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Abstract
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1 Introduction

Arbitrage, the practice of making a sure profit off a price difference between two or more
assets, is one of the bedrocks of modern finance. In particular, the absence of arbitrage
opportunities provides a unifying principle to derive tight restrictions among asset prices.
Conventional arbitrage logic relies on the ability to trade frictionlessly. However, different
frictions generate arbitrage gaps in practice, with a growing body of evidence showing that
deviations from the law of one price are widespread. An often heard critique of the existing
empirical literature that identifies these deviations is that it is hard to know whether a
given arbitrage gap is associated with large or small welfare costs. In this paper, we tackle
this issue by providing a framework to measure the welfare gains associated with closing an
arbitrage gap; that is, we study the value of arbitrage.

We initially derive our results within a stylized model of trading in segmented financial
markets. We consider an environment without uncertainty in which two sets of investors
trade identical risk-free assets in two segmented markets: type A investors trade a risk-free
asset in market A, while type B investors trade an identical risk-free asset in market B. If
both markets were fully integrated, the price of the risk-free asset in both markets would be
equal in equilibrium, and no arbitrage opportunities would exist. Instead, we introduce an
arbitrageur sector that can conduct an arbitrage trade — buying in the underpriced market
and selling in the overpriced one — and explore how individual and social welfare vary as
a function of the scale of such trade.! This approach allows us to avoid taking a stance
on the exact frictions that prevent the arbitrageur sector from fully equalizing asset prices
across markets. Conceptually, our approach can be interpreted as a smooth way to move
from an autarky equilibrium to a fully integrated equilibrium.

Our first main result shows that the social marginal welfare gain of an arbitrage trade,
i.e., the marginal value of arbitrage, is given by the arbitrage gap, defined as the price
differential between markets. That is, we show that arbitrage gaps are sufficient statistics
for the social marginal value of arbitrage. While one would expect the marginal value
of arbitrage to increase with the scale of the arbitrage gap, our analysis shows that the
arbitrage gap ezactly corresponds to the social marginal value of arbitrage. Intuitively, the
difference in prices fully captures the difference in willingness to pay between investors in
different markets.

While the arbitrage gap measures the social marginal value of arbitrage, an arbitrage
trade creates distributive pecuniary externalities — using the terminology of Davila and

Korinek (2018) — which cancel out in the aggregate. Accounting for these externalities, we

In Section B in the Appendix, we explicitly model multiple frictions that can endogenously generate a
positive arbitrage gap in equilibrium and show that increasing the scale of the arbitrage trade has equivalent
implications to relaxing a particular friction.



can also characterize the individual marginal value of arbitrage and show that i) the welfare
of both type A and type B investors increases with the scale of the arbitrage trade and b)
the welfare of the arbitrageur sector — given by the arbitrage profits — initially increases
with the scale of the arbitrage trade, reaches a maximum, and then decreases, becoming
zero once the arbitrage gap is closed.

Our second main result shows, exploiting the fundamental theorem of calculus, that
the aggregate total value of arbitrage can be recovered by measuring the arbitrage gap for
different levels of the arbitrage trade m. Intuitively, while prices are sufficient to compute
the marginal gain, it is necessary to use quantity measures — in particular, measures of
price impact — to understand the total value of arbitrage. Therefore, from a practical
perspective, price differentials/arbitrage gaps along with measures of price impact become
sufficient statistics for the value of arbitrage. The main upshot of our approach is that our
results do not rely on specific functional form assumptions and apply widely to a large class
of environments.

Our third main result shows that the value of arbitrage depends on the degree of market
illiquidity. For a given arbitrage gap, the aggregate total value of arbitrage is higher in more
liquid markets, in which price impact is lower. Intuitively, observing an arbitrage gap that
is very easy to close because the market is illiquid implies that welfare losses are small.
Alternatively, finding an arbitrage gap in a market in which prices are not very sensitive to
the quantities traded implies that the value of arbitrage is potentially large.

In the Appendix of our paper, we generalize our results to dynamic environments and
environments with uncertainty, multiple assets, and arbitrary cross-holdings by investors.
These extensions allow us to refine the interpretation of the results of the baseline model
and give us the opportunity to apply the insights from our approach in complex real-world
scenarios.

Our first empirical application examines violations of Covered Interest Parity (CIP).
Using high-frequency data from the Chicago Mercantile Exchange (CME), we compute
price impact estimates for the FX futures market. Combining these estimates with the cross-
currency bases from Bloomberg, following Du, Tepper and Verdelhan (2018), we compute
the magnitude of the gap-closing arbitrage trades and the value of arbitrage for different
currency pairs. We find that all welfare gains from closing CIP arbitrage, even during the
March 2020 start of the COVID-19 crisis in the US, are less than $1.2B in magnitude,
which can be considered small in relation to the size of FX markets. The largest estimated
gap-closing arbitrage trades in the sample period do not exceed $1.22T and never exceed
$455B outside the yen-dollar basis. Our findings can be explained by the fact that precisely
when CIP violations reach their peak in March 2020, price impact also surges, resulting in

only a moderate increase in the gap-closing trade size. More broadly, scenarios of market



distress are commonly associated with illiquidity, which can both contribute to divergence
from covered interest parity as well as increases in the price impact of trades. The fact that
the CIP deviations, while significant, are never larger than 64bps (quarterly) throughout
our sample also contributes to our quantitative findings.

Our second empirical application provides estimates of the welfare gains associated with
closing arbitrage gaps in the case of dual-listed companies (also referred to as “Siamese
twin stocks”). We compute the welfare gains from closing arbitrage gaps in three particular
scenarios: i) Royal Dutch/Shell, the canonical dual-listed company that featured arbitrage
opportunities for nearly a century, ii) Smithkline Beecham, and iii) Rio Tinto. In this
application to dual-listed companies, we combine measures of the arbitrage gaps with the
price impact estimates for global equities from Frazzini, Israel and Moskowitz (2018), who
use a global database of a hedge fund’s $1.7 trillion in stock transactions spanning two
decades. We find that the welfare gains from arbitrage in the Royal Dutch/Shell case peak
at approximately $2B in 1996 when converted to USD. This price divergence appears to
cause a significant welfare loss, in contrast to our CIP results. However, the magnitude
of the arbitrage gap for Royal Dutch/Shell is extreme — the price deviation at the time of
maximum welfare gains is over 20%, despite the fact that the company had a market cap
of over $100B at the time. Because of the significant size of the arbitrage gap, a trade
size equal to around 20B pound sterling is required to close the arbitrage gap. Unlike with
CIP deviations, the persistence of extreme deviations from parity over many years results
in an extended period over which the welfare gains from closing price deviations in Royal
Dutch/Shell are over $1B.

Finally, we show that the value of closing arbitrage gaps is not large for all dual-listed
arbitrages. In the case of Smithkline Beckham (US-based) and Beecham (UK-based), we
find minuscule welfare gains due to the limited liquidity of the UK-traded shares. Similarly,
for the case of Rio Tinto PLC/Ltd, which experiences the smallest mean absolute divergence
of all the studied twin shares, we find minimal welfare gains from closing price deviations
at most times. The combination of lower liquidity than Royal Dutch/Shell, as measured
by dollar trade volume, and limited divergence from parity yields a smaller magnitude of

welfare gains, consistent with our theory.

Related Literature The absence of arbitrage opportunities is considered by many to be
the fundamental theorem of finance, and every modern finance textbook (e.g., Duffie (2001),
Cochrane (2005), and Campbell (2017)) develops the implications of no-arbitrage pricing.
However, following Shleifer and Vishny (1997), there is a growing literature that studies the
frictions that impose limits to arbitrage. For example, limits to arbitrage are the result of

funding constraints in Xiong (2001); of collateral constraints in Gromb and Vayanos (2002),



Liu and Longstaff (2004), and Kondor (2009); and of a non-competitive arbitrageur sector
in Oehmke (2009), Duffie and Strulovici (2012), and Fardeau (2016). Most of this literature
has a positive focus and studies how the behavior of arbitrageurs impacts price dynamics.

