How unconventional is green monetary policy?

Melina Papoutsi Monika Piazzesi Martin Schneider ECB Stanford & NBER Stanford & NBER

NBER Summer Institute 2021

Disclaimer: The views expressed in this presentation do not necessarily reflect those of the European Central Bank or the Eurosystem.

Unconventional monetary policy

- Low interest rate environment
 - main tool for (unconventional) monetary policy: asset purchases
 - government bonds, MBS,.... most recently corporate bonds
 - goal: lower firms' cost of capital, stimulate investment
 - → Which corporate bonds should central banks buy?
- Conventional view:
 - monetary policy should aim for "market neutrality"
 - no mandate to favor particular firms, e.g. green investment
 - ▶ in practice: bond purchases proportional to bonds outstanding
- This paper:
 - ▶ What are "market neutral" asset purchases? Is the current ECB portfolio neutral?
 - What are optimal purchases with financial frictions & climate externalities?

Empirics: how green is the ECB bond portfolio?

- Measure ECB holdings, outstanding securities, emissions by sector
- Benchmark: market portfolio of firm values = equity + debt
 - corresponds to sectoral capital shares
- ullet ECB bond portfolio pprox sector shares of emissions eq market portfolio
 - ► ECB overweighs dirty industries relative to market portfolio
- Portfolio composition reflects implementation of market neutrality
 - ECB purchases are proportional to bonds outstanding
 - dirty sectors issue relatively more bonds
- Are dirty asset purchases market neutral? are they optimal? should purchases be greener?

Theory relates asset purchases to relative price distortions

- Growth model with heterogeneous firms, climate externalities & fin frictions
 - firms differ by riskiness and emission intensity
 - asset purchases work through liquidity and risk premia, effects differ across firms:
 - direct effect: lowers liquidity premia on firms' bonds, benefits bond-levered firms more
 - indirect effect: purchase program creates more safe government debt, lowers risk exposure of private intermediaries, lowers risk premia on many assets, benefits risky firms more (GE)
- Market neutral policy = firms' relative costs of capital unchanged
 - only macro effects, does not distort market portfolio
 - exists only if direct and indirect effects cancel (divine coincidence)
 - current ECB portfolio not neutral: favors dirty firms, both bond-levered and risky
- Optimal policy: designs carbon tax & asset purchase program
 - optimal purchases address financial frictions, favor risky firms
- Monetary policy if no carbon tax : beneficial to favor green firms

Measuring ECB portfolio and market portfolio

- ECB portfolio by sector
 - start from ECB Securities Holdings Statistics (SHS) on purchases of indiv bonds
 - merge to ECB Centralized Securities Database (CSDB) on bonds outstanding
 - important: special purpose entities
 - raw data: bonds by firms in finance sector are 56% of the ECB holdings, ineligible
 - example: ECB buys bonds from Royal Dutch Shell (oil manufac),
 bonds are issued by Shell International Finance BV (finance sector)
 - we research SPEs, attribute bonds to right sector, reduce bonds from finance sector to 11%
 - show results for nonfinancial sectors only
- Three measures of market portfolio by sector
 - 1. capital income from Eurostat
 - 2. book assets from Orbis
 - 3. market value for public companies from Orbis

same main result, in talk only show 1.

Market shares by sector

Dirty Manuf = oil & coke, chemicals, basic metals, nonmetallic minerals

Market portfolio vs ECB portfolio

Dirty Manuf = oil & coke, chemicals, basic metals, nonmetallic minerals

ECB portfolio looks more like emission shares

Dirty Manuf = oil & coke, chemicals, basic metals, nonmetallic minerals

Empirical findings

- ECB portfolio \approx sector shares of emissions \neq market portfolio
- Why? ECB buys proportionally to bonds outstanding
- Eligibility criteria do not change the basic finding

ECB portfolio vs bonds outstanding, eligible bonds

Growth model with climate externalities & fin frictions

• Rep agent with preferences over final consumption good

$$\sum_{t=0}^{\infty} \beta^t u(C_t)$$

inelastically supplies one unit of labor

• Final good is made of N intermediate goods

$$Y_t = \prod_{i=1}^N y_{t,n}^{\gamma_n}$$

• Firm-specific climate externalities in production

TFP declines with temperature η_t , temperature raised by emissions

$$y_{t,n} = z_{t,n}(\eta_t) k_{t-1,n}^{\alpha_n} l_{t,n}^{1-\alpha_n}, \quad \eta_{t+1} = \eta_t + \sum_{n=1}^{N} \varepsilon_{t,n} y_{t,n}$$

