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Abstract

We characterize optimal oversight of algorithms in a world where an agent designs a complex prediction

function but a principal is limited in the amount of information she can learn about the prediction function.

We show that limiting agents to prediction functions that are simple enough to be fully transparent is inefficient

as long as the bias induced by misalignment between principal’s and agent’s preferences is small relative to

the uncertainty about the true state of the world. Ex-post algorithmic audits can improve welfare, but the

gains depend on the design of the audit tools. Tools that focus on minimizing overall information loss, the

focus of many post-hoc explainer tools, will generally be inefficient since they focus on explaining the average

behavior of the prediction function rather than sources of mis-prediction, which matter for welfare-relevant

outcomes. Targeted tools that focus on the source of incentive misalignment, e.g., excess false positives or

racial disparities, can provide first-best solutions. We investigate the empirical relevance of our theoretical

findings using an application in consumer lending.
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1 Introduction

Decision-makers increasingly rely on complex prediction algorithms to make high-stakes decisions. The adoption of

algorithmic decision-making in settings such as lending, medical testing, college admissions, pre-trial detention,

and hiring raises new questions about the oversight of such algorithms. In many settings, potential incentive

conflicts arise between the agents building the prediction tools and the entities tasked with overseeing their use.

An insurance company might worry about a hospital’s prediction model over-predicting the risk of heart attack

leading to costly over-testing. A financial regulator might worry about lenders’ risk models under-predicting

credit risk to enable increased leverage. A large employer might worry about a hiring agency using a prediction

model that produces low job offer rates for minority job applicants. A key challenge for algorithmic oversight is

to determine how to use ex-post audits that can answer the following question: are undesired outcomes due to

agents acting on misaligned incentives, or due to other circumstances? For example, high loan default rates could

stem from a lender’s deliberate risk-taking or could be driven by an unanticipated onset of a recession. Hiring

outcomes that appear discriminatory could arise either due to a model that penalizes variables correlated with

minority status or an unanticipated shift in the distribution of job applicants.

This paper argues that algorithmic governance faces a new trade-off between complexity and oversight. It is

sometimes thought that when algorithms replace humans, decision processes become easier to audit. However,

in practice the complexity of state-of-the-art prediction algorithms implies that entities overseeing the use of

algorithms have to rely on simplified representations of the prediction functions generated by these algorithms –

colloquially also known as “post-hoc explainer tools.” Since these tools, by design, cannot preserve all information

about the underlying prediction function, algorithmic governance faces a complexity–oversight trade-off. We can

restrict algorithms to produce prediction functions that are simple enough to be fully transparent, e.g., a ten-

variable logit model, but sacrifice the predictive performance that complex algorithms provide. Alternatively, we

can allow complex algorithms but sacrifice some of their ability to understand the model and detect actions that

arise from incentive misalignment.

We show how to optimally navigate this complexity–oversight trade-off in a principal-agent setup. In most

settings, the optimal policy imposes no ex-ante restriction on the agent’s prediction function but conducts an

ex-post audit based on an explainer tool. This policy is optimal as long as the bias induced by misalignment

between the principal’s and the agent’s preferences is small relative to the uncertainty about the true state of

the world. Intuitively, the agent can induce some distortion (“bias”) in the prediction function to achieve their

preferred outcome, e.g., they might develop a prediction function that under-predicts default risk in order to take
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on more credit risk than a regulator would prefer. Ex-ante model restrictions, in contrast, limit an agent’s ability

to adapt their prediction function to new information about the state of the world, leading to high-variance losses

that are (ex-ante) inefficient. Algorithmic audits can improve this bias–variance trade-off because they limit the

ability of the agent to distort the prediction function. The optimal algorithmic audit is a targeted explainer that

requests information not about what drives the average prediction but instead about what drives particular types

of mis-prediction. Intuitively, the principal uses her knowledge about the sources of misalignment between her

and the agent’s preferences to inspect parts of the model that are most likely to drive model distortions.

We investigate how our optimal policy prescriptions perform using an empirical application from unsecured

consumer lending. Unsecured consumer lending provides an excellent case study because algorithmic credit

underwriting is becoming widely used and the realities of regulatory oversight fit our theoretical model well. We

design an empirical optimization problem that builds a default prediction model that is maximally distorted in

the direction of an agent’s misaligned incentives, subject to regulatory constraints. Using a large-scale credit

data set, we investigate the complexity–oversight trade-off in the data, and estimate outcomes under different

algorithmic audits based on simple explanations.

The key assumption in our work is that algorithmic audits are limited in the amount of information they can

reveal about the underlying prediction function. Concretely, we assume that an algorithmic audit reveals only

a lower-dimensional representation of the underlying prediction function. This assumption can be motivated by

lack of resources or sophistication by the entity overseeing the use of algorithms, by potential legal limitations that

prevent regulators from collecting more information, or simply the fact that even the data scientists who build the

prediction tool will struggle to fully describe or “explain” highly complex ML/AI models. This assumption also

reflects current regulatory exam practices settings such as credit underwriting which rely on simple approximations

of the underlying prediction functions.

We approach the question of optimal algorithmic regulation through the lens of a principal-agent framework

with asymmetric information, similar to the classic approach of Laffont and Tirole (1993). A principal delegates a

prediction task to an agent who builds a statistical model to predict an unknown outcome for a set of individuals

using a set of observable characteristics. Both the true data generating process for the outcome of interest and

the distribution of observables are unknown ex-ante and are only realized when the prediction model is deployed.

This incomplete information allows us to capture the idea that external circumstances may change subsequent

to model development. This assumption also reflects that prediction functions are typically not trained on the

data on which they are deployed, which makes the potential deterioration of scores due to unforeseen shifts in

the deployment data (“covariate shift”) or shifts in the data generating process (“model shift”) a key concern.
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A principal can impose ex-ante restrictions on what types of prediction functions the agent builds and can

conduct ex-post audits based on simple descriptions of the prediction function, e.g. she might see a logit model

with a handful of variables that approximates an underlying model with hundreds of variables. In designing

optimal policy, the principal faces several sources of asymmetric information. First, she faces ex-ante uncertainty

about the state of the world when the prediction function is deployed. The state of the world includes both

the parameters that govern the data generating process of the outcome of interest, e.g., loan default, worker

productivity, a heart attack, or recidivism, and the joint distribution over the observables used in the prediction

function, e.g., credit history, job applicants’ materials, medical files, or criminal records. Second, she does not

know which agents have misaligned preferences. The third source of asymmetric information arises because the

principal only observes a noisy public signal generated by the prediction function chosen by the agent, e.g.,

the amount of disparity across racial groups generated when the prediction function is deployed. Asymmetric

information about the state of the world motivates the delegation of building the prediction function to the agent,

who receives a signal about the state of the world (a training dataset) prior to designing a prediction function.

The second and third type of asymmetric information introduce the hidden-action problem, motivating the need

for understanding the prediction function as opposed to simply punishing bad realized outcomes.

The timing of the game between principal and agent is as follows. In the initial rule-setting stage, the principal

specifies restrictions on the type of prediction functions and the nature of the ex-post audit to maximize expected

welfare. For example, the principal might restrict admissible models to low-dimensional models that can be fully

audited and specifies that audits will take the form of a linear projection of the underlying model on a small set of

specified variables. In this initial stage, the principal has information about the distribution of potential states of

the world. In the subsequent training stage, the agent receives a signal about the state of the world and trains a

prediction function to maximize agent utility subject to the restrictions imposed by the principal. This prediction

function is then deployed in a third stage, when the state is realized and outcomes are realized. In the fourth

stage, the principal audits the prediction function according to her specified audit tool and decides whether the

agent passes the audit. Failing the audit imposes infinite negative utility on the agent. In the final stage, welfare

(for the principal) and private payoffs (for the agent) are realized. In our main theoretical illustration, welfare

and private payoffs take the form of a quadratic loss function around a bliss point which represents a best-fit

prediction function – with potential additive terms that reflect additional preferences that drive misalignment,

e.g. the principal might have an additional term in her welfare function that reflects the costs of systematic

financial risk or a taste for equality across social groups.