The work by Gromb and Vayanos (2002), which has a normative emphasis, is perhaps the
most closely related to ours. They show that the competitive equilibrium in an environment
in which financially constrained agents arbitrage between segmented markets is constrained
inefficient. More recently, Hébert (2020) argues that arbitrage gaps can be part of the
optimal regulation that tackles pecuniary or aggregate demand externalities — see Déavila
and Korinek (2018) and Farhi and Werning (2014). In contrast to these papers, we do not
seek to determine whether a given arbitrage gap implied by an equilibrium with financial
frictions is efficient. Instead, in the spirit of Lucas (1987) and Alvarez and Jermann (2004),
we seek to understand the welfare impact of a hypothetical experiment that eliminates the
underlying frictions that prevent arbitrage gaps from closing. Methodologically, our paper
is closest to the work of Alvarez and Jermann (2004), who tackle the question of what
are the potential gains from reducing business cycles, which corresponds to a hypothetical
experiment in which business cycle fluctuations could be eliminated. To our knowledge, we
provide the first framework to quantify the potential welfare gains from closing arbitrage
gaps.?

Our empirical exercises are motivated by the recent evidence documenting and
rationalizing the systematic breakdown of covered interest parity as well as by the
persistence of deviations from arbitrage relations in dual-listed companies. The covered
interest parity (CIP) literature includes Du, Tepper and Verdelhan (2018), who find
persistent deviations from CIP starting with the Great Financial Crisis. They demonstrate
that these violations occur for many currency pairs in the post-crisis period 2010 to 2016,
and cannot be attributed solely to transaction costs or credit risk differences between the
arbitrage legs. The consistent presence of these arbitrage opportunities is connected with
the implications of the Supplementary Leverage Ratio (SLR) Rule explored by Duffie and
Krishnamurthy (2016): with post-crisis regulatory constraints on banks’ balance sheets,
arbitrage opportunities arise as intermediation of large arbitrage trades becomes infeasible.
This is directly explored in Boyarchenko et al. (2020), who show that CIP arbitrage
offers limited returns in the recent regulatory regime and use hedge fund return data to
explore the impact of regulation, particularly the SLR, on leverage-dependent hedge funds’
returns. Meanwhile, Amador, Bianchi, Bocola and Perri (2020) develop a model of how CIP

violations can arise as a direct result of the zero lower bound constraints on monetary policy

2Conceptually, our approach is also related to the work of Gourinchas and Jeanne (2006), who measure
the gains from international financial integration within a calibrated neoclassical model. They find that such
gains are small for plausible calibrations.



in conjunction with exchange-rate targeting policies, as illustrated by the Swiss National
Bank throughout much of the past decade.

The application of our framework to dual-listed companies is motivated by the work of
Froot and Dabora (1999) and De Jong, Rosenthal and Van Dijk (2009). Froot and Dabora
(1999) find that when a company is listed on two different exchanges with a fixed cash
flow claim ratio across the two instruments, the violations of parity with that ratio can be
extreme, sometimes exceeding 30%. This finding holds even for extraordinarily liquid and
large equities like Royal Dutch/Shell, one of the largest oil majors. De Jong, Rosenthal and
Van Dijk (2009) show that despite this fact, trading strategies that would take advantage
of twin share divergences possess low Sharpe ratios and significant left tails.

Our measurement of price impact is motivated by extensive theoretical and empirical
literatures that stress the square root law of price impact, which states that prices react
to large signed orders with a change approximately proportional to the square root of
the order size. On the theory side, Gabaix, Gopikrishnan, Plerou and Stanley (2003) use
a model of large trader dynamics with first-order risk-averse liquidity providers to show
how a Zipf’s law for institutional trader size results in a square root price impact function.
Several empirical studies have supported this conclusion using different data sets and varied
empirical approaches. In particular, Gabaix, Gopikrishnan, Plerou and Stanley (2006) find
a square root power law using large-cap French stock data from the 1990s, while Frazzini,
Israel and Moskowitz (2018) use two decades of actual stock execution data from a large
hedge fund and find the same power law behavior. Finally, our results are also related to
the recent work by Gabaix and Koijen (2021), who study the role played by trading flows
in shaping asset prices. Section G in the Appendix connects our price impact estimates to

theirs.

Outline Section 2 introduces the baseline model, while Section 3 presents the welfare
implications of closing arbitrage gaps. Sections 4 and 5 develop the empirical applications
and Section 6 concludes. All proofs and derivations are in the Appendix. The Appendix

also include extensions of our baseline model and robustness results for our applications.

2 Baseline Model

In this section, we characterize the value of arbitrage in a stylized model of trading in
segmented financial markets. The simplicity of the model allows us to transparently
illustrate the approach that we develop in this paper. In the Appendix, we generalize

our results to an environment with uncertainty and multiple assets.



2.1 Environment

There are two dates t = {0,1} and a single consumption good (dollar), which serves as
numeraire. There is no uncertainty. There are 2 markets, indexed by A and B. The
economy is populated by type A investors, type B investors, and arbitrageurs. Type A
investors exclusively trade in market A, while type B investors exclusively trade in market
B.

In market A, type A investors (in unit measure) trade a risk-free asset (asset A) with
payoff d; > 0 at date 1. The price of this asset is p4. In market B, type B investors (also in
unit measure) trade a different risk-free asset (asset B) with an identical payoff d; at date
1. The price of this asset is pP.

First, we describe the problem that both types of investors face. Subsequently, we

describe the problem of arbitrageurs.

Market A: Investors’ Problem Investors in market A have time-separable utility, with
a flow utility of consumption u4 (c), which satisfies standard regularity conditions, and a
discount factor 84. They have dollar endowments n‘04 and n{' and hold an initial position
¢?, in the traded asset. Hence, the demand of type A investors for asset A is given by the

solution to

n;?x UA (064) + Baua (cf)

subject to the budget constraints

pAg + g = nj

c{‘ = n‘f‘ +di q()“,
A_ A _ A A A : :
where Agy' = ¢y — ¢, and where ¢{' and c¢i' denote the consumption of type A investors

at dates 0 and 1, respectively.

Market B: Investors’ Problem Investors in market B face the same problem as
investors in market A. Investors in market B also have time-separable utility, with a flow
utility of consumption upg (c¢), which satisfies standard regularity conditions, and a discount
factor Bg. They have dollar endowments nf and n and hold an initial position ¢”; in the

traded asset. Hence, type B investors choose ¢’ as the solution to

n;(%qu (C?) + Bpup (clB)



subject to the budget constraints

PPAG +ef =nf

cf’ = nf + dlqég ,
where AgP = ¢F — ¢B, and wh 5 and ¢? denote th ti f type B invest
9o = qp — q=; and where ¢y and ¢ denote the consumption of type B investors

at dates 0 and 1, respectively.

