Spatial Production Networks*

Costas Arkolakis Yale University **Federico Huneeus** Central Bank of Chile Yuhei Miyauchi

Boston University

1

July 30, 2021 NBER Summer Institute Urban Meeting

 $^{^{\}ast}$ The views and opinions expressed are those of the authors alone and do not necessarily reflect those of the Central Bank of Chile.

Motivation

Key feature of a modern economy is the geographic complexity of production networks

- Fragmented across countries, regions, firms
- ▶ "Global Value Chains": Important for countries' & regions' economic success (World Bank '19)
- "Macro" and "micro" approaches (Johnson '18, Antras-Chor '21)
 - ▶ Macroeconomics determined by production network across countries and regions
 - ▶ Microeconomics of how firms form endogenous production networks

Motivation

Key feature of a modern economy is the geographic complexity of production networks

- Fragmented across countries, regions, firms
- ▶ "Global Value Chains": Important for countries' & regions' economic success (World Bank '19)
- "Macro" and "micro" approaches (Johnson '18, Antras-Chor '21)
 - ▶ Macroeconomics determined by production network across countries and regions
 - ► Microeconomics of how firms form endogenous production networks
 - ► Limited understanding of how "macro" and "micro" interact across countries/regions

Motivation

Key feature of a modern economy is the geographic complexity of production networks

- Fragmented across countries, regions, firms
- "Global Value Chains": Important for countries' & regions' economic success (World Bank '19)

"Macro" and "micro" approaches (Johnson '18, Antras-Chor '21)

- Macroeconomics determined by production network across countries and regions
- Microeconomics of how firms form endogenous production networks
- ▶ Limited understanding of how "macro" and "micro" interact across countries/regions

Goal: Study endogenous network formation in space and their aggregate implications

- ► How do production networks endogenously form across countries/regions from firm decisions?
- ▶ How do networks endogenously respond to macro shocks & its aggregate/distributional effects?

This Paper: Theory, Empirics and Quantitative Analisys

Microfounded model of spatial production networks with tractable aggregation

- Firms search and match with suppliers and buyers in the geographic space
- ▶ Characterize aggregate trade flows with gravity equations in extensive and intensive margins
- Establish existence and uniqueness, counterfactuals, sufficient statistics for welfare

This Paper: Theory, Empirics and Quantitative Analisys

Microfounded model of spatial production networks with tractable aggregation

- Firms search and match with suppliers and buyers in the geographic space
- Characterize aggregate trade flows with gravity equations in extensive and intensive margins
- Establish existence and uniqueness, counterfactuals, sufficient statistics for welfare

Apply this model to administrative firm-to-firm transaction level data from Chile

- Stylized facts about spatial production networks motivating model choices
- Calibrate to i) observed inter- & intra-national trade and ii) observed responses of production networks to international trade shock
- > Study effects of two counterfactual shocks on domestic networks and welfare
 - (1) International trade shocks on global value chain, (2) Domestic transportation infrastructure
 - Findings: Strong responses of domestic networks, with aggregate and distributional effects

Literature

"Macro" approach of production networks

Yi (2003, 2009); Johnson-Noguera (2012); Caliendo-Parro (2015); Johnson-Moxnes (2019); Antras-Chor (2019); Huo-Levchenko-Pandalai-Nayar (2020)

"Micro" approach of production networks

Bernard-Moxnes (2018); Oberfield (2018); Lim (2018); Huneeus (2018); Bernard-Moxnes-Saito (2019); Dhyne-Kikkawa-Mogstad-Tintelnot (2020); Bernard-Dhyne-Magerman-Manova-Moxnes (2020); Zou (2020); Demir-Fieler-Xu-Yang (2021)

- Endogenous production networks in space
 Eaton-Kortum-Kramarz (2018); Antras-de-Gortari (2020); Miyauchi (2021); Panigraphi (2021)
- Microfounded gravity trade models and sufficient statistics approach
 Eaton-Kortum (2002); Eaton-Kortum-Kramarz (2011); Arkolakis-Costinot-Rodriguez-Clare (2012);
 Costinot-Rodriguez-Clare (2014); Melitz and Redding (2014, 2015); Ossa (2015)

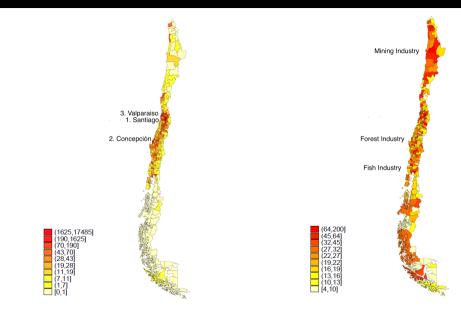
Propagation of shocks in production networks