Financial frictions

- 2 technologies for households to hold firms' capital = bonds + stocks
- asset holdings through central bank or private intermediary technology
- both technologies come with balance sheet costs
 - cost functions $\tilde{h}(\tilde{b}_t; \phi_t)$, $h(a_t; \phi_t, \tilde{b}_t)$: resource costs in terms of final good
 - increasing in asset holdings, quasiconvex, homogenous of degree one in all holdings
 - private asset holdings at contain firms' bonds & stocks and central bank debt
 - increasing in firm leverage $\phi_t=$ bonds / capital, decreasing in central bank holdings $ilde{b}_t$
 - interpretation: risk taking & liquidity
 - risky investments are costly, some don't pan out, resources are gone
 - holding claims to more or more levered capital is riskier
 - holding safe government debt reduces risk for private intermediaries
 - central bank participation can make bond markets more liquid

Private Intermediaries

- portfolio of private bonds, stocks, central bank debt a = (b, s, d); vector of returns R^a
- competitive, owned by households, maximize shareholder value

$$\max_{a_t} M_{t+1} \sum_{i} R_{t+1,i}^{a} a_{t,i} - h(a_t; \phi_t, \tilde{b}_t) - \sum_{i} a_{t,i}$$

with household pricing kernel $M_{t+1} = \beta u'(C_{t+1})/u'(C_t)$

FOCs for bonds of firm n

$$M_{t+1}R_{t+1,n}^b = 1 + \frac{\partial h}{\partial h_n}(a_t; \phi_t, \tilde{b}_t)$$
 return premium over safe rate, $M_{t+1}R_{t+1}^f = 1$

Firms

- Intermediate goods firms
 - choose lev $\phi_{t-1,n}$ to minimize cost of capital $R^n_t := \phi_{t-1,n} R^b_{t,n} + (1-\phi_{t-1,n}) R^s_{t,n}$
 - hire labor at wage w_t , sell goods at price $p_{t,n}$ in competitive markets
 - ightharpoonup pay carbon tax au_t per unit of emissions
 - maximize profits

$$(p_{t,n}-\tau_t\varepsilon_{t,n})\,y_{t,n}-w_tI_{t,n}-R_t^nk_{t-1,n}$$

Firms' FOCs for capital

$$(p_{t,n} - \tau_t \varepsilon_{t,n}) \alpha_n \frac{y_{t,n}}{k_{t-1,n}} = R_t^n$$
 contains return premia on bonds & stocks

- Final good firms
 - buy intermediate goods at price $p_{t,n}$, sell final good at price one

Equilibrium

- Government policy
 - central bank bond holdings \tilde{b}_t financed with debt $D_t = \sum_{n=1}^N \tilde{b}_t$, also carbon tax τ_t
 - ightharpoonup consolidated budget constraint with lump sum transfers T_t

$$\sum_{n=1}^{N} R_{t,n}^{b} \tilde{b}_{t-1,n} + D_{t} + \tau_{t} \sum_{n=1}^{N} \varepsilon_{t,n} y_{t,n} = R_{t}^{D} D_{t-1} + \sum_{n=1}^{N} \tilde{b}_{t,n} + \tilde{h} \left(\tilde{b}_{t}; \phi_{t} \right) + T_{t}$$

- Agents optimize and markets clear
- Firms' capital shares $\kappa_t = k_t/K_t$ held by
 - ullet central bank as bond portfolio $ilde{\kappa}_t = ilde{b}_t/D_t$ with debt share $\delta_t = D_t/K_t$
 - lacksquare private intermediaries as bond & stock portfolio $\kappa_t \delta_t ilde{\kappa}_t$
- Equilibrium cost of capital of firm n

$$M_{t+1}R_{t+1}^{n} = 1 + \phi_{t,n}\frac{\partial h}{\partial b_{n}} + (1 - \phi_{t,n})\frac{\partial h}{\partial s_{n}} =: 1 + MC_{n}(\kappa_{t} - \delta_{t}\tilde{\kappa}_{t}; \phi_{t,n}, \delta_{t}\tilde{\kappa}_{t})$$