Arbitrageurs Arbitrageurs (indexed by «) are the only agents who can trade in both
markets A and B. For simplicity, we assume that arbitrageurs have no initial endowments
of dollars or assets, and that their flow utility is linear. Arbitrageurs implement a trading
strategy with zero cash flows at date 1 and receive the date 0 revenue generated by such
a strategy. Formally, denoting the asset purchases of arbitrageurs in markets A and B by

qg‘A and ¢§® | respectively, the date 0 revenue of arbitrageurs is given by

— (ra8" +1%a8"). (1)
which is subject to the following zero-cash-flow constraint at date 1:

di (45" +q5”) = 0. 2)

From Equation (2), it follows that arbitrageurs always follow a one-for-one long/short

strategy that includes assets A and B, that is, qu = —qyB. By defining
m= q(O)‘A = —qS‘B

as the size/scale of the arbitrage trade, we can express the utility of the arbitrageurs as a

function of m, denoted by V¢ (m, pA, pP ), after normalizing their date 1 utility to 0, as
ve (m,pt,p?) = (7 = p*) m. (3)

Whenever m > 0, arbitrageurs are buyers in market A and sellers in market B, and vice
versa when m < 0. As we describe next, instead of making assumptions on the behavior of
arbitrageurs (i.e., whether they are competitive, strategic, face different types of financing
constraints, etc.), we take the scale of the arbitrage trade m as a primitive of the model

and focus on the impact of varying m on social welfare.3

31f arbitrageurs had concave utility, with endowments n§ and n$, their utility would take the form:

Ve (m,p*,p") = ua ((p° — ™) m+n§) + Batia (nF).



2.2 Equilibrium

We now define and then characterize a notion of competitive equilibrium — an arbitrage

equilibrium — in this environment.

Definition. (Arbitrage equilibrium) An arbitrage equilibrium, parametrized by the scale of
the arbitrage trade m, is defined as a set of consumption allocations, asset holdings, and
prices p? (m) and p® (m) such that i) investors maximize utility subject to their budget

constraints, and ii) the asset markets A and B clear; that is,

Agy +m=0
Agl —m =0.

Going forward, we proceed under the two following assumptions. First, without loss of
generality, we assume that the equilibrium price in market B is higher than in market A

when there is no arbitrage activity (m = 0). Formally,
p” (0) —p™ (0) > 0.

Second, we restrict our attention to scenarios in which the equilibrium price in market A
(B) is an increasing (decreasing) function of m. Formally, we suppose that the equilibrium

price functions p# (m) and p? (m) satisfy

a'tm) AP )

dm dm <0

This assumption makes the model well-behaved by avoiding scenarios in which prices in an
asset market fall (increase) when there is higher (lower) demand for the asset. Our empirical
results in Sections 4 and 5 are consistent with this assumption. It is straightforward to
provide conditions on primitives that guarantee that this assumption is satisfied.

An important object in our main results is the price differential between the two identical
assets, in particular as a function of the scale of the arbitrage trade m. We refer to this
price differential, which we denote by Gpa (m), as the arbitrage gap.* Formally, Gpa (m) is
given by

Gpa (m) =p” (m) —p*(m).  (arbitrage gap) (4)
In terms of the newly defined arbitrage gap, Gpa (m), our second assumption implies

B A
that Gl 4 (m) = % dé@m) .y dr(nm) < 0. That is, the arbitrage gap narrows as the size of the

arbitrage trade m increases. We denote by m* the scale of the arbitrage trade that closes

4Sometimes Gpa (m) is called an arbitrage basis.



the gap, such that p? (m*) = p® (m*). We refer to this level of trade as the gap-closing
arbitrage trade. Going forward, to simplify the exposition, we always suppose that m lies
in [0, m*].

Figure 1 illustrates the behavior of the allocations and prices of an arbitrage equilibrium
as a function of m. Its left panel shows the equilibrium allocations of assets A and B for
type A and type B investors as a function of the scale of the arbitrage trade m. Its right
panel shows the equilibrium prices in market A and market B as a function of the scale of
the arbitrage trade m. The right panel illustrates how the arbitrage gap converges to 0 as
m approaches the gap-closing trade m*.

Equilibrium allocations Equilibrium prices
A B . pA,p
40> 9 P )

m m

Figure 1: Equilibrium allocations and prices

Note: The left panel of Figure 1 shows the equilibrium allocation of the type A and B investors as a function
of the scale of the arbitrage trade m. The right panel of Figure 1 shows the equilibrium price in market A

and market B as a function of the size of the arbitrage trade m. It includes the gap-closing arbitrage trade,

m”.

Before analyzing the welfare implications of our model, we conclude the characterization
of the equilibrium with two remarks.
Remark 1. (Unspecified limits to arbitrage) It is obvious that a fully unconstrained perfectly
competitive sector would compete away any arbitrage profits until p? (m*) = p? (m*).
Therefore, when indexing the equilibrium by the scale of the arbitrage trade m, we implicitly
assume that there is some friction in the background that makes arbitrageurs unwilling
or unable to reach the unconstrained competitive benchmark. Since our goal is to reach
conclusions that are independent of the specific underlying frictions that are relevant for
a particular scenario, we purposefully avoid modeling any friction explicitly. However, we
know that there is a one-to-one mapping between varying the scale of arbitrage m and

loosening/tightening the friction that prevents complete price equalization.® In Section B

SIf the scale of arbitrage m were chosen by a mass of unconstrained competitive arbitrageurs, the solution

10



in the Appendix, we formally explain — in the context of multiple microfounded models —
how trading frictions or departures from competitive behavior can endogenously generate

positive arbitrage gaps of the form considered in this section.

Remark 2. (Autarky equilibrium and integrated equilibrium as special cases of arbitrage
equilibrium) In the Appendix, we define two related notions of equilibrium: an autarky
equilibrium, in which m = 0, and an integrated equilibrium, in which both assets in markets
A and B trade under a single integrated market clearing constraint and arbitrageurs are
redundant. In an integrated equilibrium, p?A = p? by assumption. In general, it is hard
to compare the outcomes of an autarky equilibrium and an integrated equilibrium. The
approach we develop in this paper can be interpreted as a smooth way to connect both
equilibria. In the Appendix, we formally show that increasing the scale of the arbitrage
trade m is a form of smoothly converging to the integrated equilibrium from the autarky

equilibrium.

3 The Value of Arbitrage

After characterizing the form taken by an arbitrage equilibrium, we now study its welfare
properties. We denote the indirect utilities of type A and B investors as a function of
the relevant asset price by VA (pA (m)) and VP (pB (m)), respectively. As described in

Equation (3), V¢ (m, pA (m),pB (m)) denotes the utility of arbitrageurs.

3.1 DMarginal Value of Arbitrage

First, we characterize how individual and aggregate welfare change when we vary the scale
of the arbitrage trade m. We refer to this as the marginal value of arbitrage. We express
all individual welfare assessments in money-metric terms, measured in date 0 dollars, i.e.,
normalizing by an agent’s date 0 marginal utility of consumption, denoted by )\OA, B,
and A\, respectively, and aggregate welfare in terms of this money-metric representation.b

Formally, the change in aggregate welfare induced by increasing the scale of the arbitrage

to the arbitrageurs problem would take the form:

—o0, ifpt>p?
m =
00, if p? < p®,

with p4 = p® being the only outcome compatible with the existence of a competitive equilibrium.
5This approach can be interpreted as selecting a set of uniform “generalized social marginal welfare
weights” — described in Saez and Stantcheva (2016) — for all agents.
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trade m, which we denote by %, takes the form

dVA(m dVEB(m dVe(m
dw (m) _ dns : + dns : + dT7(7, :
N Ay

dm )\OA

where % and all its constituents are measured in date 0 dollars. Proposition 1 introduces

the first main result of the paper.