Acemoglu-Carvalho-Ozdaglar-Tahbaz-Salehi (2012); Acemoglu-Akcigit-Kerr (2016); Carvalho-Nirei-Saito-Tahbaz-Salehi (2021); Caliendo-Parro-Rossi-Hansberg-Sarte (2018); Adao-Carrillo-Costinot-Donaldson-Pomeranz (2020)

Outline

- **1** Data and Descriptive Facts
- 2 Model
- **3** General Equilibrium Analysis
- 4 Quantitative Analysis
- 5 Conclusion

Data and Descriptive Facts


Domestic firm-to-firm transaction-level dataset in Chile

- ▶ Collected by Internal Revenue Service for value-added tax collection purposes
- ► Covers the universe of domestic trade between all firms in Chile regardless of firm size
- For each transaction, observe dates, seller and buyer firm ID, sales, products, prices, seller's and buyer's municipality

Linked to various firm data sets:

- Customs data (for imports and exports)
- ▶ Firm balance sheet characteristics (for total sales)
- Matched employer-employee dataset (for employment and wages)

Population Density (left) and Number of Buyers per Firm (right)

• Fact 1: The number of domestic suppliers and buyers per firm is correlated with both firms' geographic location and firm size Details

- Fact 1: The number of domestic suppliers and buyers per firm is correlated with both firms' geographic location and firm size Details
 - \Rightarrow Model supplier-buyer formation decision based on geographic location and productivity

- Fact 1: The number of domestic suppliers and buyers per firm is correlated with both firms' geographic location and firm size Details
 - \Rightarrow Model supplier-buyer formation decision based on geographic location and productivity
- Fact 2: Number of supplier-buyer relationships between municipalities (extensive margin) and the volume of transaction per relationship (intensive margin) decay in geographic distance at different rates (Details)

- Fact 1: The number of domestic suppliers and buyers per firm is correlated with both firms' geographic location and firm size Details
 - \Rightarrow Model supplier-buyer formation decision based on geographic location and productivity
- Fact 2: Number of supplier-buyer relationships between municipalities (extensive margin) and the volume of transaction per relationship (intensive margin) decay in geographic distance at different rates Details
 - \Rightarrow Model will imply distinct gravity equations in intensive & extensive margins

- Fact 1: The number of domestic suppliers and buyers per firm is correlated with both firms' geographic location and firm size Details
 - \Rightarrow Model supplier-buyer formation decision based on geographic location and productivity
- Fact 2: Number of supplier-buyer relationships between municipalities (extensive margin) and the volume of transaction per relationship (intensive margin) decay in geographic distance at different rates (Details)
 - \Rightarrow Model will imply distinct gravity equations in intensive & extensive margins
- Fact 3: Domestic firm network linkages increase with global import cost shocks

Firm-level impacts of import shocks using shift-share design (Autor et al '13, Hummels et al '14)

$$\Delta \log y_{it} = \alpha_0 + \alpha_1 \sum_{c,k} \times + \epsilon_{it}$$

Firm-level impacts of import shocks using shift-share design (Autor et al '13, Hummels et al '14)

$$\Delta \log y_{it} = \alpha_0 + \alpha_1 \sum_{c,k} \underbrace{\mathbf{w}_{ickt_0}^{D}}_{import / \text{ total input by firm } i} \times + \epsilon_{it}$$

Firm-level impacts of import shocks using shift-share design (Autor et al '13, Hummels et al '14)

Firm-level impacts of import shocks using shift-share design (Autor et al '13, Hummels et al '14)

$$\Delta \log y_{it} = \alpha_0 + \alpha_1 \sum_{c,k} \underbrace{\mathbf{w}_{ickt_0}^{D}}_{\text{import } / \text{ total input by firm } i} \times \underbrace{\Delta \log WES_{ckt}}_{c'\text{s export of } k \text{ except Chile}} + \epsilon_{it}$$

		Domestic Suppliers		Dome	Domestic Buyers	
	Sales	Number	Mean Value	Number	Mean Value	
	(1)	(2)	(3)	(4)	(5)	
Import Shift-Share Shock	0.516	0.253	0.159	0.048	0.251	
	(0.167)	(0.093)	(0.160)	(0.144)	(0.250)	
Export Shocks	1	1	1	1	\checkmark	
3-digit Industry Fixed Effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ν	27,516	27,718	27,541	19,600	19,362	

Firm-level impacts of import shocks using shift-share design (Autor et al '13, Hummels et al '14)

$$\Delta \log y_{it} = \alpha_0 + \alpha_1 \sum_{c,k} \underbrace{\mathbf{w}_{ickt_0}^{D}}_{\text{import } / \text{ total input by firm } i} \times \underbrace{\Delta \log WES_{ckt}}_{c'\text{s export of } k \text{ except Chile}} + \epsilon_{it}$$

▶ *i*: firm; *t*: year; *c*: country; *k*: product (6-digit HS code); $\Delta = 2009 - 2007$ Robustness 2011-2016