We derive several key results from our theoretical model. First, it is optimal not to impose any ex-ante
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restriction on the prediction function as long as the bias induced by the misaligned agent is small relative to the

uncertainty about the state. Intuitively, principals face a type of bias–variance trade-off. If agents are allowed

flexibility in their prediction function, misaligned types induce bias to distort the prediction function in their

preferred direction. As in our earlier examples, a lender might create a model that systematically under-predicts

default for risky subprime loan applicants the lender wants to approve. Or a hiring agency might create a model

that under-predicts job performance for minority job applicants relative to the model that the equality-minded

employer would prefer. However, the flexibility also allows the agent to adjust their prediction function to the

information about the state of the world and, thereby, to reduce variance. Restricting the prediction function can

remove the bias but at the cost of a prediction function that is potentially ill-suited for the realized state.

Second, the ability to conduct ex-post audits leads to welfare improvements because it enables at least some

partial alignment of preferences. An explainer that focuses on preserving the most information about the average

behavior of the prediction function – we term this the “best prediction explainer” – is generally inefficient.

Instead, the optimal explainer targets the areas of preference misalignment. Intuitively, the targeted explainer

uses knowledge about the preference misalignment to inspect parts of the prediction function that are most

likely to reflect the preference misalignment and are also relevant for welfare. Third, this targeted explainer can

achieve the first best as long as the preference misalignment is low-dimensional. Intuitively, if the agent wants to

distort a slope but not an intercept (one-dimensional misalignment) and the explainer can produce one piece of

information (one-dimensional explainer), then a targeted explainer can produce a first-best prediction function.

If the dimensionality of the preference misalignment exceeds that of the explainer, the targeted explainer provides

a second-best solution.

Finally, it is generally not optimal to regulate based purely on the realized outcomes on the deployment data,

e.g., have agents fail their audit if and only if disparities in approval rates across social groups are high, or if

realized loan defaults are high. Intuitively, this approach will force the aligned agent to build more restrictive

models, which have the same realized outcomes in terms of group parity or false positives across deployment states

but at the cost of overall fit. For example, the agent might be forced to build a model that rejects qualified job

applicants from one social group in order to ensure that approval disparities are small even under a deterioration in

the applicant quality of another social group. Similarly, a lender might adopt a very conservative model rejecting

all risky subprime loan applicants in order to limit the number of loans given to subprime applicants in the event

of a recession.

We investigate the empirical relevance of our theoretical results by building an empirical counterpart to

our model inspired by recent advances in the adaption of Generative Adversarial Networks in economics and
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econometrics (e.g. Athey et al., 2020a). In our empirical setup, a lender builds loan default prediction functions

while a regulator tries to discern whether each prediction function (or credit scoring function) is aligned or

misaligned based on an explanation of the model. Similar to our theoretical model, we build deployment data

sets that can differ from the training data in a way that generates adverse welfare-relevant outcomes even for

an aligned model. For example, minority applicants in the deployment data may be higher risk than in the

training data, and rejections of these high-risk applicants may then drive up disparate impact statistics even

for an aligned model. To test the ability of different types of regulation to limit the ability of a decision-maker

to build a misaligned model, we specify an optimization problem that solves for the prediction model that is

maximally distorted in the direction of an agent’s misaligned preferences subject to regulatory constraints. We

solve this optimization problem using gradient descent in TensorFlow, considering complex neural networks as

well as simple logistic regression.

Our empirical counterpart focuses on the setting of unsecured consumer lending, and in particular a random

sample of credit reports with newly opened credit cards. Unsecured consumer lending is a good setting to study for

at least four reasons: algorithmic decision-making is already in use by some lenders; large-scale data is available;

two leading types of preference misalignment, excess risk-taking and disparate impact, that we study are key

regulatory concerns; and our model assumptions fit the reality of consumer regulation well. Moreover, credit

cards in particular are a widely used credit product for which algorithmic underwriting is already in use by some

providers. Our credit scoring model pipeline mimics that of a real-world decision-maker in terms of variable

cleaning, variable selection, model tuning, and richness of underlying data.

In our empirical exercise, as in our theoretical framework, we study different regulatory restrictions relative to

a baseline where there is no regulation and agents can build a maximally distorted model. Specifically, we compare

outcomes under simple (linear-regression) and complex (neural-network) models, and consider audits based on a

best-prediction explainer and based on a targeted explainer. Our detailed empirical findings are currently under

review by the data provider.

Literature. Our work contributes to a nascent literature that studies algorithmic decision-making (e.g. Athey

et al., 2020b) and how to regulate it. Most of the existing work in this area has focused on questions of algorithmic

fairness, such as work by Gillis and Spiess (2019) and Gillis (2020) on the limits and design of algorithmic audits.

Most related to our approach, Rambachan et al. (2020) study the regulation of algorithmic fairness in principal-

agent framework. We make three contributions: First, we offer a framework that nests many types of potential

incentive misalignment, including many types of distributional objectives as well as diverging risk preferences.

Second, many contributions on algorithmic audits assume that disclosure of all underlying algorithmic inputs
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(data, training procedure and decision rule) is possible. We study a world in which regulators will have access

only to parts of this information, such as a simplified representation of the credit scoring model. Given the

complexity of ML/AI tools and potential limitation on the technical or legal reach of regulators, we believe it is

important to study optimal algorithmic regulation under informational constraints. Third, we provide empirical

validation for our theoretical results in a real-world dataset.

We add to a growing literature in computer science that studies algorithmic audits and derives specific ex-

plainability techniques from axioms about their deployment-agnostic properties (e.g. Bhatt et al., 2020; Carvalho

et al., 2019; Chen et al., 2018; Doshi-Velez and Kim, 2017; Guidotti et al., 2018; Hashemi and Fathi, 2020; Lund-

berg and Lee, 2017; Murdoch et al., 2019; Ribeiro et al., 2016). In particular, Lakkaraju and Bastani (2020),

Slack et al. (2020), and Lakkaraju et al. (2019) study the limitations of post-hoc explanation tools in providing

useful and accurate descriptions of the underlying models, and show that simple explanations can be inadequate

in distinguishing relevant model behavior. Relative to these contributions, we show that the optimal regulatory

design for algorithms with partial information depends on the nature of preference misalignment that motivates

regulation. In other words, we highlight that explaining or interpreting a model inherently requires an under-

standing of the objectives of that explanation or interpretation, while purely technical or axiomatic approaches

may miss important welfare-relevant consequences of model behavior. We also highlight some limitations of recent

debates around the interpretability and explainability of prediction models. Embracing our utility optimization

framework, we show that requiring a model to be fully explainable or interpretable can be misguided since it may

force a lender to sacrifice model flexibility in ways that reduces, rather than increases, welfare.

Our work is related to a large literature on asymmetric information (Myers and Majluf, 1984; Nachman and

Noe, 1994; Diamond and Dybvig, 1983; Leuz and Verrecchia, 2000; Greenstone et al., 2006) and disclosure in the

financial system (for a recent literature review see Goldstein and Leitner, 2020). Similar to this literature, we

consider the design of disclosure (or audit) in an asymmetric information setting and study a regulator who has

to decide ex-ante what rules to follow when presented with information ex-post. Our main contribution lies in

studying disclosure when decisions are automated and based on complex risk prediction algorithms. We assume

there are (technical or political) limitations on the amount of information the regulator can obtain about the

algorithms and ask what the optimal audit looks like given these constraints. This approach differs from the

existing literature which assumes that regulators can exercise choice over how much information to request. In

addition, since the result of the audit in our setting is not publicly disclosed, we abstract from frequently questions

about the design of optimal public disclosure (Goldstein and Leitner, 2017; Faria-e Castro et al., 2017; Williams,

2017; Judge, 2020).
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We also contribute to a body of work on the role of credit scoring models in US consumer finance. Most of

this work explores properties of credit scores and consequences for welfare in settings where credit scores are used

for decision-making, e.g. the role of credit scores in overcoming asymmetric information among new borrowers

(Einav et al., 2013; Adams et al., 2009), incentivizing loan repayment (Chatterjee et al., 2020), disparities in credit

misallocation due to differential informativeness of credit scores (Blattner and Nelson, 2021) and facilitating loan

securitization while discouraging lenders’ use of soft information (Keys et al., 2012, 2010). Recent work has also

warned that more flexible statistical technology such as machine learning can reduce overall loan approval rates

for disadvantaged groups (Fuster et al., 2019), and that modern FinTech underwriting continues to generate cross-

group disparities in loan terms (Bartlett et al., 2019); credit scores likewise are seen to play a role in geographic

misallocation in the US mortgage market (Hurst et al., 2016). Much of this work echoes persistent policy concerns

about equity across consumers in credit scoring (Avery et al., 2009, 2012; Traub, 2013). These concerns motivate

our work to study optimal algorithmic regulation and highlight some of the sources of preference misalignment

we study in our theoretical framework.