Proposition 1. (Marginal value of arbitrage)
a) (Individual marginal value of arbitrage) The marginal value of arbitrage, that is, the
marginal value of increasing the scale of the arbitrage trade m € [0, m*], measured in date

0 dollars, for type A investors, type B investors, and arbitrageurs, is respectively given by

W2 () dp? (m)

— 0
v am 7
B
4 (m) _ dp® (m) (—m) >0
)\(]]3 dm
ave B A
o (m) dp” (m) dp”(m) B A\ >
— _ . =0
N ( ™ g | mpT (m) = p”(m)

b) (Social marginal value of arbitrage) The social marginal value of arbitrage, that is,
the marginal value of increasing the scale of the arbitrage trade m, aggregated and measured
in date 0 dollars, is given by

—— =y

T A (m) > 0. (5)

Proposition 1la) shows that increasing the scale of the arbitrage trade has two types
of first-order welfare effects: direct effects and pecuniary effects, which affect the types of
agents in this economy differently. The direct effects, which correspond to the arbitrage gap
" (
Intuitively, a unit increase in the scale of the arbitrage trade yields a profit of p? (m)—p

m) — p? (m), only affect the welfare of arbitrageurs directly and are zero for investors.
A (m)
dollars to the arbitrageurs. The pecuniary effects can be interpreted as the “distributive”

pecuniary externalities of increasing the scale of the arbitrage trade, using the terminology

in Déavila and Korinek (2018). These externalities, which include the terms in which %

B
and %2 7 (m) appear, are well understood.” In Walrasian environments, the dollar value of

m
changes in equilibrium prices in any given market is zero-sum, due to market clearing. Note

that Proposition 1a) implies that the impact of pecuniary effects is zero when m — 0. This

"Gromb and Vayanos (2002) is the first paper that identifies this type of pecuniary externality in models
of arbitrage. See Geanakoplos and Polemarchakis (1986), Lorenzoni (2008), or Dévila and Korinek (2018),
for work that studies this type of externality in different contexts.
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implies that only the direct effects that accrue to arbitrageurs matter when the amount
arbitraged is small.

Proposition 1b) shows that the pecuniary welfare effects cancel out in the aggregate in
dollar terms for any value of the arbitrage trade m — not only when m — 0 — leaving
the direct effects as the single source of marginal aggregate welfare gains. While intuitive,
we are to our knowledge the first to identify the arbitrage gap as the measure of the social
marginal value of arbitrage in a general equilibrium environment. Importantly, while one
would expect the value of closing an arbitrage gap to be increasing in the size of the arbitrage
gap, our analysis shows that the arbitrage gap exactly corresponds to the social marginal
value of arbitrage.

While most of the paper is focused on characterizing and measuring aggregate welfare
effects, Proposition 1a) has clear distributional welfare consequences. We summarize those

in the following corollary.

Corollary 1. (Distributional consequences of arbitrage) An increase in the scale of
the arbitrage trade m always makes type A and type B investors better off. Starting from
m = 0, arbitrageurs are initially better off as the size of the arbitrage trade m increases, but
there is a level of m such that further increases in m make arbitrageurs worse off. Hence,

increasing the scale of arbitrage is Pareto improving for low values of m.

Figure 2 illustrates the individual and social marginal value of arbitrage for each of the
agents. While the welfare of investors in both markets increases with m, the welfare of the
arbitrageur sector follows a “Laffer” curve. First, the structure of the arbitrage problem
is such that the distributive pecuniary effects always improve the welfare of investors in
markets A and B. This occurs because increasing the scale of the arbitrage trade increases
the price in market A and type A investors are net sellers of that asset (to arbitrageurs), so
they profit from selling at higher prices. Symmetrically, increasing the scale of the arbitrage
trade reduces the price in market B and type B investors are net buyers of that asset (from
arbitrageurs), so they profit from buying at lower prices.

Second, an increase in m always nets arbitrageurs the arbitrage gap, but the distributive
pecuniary effects are always negative for them, for the opposite reasons that distributive
effects make investors better off: an increase in m increases the price in market A, in
which arbitrageurs buy, and lowers the price in market B, in which arbitrageurs sell.
If we had a monopolist arbitrageur, m would be given by the solution to % =08

Interestingly, introducing a monopolist arbitrageur generates a Pareto improvement in the

pZ(m)—p*(m)

_ [ dpB(m) _dpA(m)
dm dm

8Formally, the optimality condition for m of a monopolist arbitrageur is m = , while

the condition that defines the equilibrium when the arbitrageur sector is competitive is given by p? — p?.
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model considered here. As discussed above, competitive arbitrageurs would trade until

p? = pA, in turn eliminating all arbitrage profits.

GBa

.
|

i<
39

a

<]

Figure 2: Marginal Value of Arbitrage

Note: Figure 2 shows the marginal value of arbitrage for type A investors, for type B investors, and for
arbitrageurs, all as a function of the scale of the arbitrage trade m, as characterized in Proposition 1. For
reference, it also shows the arbitrage gap.

While the distributional consequences of closing arbitrage gaps are interesting and worth
studying further, our paper is focused on aggregate welfare implication for two reasons.
First, in more complex environments in which a given investor trades in many asset markets
— like the one considered in Section C — there are no clear predictions for the welfare
of a given individual investor, since the pecuniary effects can potentially take different
signs in different markets for that same individual. Second, in the context of the empirical
applications, one would need i) portfolio level information (net trade positions), ii) investors’
valuations (differences in MRS) for different investors, and iii) the pecuniary impact of
arbitrage trades to be able to measure individual welfare effects.? Measuring these objects
lies outside of the scope of this paper.

In the following remark, we highlight that our model and, consequently, our welfare

results, do not account for additional externalities.

Remark 3. (Absence of additional externalities) Note that the economy presented in this
section is constrained efficient whenever the arbitrage gap is zero. It is straightforward to
show that if there were non-pecuniary externalities associated with the arbitrage trade, the

social marginal value of arbitrage would have to account for how changing m affects those.

9D4vila and Korinek (2018) identify these three elements as the key determinants of distributive pecuniary
externalities. Despite its importance, there has been no theory-based empirical work of any of these elements.
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For instance, if closing an arbitrage gap exacerbated a pollution externality somewhere in
the economy, this would have to be accounted for as part of the marginal welfare effect
of closing a gap. Importantly, it is not the presence of additional choices which calls for
augmenting the characterization of marginal social welfare gains, but whether these choices
are associated with externalities, i.e., are constrained inefficient, or not. In any case, the
direct marginal welfare effect of closing gap, in Equation (5), never vanishes. For this reason,
it is natural to interpret our welfare calculations as capturing the direct welfare gains from

closing arbitrage gaps.

3.2 Total Value of Arbitrage

Next, by relying on the fundamental theorem of calculus, we characterize the total value of

arbitrage and study its properties. Proposition 2 introduces the second main result of the

paper.

Proposition 2. (Social value of arbitrage)
a) (Social value of arbitrage) The (total) social value of arbitrage, that is, the aggregate
value associated with a change in the size of the arbitrage trade from mq (any given arbitrage

trade) to m* (the gap-closing arbitrage trade), measured in date O dollars, is given by

* *

W (m*) — W (mg) = " W' (m)dm = " Gpa (m)dm. (6)

mo mo

b) (Sufficient statistics) It is sufficient to know i) the initial arbitrage gap, Gpa (mo),
A
and i) measures of price impact in both markets A and B, that is, CClle and %, to exactly

compute the social value of arbitrage, since

m ~ A/~
Gpa (m) = p® (mo) — p* (mo) +/ <de (m) _ dp (m)> dm.

mo dm dm

Proposition 2a) combines the fundamental theorem of calculus and our characterization
in Proposition 1b). Intuitively, if the social marginal value of arbitrage is given by Gg4 (m),
by adding over the arbitrage gaps for different values of m we can recover the total social
value of arbitrage. Proposition 2b) shows that knowing the existing arbitrage gap and how
this gaps evolves with m (through price impact) is sufficient to be able to compute the
social value of arbitrage.

