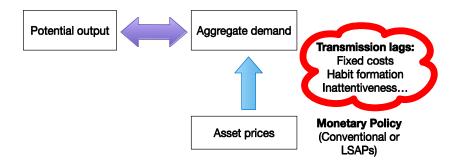

Monetary Policy and Asset Price Overshooting: A Rationale for the Wall/Main Street Disconnect

Ricardo J. Caballero Alp Simsek

Summer 2021

Post-Covid shock: Wall Street/Main Street disconnect


Cover page of the Economist on May 9, 2020, "A dangerous gap..."

This paper:

- Optimal monetary policy with transmission lags
 - Policy overshoots asset prices to close gaps. Temporary disconnect
- Method to quantify policy-induced overshooting, applied to Covid-19 (similar to van Binsbergen (2020), Knox&Vissing-Jorgensen (2021))
- Constrained overshooting: Cyclicality of price response to macro news

Key friction: Asset prices affect output with lags

Chairman Powell (2020): "monetary policy must be forward looking, taking into account... the lags in its effect on the economy"

Roadmap

1 Asset price overshooting and disconnect

Quantifying the asset price overshooting in the Covid-19 recession

Goods market: Spending responds sluggishly to wealth

Continuous time NK model with fully sticky goods prices (relaxed)

$$y\left(t\right)=c^{s}\left(t\right)$$

ullet At each t, only a fraction of "stockholders" adjust. Hazard rate heta

$$\dot{c}^{s}\left(t\right) = \theta\left(c^{s,adjust}\left(t\right) - c^{s}\left(t\right)\right)$$

Adjusters' spending depends on the aggregate asset price (log utility)

$$c^{s,adjust}(t) = mp(t) + ny(t)$$

⇒ Asset prices affect output, but with lags:

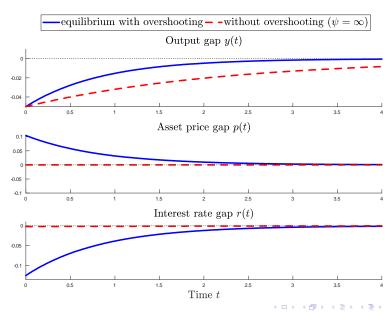
$$\dot{y}(t) = \theta(mp(t) + ny(t) - y(t))$$

Monetary policy: Fed closes output & asset price gaps

• No uncertainty, $r^{f}(t) = r(t)$. Fed "sets" return on aggregate asset

$$r(t) = \frac{\rho}{1+\rho} (y(t) - \rho(t)) + \frac{1}{1+\rho} \dot{\rho}(t)$$

ullet Fed "sets" p(t) with implied r(t) to minimize the discounted sum of


$$\frac{y(t)^2}{2} + \underbrace{\psi \frac{p(t)^2}{2}}$$

aversion to overshooting asset prices

⇒ Fed controls asset prices to close gaps, subject to lags

$$\rho V(y) = \max_{p} -\frac{y^2}{2} - \psi \frac{p^2}{2} + V'(y)\dot{y}$$
$$\dot{y} = \theta (mp - (1-n)y)$$

Main result: Negative output gap => Overshooting

Main result holds in various extensions

Time-varying risk premium:

- Planner controls $r\left(t\right)=r^{f}\left(t\right)+\xi\left(t\right)$, where $\xi\left(t\right)$ is risk premium
- Countercyclical premium: More aggressive $r^f(t)$ response to gaps

Endogenous inflation (in paper):

- Disinflationary pressures induce the CB to overshoot by more
- (Some) overshooting is implied by Taylor-type policy rules

Preemptive overshooting (in appendix):

- Anticipated future gaps, e.g., temporary supply recession (Covid)
- Preemptively boost asset prices to start recovery with a smaller gap

Roadmap

Asset price overshooting and disconnect

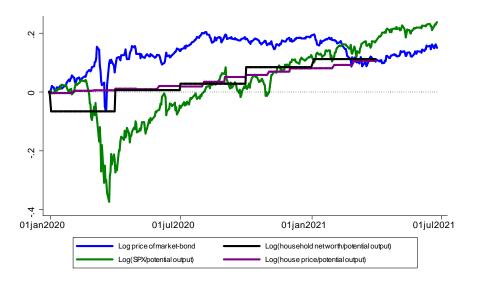
2 Quantifying the asset price overshooting in the Covid-19 recession

Market-bond portfolio helps quantify overshooting

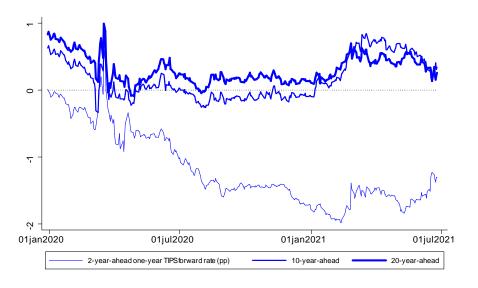
MB: Bond portfolio that matches duration of dividend strips of market