This article is organized as follows: Section 2 illustrates our model and main results with simple examples.

Section 3 details our empirical analysis. Section 4 sets up the full theoretical model. Section 5 concludes.

2 Model: Illustrative Example

This section presents a simplified version our theoretical setup in order to illustrate our main results. We first

describe the setup and timing of the model. We then characterize different regulatory policies in a series of

examples. Section 4 provides the full model and general results.

2.1 Setup

A principal delegates a prediction task to an agent who builds a statistical model to predict an unknown outcome

for a set of individuals. Each individual has a vector of characteristics X ∈ X and an outcome Y . In this

illustrative example, we assume there are only two binary observables, X = {(X1, X2);X1, X2 ∈ {0, 1}}, with

joint distribution µ.

The outcome Y is generated by a data-generating process that depends on s(X), which can be seen as the

input to an inverse link function (e.g. Y = s(X) + ε if the outcome Y is continuous or Y = logit−1(s(X)) + ε if
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the outcome Y is binary). In this two-variable prediction setup, the data-generating process is governed by

s(X1, X2) = α+ β X1 + γ X2 + δ X1 ·X2. (1)

Since both observables are binary in this example, writing the scoring model as a fully interacted linear regression

is not restrictive.

s(0, 0)

s(0, 1)

s(1, 0)

s(1, 1)

X2 = 0 X2 = 1

X1 = 0

X1 = 1

Figure 1: Schematic representation of two-variable prediction setup

The agent builds a prediction function f(X) of s(X), which we can express analogously as a fully interacted

linear regression

f(X1, X2) = a+ b X1 + c X2 + d X1 ·X2. (2)

For simplicity, we formulate our model in terms of preferences over predictions f of this score s (rather than

predictions of Y ), and we model the statistics of learning about s from data only implicitly.

Example: Medical Testing An insurance company decides how to reimburse costs for a medical test con-

ducted on the basis of a statistical prediction model. For example, the statistical model may predict the presence

of a heart attack in patients visiting the emergency room in order to guide decisions on more invasive testing

(Mullainathan and Obermeyer, 2019). The outcome is whether a patient is experiencing a heart attack. The

characteristics X summarize information about symptoms currently exhibited by the patient, results from sim-

pler testing (e.g. electrocardiograms or troponin testing) as well as past medical history, age and gender. In this

example, we will define X1 as an indicator variable for whether the patient had a heart attack in the past and

X2 as an indicator variable for whether EKG results returned normal.

Example: Lending A agent builds a credit scoring model to assess default risk of loan applicants subject to

oversight by a financial regulator, such as the Federal Reserve or the Consumer Financial Protection Bureau. The

outcome is whether an approved borrower defaults on the loan. The characteristics X summarize information in
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the applicant’s credit report, such as past repayment behavior and current credit utilization. In this example, we

will define X1 as an indicator variable for whether the loan applicant had a past default and X2 as an indicator

variable for whether the applicant currently has high credit utilization.

Example: Hiring A large employer uses a hiring agency to hire short-term employees. The hiring agency

uses a statistical model to screen job applicants (Hoffman et al., 2018; Li et al., 2020). The outcome is the

performance on the job. The characteristics X are comprised of two sets of variables: First, X̃, which summarize

information in the applicant’s education, socio-demographic characteristics, aptitude tests, and past employment

history. Second, an indicator for whether an applicant belongs to a minority group G, which is not used in the

prediction function.1 In this example, we will define X1 as an indicator variable for whether the job applicant

has relevant job experience and X2 as an indicator variable for whether the applicant has a high-school degree.

Information structure. The agent and principal both face incomplete information. The parameters governing

the data-generating process s(X) as well as the distribution µ of observables X are ex-ante unknown to both

parties. They jointly make up the deployment state d = (s, µ). The distribution over the deployment state is

ex-ante known by both agent and principal. The deployment state is realized in the final stage of the game when

the prediction function is deployed. Outcomes will depend both on the realization of the deployment state as well

as on the prediction function f chosen by the agent. Figure 1 provides a visualization of the deployment state.

The size of the four cells in the two-by-two matrix represents the distribution over observables, µ, while the score

s(X) in each cell describes the conditional distribution driving the outcome of interest.

Agent and principal receive a training signal about the parameters d = (s, µ) governing the deployment state.

In this simple example, we assume that the training signal fully reveals the parameters of the data generating

process s(X). Once the agent has observed the training signal and chosen the prediction function f based on this

signal, both principal and agent receive a public signal g(d; f) about the realized deployment state.

The principal faces an additional dimension of incomplete information. She does not know the preferences of

the agent. In particular, she does not know which agents have preferences misaligned relative to social preferences

and which agents do not. In contrast, the agent knows the principal’s preferences.

Example: Medical Testing s(X) is the data generating process for the presence of heart attack in ER

patients and µ is the joint distribution of patient observables. The medical practitioner who builds the statistical

model knows neither the data generating process nor the distribution of patients who will visit the ER when

1We take as given that existing anti-discrimination laws prohibit the use of protected class information in the use of predictive
models in settings such as hiring.

10



the prediction function is deployed. The noisy signal about the deployment state is received in the form of data

about past patients and outcomes that is used for training the statistical model. Once the prediction function is

deployed, the public signal g(d; f) could be the fraction of patients recommended for further testing based on the

prediction model who test positive for heart attack when the prediction model is deployed in the ER. This yield

depends both on the realized data generating process, the realized distribution of patients who visit the ER when

the prediction function is deployed, and the prediction function that determines which patients are recommended

for further testing.

Example: Lending s(X) is the data generating process for default and µ is the distribution of loan applicant

observables. The lender who builds the credit scoring model does not know the data generating process or the

exact distribution of loan applicants they will encounter when they deploy the credit scoring function. The noisy

signal about the deployment state is received in the form of training data from either past loans made by the

lender or credit bureau data on loans made by other lenders. The public signal g(d; f) is the fraction of loans

that default among borrowers with particular values of X, for example those with high credit utilization. The

signal depends both on the realized data generating process, the realized distribution of individuals who apply

for loans when the credit scoring function is deployed, and the credit scoring function that forms the basis of the

lender’s underwriting decision.

Example: Hiring s(X) is the data generating process for job performance and µ is the joint distribution of job

applicant observables (including minority status G). The hiring agency building the prediction model does not

know the data generating process or the exact distribution of job applicants when the prediction tool is deployed.

The noisy signal about the deployment state is received in the form of training data from past employees provided

by the employer. The public signal g(d; f) is the difference in predicted job performance by minority status. This

signal depends both on the realized data generating process, the realized distribution of individuals who apply

for jobs when the prediction tool is deployed, and the prediction function used by the hiring agency to score each

applicant.

Agent’s Problem. The agent builds a prediction function f to maximize expected payoff in the deployment

state, given the principal’s constraints (F ,e,1audit), which we describe below. The agent’s payoff is given by

maxf∈F EµUθ(f ; d)− c1fail audit(ef)
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This payoff depends on the agent’s preferences Uθ(d), the deployment state d, and the cost c of failing the

principal’s audit. The agent’s type θ in Uθ expresses potential sources of preference misalignment. Preference

misalignment implies that the agent has different preferences over predictions, either for the whole set of individ-

uals or a sub-group of individuals defined by certain values of X.

We further assume that the agent’s utility takes the form of a quadratic loss function

Uθ(f ; d) = −Eµ[(f(X)− s(X)− θ(X))2],

where θ(X) depends on the nature of misalignment. Intuitively, this modeling choice offers a tractable way of

capturing that the agent cares about accurately assessing the outcome, with some potential deviations due to

misalignment either for all individuals or for particular subgroups.2

Example: Medical Testing Some medical practitioners (agents) have misaligned preferences relative to the

insurance company (principal). These practitioners build a model that predicts a higher risk of heart attack on

average relative to a statistical model that simply maximizes predictive fit given the available data. This incentive

misalignment could be driven by moral hazard that incentives over-testing either because insurers pay by the test

or because malpractice lawsuits push to excess caution (see Greenberg and Green (2014) and O’Sullivan et al.

(2018) for evidence in the medical literature, or Acemoglu and Finkelstein (2008) and Baker (2001) for related

work in economics, as cited in Mullainathan and Obermeyer (2019)). Alternatively, the moral hazard effect

could enter indirectly through properties of the data used for training the statistical model (Mullainathan and

Obermeyer, 2017).