It is worth highlighting that the exact characterization of the social value of arbitrage is
expressed as a function of equilibrium objects (prices and arbitrage trades). In this sense,
our characterization is valid regardless of the specific assumptions made on the primitives

of the model. In other words, as long as it is possible to come up with measures of price
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gaps and the size of the gap-closing arbitrage trade, it is possible to compute the social
value of arbitrage without the need to fully specify the primitives of the economy. Thus,

Proposition 2 provides the foundation of our empirical applications in Sections 4 and 5.
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Figure 3: The value of arbitrage and market liquidity

Note: Figure 3 illustrates the social value of closing an arbitrage gap for two different economies that start
with the same arbitrage gap. The area with horizontal lines defines the total social value of arbitrage for
the economy in which markets are illiquid (price impact is high, so a given arbitrage trade moves prices
substantially). The area with vertical lines defines the social value of arbitrage for the economy in which
markets are liquid (price impact is low, so an identical arbitrage trade moves prices substantially).

Finally, note that it is possible to find a simple upper bound for the social value of
arbitrage that depends exclusively on the initial arbitrage and the gap-closing arbitrage
trade:

W (m*) — W (mg) < Gpa (mg) (m* —myg).

However, since finding the gap-closing arbitrage trade m* implicitly involves making
assumptions about price impact in both markets, there is little to gain by using this

approximation instead of the exact characterization in Equation (6).

3.3 The Value of Arbitrage and Market Liquidity

We now explore how the social value of arbitrage varies as a function of market liquidity.
In particular, Proposition 3, which can be seen as our main theoretical result, shows that
the value of arbitrage depends on the degree of market illiquidity for a given arbitrage gap.
Here we use a conventional notion of liquidity: we say that a market is liquid (illiquid) when

price impact in that market is low (high).
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Proposition 3. For a given arbitrage gap, Gpa (m) = p® (m) — p? (m), the social value of
arbitrage is higher (lower) in more liquid (illiquid) markets, in which price impact is lower

(higher).

Proposition 3 concludes that finding arbitrage gaps in very liquid markets has the
potential to be associated with large welfare losses. On the contrary, finding arbitrage
gaps in illiquid markets is likely to yield small welfare losses. Intuitively, observing a large
arbitrage gap that is very easy to close because the market is illiquid implies that welfare
losses are small. Alternatively, finding an arbitrage gap in a market in which prices are
not very sensitive to the quantities traded implies that the value of arbitrage is potentially
large.

Figure 3 illustrates Proposition 3 by comparing two economies that when m = mg have
the same arbitrage gap, which implies that the social marginal value of arbitrage is the same,
but that feature different levels of price impact. Given that, from Proposition 2, we can
express W (m*) — W (mg) as f::(: (pB (m) — pA (m)) dm, the triangle between the pricing
functions defines the social value of arbitrage. It therefore becomes evident that steeper
pricing functions (associated with more illiquid markets) generate lower welfare costs and
vice versa. In practical terms, Proposition 3 opens the door for small arbitrage gaps in
highly liquid markets to be associated with potentially large welfare losses. In Section 4

onwards, we discuss whether this is empirically the case.

4 Application 1: Covered Interest Parity

In our first empirical application, we use of our theoretical results to provide estimates of the
welfare losses associated with violations of Covered Interest Parity (CIP). Following the work
of Du, Tepper and Verdelhan (2018), a substantial body of research has studied violations of
CIP — see Du and Schreger (2021) for a recent survey. CIP is a no-arbitrage condition that
relates spot foreign exchange rates, forward exchange rates, and interest rates. In particular,
an investor can exchange present dollars for dollars three months later in two different ways.
First, the investor could invest in a three-month US T-Bill. Alternatively, the investor could
exchange dollars for euros in the spot market, use the proceeds to purchase a German three-
month zero coupon bond and additionally sell a three-month forward contract in the exact
amount of the face value of the German zero coupon bond, to convert the payoff of the
bond into dollars. Assuming no differential sovereign risk, these two strategies have exactly
the same payoffs, so the CIP condition holds when the price of each strategy is the same.
Should the CIP condition not hold, the investor could purchase the cheaper leg and sell

short the more expensive leg to generate risk-free profits.
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Du, Tepper and Verdelhan (2018) show that during and after the 2008 financial crisis,
CIP went from consistently holding within a narrow band to being systematically violated
for many currencies, at times with significant magnitudes. They present evidence that
explains negative cross-currency bases with respect to the dollar in the post-crisis regime
by banking regulations and demand imbalances for currencies. We take the existence
of significant CIP deviations as a starting point and, building on the theoretical results
derived in the previous two sections, explore instead the welfare losses associated with such

deviations.

4.1 Measurement Approach

To simplify the exposition, in Sections 2 and 3 we presented our theoretical results in a
single-currency environment. In Proposition 4, we characterize the social marginal value of
arbitrage in the context of a multi-currency model — fully developed in the Appendix —

that nests our baseline model and allows for deviations from CIP.

Proposition 4. (CIP: Social marginal value of arbitrage) The social marginal value of
arbitrage, that is, the marginal value of increasing the scale of the arbitrage trade m in the
CIP context, aggregated and measured in date 0 units of domestic currency (dollars), is

given by
dW (m)  S(m) 1 1

dm :F(m)l—FTf(m)il{—rd(m)’ (7)

where S (m) denotes the spot foreign exchange rate, F'(m) denotes the forward exchange
rate, v/ (m) denotes the foreign interest rate, and r® (m) denotes the domestic interest rate.

The arbitrage trade m is defined as purchasing the domestic leg and selling the foreign leg.

If the CIP basis/deviation, defined in Equation 7, is positive, so that the return on the
foreign leg is lower than the return on the domestic leg, then there is scope to sell the foreign
leg and buy the domestic leg to close the arbitrage gap.!® If the CIP condition holds, then

S (m) 1 1 dW (m)

Fm)itrl (m)  1gri(m) ™ —gm =

Once we have characterized the marginal value of arbitrage in Proposition 4, we can use
Proposition 2 to find the total value of arbitrage. Therefore, conceptually, to find empirical
counterparts of the social total value of arbitrage, we must i) measure the cross-currency
basis, which is easily observable, and ii) estimate price impact measures for each of the
markets involved in the arbitrage trade, which is substantially harder. In practice, we will

use a high-frequency dataset of the FX futures market, whose centralized order book and

10Note that in a single currency economy, S (m) = F (m) = 1, and Equation (7) collapses to Equation (5).
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trade and quote transparency allow us to provide credible measures of price impact for
quarterly FX futures. However, due to limitations associated with measurement, we are
forced to base our welfare calculations on the following three assumptions.

First, we assume that (foreign and domestic) interest rates are not impacted by the
arbitrage trade. That is, we assume that the price impact of arbitrage trades on the bond
markets is zero. This assumption can be seen as an appropriate approximation for the
following reason. The futures contract that corresponds to the three-month USD LIBOR
rate — the CME’s Eurodollar futures — regularly features front-month resting liquidity at
the bid and offer of over $100B. Given i) that the maximal size of the gap-closing trades
that we find are of the same order of magnitude as the Eurodollar resting liquidity, ii)
that the front-month bid-ask spread is only a quarter of a basis point, and iii) that resting
futures liquidity is a lower bound on the true available liquidity, the impact of executing
the gap-closing trades on interest rates will be extremely small, justifying our assumption.
Note that this assumption biases our estimate of welfare gains upwards. In other words, if
we allowed for trading in bond markets to be subject to price impact, we would find smaller
welfare gains from closing arbitrage gaps and smaller gap-closing arbitrage trades.

Second, we assume that the estimated price impact function of both the spot and
three-month forward markets can be approximated by the price impact function of the

CME’s front-month currency futures contracts.!!

We argue that this is an appropriate
approximation because front-month futures contracts are regularly used interchangeably
with spot FX by traders and because the three-month forward and spot foreign exchange
markets are very closely related to the futures market (in fact, they each are at some point
in time equivalent to the futures).