		Domestic Suppliers		Domestic Buyers	
	Sales	Number	Mean Value	Number	Mean Value
	(1)	(2)	(3)	(4)	(5)
Import Shift-Share Shock	0.516	0.253	0.159	0.048	0.251
	(0.167)	(0.093)	(0.160)	(0.144)	(0.250)
Export Shocks	1	1	\checkmark	1	\checkmark
3-digit Industry Fixed Effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Ν	27,516	27,718	27,541	19,600	19,362

 \blacksquare \Rightarrow Model will feature responses of domestic production linkages to cost shocks

Model

Space is partitioned by a finite number of locations $i, u, d \in N$

- Continuum of workers of measure L_i in location i (exogenous)
- Two types of goods: intermediate goods and final goods
 - \blacktriangleright Intermediate goods are traded across locations subject to iceberg trade cost $au_{ud} \geq 1$
 - Single final goods for each location, not traded
- Two types of producers:
 - ► Final goods producers
 - Intermediate goods producers ("firms")

Production

• Unit cost of production by "firm" ω in location *i*

$$z^{\prime}\left(\omega
ight)=rac{1}{z\left(\omega
ight)}w_{i}^{eta}\left(\int_{\upsilon\in\Omega_{\omega}^{l}}p\left(\upsilon,\omega
ight)^{1-\sigma}\,d\upsilon
ight)^{rac{1-
ho}{1-\sigma}}$$

- > $z(\omega)$ is productivity of firm ω
- w_i is local wages
- \triangleright Ω'_{ω} is the set of suppliers that ω has access to (endogenized by search and matching)
- ▶ $p(v, \omega)$ is the price charged by supplier v to ω
- $\blacktriangleright~\sigma$ is the elasticity of substitution for intermediate goods
- Continuum of monopolistic suppliers $\Omega'_{\omega} \Rightarrow p(v, \omega)$ constant markup over marginal cost
- Final goods producers produce using all local intermediate goods (without search frictions) with elasticity of substitution σ under perfect competition

- Production networks linkage are endogenous under search and matching process
- Firms post advertisements for suppliers and buyers across locations to maximize anticipated profits (Arkolakis '10; Demir-Fieler-Xu-Yang '21)
- Aggregate random matching for each pair of locations à la DMP

Firms' Search Decision

$$\pi_{i}(z) = \max_{\{n_{ui}^{S}\}_{u}, \{n_{id}^{B}\}_{d}} \underbrace{\frac{1}{\sigma} \sum_{d \in N} n_{id}^{B} m_{id}^{B} D_{d} (c\tau_{id})^{1-\sigma}}_{Profit from "firm" buyers}} - \underbrace{e_{i} \left\{ \sum_{d \in N} f_{id}^{B} \frac{\left(n_{id}^{B}\right)^{\gamma^{B}}}{\gamma^{B}} + \sum_{u \in N} f_{ui}^{S} \frac{\left(n_{ui}^{S}\right)^{\gamma^{S}}}{\gamma^{S}} \right\}}_{Search costs}$$
subject to $c = \frac{w_{i}^{\beta} \left(\sum_{u \in N} n_{ui}^{S} m_{ui}^{S} (C_{ui})^{1-\sigma} \right)^{\frac{1-\beta}{1-\sigma}}}{z}$

- $\{n_{ui}^S\}_u, \{n_{id}^B\}_d$: number of postings to suppliers and buyers
- m_{ui}^S, m_{ui}^B : matching rates with suppliers and buyers
- e_i : unit price of advertisement services, with $e_i = A_i (w_i)^{\mu} (C_i^*)^{1-\mu}$
- $f_{id}^B, f_{ui}^S, \gamma^B, \gamma^S$: exogenous parameters for search cost
- C_{ui} : average cost of suppliers from u to i
- No profits from sales to final goods producers (assume zero bargaining power)

Total number of supplier-to-buyer relationships determined by matching function: Details

$$M_{ud} = \kappa_{ud} \left(\underbrace{N_d \int n_{ud}^S(z) dG_d(z)}_{Supplier \ Posting}\right)^{\lambda^S} \left(\underbrace{N_u \int n_{ud}^B(z) dG_u(z)}_{Buyer \ Posting}\right)^{\lambda^B}$$

Total number of supplier-to-buyer relationships determined by matching function: Details

$$M_{ud} = \kappa_{ud} \left(\underbrace{N_d \int n_{ud}^S(z) dG_d(z)}_{Supplier \ Posting} \right)^{\lambda^S} \left(\underbrace{N_u \int n_{ud}^B(z) dG_u(z)}_{Buyer \ Posting} \right)^{\lambda^B}$$

• Total number of relationships and average transaction volume from *u* to *d*:

Total number of supplier-to-buyer relationships determined by matching function: Details

$$M_{ud} = \kappa_{ud} \left(\underbrace{N_d \int n_{ud}^S(z) dG_d(z)}_{Supplier \ Posting} \right)^{\lambda^S} \left(\underbrace{N_u \int n_{ud}^B(z) dG_u(z)}_{Buyer \ Posting} \right)^{\lambda^B}$$

• Total number of relationships and average transaction volume from *u* to *d*:

$$M_{ud} = \chi^{E}_{ud} \zeta^{E}_{u} \xi^{E}_{d} \quad (\text{Extensive Margin})$$

$$\overline{r}_{ud} = \chi^{I}_{ud} \zeta^{I}_{u} \xi^{I}_{d} \quad (\text{Intensive Margin})$$

Total number of supplier-to-buyer relationships determined by matching function: Details

$$M_{ud} = \kappa_{ud} \left(\underbrace{N_d \int n_{ud}^S(z) dG_d(z)}_{Supplier \ Posting} \right)^{\lambda^S} \left(\underbrace{N_u \int n_{ud}^B(z) dG_u(z)}_{Buyer \ Posting} \right)^{\lambda^B}$$

Total number of relationships and average transaction volume from u to d:

 $M_{ud} = \chi^{E}_{ud} \zeta^{E}_{u} \xi^{E}_{d}$ (Extensive Margin) $\bar{r}_{ud} = \chi^{I}_{ud} \zeta^{I}_{u} \xi^{I}_{d}$ (Intensive Margin)

Total number of supplier-to-buyer relationships determined by matching function: Details

$$M_{ud} = \kappa_{ud} \left(\underbrace{N_d \int n_{ud}^S(z) dG_d(z)}_{Supplier \ Posting} \right)^{\lambda^S} \left(\underbrace{N_u \int n_{ud}^B(z) dG_u(z)}_{Buyer \ Posting} \right)^{\lambda^B}$$

■ Total number of relationships and average transaction volume from *u* to *d*:

 $M_{ud} = \chi^{E}_{ud} \zeta^{E}_{u} \xi^{E}_{d}$ (Extensive Margin) $\bar{r}_{ud} = \chi^{I}_{ud} \zeta^{I}_{u} \xi^{I}_{d}$ (Intensive Margin)

$$\chi_{ud}^{E} = \varrho^{E} \left[\kappa_{ud} \left(f_{ud}^{B} \right)^{-\frac{\lambda^{B}}{\gamma^{B}}} \left(f_{ud}^{S} \right)^{-\frac{\lambda^{S}}{\gamma^{S}}} \left(\tau_{ud}^{1-\sigma} \right)^{\frac{\lambda^{B}}{\gamma^{B}} + \frac{\lambda^{S}}{\gamma^{S}}} \right]^{\left(1 - \frac{\lambda^{S}}{\gamma^{S}} - \frac{\lambda^{B}}{\gamma^{B}}\right)^{-1}} , \chi_{ud}^{\prime} = (\tau_{ud})^{1-\sigma}$$

$$\mathsf{Different spatial structure of "extensive" and "intensive" margins (Fact 2) }$$

General Equilibrium Analysis

Characterizing Equilibrium

• Equilibrium reduced to a $2 \times N$ system on wages w_i and cost shifter C_i^* :

"Buyer access"

$$w_i = \frac{\vartheta}{L_i} \sum_d X_{id}(\{w\}, \{C^*\}, \{\chi^E\}, \{\chi^I\})$$

where $X_{id} = M_{id}\overline{r}_{id}$

"Supplier access"

$$\left(C_{i}^{*}\right)^{1-\sigma} = w_{i}^{\beta\left(1-\sigma\right)} \left[\left(\tilde{\sigma}\right)^{\sigma} \mathbb{M}_{i}\left(\frac{\delta}{\gamma^{S}}\right) N_{i}\right]^{\beta-1} \left(\frac{\sum_{u} X_{ui}}{D_{i}}\right)^{1-\beta}$$

 Similar to previous literature while incorporating endogenous search and matching (Anderson and van Wincoop '03, Reddding and Venables '04, Donaldson and Hornbeck '16)