The misaligned agent’s preferences are then given by

Uθ(f ; d) = −Eµ[(f(X)− s(X)−∆overall)
2]

where θ(X) takes the form ∆overall to express the preference for over-predicting heart attack risk on average.

Example: Lending Some lenders (agents) have misaligned preferences relative to the financial regulator (prin-

cipal) driven by a different taste for risky loans. Due to moral hazard induced by government deposit insurance,

the lender would like to build a model that under-predicts default, or equivalently generates higher credit scores,

on average in order to be able to approve more risky loans. Alternatively, the lender might prefer a prediction

function that under-predicts default risk, or equivalently generates higher credit scores, for loan applicants with

2This representation of preferences can also represent a second-order Taylor approximation of more conventional preference spec-
ifications. This implies that this formulation imposes only the limitation that only linear and quadratic terms matter for utility.
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high credit utilization, if the lender has higher payoffs from these borrowers (e.g., high fees related to credit-card

utilization) than the welfare that the regulator ascribes to loans for these borrowers. The misaligned agent’s

utility is given by

Uθ(f ; d) = −Eµ[(f(X)− s(X)− (∆overall + ∆high utilization X2))2]

Here, θ(X) = ∆overall + ∆high utilization X2, where X2 is the indicator variable for high credit utilization.

Example: Hiring Some hiring agencies (agents) have misaligned preferences relative to the employer (princi-

pal) who has a preference for equality in job offer rates across (racial/ethnic) minority and majority job applicants.

The misaligned hiring agency builds a prediction model that simply maximizes fit without regard to the distribu-

tional consequences of its prediction model Uθ(d) = −Eµ[(f(X̃) − s(X̃)]. Recall, that we assume that minority

status G does not directly enter the prediciton function. In contrast, the employer would like to introduce

additional terms in the utility function that reflect her preference for greater equality across social groups.

Principal’s problem. The principal designs regulation (F ,e,1fail audit) to maximize expected welfare EW (f ; d)

in the deployment state. We assume that welfare, similar to the agent’s problem, takes the form of a quadratic

loss function:

W (f ; d) = −Eµ[(f(X)− s(X))2]− λ `(f ; d)

where λ `(f ; d) expresses an additional loss term that arises when the principal’s preferences diverge from the

best-fit benchmark, e.g., a taste for equality across social groups.

The principal has two regulatory tools available: ex-ante functional restrictions and ex-post audits. First, the

principal can restrict the function space over which the agent can choose when building a prediction model. In

this illustrative example, the model restriction represents a linear restriction to a lower-dimensional space:

F = {f ∈ Rn;Af = a}, A ∈ Rm×n, a ∈ Rm.

Model restrictions represent ex-ante restrictions that are not sensitive to the training signal, but can constrain

the full function. For example, in this setting the principal might restrict scoring functions to simple regressions

f(X) = a+ b X1 + c X2 without an interaction term.

Second, the principal designs an ex-post audit tool in the form of an explanation mapping e. An explanation

mapping (short: explainer) is a low-dimensional representation of the prediction function. In our example, we
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assume that the principal chooses a two-dimensional projection of the scoring function:

e : Rn 3 f 7→ ef ∈ Rk, e ∈ Rn×k (here: n = 4, k = 2)

This explainer captures the idea that the function f is represented in terms of a few key features that capture

the first-order behavior of f , but not all details.

The principal chooses whether or not to fail the agent after conducting the ex-post audit. We assume that an

audit will always take place and we leave modeling conditional audits for future work.

Additional simplifications. We make a few additional assumptions for tractability in this example only. For

simplicity, we assume that X1 and X2 are uncorrelated, Pµ(X1 = 1) = .5,Pµ(X2 = 1) = p 6= .5, and that the

distribution µ is known. In addition, we assume the jointly Normal form R4 3 s ∼ N (s̄,Σ) for the parameter

distribution that govern default, where

Σ = σ2
0


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


︸ ︷︷ ︸

correlation across all cells

+ σ2
1


1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1


︸ ︷︷ ︸

correlation within X1 cells

+ σ2
2


1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


︸ ︷︷ ︸

correlation within X2 cells

+ σ2
3I︸︷︷︸

cell-specific variation

where σ2
0 > σ2

1 ≥ σ2
2 > σ2

3 . For this illustration, we also assume that the agent type θ is fixed, and that the data

generating process s is fully revealed to the agent in the training stage.

Information loss and explainers. The key assumption in this setup is that the principal is limited in the

amount of information she can learn about the prediction function through the explainer. We express this

information loss in the assumption the explainer is a two-dimensional projection of the four-dimensional prediction

function.

In Figure 2, we show the two possible explainer mappings the principal can choose in this simple example.

Here, the principal can for instance learn about the average difference in predicted values across the X1 cells, or

she can learn about the average difference in the X2 dimension (corresponding to the two different solid lines).

For sake of exposition, we assume the variance of X1 is always greater than the variance of X2 (individuals are

more evenly split between X1 = 0 and X1 = 1 than between X2 = 0 and X2 = 1).3

Definition (Best prediction explainer). The explanation mapping that preserves the most information about the

overall behavior of the prediction function.

3In principle, our general model would also allow for explainers that combine the effect of multiple variables into a single parameter.
To simplify the exposition, we have chosen this example so that all explainers have a simple representation.
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X2 = 0 X2 = 1

X1 = 0

X1 = 1

X2 = 0 X2 = 1

X1 = 0

X1 = 1

Figure 2: Two of the possible explanation mappings

In this setting, the explainer that summarizes the difference in predicted values across the X1 cells is the best

prediction explainer. Intuitively, since we assume the distribution of individuals across values of X1 is more even

than the distribution across values of X2, we learn more about the behavior of the model if we split according to

the dimension that results in more equally sized groups.

Example: Medical Testing The insurance company decides under what conditions to reimburse costs for

invasive tests for heart attack in a setting where testing decisions are based on a statistical prediction model. The

company’s preferences are given by W (f ; d) = −Eµ[(f(X) − s(X))2], that is, the company prefers a prediction

model that maximizes fit. In order to guard against prediction functions that induce over-testing, the insurance

company can decide to limit the admissible types of prediction models and can design an ex-post audit of the

prediction model. The insurer’s key constraint is that it is limited in the amount of information it can request

about the prediction model in the audit. This limitation could arise because the prediction model is proprietary

information or because the insurer has limited resources to conduct an audit. The insurer might specify that the

only admissible prediction functions are logit models with up to five variables that can be fully inspected in the

ex-post audit. Alternatively, the insurer might not specify any restrictions on the admissible prediction function

but conduct an audit based on a simpler proxy model of the prediction model.

Example: Lending A financial regulator designs regulatory policy for the lending industry which relies on

credit scoring models for loan underwriting. The regulator’s preferences are given by W (f ; d) = −Eµ[(f(X) −

s(X))2], that is she prefers a prediction model that maximizes fit. The regulator can issue guidance on the types

of credit scoring models allowed and can design an ex-post audit scheme. The regulator’s key constraint is that

she is limited in the amount of information she can request about the credit scoring model either because she

has limited resources to process information or because her legal mandate limits her ability to request more in-

depth information from the lender. Financial regulators frequently issue guidance on what is admissible in credit

scoring with the most important legislation being the Fair Credit Reporting Act and Equal Credit Opportunity
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Act. Enforcement of these regulations relies on regulatory exams that are typically conducted after a credit

scoring model has been built and inspect summary statistics and proxy models of the underlying credit scoring

models.

Example: Hiring An employer designs criteria for using a third-party hiring agency. The employer’s prefer-

ences are given by

W (f ; d) = −Eµ[(f(x)− s(x))2]− λ (Eµ[f(X)|G = 0]− Eµ[f(X)|G = 1])2.

where the final term expresses that she has a distaste for inequality across protected groups, such as ethnic and

racial minorities. The employer can decide to specify the type of prediction function she wants the hiring agency

to employ and can design an ex-post audit tool. The employer’s key constraint is that she is limited in the amount

of information she can request about the prediction model either because the hiring agency’s model is proprietary

or because she has limited resources to analyze the model. She might specify that the only admissible prediction

functions are logit models with up to five variables that can be fully inspected in the ex-post audit. Alternatively,

she might not specify any restrictions on the admissible prediction function but conduct an audit based on a

simpler proxy model of the prediction model.

Timing. The game between principal and agent has the following stages.

1. Rule-setting stage. The principal observes the joint distribution over the deployment state d and types θ,

and chooses a model restriction F and an explanation mapping e to maximize expected welfare.