Finally, we must make an assumption on cross-price impact. Because the spot and
forward prices are almost perfectly correlated and fundamentally connected, significant
purchases in one market spill over into the other market, which we refer to as cross-price
impact. As cross-price impact is notoriously difficult to estimate, we use our estimates of
directional price impact from the futures market and we assume that cross-price impact of
simultaneous transactions reduces the price impact by 90%. With a square root functional
form, this is the same as assuming that $100B of transactions has the same effect that
$1B of transactions would have under the alternate assumption of zero cross-price impact.
We consider this a conservative assumption, which again biases us against finding limited
welfare gains. We run robustness checks under alternative assumptions in the Appendix.

Overall, these three assumptions are conservative in the sense that they bias our

"The front-month contract is defined as the quarterly contract that is closest to delivery. Hence, the
front-month contract is a forward contract whose maturity varies between three months and several days,
depending on the date.
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results upward and against finding limited welfare gains. Therefore, our results should

be interpreted as upper bounds for the direct welfare gains from closing arbitrage gaps.

4.2 Estimating Price Impact

We briefly describe the data used to estimate price impact in the FX futures market. In
Section D in the Appendix, we include summary statistics and a more detailed description of
the data sources. In Section E in the Appendix, we provide useful institutional background
on the FX futures and spot markets. Next, we describe our econometric procedure and

discuss the price impact estimates.

Data Description In order to estimate price impact in the FX futures market, we use
high-frequency transaction data and top of the book data from the Chicago Mercantile
Exchange (CME). Our dataset contains the universe of transactions, bid changes, and offer
changes, recorded with a millisecond timestamp corresponding to the time that the CME’s
matching engine processed the order book change or trade.

Our dataset starts on December 15, 2019 and ends on February 26, 2021 and corresponds
to five contract months for each of five different futures contracts. Specifically, our dataset
covers the March 2020, June 2020, September 2020, December 2020, and March 2021 futures
contracts for the Australian Dollar/USD, British Pound/USD, Canadian Dollar/USD,
Euro/USD, and Yen/USD.

Estimation Procedure As shown in Section 3, our objective is to estimate the impact
of trading a given quantity of contracts/shares on the price of the asset of interest. To
do so, we build on the literature that has studied the relationship between order size and
asset prices over the past several decades. In particular, Bouchaud (2010), Almgren, Thum,
Hauptmann and Li (2005), Gabaix, Gopikrishnan, Plerou and Stanley (2003), Frazzini,
Israel and Moskowitz (2018), and Graves (2021), among others, have empirically found that
price impact satisfies an approximate square root power law relation for a wide variety of
countries, time periods, and financial instruments from the 1980s to the present.'?

Therefore, we use non-linear least squares to estimate the following functional form for

price impact in the FX futures markets:
Fry — Fr =0+ asgn(Qr) |QT|6+57'7 (8)

where F’. denotes the price of a futures contract right before a given transaction takes place

12For theoretical microstructure models that justify the power law functional form, see Gabaix,
Gopikrishnan, Plerou and Stanley (2006) and Donier, Bonart, Mastromatteo and Bouchaud (2015).
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— its imputation is described in Equation (9) below — and @, denotes the actual size of
the transaction.!® Three features of our estimation procedure are worth highlighting.

First, note that the unit of observation in our non-linear regression is a transaction.
Hence, every time a transaction takes place, we record the difference in prices right before
and right after the transaction, as well as the size of the transaction to generate an
observation that will inform the estimation of price impact.

Second, since we want to find the impact of a trade on the price, we do not use the prices
at which transactions take place. Instead, we impute the price F; (analogously, Fr1) using

the following weighted average of the bid and ask prices:

M

— B A —
Fr=wF°+(1—w;)F, and w;= W, (9)

T

where FZ and FTA respectively denote the bid and ask prices and M? and M;4 respectively
denote the size of the bid and the ask right before a transaction takes place.'*
Third, to be consistent with empirical literature described above and to improve the
speed and efficiency of our estimation procedure, in our baseline estimation we assume that
1

the power law coefficient is predetermined at 8 = 5. In the Appendix, we show that our

conclusions are almost identical when 8 can be freely estimated.

Price Impact Estimates Given the high-frequency nature of our data, we are able to
compute precise estimates of price impact on a daily basis between December 15, 2019 and
February 26, 2021, which allows us to capture the time-varying nature of price impact.
We present average and daily price impact estimates in the FX futures market for the five
currency pairs in our dataset in Figure 4.

Figure 4a shows the estimated price impact functions of the form described in Equation
(8) for the five currency pairs that we study using average estimates over the sample.
Since our measure of price impact is non-linear, it is more informative to present the
whole estimated function, rather than simply reporting the estimated o coefficients.'® In
terms of magnitudes, our estimates imply that a trade of $10B will move the FX futures
rate by roughly 0.1% in the case of the Euro and to roughly 0.35% in the case of the
Australian Dollar, with the other currency pairs in between. The non-linear (concave)
nature of our price impact estimates implies that the price impact of larger trades does
not scale proportionally. For instance, a trade of $100B will move the FX futures rate
by roughly 0.45% in the case of the Euro and 1.1% in the case of the Australian Dollar,

13In our dataset, transactions may occur within microseconds of each other.
14Gee Graves (2021) for a detailed discussion of these and other (e.g., midpoint) imputation methods.
15Tn Table 5 in the Appendix, we include summary statistics of the estimated daily price impact coefficients.
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Figure 4: FX futures: Price Impact Estimation

Note: Figure 4a shows the estimated price impact functions of the form introduced in Equation (8) for
the five currency pairs that we study using average estimates over our full sample: December 15, 2019 to
February 26, 2021. Figure 4b shows daily estimates of the a coefficients from the regression introduced in
Equation (8). The « coefficients reported in Figure 4b here are expressed in ticks, the minimum amount that
a given futures contract is allowed to move, which is closely tied to the median bid-ask spread — see Table
1 for tick values. By using ticks, we can display all estimates in the same figure, since the a coefficients
have the same order of magnitude. As explained in the text, price impact increases dramatically during
the COVID-19 pandemic crisis in March 2020, then rapidly subsides to a new more elevated equilibrium.
Outside of the crisis, the order of magnitude of the estimates is stable, and precision is obtained even for
single days via the high-frequency data set, which generally contains of the order of tens of thousands of
observations per market per day.

with the other currency pairs in between. As we discuss below in the context of our welfare
computations, these price impact estimates are consistent with ancillary evidence we provide
on the behavior of FX markets.

Figure 4b shows the evolution over time of the estimates of the price impact « coefficients
for each day of our sample. We draw three conclusions from this figure. First, price impact
spikes in periods of market distress, particularly the COVID-19 crisis in March 2020, which
was associated with high uncertainty, limited liquidity and significant CIP violations — as
we will show next. This is an important observation for our welfare calculations, since the
period of elevated price impacts corresponds precisely to the greatest violations of covered
interest parity since the Financial Crisis in 2008. Second, daily price impact coefficients are
remarkably stable outside of the pandemic-related surge in March 2020. Finally, it seems
that the average daily estimates of the price impact « coefficients have not recovered the

pre-pandemic levels.
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Cross-Currency Bases CIP Deviations vs. Price Impact (EUR/USD)
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Figure 5: CIP Deviations/Correlation with Price Impact Estimates

Note: Figure 5a shows the three-month CIP deviations for the five currencies we consider. The basis is
771, where 7/ and r? are annualized three-month foreign and domestic

s 1 1
calculated as % (1+rf)1/4 - (1rd(m))
(USD) interest rates. The two largest CIP deviations take place in September 2008, during the Great
Financial Crisis, and in March 2020, at the onset of the COVID-19 pandemic. Our results are comparable to
those in Du, Tepper and Verdelhan (2018), with two minor expositional differences: i) they present ten-day
moving averages of the gaps, while we show daily values, and ii) our values are not annualized, so they must
be multiplied by 4 to be compared directly to the value of the bases reported by Du, Tepper and Verdelhan
(2018), which are annualized. In Section F.4 in the Appendix we include results using LIBOR. Figure 5b
shows that there exists a negative relation between our daily price impact estimates (the « coefficients) and
the observed CIP deviations. Figure 5b shows the relation for the case of the Euro for the period between
December 15, 2019 and February 26, 2021. The R? = 0.697 and the regression line shown in the figure are
computed using only the observations with large impact (when a > 0.1). A similar negative correlation
emerges for the the other four currencies: the analogous R*s are 0.289 (AUD), 0.683 (GBP), 0.792 (CAD),

and 0.637 (JPY).