Frictionless benchmark

• Capital allocation across firms: market portfolio κ solves

$$\frac{\alpha_n \gamma_n}{\kappa_n} \frac{Y}{K} = R^n(\phi_n) = R^f$$
marginal product
of capital
$$\begin{array}{c} R^n(\phi_n) = R^f \\ \text{cost of} \\ \text{capital} \end{array}$$

- market portfolio equates marginal products
- market shares $\kappa_n = \alpha_n \gamma_n$ reflect technology & preferences only
- Modigliani-Miller & Ricardian equivalence hold
- $ightharpoonup \phi$ indeterminate, asset purchases irrelevant for investment & climate
 - ightharpoonup government buys assets, private sector undoes policy, same κ
- Some commentators: financial frictions do not matter + important that purchases are designed to be market neutral
 - in a frictionless world, private sector undoes policy

Equilibrium without a carbon tax

Capital allocation across firms with financial frictions

$$\frac{\alpha_n \gamma_n}{\kappa_n} \frac{Y}{K} = R^n(\phi_n) = R^f \text{ (1+MC}_n(\kappa - \delta \tilde{\kappa}; \phi_n, \delta \tilde{\kappa}))}{\text{marginal product of capital}} = R^n(\phi_n) = R^f \text{ (1+MC}_n(\kappa - \delta \tilde{\kappa}; \phi_n, \delta \tilde{\kappa}))}$$

- market portfolio equates marginal products net of marginal holding costs
 - evaluated at optimal leverage that minimizes cost of capital
- firms with higher cost of capital: lower investment
- three channels for central bank purchases $\delta \tilde{\kappa}$
 - 1. take firm n risk off private intermediaries' balance sheets
 - 2. replace private risky securities with safe government debt
 - 3. lower private holding costs by making bond market more liquid

Discussion of assumptions

- Role of central bank
 - real model, focus on risk premia & investment, not price stability
 - with flexible prices, get similar effects in nominal model (PS 2020)
 - medium run perspective: decade of large CB balance sheets
- Balance sheet costs of private intermediaries vs central bank
 - capture familiar theme from literature: QE stimulates economy when government is better able to commit to repay than private sector
 - new element here: heterogeneous firms with severity of frictions described by *h*, reflected in firm level risk premia
 - ▶ h can be identified from effects of purchase programs on firms' costs of capital
- Interaction: climate externality & financial frictions
 - \triangleright expect parameters of h to vary with emission intensities ε_n in x-section
 - evidence that brown firms pay higher premia

Linear-quadratic holding cost

- Modeling risk with small number of risk factors
 - vector $\beta_n(\phi_n)$ = risk exposures of total firm value
 - bonds, stocks: portfolios of risky firm value & riskfree asset, risky weights $\rho_n^b(\phi_n)$, $\rho_n^s(\phi_n)$
 - $\beta_n, \rho_n^b, \rho_n^s$ increase in leverage ϕ_n , less so if firm has more tangible assets
- Intermediary risk exposures
 - asset holdings a = (b, s, d) with total assets $A = \sum_n b_n + s_n + d$ $\omega(a; \phi) := \sum \beta_n(\phi_n) \left(\rho_n^s(\phi_n) s_n + \rho_n^b(\phi_n) b_n \right) / A$
 - holding more levered firms increases exposure, less so if firms have more tangible assets
 - holding safe central bank debt d reduces exposure per unit of assets
- Holding cost for private intermediary

$$h(a; \phi, \tilde{b}) = s'l^s + b'(l^b - \Delta) + dl^d + \frac{1}{2}\gamma\omega(a; \phi)'\Sigma\omega(a; \phi) A$$
liquidity cost cost of risk taking

• $\Delta_n > 0$ iff $\tilde{b}_n > 0$: central bank participation makes market for firm n bonds more liquid

