed effects in all regressions. The dependent variables in regression (1)-(3) are our

measure of U.S.-China technology decoupling. The dependent variables in regression (4)-(6) are our measure

of China’s technological dependence on the U.S. Robust standard errors are reported in the parentheses. ***

denotes significance at the 1 percent level, ** at the 5 percent level, and * at the 10 percent level.

Decoupling Dependence

(1) (2) (3) (4) (5) (6)

Dependence, t− 1 -0.0822 -0.130* -0.0968*

(0.0576) (0.0753) (0.0573)

Dependence, t− 2 0.0625 0.129**

(0.0526) (0.0563)

Dependence, t− 3 -0.0447

(0.0384)

Decoupling, t− 1 -0.321 -0.548 -0.398

(0.262) (0.340) (0.255)

Decoupling, t− 2 0.247 0.592**

(0.240) (0.255)

Decoupling, t− 3 -0.273*

(0.145)

Observations 1,309 1,176 1,055 1,309 1,176 1,055

Adjusted R-squared 0.676 0.722 0.718 0.746 0.786 0.794

Technology class fixed effect Yes Yes Yes Yes Yes Yes

Year fixed effect Yes Yes Yes Yes Yes Yes
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