2. Training stage. Agents observe the type θ and receive a signal about the deployment state, and choose a

function f ∈ F to maximize their expected utility.

3. Deployment stage. The deployments state d ∈ D is realized. Along with the deployment state, a public

signal g(f ; d) about the outcome is realized.

4. Audit stage. The principal audits f based on the signal g(f ; d) and the explanation ef ∈ E .

5. Payoff stage. Agents’ utilities Uθ(f ; d)− c1audit fails and welfare W (f ; d) are realized.

(For now, assume c =∞, so that the agent will always avoid a failed audit.)

16



2.1.1 Optimal Regulatory Policy

Solving the game backwards, we now consider different possible actions for the principal. We show that (i)

not imposing any regulation on the agent leads to maximal bias (or distortions) in the prediction function; (ii)

restricting the agent to prediction functions that can be fully captured by the best prediction explainer eliminates

the bias and but introduces welfare costs from higher variance; (iii) not restricting the scoring function but

conducting ex-post audits can achieve the first best depending on the type of audit tool used.

No restrictions, no audit. First, assume there is no regulation (no restriction on the prediction function and

no audit). In this case, the misaligned agent will distort the prediction function to reflect his preferences and lead

to maximal bias. Expected welfare is reduced due to the bias introduced by the misaligned agents.

Example: Medical Testing The misaligned practitioners distort the prediction model by shifting risk predic-

tions up on average,

f(X) = (α+ ∆overall) + β X1 + γ X2 + δ X1 ·X2.

Expected welfare is reduced relative to the first-best choice f ≡ s (for which welfare is zero) due to the bias

introduced by the misaligned agents,

E[W (f ; d)] = −∆2
overall.

Example: Lending The misaligned lender distorts the credit score by shifting credit scores up on average and

also give applicants with high utilization relatively higher credit scores,

f(X1, X2) = (α+ ∆overall) + β X1 + (γ + ∆high utilization)X2 + δ X1 ·X2.

Expected welfare is reduced relative to the first-best choice f ≡ s (for which welfare is zero) due to the bias

introduced by the misaligned agents,

E[W (f ; d)] = −(∆overall + p∆high utilization)2 − p(1− p)∆2
high utilization.
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Example: Hiring The misaligned hiring agency builds the best fit prediction model. This prediction function

leads to an expected welfare loss equal to the employer’s weight on distributional equity,

E[W (f ; d)] = −λ (Eµ[s(X)|G = 0]− Eµ[s(X)|G = 1])2.

This policy leads to maximal distortion, representing an inefficient welfare outcome.

Ex-ante model restrictions. Second, assume that the principal restricts the admissible prediction functions.

This solution is successful at eliminating bias but comes at the cost of introducing variance because the ex-

ante model restriction no longer allows the agent to exploit the information in the training signal about the

deployment state. The principal faces a form of bias–variance trade-off. If the principal imposes no restriction on

the prediction function, she risks that the agent will distort the prediction function in line with his preferences. In

contrast, if she restricts the prediction function in order to eliminate this bias, she has to accept higher variance

since the prediction function is more likely to mis-predict given the ex-ante restrictions. In the full model below,

we show generally that if the size of the preference misalignment is small relative to the variance of the underlying

parameters governing the outcome of interest, imposing ex-ante restrictions on the prediction function is never

optimal.

Example: Medical Testing The agent and the principal disagree about the intercept term in the prediction

function f . If the misalignment is large enough, the principal can fix the overall expectation ex-ante. The

misaligned medical practitioner now builds a prediction function of the form

f(X) = E[α+ .5β + pγ + .5pδ]︸ ︷︷ ︸
overall expectation fixed ex-ante

+b (X1 − .5) + c (X2 − p) + d (X1 − .5) · (X2 − p)

to comply with the restrictions imposed by the principal. While this policy perfectly aligns choices from the

restricted set (similar to the aligned delegation solution in Frankel, 2014), it comes at the cost of not fully

tracking the realized value of γ, yielding welfare of E[W (f ; d)] = −Var(α+ .5β + pγ + .5pδ). The welfare loss is

driven by the variance induced by the ex-ante restriction.

Example: Lending When the misalignment between regulator and lender is large and the regulator considers

ex-ante restrictions as the only policy options, then the regulator would restrict the agent to build credit scoring
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functions of the form

f(X1, X2) = E[α+ .5β] + (E[γ + .5δ])X2︸ ︷︷ ︸
overall expectation and effect of X2 fixed ex-ante

+b (X1 − .5) + d (X1 − .5) ·X2.

The agent is still allowed to fit the coefficient on past default X1 and its interaction with utilization X2 after

observing the training signal because the lender and regulator preferences are aligned over this component. The

downside of the restriction is that these parameters cannot be adjusted to respond to the realization of the

parameters that govern default, and there now is welfare loss due to the variance induced by a scoring function

that cannot flexibly respond to the information about the deployment state for a total welfare of

E[W (f ; d)] = − (Var(α+ .5β + p(γ + .5δ)) + p(1− p) (Var(γ + .5δ))) .

Example: Hiring Assume that the first variable X1, relevant job experience, is uncorrelated with minority

status but that the second variable X2, a high school degree, is negatively correlated with minority status. If

the employer’s preference for equality is large enough, the employer imposes an ex-ante restriction that fixes the

coefficients associated with X2. The misaligned medical practitioner now builds a prediction function of the form

f(X) = a+ b (X1 − .5) + E[γ + .5δ]X2︸ ︷︷ ︸
effect of X2 fixed ex-ante

+d (X1 − .5) ·X2.

An extreme version of this restriction would be to force the prediction model to leave out X2 completely, which

would ensure equal distribution of predicted values across groups. While this restriction perfectly aligns choices

over the prediction function, it comes at the cost of restricting the agency from adjusting the prediction parameters

to the information about the data generating process received in the training signal, leading to welfare loss due

to variance induced by the ex-ante restrictions. The expected welfare under this restriction is

E[W (f ; d)] = −p(1− p) Var(γ + .5δ).

Audit based on ex-post signal. Third, the principal could audit based on the public signal g(f ; d). However,

the principal faces a challenge. The principal cannot distinguish whether an adverse public signal is likely due

to the choice of the prediction function by the agent, or an adverse realization of either the distribution µ over

observables X or the parameters of the data generating process s(X). Indeed, we will argue in Section 4 that the

principal is unable to rely on the public signal about the realized outcome to take her audit decision: Since the
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choice f of the agent does not change which signal g(f ; d) the principal can observe (even though f makes some

outcomes much more likely than others), deciding to fail an audit for any value of g(f ; d) would impose expected

utility of −∞ on all agents, no matter their choice.

Example: Medical Testing The public signal g(f ; d) consists of the fraction of patients who undergo further

testing who test positive for heart attack. Penalizing the agent whenever this yield is low is generally inefficient.

Since yield could be low either because of a distorted prediction model, or because there were a large number of

patients with characteristics that make a heart attack difficult to predict.

Example: Lending The public signal g(f ; d) consists of the default rate among a high-risk group of subprime

loan applicants. Since only the overall default rate within this group is observed, the regulator cannot distinguish

whether an adverse outcome (i.e. a very high default rate) is likely due to the choice of credit score by the

lender, or the distribution of subprime borrowers, or an economic shock that increased their propensity to default

endogenously.

Example: Hiring The public signal g(f ; d) consists of the differences in job performance predictions between

minority and majority groups. If there is substantial uncertainty about the distribution of minority job applicants,

then the employer will not generally be able to infer whether high disparities g(f ; d) is due to the agency’s choice

of f or the presence of a high number of job applicants with an abnormally low job performance given observables.

Audit based on prediction explainer. Fourth, we consider the case where the principal does not restrict

the prediction function, but conducts an ex-post audit based on the best prediction explainer. Recall that the

best prediction explainer is equivalent to a linear regression of the predicted values produced by the prediction

function on an intercept and X1. In order to pass the audit, the misaligned agent now builds a prediction function

that is indistinguishable from the aligned agent’s model based on the best prediction explainer. The prediction

explainer partially aligns choices by enforcing e0f = e0s. However, the agent can still induce a distortion to

reflect his preference which is not captured by the prediction explainer. Expected welfare is reduced due to this

remaining bias.