Asset pricing with linear-quadratic holding cost

• Equilibrium risk exposure of private intermediaries

$$\mathbf{\omega} = \sum_{n} \beta_{n} \left(\kappa_{n} - \rho_{n}^{b} \delta \, \tilde{\kappa}_{n} \right)$$

- central bank reduces private holdings of risky capital
- Return premia on bonds

$$I_n^b - \Delta_n + \gamma \rho_n^b \beta_n' \Sigma \omega - \frac{1}{2} \gamma \omega' \Sigma \omega$$

- lower liquidity premia $-\Delta_n$ if central bank eligible, controlling for risk yield spreads, bid-ask spreads, repo turnover by eligibility: Todorov 2020, Mota-Papoutsi 2021
- risk premia exhibit factor structure (similar equation for stocks)
 Fama-French 1993, Elton-Gruber-Blake 1995, Ang 2014, Bai-Bali-Wen 2019
- central bank reduces exposure $\omega \to \text{reduces } all \text{ premia, including on ineligible bonds,}$ more so for riskier firms: Todorov 20, De Santis-Zaghini 21
- convenience yield on safe debt can push intermediaries' safe rate below R' short rate disconnect: Duffee 1997, Lenel-Piazzesi-Schneider 2019

Asset pricing with linear-quadratic holding cost

• Equilibrium risk exposure of private intermediaries

$$\mathbf{\omega} = \sum_{n} \beta_{n} \left(\kappa_{n} - \rho_{n}^{b} \delta \, \tilde{\kappa}_{n} \right)$$

- central bank reduces private holdings of risky capital
- Return premia on bonds

$$I_n^b - \Delta_n + \gamma \rho_n^b \beta_n' \Sigma \omega - \frac{1}{2} \gamma \omega' \Sigma \omega$$

- lower liquidity premia $-\Delta_n$ if central bank eligible, controlling for risk yield spreads, bid-ask spreads, repo turnover by eligibility: Todorov 2020, Mota-Papoutsi 2021
- risk premia exhibit factor structure (similar equation for stocks)
 Fama-French 1993, Elton-Gruber-Blake 1995, Ang 2014, Bai-Bali-Wen 2019
- central bank reduces exposure $\omega \to$ reduces all premia, including on ineligible bonds, more so for riskier firms: Todorov 20, De Santis-Zaghini 21
- convenience yield on safe debt can push intermediaries' safe rate below R¹
 short rate disconnect: Duffee 1997. Lenel-Piazzesi-Schneider 2019

Asset pricing with linear-quadratic holding cost

• Equilibrium risk exposure of private intermediaries

$$\mathbf{\omega} = \sum_{n} \beta_n \left(\kappa_n - \rho_n^b \delta \, \tilde{\kappa}_n \right)$$

- central bank reduces private holdings of risky capital
- Return premia on bonds

$$I_n^b - \Delta_n + \gamma \rho_n^b \beta_n' \Sigma \omega - \frac{1}{2} \gamma \omega' \Sigma \omega$$

- lower liquidity premia $-\Delta_n$ if central bank eligible, controlling for risk yield spreads, bid-ask spreads, repo turnover by eligibility: Todorov 2020, Mota-Papoutsi 2021
- risk premia exhibit factor structure (similar equation for stocks)
 Fama-French 1993, Elton-Gruber-Blake 1995, Ang 2014, Bai-Bali-Wen 2019
- central bank reduces exposure $\omega \to \text{reduces } all$ premia, including on ineligible bonds, more so for riskier firms: Todorov 20, De Santis-Zaghini 21
- convenience yield on safe debt can push intermediaries' safe rate below R^f short rate disconnect: Duffee 1997, Lenel-Piazzesi-Schneider 2019

Cost of capital & impact of central bank purchases

• Cost of capital = weighted average of bond & stock returns

$$\frac{\alpha_n \gamma_n}{\kappa_n} \frac{Y}{K} = R^n = R^f \left(1 + \phi^n (I_n^b - \Delta_n) + (1 - \phi^n) I_n^s + \frac{\gamma \beta_n' \Sigma \omega}{2} - \frac{1}{2} \gamma \omega' \Sigma \omega \right)$$