Characterizing Equilibrium

Rewriting the two equations yields:

$$(w_i)^{1+\tilde{\lambda}^B \delta_2 \mu} (C_i^*)^{(\sigma-1)\delta_2 + \tilde{\lambda}^B \delta_2 (1-\mu)} = \sum_d K_{id}^D (w_d)^{\delta_G} (C_d^*)^{\frac{(\sigma-1)\delta_2}{1-\beta} - \tilde{\lambda}^S \delta_2 (1-\mu)},$$

$$(w_i)^{1-\delta_G} (C_i^*)^{-\frac{(\sigma-1)\delta_2}{1-\beta} + \tilde{\lambda}^S \delta_2 (1-\mu)} = \sum_u K_{ui}^U (w_u)^{-\tilde{\lambda}^B \delta_2 \mu} (C_u^*)^{-(\sigma-1)\delta_2 - \tilde{\lambda}^B \delta_2 (1-\mu)},$$

$$\delta_{G} = \left[\tilde{\lambda}^{S} \mu + \frac{1 - \beta \sigma}{1 - \beta} \right] \delta_{2}; \ \delta_{2} = \left[1 - \tilde{\lambda}^{S} - \tilde{\lambda}^{B} \right]^{-1}; \ \tilde{\lambda}^{B} = \lambda^{B} / \gamma^{B}; \ \tilde{\lambda}^{S} = \lambda^{S} / \gamma^{S}$$

$$\mathsf{K}_{id}^{D} \ \text{and} \ \mathsf{K}_{ui}^{U} \ \text{are combination of exogenous parameters, including} \ \chi_{ud}^{E}, \ \chi_{ud}^{U}, \ L_{i}, \ G_{i}(\cdot)$$

Characterizing Equilibrium

Rewriting the two equations yields:

$$(w_i)^{1+\tilde{\lambda}^B \delta_2 \mu} (C_i^*)^{(\sigma-1)\delta_2 + \tilde{\lambda}^B \delta_2 (1-\mu)} = \sum_d K_{id}^D (w_d)^{\delta_G} (C_d^*)^{\frac{(\sigma-1)\delta_2}{1-\beta} - \tilde{\lambda}^S \delta_2 (1-\mu)},$$

$$(w_i)^{1-\delta_G} (C_i^*)^{-\frac{(\sigma-1)\delta_2}{1-\beta} + \tilde{\lambda}^S \delta_2 (1-\mu)} = \sum_u K_{ui}^U (w_u)^{-\tilde{\lambda}^B \delta_2 \mu} (C_u^*)^{-(\sigma-1)\delta_2 - \tilde{\lambda}^B \delta_2 (1-\mu)},$$

$$\bullet \ \delta_{G} = \left[\tilde{\lambda}^{S}\mu + \frac{1-\beta\sigma}{1-\beta}\right]\delta_{2}; \ \delta_{2} = \left[1 - \tilde{\lambda}^{S} - \tilde{\lambda}^{B}\right]^{-1}; \ \tilde{\lambda}^{B} = \lambda^{B}/\gamma^{B}; \ \tilde{\lambda}^{S} = \lambda^{S}/\gamma^{S}$$

▶ K_{id}^D and K_{ui}^U are combination of exogenous parameters, including χ_{ud}^E , χ_{ud}^I , L_i , $G_i(\cdot)$

- Spans canonical gravity models with roundabout production (with \$\tilde{\lambda}^B = \tilde{\lambda}^S = 0\$) but not vice versa (Eaton-Kortum '02, ACR '12; Caliendo-Parro '14 (single-sector); Costinot and Rodriguez-Clare '14....)
- Provide sufficient conditions for equilibrium existence and uniqueness Details
- Characterize counterfactual equilibrium with $\{X_{id}\}$ and $\{\sigma, \beta, \mu, \tilde{\lambda}^B, \tilde{\lambda}^S\}$ a la DEK \square
- Provide sufficient statistics for welfare ⇒ ACR + Endogenous extensive margin Details

Quantitative Analysis

Calibration

- Locations \equiv 345 municipalities in Chile + China + USA + Germany + "rest of the world"
- Exactly match the bilateral trade flows X_{ud}
 - Using domestic firm-to-firm transaction data and customs data
- $\beta = 0.2$: labor share out of total input expenditure
- {σ, μ, λ̃^B, λ̃^S}: indirect inference targeting the responses of import shocks as Fact 3 Details
 Impose λ̃^B = λ̃^S
 - Impose sufficient conditions for equilibrium uniqueness
- Implement spatial frictions decomposition Details
 - > Decompose bilateral trade frictions into "search and matching frictions" and "iceberg cost"
 - "Search and matching frictions" is more sensitive to geographic distance than "iceberg cost"

Undertake two counterfactual simulations

- 1. International Trade: Effects of shocks on global value chain connected to Chile
- 2. Domestic Transportation Infrastructure: Effects of Chiloe island mega-bridge Details

Two scenarios for both counterfactual simulations

- 1. Baseline ($\tilde{\lambda}^{S} = \tilde{\lambda}^{B} = 0.19$)
- 2. No Endogenous Responses in Extensive Margin ($\tilde{\lambda}^S = \tilde{\lambda}^B = 0$)

1. Effects of Int'l Trade Shocks on Global Value Chain Connected to Chile

Consider a 10% reduction of iceberg trade costs for baseline model

•
$$\hat{\chi}_{ud} = 1.35$$
 for $u, d \in China, Germany, USA$

▶ Give the same shock $\hat{\chi}_{ud}$ in no extensive margin case ($\tilde{\lambda}^{S} = \tilde{\lambda}^{B} = 0$)