4.3 Measuring CIP Deviations

The next input necessary for our welfare calculations are the cross-currency bases. Here,
we compute the relevant cross-currency bases using spot rates, three-month forward rates,
foreign three-month interest rates, and US three-month interest rates. In the body of the
paper, we use secured three-month lending rates whenever such instruments are available,
while in Section F in the Appendix, we show that our results are robust to using LIBOR

rates.

Data Description We use data from Bloomberg to compute cross-currency bases
between February 02, 2008 and February 26, 2021. Table 3 in the Appendix provides

the summary statistics for the cross-currency bases, while Figure 5a plots the time-series

23



evolution of the cross-currency bases for the relevant five currency pairs. We provide an

exact list of the Bloomberg data series used in the Appendix.

CIP Deviations Figure 5a shows the three-month cross-currency basis for the USD
versus the five currencies that we consider, which are some of the world’s most liquid
currencies. As discussed extensively in Du, Tepper and Verdelhan (2018), the post-financial
crisis period contains substantially and persistently negative cross-currency bases. Two
major events are immediately visible in the figure: the 2008 financial crisis and the COVID-
19 pandemic in March 2020, both of which appear as downward spikes. These events can
be thought of as dollar-liquidity driven events wherein positive shocks to the demand for
US dollars in foreign countries drove covered interest away from parity.

Figure 5b combines the daily measures of cross-currency bases (CIP deviations) with our
daily price impact estimates introduced in Figure 4. This Figure shows that there exists a
clear negative relation between the daily price impact estimates (the « coefficients) and the
observed CIP deviations for the case of the Euro (similar patterns emerge for all currency
pairs). That is, days in which CIP deviations are large are days in which the FX market is
illiquid, as measured by high price impact. The negative comovement between price impact
measures and CIP deviations will be relevant for our our welfare conclusions, as described

next.

4.4 Welfare Estimates and Gap-closing Trades

Armed with both price impact estimates and cross-currency bases, we are ready to leverage
the theoretical framework introduced in Sections 2 and 3 to compute gap-closing arbitrage
trade sizes and social welfare gains from closing the arbitrage gap. First, given our
specification of price impact for a given currency pair market, we compute the gap-closing

arbitrage trade m* as the size of the arbitrage that would close the arbitrage gap, that is,

S (m*) 1 B 1
F(m*)1+r/(m*) 1474 (m*)’

(10)

Second, given that we have estimates of dvgyg@m), as defined in Equation (7), for different

trade sizes, we compute the social welfare gain of closing the CIP gap for a given currency

pair by integrating the value of the CIP deviation until the gap is closed, that is,

[, a
0

dm

Since the cross-currency bases are generally negative, this number will be negative but its

absolute value reflects the welfare gains associated with closing the gap. As discussed in the
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context of our dynamic model in Section B in the Appendix, the computed welfare gains
have the exact interpretation of closing the arbitrage gap today while holding the position
until the strategy unwinds.!©

Figure 6 presents daily estimates of i) gap-closing arbitrages trades and ii) welfare gains
from closing CIP deviations for the five currency pairs that we study. Figure 6a shows that
the estimated gap-closing arbitrage trade for each of the five currency-pairs never exceeds
$1.22T and never exceeds $455B outside the yen-dollar basis. One can readily see why gap-
closing trades do not spike in periods with high CIP deviations: consistently with Figure
5b, at precisely the moment in which CIP violations reach their peak in March 2020, price
impact also surges, resulting in only a moderate increase in the gap-closing trade size. Since
events of distress are commonly associated with both illiquidity and CIP deviations, the
magnitude of the gap-closing arbitrage size does not fluctuate as much as price impact
measures and CIP deviations independently. Note that the gap-closing quantities necessary
are within what a market participant could execute.

Figure 6b shows that the estimated welfare gains from closing CIP deviations never
exceed $1.2B for the five studied pairs, and never exceed $300M outside the yen-dollar
basis. To put these magnitudes in perspective, the total daily volumes in the spot FX
markets for the EUR/USD and the JPY/USD pars are respectively $416B and $260B (BIS,
2019). Therefore, the estimated welfare gains from closing arbitrage gaps are always lower
than 0.5% of daily dollar volume in the spot FX markets, which one could argue makes
the gains from closing gaps small, despite taking place in some of the most highly liquid
markets that exist. There are two features of our analysis that explain these results. First,
the CIP deviations are significant, but not that large in magnitude — this is in contrast
to Section 5, in which we show that our approach yields large welfare gains when arbitrage
gaps are large, as in the case of dual-listed companies. Second, as described above, the fact
that CIP deviations and price impact estimates comove negatively makes the size of the
gap-closing trade small, lowering the scope for welfare gains.

In the Appendix, we present additional exercises. First, by backward extrapolating our
price impact estimates from 2019-2021, we can find a sensible approximation of the gap-
closing trades and the welfare gains from closing CIP deviations for the 2010-2019 period.
A similar pattern to the one we observe in 2019-21 is immediately apparent in Figure A.1 in
the Appendix — the greatest welfare gains from closing CIP deviations are in the yen-dollar
basis and briefly spike to $1.6B, but for all other currency pairs never even exceed $250M

in markets outside of the yen-dollar pair. This is true despite the persistent, significant

16Note that our approach abstracts from cross-currency spillovers, for which it is very hard to find credible
estimates. Hence, since we do not account for the impact that closing a given CIP deviation has on other
CIP deviations, our approach is once again likely to overestimate the welfare gains of closing all arbitrage
gaps.
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Figure 6: CIP: Welfare Gains/Gap-closing Trade

Note: Figure 6a shows the gap-closing arbitrage trade m* such that the Covered Interest Parity condition
holds. Gap-closing trades rarely exceed $500B. Figure 6b shows the daily estimates of the welfare gains
from closing CIP deviations between December 15, 2019 and February 26, 2021. These are computed as
described in Equation 11, reporting the absolute value of the gains. Estimated welfare gains from closing
CIP deviations never exceed $1B for the five studied pairs, and never exceed $250M outside the yen-dollar
basis.

deviations from CIP documented in the aforementioned literature.

Next, we characterize the combinations of price impacts and CIP violations that must
exist to generate large welfare gains from closing CIP deviations. In Figure A.2 in the
Appendix, we show isoquants of CIP deviations and price impact estimates (a coefficients)
that yield the same level of welfare gains, corresponding to $100M, $1B, and $10B in the
EUR/USD case. This figure clearly illustrates that large welfare gains from closing CIP
deviations can only emerge when CIP deviations are extremely large and price impact
estimates are low. To put our estimates in perspective, we also show average and extreme
measures of CIP deviations and price impact estimates in our sample. Taking $10B as the
desired target number, and assuming that price impact takes average values, Figure A.2
shows that one would need to observe a EUR/USD CIP deviation of 250 basis points, a
number which is an order of magnitude larger than any CIP deviation measured.