Example: Medical Testing The medical practitioner now builds the following credit scoring function to pass

the insurance company’s audit: f(X) = s(X). The intercept in the prediction function can no longer be distorted

because this distortion would be revealed by the best prediction explainer. Expected welfare is zero and we obtain

the first best.
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Example: Lending The lender now builds the following credit scoring function to pass the regulator’s audit

f(X1, X2) = α− p∆high utilization + β X1 + (γ + ∆high utilization)X2 + δ X1 ·X2

= s(X1, X2)︸ ︷︷ ︸
first best

+ ∆high utilization (X2 − p)︸ ︷︷ ︸
not detectable by e0

.

The lender can still induce a distortion to reflect his preference for additional risk for applicants with high credit

utilization because the prediction explainer cannot distinguish between models that distort the coefficient on X2

and models that do not. Expected welfare is reduced due to this remaining bias,

E[W (f ; d)] = −p(1− p)∆2
high utilization.

Example: Hiring The employer audits the hiring agency’s prediction function based on the best prediction

explainer, which is equivalent to a regression of the predicted values on an intercept and the indicator variable

of relevant job experience (X1). The hiring agency now builds the best-fit prediction function since the best

prediction explainer focuses on the model behavior with respect to X1 but not X2 (recall that we assume that

X1 and X2 are uncorrelated in this example). This prediction function leads to an expected welfare loss equal to

the employer’s weight on distributional equity,

E[W (f ; d)] = −λ (Eµ[s(X)|G = 0]− Eµ[s(X)|G = 1])2.

This policy leads to maximal distortion, representing an inefficient welfare outcome.

Audit based on targeted explainer. Fifth, we consider the case of no ex-ante restriction and an ex-post

audit based on a targeted explainer. Unlike the prediction explainer, the optimal (targeted) explainer is context-

specific and depends on the source of the preference misalignment. This audit successfully eliminates the incentive

misalignment as long as the explainer is informative about all dimensions of misalignment. This solution can

achieve the first-best outcome for the principal.

Example: Medical Testing The optimal (targeted) explainer in this case is e∗f = Eµ[f(X)], corresponding

to the intercept in a regression on a constant only. Similar to the case of the best prediction-based audit, the

targeted audit successfully eliminates the incentive misalignment and achieves the first best.
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Example: Lending The optimal (targeted) explainer corresponds to linear regression of the agent’s credit

score on a constant and X2, or equivalently,

e∗f =

Eµ[f(X)|X2 = 0]

Eµ[f(X)|X2 = 1]

 .

This targeted audit successfully eliminates the incentive misalignment because the explainer is informative about

both dimensions of misalignment. This solution achieves the first-best credit score f = s for the regulator.

Example: Hiring The optimal (targeted) explainer corresponds to the coefficient on X2 in a linear regression

of the agent’s prediction function on a constant and X2, whether the applicant has a high school degree, or

equivalently,

e∗f =

(
Eµ[f(X)|X2 = 1]− Eµ[f(X)|X2 = 0]

)
.

This targeted audit successfully eliminates the incentive misalignment because the explainer is informative

about the variable that drives the incentive misalignment. Recall that we assume that the agent knows the

principal’s weight on equality λ. This implies that in order to pass the audit, the agent builds a prediction

function that reflects the principal’s taste for equal predictions across groups. This solution achieves the first

best.

The role of dimensionality. In the above example, the ex-post audit based on the targeted explainer was

able to achieve the first best solution. Intuitively, we were able to achieve first best both because the sources of

misalignment were known and because the dimensionality of the explainer (k = 2) was greater or equal to the

dimensionality of the preference misalignment. If the dimensionality of the preference misalignment exceeds that

of the explainer, we are no longer able to achieve first best.

Example: Medical Testing The practitioner’s misalignment could take on one additional dimension beyond

the misalignment over the intercept. In this case, the targeted explainer could still achieve first best. However,

if the misalignment were to also apply to specific sub-groups, e.g., those defined by a past heart attack and

unfavorable EKG tests, then we are no longer able to achieve the first best with a two-dimensional explainer.

Example: Lending Assume the lender’s preference misalignment has an additional dimension, ∆(X1, X2) =

∆overall + ∆high utilization X2 + ∆interaction X2 ·X1. Now, we are no longer able to achieve the first-best score with
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a two-dimensional explainer.

Example: Hiring If minority shares also differed by the interaction between college degree and job experience,

then a two-dimensional explainer would no longer achieve the first best. A two-dimensional explainer could still

achieve a second-best as long as the variation in minority share and the employer’s preference for equality are not

too high.
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3 Documenting the Empirical Relevance of Optimal Regulation

This section demonstrates the empirical relevance of our theoretical results on the optimal regulation of algorithmic

predictions in the context of consumer lending. We describe our data, the empirical setup, and our main results.

We show that different regulatory tools discussed above produce meaningful differences in the extent to which the

lender can generate misaligned credit scoring models. Our demonstration is based on neural networks of varying

complexity.

[EMPIRICAL SECTION CURRENTLY UNDER REVIEW BY DATA PROVIDER]
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4 A Model of Oversight of Algorithms with Explainers

This section develops our general model of the strategic interaction between a principal and a agent that includes explainers.

There is a conflict of interest between the principal and the agent. Only the agent has the technology to calculate complex

prediction functions. The principal can impose ex-ante restrictions on the prediction functions the agent can use, and

ex-post restrictions based on a simple explanation of the prediction function. We spell out the timing and interaction in

this model in Section 4.1 and sketch the general backward-induction solution.

Having set up the general structure of the game, we consider specific quadratic objective functions and linear explanation

mapping to provide insight into the roles of ex-ante restrictions and ex-post explanations in regulation. Section 4.2 spells

out the specific setup. Section 4.3 argues that ex-ante restrictions and multi-purpose explainers are generally inefficient,

while Section 4.4 provides conditions under which a targeted explainer permits a first-best solution and develops some

general properties of second-best solutions. We discuss extensions of the model in Section 4.5.

4.1 A General Regulation and Explanation Game

We consider a game between a agent and a principal with misaligned preferences. The agent of type θ ∈ Θ observes an

initial (training) state s ∈ S and chooses an allocation or prediction function f = f(s) ∈ F . The principal puts constraints

on the prediction function f chosen by the agent. After the prediction function f is chosen, a subsequent (deployment)

state d ∈ D is realized, leading to agent utility Uθ(f ; d) and principal welfare W (f ; d).

We assume that there is a conflict of interest between the agent and the principal; specifically, utility Uθ and welfare W

are not generally the same. For example, the agent and the principal may have different risk assessments or preferences,

or incorporate different distributional considerations.

To overcome this misalignment, the principal can impose static ex-ante restrictions on the prediction functions F

employed by the agent. For example, the principal could restrict the agent to using simple prediction functions. However,

these cannot take into account the realization of the state s ∈ S or the agent type θ ∈ Θ, both of which are ex-ante

unknown to the principal.

To this standard game between the principal and the agent, we add the ability to impose additional restrictions through

an ex-post audit. We assume that once the deployment state d ∈ D is realized, the principal receives a context-specific

signal g(f ; d) about the realized outcome, such as the overall rate at which credit was approved or the overall disparate

impact in the deployment of the credit policy chosen by the agent. When observing an adverse signal g(f ; d), the principal

can however not distinguish between the source of the bad signal; specifically, it could stem from a non-aligned choice f

or from a bad deployment state d.

To distinguish between bad action and bad state in deployment, we assume that the principal cannot observe the full,

potentially very complex, prediction function f ∈ F chosen by the agent, and instead only observes a simple explanation

ef ∈ E . In practice, such a simple explanation may be given by coefficients in a simple model or variable importances
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of a complex model; below, we will restrict it to a projection onto a lower-dimensional space. Based on this explanation,

the principal may then impose sanctions on the agent. In this game, we consider different choices of restrictions to the

functions F as well as explainers e : F → E based on a distribution (θ, s, d) ∼ π.

Assumption 1 (Setup and timing of the regulation game). The timing of this game is as follows:

1. Rule-setting stage. The principal observes the (joint) distribution π over states s ∈ S, d ∈ D and types θ ∈ Θ, and

chooses an explanation mapping e : F → E (and possibly restricts the function space F) to maximize expected welfare.

2. Training stage. The agent observes the type θ ∈ Θ and training state s ∈ S, and chooses a function f ∈ F to

maximize expected utility.

3. Deployment stage. The deployment state d ∈ D and subsequent signal g(f ; d) is realized.

4. Audit stage. The principal audits f based on the training state s, the signal g(f ; d), and the explanation ef ∈ E.

5. Payoff stage. agent utility Uθ(f ; d)− c1audit fails and welfare W (f ; d) are realized.4

We focus for now on the case of c = ∞, so that the agent always avoids the failure of the audit, and the principal can

effectively dictate ef . We assume that the principal has commitment power.