• Average welfare gains (percentage points):

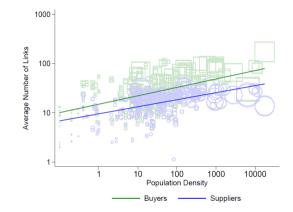
	China	Germany	USA
Baseline	3.65	0.40	2.55
No Extensive	1.54	0.30	1.37
Baseline - No Extensive	2.11	0.10	1.19

- Ignoring endogenous extensive margin substantially underestimates welfare gains
 Substantial distributional effects Details
 - > Positively correlated with direct trade exposure but partially due to indirect effects

Conclusion

Provide a tractable micro-founded model of production networks in space

> Establish existence and uniqueness, counterfactuals, sufficient statistics for welfare


Apply our model to firms' domestic and foreign transaction data from Chile

- > Presents stylized facts about spatial production networks consistent with our model
- In counterfactuals, we find strong responses of domestic networks, which affects aggregate and distributional implications

Framework can also be used for international production networks across countries

Appendix

Number of Domestic Suppliers & Buyers per Firm Relates to Geography Remo

Robust to controlling for firm sales, which are by themselves strongly correlated with the number of links (Bernard et al '19; '20; Lim '18) Table

Model supplier & buyer formation decision based on geographic location and productivity

Cross-Regional Trade Flows in Extensive & Intensive Margins Reum

Estimate the following gravity regressions (*i*, *j* are municipalities in Chile)

$\log \textit{TradeFlows}_{ij} = \beta \log \textit{Dist}_{ij} + \xi_i + \zeta_j + \epsilon_{ij}$

	Total Flows		Intensive (Volume per Relationship)		Extensive (Nu	umber of Relationships)
	(1)	(2)	(3)	(4)	(5)	(6)
Log Distance	-1.324		-0.383		-0.941	
	(0.008)		(0.007)		(0.004)	
Log Time Travel		-1.515		-0.441		-1.074
		(0.010)		(0.008)		(0.004)
R ²	0.640	0.639	0.306	0.306	0.822	0.819
Origin Municipality FE	\checkmark	1	1	1	1	1
Destination Municipality FE	\checkmark	1	1	1	1	1
Ν	65871	65871	65871	65871	65871	65871

Model will feature distinct gravity equations in intensive & extensive margins

Number of Linkages by Geography and Firm Size Reum

 Firm-level regression of the log number of domestic buyers and suppliers on population density and firm sales

		Buyers			Suppliers		
	(1)	(2)	(3)	(4)	(5)	(6)	
Log Density	0.034 (0.001)		0.025 (0.001)	0.115 (0.002)		0.106 (0.002)	
Log Sales		0.422 (0.001)	0.421 (0.001)		0.447 (0.001)	0.445 (0.001)	
<i>R</i> ² Year FE	0.011 ✓	0.458 ✓	0.459 ✓	0.018 ✓	0.197 ✓	0.205 ✓	
State FE <i>N</i>	✓ 380588	✓ 380588	✓ 380588	✓ 381362	✓ 381362	✓ 381362	

Production Networks Respond to Import Cost Shocks: 2011-2016 Reserved

Firm-level impacts of import shocks using shift-share design (Autor et al '13)

- i: firm; t: year; c: country; k: product (6-digit HS code)
- Results below are long difference from 2011 to 2016

				Domest	Domestic Suppliers		Domestic Buyers	
	Imports	Exports	Sales	Number	Mean Value	Number	Mean Value	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Import Shock	0.917	-0.197	0.842	0.226	0.549	0.667	0.395	
	(0.243)	(0.533)	(0.201)	(0.115)	(0.198)	(0.698)	(0.611)	
Export Shocks	1	1	\checkmark	1	1	1	\checkmark	
Industry Fixed Effects	\checkmark	\checkmark	\checkmark	1	\checkmark	1	\checkmark	
Ν	10420	3737	29613	27142	27052	5602	5533	

Solution to Firms' Search Problem

• Optimal advertisements:

$$n_{ui}^{S}\left(z
ight)=a_{ui}^{S}z^{rac{\delta_{1}}{\gamma^{S}}},\ n_{id}^{B}\left(z
ight)=a_{id}^{B}z^{rac{\delta_{1}}{\gamma^{B}}}$$

$$\blacktriangleright \ \delta_1 \equiv (\sigma - 1) / (1 - \frac{1}{\gamma^B} - \frac{1 - \beta}{\gamma^S})$$

• Geographic factors matter for supplier and buyer linkages on top of z (Fact 1)