- lower liquidity premium $-\Delta_n$ attracts capital to firm n, more so if more bond-levered
- ► lower intermediary risk exposures ω shift capital to more risky firms
- Magnitudes: compare aggregate effects versus cross section
 - \triangleright aggregate MPK depends on average risk premia weighted by market portfolio κ
 - fact: large dispersion of risk premia across firms \rightarrow large differences in β_n s
 - \rightarrow if lower ω has large aggregate effects, it strongly favors risky firms
- What is a dirty firm?
 - relatively more bond-levered: more tangible assets, cheaper to issue bonds
 - relatively risky: high β_n , especially for climate risk factor (Hsu-Li-Tsou 2020)
 - benefits more from both lower liquidity premia & lower intermediary risk exposure

Market neutrality

- Our definition: market neutral policy does not change relative costs of capital R^n/R^m
 - ightarrow market neutral policies do not change market portfolio κ
 - start from laissez-faire equilibrium with $\delta = 0$
 - ightharpoonup comparative static to equilibrium with CB purchase program $\delta>0$
- Is there a market neutral CB portfolio $\tilde{\kappa}$?
 - generally no: two key sources of non-neutrality
 - 1. CB purchases lower liquidity cost on bonds \rightarrow favors more bond-levered firms
 - 2. CB provides safe debt, lowers private risk exposure in GE ightarrow favors more risky firms
 - when are these effects absent?
 - 1. segmented markets for private securities & central bank debt (cost h separable)
 - 2. all firms have same bond-leverage (or CB buys stocks)
 - ightarrow very special financial system, not in line with data

Market neutrality with linear-quadratic cost

- Suppose firm n issues bonds, firm m does not
 - \rightarrow difference in cost of capital compares liquidity & risk premium $\phi^n/\rho + (1-\phi^n)/\rho (p_n + \gamma(\beta_n \beta_m))' \Sigma \omega$
 - \triangleright central bank can reduce \int_{b}^{n} firm-by-firm and reduce ω for everyone
 - → existence of neutral portfolio requires "divine coincidence"
- Buying bonds in proportion to outstanding bonds not automatically neutral
 - policy rule: $\tilde{\kappa}_n = \phi^n \kappa_n / \sum_n \phi^n \kappa_n$
 - reduces liquidity premium for all bond issuers, favors more bond-levered firms
 - reduces risk exposure and therefore risk premium, favors more risky firms
 - ▶ Is the ECB's current portfolio market neutral?
 - qualitatively, could have offsetting effects if safer firms lever more
 - quantitative studies suggest risk > liquidity effects for cost of capital
 - with climate risk factor, dirty firms more risky and more levered

Optimal policy

- Social planner chooses carbon tax + asset purchase program
 - "principle of targeting": carbon tax fixes externality
 - purchase program addresses financial frictions, not climate externality
- Optimal government portfolio $\tilde{\kappa}$ with & without climate externalities

carbon tax changes capital allocation, affects purchase program

- Optimal policy depends on government holding cost
 - ► linear-quadratic example with same holding costs for CB & private intermediaries
 - → CB lowers premia for risky firms more, optimal policy typically not neutral!
 - optimal size of CB trades off risk reduction & holding cost of its debt

Endogenous leverage

- Tradeoff theory of capital structure
 - bonds cheaper to hold than equity + loans for given risk: $I^b < I^s$
 - **b** bonds increase cost of risk taking: function β_n increasing in ϕ
 - optimal leverage balances the two effects
- Effect of central bank purchases
 - risk reduction encourages additional leverage
 - shift from stocks + loans to bonds, but also increase in stocks + loans
 - same results on neutrality (change in cost of capital through leverage is 2nd order)
- Optimal policy
 - planner chooses optimal leverage together with purchase program
 - encouraging some leverage is optimal!

Conclusion

- ECB portfolio \approx sector shares of emissions \neq market portfolio
 - ► ECB overweighs dirty sectors firms relative to market portfolio
- Market neutrality
 - should be defined as same relative costs of capital,
 otherwise purchase program distorts market portfolio
 - holding bonds in proportion to outstandings not a simple recipe for neutrality, instead ECB currently favors relatively risky and bond-levered firms
- With carbon tax, optimal purchases address financial frictions
 - → policy should favor risky firms
- Without carbon tax, greener investment beneficial