Captures direct impact of monetary policy on asset prices

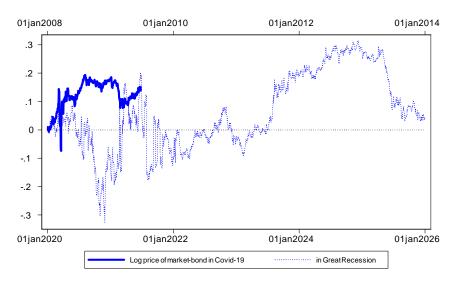
$$p\left(t\right) = \underbrace{p^{MB}\left(t\right)}_{\text{forward interest rates}} + \underbrace{p^{O}\left(t\right)}_{\text{cash flows/other}}$$


Can be measured from treasury (TIPS) yields or forwards

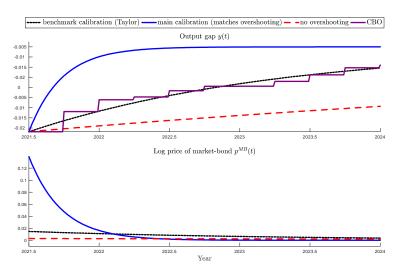
$$\dot{p}^{MB}\left(t
ight) = -\int_{0}^{\infty} w_{\mu} \mu \frac{\partial y\left(t,\mu\right)}{\partial t} d\mu \text{ where } w_{\mu} = e^{-\rho\mu} \rho$$


$$= -\int_{0}^{\infty} W_{\mu} \frac{\partial f\left(t,\mu\right)}{\partial t} d\mu \text{ where } W_{\mu} = \int_{\mu}^{\infty} w_{\tilde{\mu}} d\tilde{\mu} = e^{-\rho\mu}$$

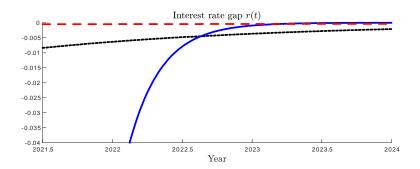
We set ho=0.03 and bunch weights at $\overline{\mu}=30$ (van Binsbergen (2020))


Overshooting in the Covid-19 recession has been large

Overshooting is partly driven by long-term forwards



Overshooting was much faster than in the Great Recession



Calibration: Overshooting will accelerate the recovery

MPC is 3 cents. Average lag is 2 years (Chodorow-Reich et al. (2021))

LSAPs might have substituted for large rate cuts

LSAPs: Other frictions—risk absorption (CS (2021)), segmentation...

- ullet Close substitute to rate cuts conditional on same impact on $p\left(t\right)$
- $p^{MB}(t)$ weight \Longrightarrow Long-term yield cuts ~Large short rate cuts

Conclusion: Policy-induced overshooting and "disconnect"

With transmission lags, optimal policy overshoots asset prices

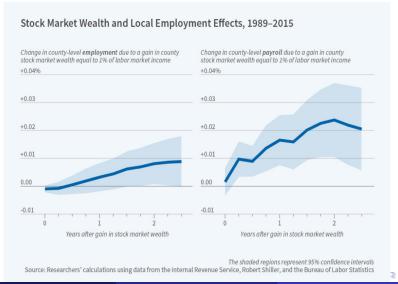
• Overshooting accelerates the recovery. Disconnect is temporary

Market-bond helps to quantify the policy-induced overshooting

In the Covid-19 recession, overshooting has been exceptionally large

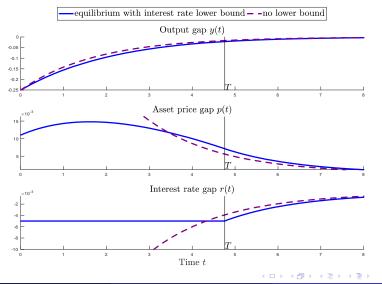
- Calibration: Induces fast recovery. Fed needs to taper soon!
- Driven in part by LSAPs that can substitute for large rate cuts

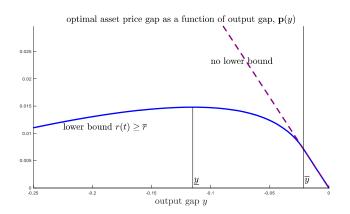
Constrained monetary policy: **Nonmonotonic overshooting**



• **Price impact of macro news** depends on stage of the recovery

Stock market wealth effect holds but with lags


Chodorow-Reich, Nenov, Simsek (2021), NBER digest coverage



Constrained policy induces nonmonotonic overshooting

In other recessions, MP/LSAPs can be constrained. Consider $r(t) \ge \underline{r}$

Asset price response to news changes over the cycle

- $y(0) < \underline{y}$ (far from T) Good news are good news $\frac{dp(0)}{dy(0)} > 0$
- $y(0) > \underline{y}$ (near T) Good news are bad news $\frac{dp(0)}{dy(0)} < 0$
- Consistent with the evidence in Law, Song, Yaron (2020)