Unit cost:

$$c_{i}(z) = (C_{i}^{*}) z^{-\frac{\delta_{1}}{\gamma^{S}} \frac{1-\beta}{\sigma-1}-1}; \quad (C_{i}^{*})^{1-\sigma} \equiv w_{i}^{\beta(1-\sigma)} \left(\sum_{u \in N} a_{ui}^{S} m_{ui}^{S} (C_{ui})^{1-\sigma}\right)^{1-\beta}$$

Firm revenue:

$$r_i(z) = D_i^* (C_i^*)^{1-\sigma} (z)^{\delta_1}; \quad D_i^* = \sum_d m_{id}^B a_{id}^B D_d^I (\tau_{id})^{1-\sigma}$$

Aggregate supplier and buyer postings:

$$\overline{M}_{ud}^{S} = N_{d} \int n_{ud}^{S}(z) dG_{d}(z), \quad \overline{M}_{ud}^{B} = N_{u} \int n_{ud}^{B}(z) dG_{u}(z)$$

- \triangleright N_i: measure of firms in location i
- ▶ $G_i(\cdot)$: productivity distribution in location *i*

• Total number of supplier-to-buyer relationships determined by matching function:

$$M_{ud} = \kappa_{ud} \left(\overline{M}_{ud}^{S} \right)^{\lambda^{S}} \left(\overline{M}_{ud}^{B} \right)^{\lambda^{E}}$$

Matching probability (intensity):

$$m_{ud}^{S} = \frac{M_{ud}}{\overline{M}_{ud}^{S}} \quad m_{ud}^{B} = \frac{M_{ud}}{\overline{M}_{ud}^{B}}$$

 Mathematical structure commonly appears in trade and spatial models (Allen, Arkolakis, Li '21):

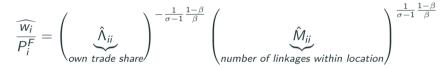
Proposition

If $\frac{\beta(\sigma-1)}{1-\beta} \ge (1-\mu) \left(\tilde{\lambda}^B + \tilde{\lambda}^S\right)$ and $\delta_G \le 1$ then the equilibrium always exists and it is unique up-to-scale.

Responses to Shocks Return

Denote observed import and export share by \$\$\Psi_{id} = \frac{X_{id}}{\sum_{\ell} X_{i\ell}\$}\$ and \$\$\Lambda_{ui} = \frac{X_{ui}}{\sum_{\ell} X_{\ell i}\$}\$
 Consider counterfactual changes in \$\$\hat{K}_{id}^D\$ and \$\$\hat{K}_{id}^U\$ (\$\hat{x} \equiv x'/x\$)\$)

Proposition


The counterfactual changes of wages \hat{w}_i and intermediate cost shifter \hat{C}_i^* are solved by

$$(\hat{w}_i)^{1+\tilde{\lambda}^B\delta_2\mu}\left(\hat{C}^*_i
ight)^{(\sigma-1)\delta_2+\tilde{\lambda}^B\delta_2(1-\mu)} = \sum_d \hat{K}^D_{id}\left(\hat{w}_d
ight)^{\delta_G}\left(\hat{C}^*_d
ight)^{rac{(\sigma-1)\delta_2}{1-eta}- ilde{\lambda}^S\delta_2(1-\mu)}\Psi_{id}$$

$$(\hat{w}_{i})^{1-\delta_{G}} \left(\hat{C}_{i}^{*}\right)^{-\frac{(\sigma-1)\delta_{2}}{1-\beta}+\tilde{\lambda}^{S}\delta_{2}(1-\mu)} = \sum_{u} \hat{K}_{ui}^{U} \left(\hat{w}_{u}\right)^{-\tilde{\lambda}^{B}\delta_{2}\mu} \left(\hat{C}_{u}^{*}\right)^{-(\sigma-1)\delta_{2}-\tilde{\lambda}^{B}\delta_{2}(1-\mu)} \Lambda_{ui}$$

Proposition

Proportional changes of welfare are given by:

\$\tilde{\lambda}^B = \tilde{\lambda}^S = 0 \Rightarrow \tilde{M}_{ii} = 1\$ as in gravity trade models (ACR '12)
\$\tilde{M}_{ii}\$ captures changes in productivity through endogenous search and matching

$$\hat{M}_{ii} = \hat{a}^S_{ii} \hat{m}^S_{ii}$$

which is affected by $\tilde{\lambda}^B$, $\tilde{\lambda}^S$, μ

Estimation and Model Fit Return

Panel (A) Estimated Parameters

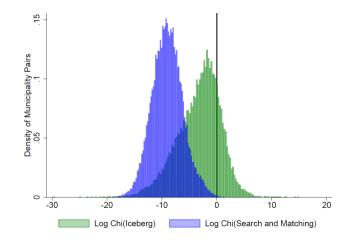
Parameters	Value
β	0.2 (calibrated)
σ	3.07
$\tilde{\lambda}^B = \tilde{\lambda}^S$	0.19
μ	0.74