The roles of agent type θ and state s are similar in that they are observable to the agent when deciding on a prediction

function f but are ex-ante unavailable to the principal. We assume that the principal can observe the state s during the

ex-post audit but not the type θ.

The explanation here represents a dimensionality reduction that maps the full prediction function f ∈ F to a smaller

space E of interpretable explanations. Below, we will provide a concrete restriction of this mapping to represent the idea

of lossy information compression.

4.2 Quadratic Loss Functions and Linear Explainers

Having described a general setup, we now aim to describe the consequences of different ex-ante restrictions and ex-post

explainers, and ultimately solve for second-best regulation. In order to obtain tractable examples, we focus on a specific

implementation with quadratic loss functions and linear explainers that will, among others, nest the examples presented

in Section 2. This specific structure will allow us to characterize first-best and second-best solutions.

Assumption 2 (agent utility and principal welfare). Prediction functions are n-dimensional real-valued vectors f ∈ Rn,

over which agent and principal have preferences given by quadratic loss functions

Uθ(f ; d) = −(f − u)′ΩU (f − u) (u = u(d, θ) ∈ Rn,ΩU = ΩU (d, θ) ∈ Rn×n),

W (f ; d) = −(f − w)′ΩW (f − w) (w = w(d) ∈ Rn,ΩW = ΩW (d))

4We assume that the training state s and the deployment state d are jointly distributed; in particular, these would be correlated
in typical applications, so that the training state s conveys information about the realization of d. Hence, while utility and welfare
vary with s, we express this relationship only implicitly through the deployment state d.
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with bliss points w, u and symmetric positive semidefinite weight matrices ΩU ,ΩW .

For these utility and welfare functions, the (infeasible) oracle choice for agent and principal are u and w, respectively.

Such a structure could be motivated by a model that considers prediction functions across buckets of individuals in the

population, possibly with different weights between agent utility and social welfare. Indeed, the structure of these utility

functions does nest, in particular, that of the illustration in Section 2. Indeed, the distribution over covariates X can be

captured by the weight matrices, while additive terms that are linear in the prediction function f can be incorporated

by completing the square.5 The representation of predicted values in terms of (high-dimensional) vectors is by itself not

really restrictive, since each dimension could be a (potential) individual defined by a unique intersection of measured

characteristics. The varying bliss points could represent different risk preferences or risk assessments which can vary both

with the state and the agent type, or different distributional preferences that can also vary across types.

Utility depends on the realization on the deployment state. Since the agent takes choices and the principal evaluates

explanations based on the training state s, it will also be helpful to consider expected utility given s and integrating over

the conditional distribution of d. Assumption 2 implies that, up to an additive part that does not depend on the choice

of function f and is thus not relevant for optimal choices, we obtain a similar structure for the conditional utility given s

only:

Corollary 1 (Expected agent utility and expected principal welfare). Given state s, expected agent utility and principal

welfare can be expressed, up to a constant, as

Uθ(f ; s) = −(f − u)′ΩU (f − u) (u = u(s, θ) ∈ Rn,ΩU = ΩU (s, θ) ∈ Rn×n),

W (f ; s) = −(f − w)′ΩW (f − w) (w = w(s) ∈ Rn,ΩW = ΩW (s))

with bliss points w, u and symmetric positive semidefinite weight matrices ΩU ,ΩW .

For our results below, it would be enough to impose the weaker restriction on utilities and welfare from this corollary,

rather than the stronger ex-post structure in Assumption 2.

We next capture the idea of ex-ante restrictions to smaller function spaces and ex-post explanations in terms of simpler

features through linear projections.

Assumption 3 (Ex-ante restrictions and ex-post explanations). Explanations are formed by linear projections

e : Rn ⊇ F 3 f 7→ ef ∈ E = Rk, e ∈ Rn×k.

5An additional linear term would be without loss since

−(f − x)′Ω(f − x) + 2ω′(f − y)︸ ︷︷ ︸
=(Ω−1ω)′Ω(f−y)

+z = −(f − x− Ω−1ω)′Ω(f − x− Ω−1ω) + const.,

where we assume wlog that Ω has full rank (otherwise we can modify Ω appropriately to incorporate ω), and const. does not depend
on f and is therefore not directly relevant for choices of the agent.
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When we consider linear restrictions to the function space F , we consider restrictions of the type

F = {f ∈ Rn;Af = a}, A ∈ Rm×n, a ∈ Rm.

We capture explanations by linear mappings to a smaller space to implement the idea that the explanations yield

a lower-dimensional representation of the full predicted value in a tractable way. This definition does not constrain

explanations to be expressed in specific ways, such as in terms of primitive features of the data. We could add such

constraints to the optimization problem faced by the principal, but for now focus on an unconstrained linear explainer.

While many explanation tools may not be linear, linearity allows us precise expressions about what it means to represent

a complex function in terms of a simple projection, while avoiding information-theoretic challenges arising from non-linear

maps, such as compressing all dimensions into a single real variable without losing any information. Linear restrictions

on functions incorporate, in particular, restrictions that ensure that the function is fully explainable (i.e., in which case A

would be of rank m = n− k).

4.3 Limits of Ex-Ante Restrictions, Ex-Post Assessments, and General-Purpose Explainers

Before we describe optimal principaly solutions in the game outlined in Assumption 1, we consider three extreme cases

that represent standard practical approaches: First, to constrain the predicted value ex-ante to simple functions that can

be fully audited, which fully aligns choices at the cost of flexibility; second, to audit only based on the ex-post signal about

some target quantity; and third, not to constrain choices, but to regulate based on ex-post explanations that capture as

much as possible of the variation in the predicted value via what we will call a “prediction explainer” and make precise

below. We argue that neither of those three solutions is generally optimal in our model.

First, the principal could constrain the functions to a k-dimensional space that is thus perfectly explainable. For

example, the principal could require that the agent only uses linear regression on a fixed set of covariates to perform their

prediction task, and reports the coefficients of this simple linear regression. In this case, the preference misalignment is

fully resolved and choices are as if the principal takes them. This solution is not generally optimal:

Remark 1 (No restriction without substantial misalignment). Restricting the agent to fully explainable function is not

generally optimal. Specifically, assume for simplicity that ΩU = ΩW and both are constant almost surely. If Varπ(w) �

Eπ[(u− w)(u− w)′] (where � represents the order between matrices implied by positive definiteness) then a restriction to

explainable functions is never optimal for any k < n, and indeed dominated by not restricting the agent at all.

The intuition behind this result is straightforward: Restricting the predicted value to explainable functions yields an

aligned choice from the restricted functions, but involves excess variance on those components that the principal suppresses

ex-ante; if that variance is above the cost u − w of misalignment in the same components induced by the agent’s bliss-

point choice u, then no such restriction can be optimal. When there is some substantial misalignment, some amount of

restriction can be optimal, but it will not generally be optimal to restrict predicted values to be fully explainable unless
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the misalignment is large and universal.

Another extreme solution would be to audit solely based on the realized signal g(f ; d), which depends on the choice

f of the agent as well as the realized deployment state d. However, regulating based on realized outcomes will generally

be inefficient, since the principal cannot distinguish whether an adverse outcome stems from an undesired choice by the

agent or an unfortunate realization of the deployment state. If the principal still decided to audit based on realizations

of g(f ; d), then the agent now has to avoid any f that can lead to an impermissible outcome. As long as learning g(f ; d)

does not rule out any choice f , this constellation is not optimal in our setup:

Remark 2 (Limits of simple ex-post assessments). Assume that the support of g(f ; d) given s does not depend on f or

on s. If the agent does not participate if expected utility is −∞ (but participates otherwise) and the principal prefers the

agent’s unrestricted choice to the agent not participating, then the principal will not use the signal g(f ; d) in her audit.

While we do not otherwise consider participation constraints and assume that agents generally participate unless they

face −∞ utility, we provide this result to demonstrate the limits of conditioning on the realized signal, and focus below

on audits that do not use this information.

To understand this result, assume that the principal were to approve a agent only for some values in the support of

g, holding all information about the training state s fixed. In that case, there is always positive probability of failing

the audit, giving the agent −∞ expected probability from participating. This results thus relies heavily on a failed audit

having arbitrarily bad consequences to the agent. If we instead allowed for a flexible penalty, then ex-post assessments

could improve welfare outcomes. We discuss such an extension in Section 4.5 below.