Panel (B) Model Fit

		Domest	ic Suppliers	Domestic Buyers		
	Imports (1)	Number (2)	Mean Value (3)	Number (4)	Mean Value (5)	
(i) Data						
Import Shock	0.566	0.253	0.159	0.048	0.251	
	(0.206)	(0.093)	(0.160)	(0.144)	(0.250)	
(ii) Model Prediction						
Import Shock	0.572	0.192	0.199	0.155	0.208	

Estimation of Spatial Frictions Return

Decompose bilateral trade frictions into "search frictions" and "iceberg cost"


$$\chi_{ud} = \varrho^{\mathsf{E}} \underbrace{\left[\kappa_{ud} \left(f_{ud}^{\mathsf{B}} \right)^{-\tilde{\lambda}^{\mathsf{B}}} \left(f_{ud}^{\mathsf{S}} \right)^{-\tilde{\lambda}^{\mathsf{S}}} \right]^{\delta_{2}}}_{\equiv \chi_{ud}^{\text{search}}} \underbrace{\left(\tau_{ud}^{1-\sigma} \right)^{\tilde{\lambda}^{\mathsf{B}} + \tilde{\lambda}^{\mathsf{S}} + 1}}_{\equiv \chi_{ud}^{\text{iceberg}}}$$

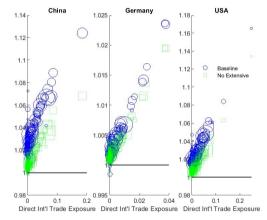
 Use intensive and extensive margin of bilateral trade flows to estimate these costs relative to within-location trade (Head-Ries '01)

$$\tilde{\chi}_{ud}^{\text{iceberg}} \equiv \frac{\chi_{ud}^{\text{iceberg}}}{\chi_{uu}^{\text{iceberg}}} \frac{\chi_{du}^{\text{iceberg}}}{\chi_{dd}^{\text{iceberg}}} = \left(\frac{\overline{r}_{ud}}{\overline{r}_{uu}} \frac{\overline{r}_{du}}{\overline{r}_{dd}}\right)^{\tilde{\lambda}^{B} + \tilde{\lambda}^{S} + 1}, \\ \tilde{\chi}_{ud}^{\text{search}} \equiv \left(\frac{M_{ud}}{M_{uu}} \frac{M_{du}}{M_{dd}}\right) \left(\frac{\overline{r}_{ud}}{\overline{r}_{uu}} \frac{\overline{r}_{du}}{\overline{r}_{dd}}\right)^{-\left(\tilde{\lambda}^{B} + \tilde{\lambda}^{S}\right)\delta_{2}}$$

Estimate these for all pairs of municipalities in Chile (no M_{ud} and \overline{r}_{ud} from customs data)

Distribution of Spatial Frictions Return

Search and matching costs are larger than iceberg costs


Spatial Frictions and Geographic Proximity Return

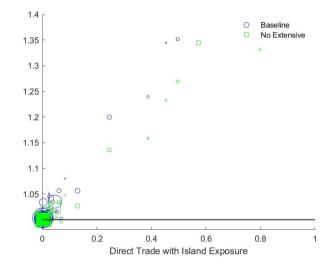
	Iceb	Iceberg		nd Matching
	(1)	(2)	(3)	(4)
Log Distance	-0.376		-0.633	
	(0.007)		(0.004)	
Log Time Travel		-0.436		-0.682
		(0.008)		(0.005)
R^2	0.049	0.053	0.278	0.257
Ν	53956	53956	53956	53956

Search and matching costs is more sensitive to geographic distance than iceberg trade cost

- Consistent with recent literature on search and matching frictions in trade (Chaney '14, Allen '14, Eaton-Kortum-Kramarz '18, Brancaccio-Kalouptsidi-Papageorgiou '20, Lenoir-Martin-Mejean '20, Krolikowski-McCallum '21, Startz '21, Miyauchi '21)
- Use these estimates for a counterfactual of transportation improvement

Heterogeneous Effects by Direct International Exposure Return

Direct international trade exposure (export + import share) strongly correlates with welfare gains
 Baseline model predicts larger indirect effects, as evident from higher intercepts


2. Transportation Infrastructure: Effects of Chiloe Island Mega-Bridge Reun

- Planned to open in 2025 as the largest suspension bridge in South America
 - ▶ Will shorten travel time to mainland from 35 minutes (by ferry) to just 2 minutes
- Simulate the reduction of bilateral trade costs proportional to travel time reduction
 Use travel time elasticities of trade and search costs from cross-section data
- Average welfare gains:

	New Bridge
Baseline	0.84
No Extensive	0.50
Baseline - No Extensive	0.34

Ignoring endogenous extensive margin substantially underestimates welfare gains

Substantial Heterogeneous Welfare Effects from the Bridge Reun