A final solution would leave functions ex-ante unrestricted, but then impose restrictions on their explainer (instead of

the ex-post signal g). A natural explainer to consider would be one that recovers as much information as possible about

the function it explains, which we call the “prediction explainer”:

Definition 1 (Prediction explainer). For some symmetric positive definite matrix Ω and function f̂ = f̂(s, θ) (and fixed

dimension k), the prediction explainer for f̂ is the projection e : Rn → Rk, f 7→ eF that preserves most of the information

about f̂ , i.e.

e0 = arg min
e

Eπ[(f̂ − Eπ[f̂ |ef̂ ]︸ ︷︷ ︸
best prediction based on explainer

)′Ω(f̂ − Eπ[f̂ |ef̂ ])].

For example, when Ω simply represents prediction quality as in the example in Section 2, and f̂ a prediction of the

true prediction function, then the optimal explainer represents coefficients on those features that are most predictive of the

true prediction function. It implements the idea of a general-purpose explainer for the predicted value-prediction exercise.

We now apply this explainer to the problem at hand:

Remark 3 (Inefficiency of the prediction explainer). Assume that the principal audits based on the prediction explainer

for the first-best choice f̂ = w, the unconstrained choice f̂ = u, or the equilibrium choice by the agent (and the principal’s
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or agent’s weight matrix, which we assume to be fixed). Then the average welfare of the resulting prediction function is

weakly better than not auditing the agent at all, but generally suboptimal relative to ex-post audits based on an optimal

explainer.

We present an example of suboptimality in Section 2 above. The idea behind suboptimality is the same in the general

case: since none of the explainers mentioned here is specific to the nature of preference misalignment between agent and

principal, it is not generally optimal.

4.4 Optimal Ex-Post Audits Through Targeted Explainers

Above, we saw that neither rigid restrictions nor general-purpose explanations will be optimal since they fail to target

the difference in the preferences of agent and principal appropriately. In this section, we explore how a targeted explainer

can improve outcomes, and even obtain the first-best outcome f = w. The main idea behind such an optimal explainer

is that it represents the misalignment between the agent and the principal, rather than focusing its limited expressiveness

inefficiently. Throughout, we will focus on audits that do not explicitly use the ex-post signal g(f ; d), motivated by

Remark 2 where the principal cannot distinguish definitively between the choice f and the realization d.

Our first main result is that when preference misalignment is limited to at most k dimensions, then we can achieve the

first-best outcome in terms of welfare:

Proposition 1 (First-best solution through targeted explanation). Assume that ΩU ,ΩW are fixed and that rank(Ω
1/2
U −

Ω
1/2
W ) + rank Eπ[(u− w)(u− w)′] ≤ k. Then there is an explainer that achieves the first-best solution f = w of the agent,

yielding maximal expected welfare W (f ; s) ≡ 0 across all states and for all agent types. Further, the optimal solution does

not include any ex-ante restrictions.

The rank condition expresses that both the differential weighting and the different prediction targets can be aligned by

an explainer that projects the full space of predicted values into a k-dimensional feature space of explanations, provided

these explanations are chosen optimally. If the weighting is the same, then the optimal explainer takes a particularly

intuitive form:

Proposition 2 (Optimal explainer for different prediction targets). Assume that ΩU ≡ Ω ≡ ΩW with Ω constant and that

rank Eπ[(u−w)(u−w)′] ≤ k. If rank Varπ(u−w) = rank Eπ[(u−w)(u−w)′] then the prediction explainer for u−w (with

weight matrix Ω) achieves the first-best welfare outcome f = w.

The optimal explainer in this case focuses solely on those components of the predicted value that agent and principal

may disagree on, which are those components that express a difference in targets between the two. If rank Varπ(u−w) <

rank Eπ[(u−w)(u−w)′], we can still achieve a first-best by expanding the prediction explainer to components that represent

a constant disagreement. Indeed, we can achieve a first-best by combining ex-ante restrictions and ex-post explanations

in the latter case:
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Proposition 3 (Optimal combination of restrictions and explanation for different prediction targets). Assume that ΩU =

Ω = ΩW with Ω fixed and that rank Varπ((u−w)(u−w)′) ≤ k. Then we can achieve a first-best solution by a combination

of ex-ante restrictions and ex-post explanation, where the explainer is the prediction explainer for u−w (with weight matrix

Ω).

The previous results characterize cases in which we can achieve the first-best welfare outcome. In general the mis-

alignment between agent and principal may imply that even an optimal explainer in combination with an optimal ex-ante

restriction cannot achieve first-best welfare. In that case, a second-best solution would only include ex-ante restrictions

when the misalignment is sufficiently large in those components that are not captured by the explainer:

Proposition 4 (No ex-ante restriction without substantial uncaptured misalignment). Assume that ΩU = Ω = ΩW with

Ω fixed. If λ(n)(Varπ(Ω1/2w)) ≥ λ(k+1)(Eπ[(Ω1/2(u−w))(Ω1/2(u−w))′]), where λ(i) represents the i-th highest Eigenvalue,

then there is a second-best solution of the principal that does not involve any ex-ante restrictions.

The intuition for this result is a straight extension of the reasoning behind Remark 1: When an optimal explainer

targets the biggest disagreements between agent and principal, then any restriction can only ever be adding welfare if the

uncertainty around states – as expressed by Varπ(Ω1/2w) – is sufficiently low relative to the remaining misalignment after

aligning choices through ex-post explanations.

Overall, the conditions in these illustrative results are sufficient, but not necessary. Our model allows for solving for

optimal explainers and ex-ante restrictions beyond these edge cases. Note also that none of these results hinge on the

distinction between unknown and unverifiable type θ ∈ Θ and unknown but ex-post verifiable state s ∈ S, since only the

latter is directly welfare relevant.

4.5 Extensions

We have focused here on a simple linear model to make precise our discussion of the properties of the role of explainers

in optimal regulation. We end on noting that the framework in Section 4.1 extends naturally to considering directly

the binary assignment of an outcome (rather than the prediction function), more general notions of explainability, and

additional restrictions on what the principal can learn about the state (such as restrictions on learning even about welfare-

relevant realizations). Within the linear framework, one natural extension would further limit explainers to linear maps

that are forced to use certain interpretable features only, rather than allowing for arbitrary linear combinations of available

features.

Finally, we have here argued that the use of the ex-post signal g(f ; d) – which may represent the realized disparate

impact or the realized default rate – is limited unless it allows for a definite inference about the choice f of the agent.

This result is linked to the assumption that the cost to the agent of a failed audit is arbitrarily high. If the principal could

instead decide on a cost schedule based on, say, f and g(f ; d), then this would add additional options for the principal,

such as penalties akin to a Pigouvian tax.
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5 Conclusion

As the use of machine learning (ML) and artificial intelligence (AI) becomes more ubiquitous, new questions arise about

how the use of these algorithms should be governed. Our paper provides policy-relevant guidance for algorithmic oversight.

We argue that new trade-offs emerge as algorithmic decision-making opens up the possibility of inspecting, or auditing, the

underlying model. In particular, we argue that entities overseeing the use of algorithms (the ‘principal’) face a trade-off

between complexity and oversight. On the one hand, we want those who build prediction tools (the ‘agents’) to be able

to exploit the full gains from advances in prediction technology in a wide array of settings, including credit markets, labor

markets, the justice system, and medical care. On the other hand, if the entities overseeing the use of algorithms are

limited in how much they can learn about the underlying models, oversight becomes more challenging.

We show that algorithmic audits, in particular those based on targeted explainers, can mitigate this trade-off. Our

results emerge from a principal-agent setup with an agent who predicts an outcome of interest and a principal who can

both specify ex-ante restrictions on the prediction function and conduct ex-post audits. Welfare gains from audits are

realized if principals request information not about what drives the average prediction of risk but instead about what

drives particular types of mis-prediction. In most settings, the optimal policy allows agents to fully exploit the complexity

of ML/AI technology but inspects the parts of the model that are most likely to drive incentive misalignment.

We investigate the empirical relevance of our theoretical results in the context of unsecured consumer lending. We

design an empirical optimization problem that mimics the problem that the misaligned agent solves in our theoretical

model. Our empirical work aims to demonstrate that the solutions we provide are both computationally feasible and have

the ability to meaningfully improve welfare. The detailed empirical results of this exercise are currently under review by

the data provider.
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