We conclude our welfare analysis of CIP deviations with two remarks. First, one might
conjecture that although three-month CIP deviations do not result in substantial welfare
gains, five-year CIP deviations might. Du, Tepper and Verdelhan (2018) and others study
the magnitude of such CIP violations, which are found to be greater than their three-month
counterparts but have the same order of magnitude. The five-year T-Note and corresponding

foreign interest rate markets, however, are not nearly as liquid as the three-month T-Bill
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and Eurodollar markets. More importantly, however, the five-year forward market with
its distant delivery date is far less liquid than the three-month forward market. Quoted
spreads in Bloomberg are much wider, and if comprehensive five-year forward quote and
trade data were available, the estimated price impact coefficients would almost certainly
be far larger than those estimated from front-month futures, which are among the most
liquid markets in the world. Although the welfare gains from longer timer horizons might
seem larger in magnitude due to the large CIP deviations documented in the literature,
the lack of liquidity (large price impact) would make the gap-closing trade size small.
Furthermore, it is straightforward that the cross-price impact of currency contracts —
from which we conservatively abstract in our calculations — with distant delivery dates
must be significantly less than for those with nearby delivery dates.

Finally, note that our conclusions regarding the magnitude of gap-closing trade sizes
as well as our assumptions on cross-price impact seem to be supported by the Federal
Reserve’s quarterly reports and press announcements. On September 18, 2008, right as the
CIP violations peaked, the FOMC increased swap lines with other central banks by $180B;
on March 19, 2020, swap lines were extended to multiple additional central banks around
the world while that same week saw a reduction in the pricing of US dollar liquidity via
swap lines between the Federal Reserve and each of the central banks of Canada, the EU,
Japan, and Switzerland. The latter effort was with the intention to reduce dollar shortages
and coincided with the precise week that the CIP violations peaked in 2020. Looking at
quarterly Federal Reserve reports, we observe that central bank liquidity swaps went from
functionally $0 at the beginning of March 2020 to just over $350B by the end of March. The
expansion of these swap lines coincided precisely with the elimination of most of the CIP
arbitrage gaps. In addition, the two most utilized swap lines were with the BOJ ($223B at
its peak) and the ECB ($145B at its peak) — see Federal Reserve (2020) — which aligns
quite well with the magnitude of our estimates in Figure 6a. While we cannot infer causality,
the precise coincidence of swap line usage and the elimination of most of the CIP arbitrage
gaps at a time of scarce dollar liquidity lends support to the gap-closing sizes that we find,

as well as the underlying cross-price impact assumptions we use.

5 Application 2: Dual-Listed Companies

In our second empirical application, we use our theoretical results to provide estimates of
the welfare gains associated with closing arbitrage opportunities in the case of dual-listed
companies (also referred to as “Siamese twin stocks”). We compute the welfare gains from
closing arbitrage gaps in three particular scenarios: i) Royal Dutch/Shell, the canonical

dual-listed company that featured arbitrage opportunities for nearly a century, see, e.g.,
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Shleifer (2000); i) Smithkline Beecham; and iii) Rio Tinto.!”

Under a dual-listing arrangement, two share classes trade on different exchanges but
represent fixed claims to cash flows of the same company. In the case of Royal Dutch
and Shell, Royal Dutch was a Dutch company traded out of Amsterdam and Shell was a
British company traded out of London. From 1907 until their unification in July 2005, the
stocks of Royal Dutch and Shell traded on different exchanges but with a 60%/40% fixed
division of the joint cash flow and ownership rights (Froot and Dabora, 1999). Given that
the dividend streams were fixed at a 1.5 : 1 ratio, the law of one price/absence of arbitrage
implies that the market capitalizations of both companies should always respect such a
ratio. As extensively documented in the finance literature — see e.g, Froot and Dabora
(1999) and De Jong, Rosenthal and Van Dijk (2009) — the prices of Royal Dutch and Shell
demonstrated consistent and extreme deviations from the ratio, sometimes amounting to

as much as 20-30%. Like CIP, this represents a textbook arbitrage opportunity.'81?

5.1 Measurement Approach

To determine the welfare gains from closing arbitrage gaps in the case of dual-listed
companies, the main obstacle is determining the price impact function of each involved
stock, since the only readily available information (from the online De Jong, Rosenthal and
Van Dijk (2009) dataset or from publicly available sources) are daily stock prices, volumes,
exchange rates, shares outstanding, and exchange rates. Since we do not have access to
detailed transaction data — as we do in the case of the Future FX market — we adopt the
price impact estimates for global equities of Frazzini, Israel and Moskowitz (2018).

Using a global database of a hedge fund’s $1.7 trillion stock transactions spanning two
decades, Frazzini, Israel and Moskowitz (2018) estimate the price impact of trades as a
function of trade size and stock characteristics. Consistent with earlier literature, they find
that the price impact of quantity traded satisfies a square root functional form. Their main

specification of price impact for a given stock j takes the form:

i (m) — p (0)
pi (0)

=

= af sgn (m) (m)?

where p{ (m) denotes the price of stock j at time ¢ after a trade of size m — expressed as the

7 According to Loewenstein (2000), more than half of the losses incurred by LTCM in equity pairs trading
(of $286 million) was due to the Royal Dutch/Shell trade.

'8 As originally noted by Shleifer and Vishny (1997), the need to unwind arbitrage trades before the
strategies converge can make this type of arbitrage risky. We discuss how this possibility can be incorporated
in our framework and how this affects the interpretation of our results in Section C in the Appendix.

¥Throughout this section, we use the data from Mathijs van Dijk’s 2009 paper and related website,
http://www.mathijsavandijk.com/dual-listed-companies
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fraction of daily volume, which is the trade size as a percentage of one-year average daily
volume — takes place.?? The price before the trade takes place is denoted by pg (0) and ag
is the key estimate that captures potentially time-varying liquidity conditions. Over their
full sample, they find a price impact coefficient of & = 0.000889. We use this specification as
a conservative estimate, in particular in the Royal Dutch/Shell scenario. Indeed, Frazzini,
Israel and Moskowitz (2018) unsurprisingly find a lower price impact for large-cap stocks,
and Royal Dutch/Shell is and was one of the largest companies in the world, with an average
market capitalization of 70B sterling in the 1990s and a market cap of around $160B today.
Rio Tinto and Smithkline Beecham are similarly large companies.

For each trading day between October 27, 1986 and October 3, 2002, we combine the
data on dual-listed stocks from De Jong, Rosenthal and Van Dijk (2009) with the price
impact specification of Frazzini, Israel and Moskowitz (2018) to compute the social welfare
gains from closing the arbitrage gaps following our theoretical results in Section 3 and in
the same manner as for Covered Interest Parity. Specifically, given a share price of p? for
Royal Dutch and pf for Shell, one can purchase m shares of Royal Dutch and short sell %m
shares of Shell, which generates a marginal welfare gain of

dW (m) D

“am_ P (m) —

As in the model and the previous application, it is straightforward to find the gap-closing
arbitrage trade for each day in the sample as well as the welfare gains from closing arbitrage
gaps. We follow an analogous procedure in the case of Smithkline Beecham and Rio Tinto.

Before presenting our welfare estimates, it is worth discussing the external validity of the
estimates by Frazzini, Israel and Moskowitz (2018), since the magnitude of the gap-closing
trades will be substantial in relation to the shares outstanding. The Frazzini, Israel and
Moskowitz (2018) estimates cover transactions that amount to 0-13.1% of the daily volume
of a stock. The trade sizes required to close these arbitrage gaps are so large as to account
for over 13.1% of the entire float of the company in the case of Royal Dutch/Shell. At
the same time, Frazzini, Israel and Moskowitz (2018) provide reason to suspect that their
methodology might overestimate price impact for large trades (and thus underestimate
welfare implications): they find a power law of 0.35 in the data but estimate a 0.50 (square
root) power law functional form instead so as to be consistent with past theory and empirical
papers. Additionally, the time periods during which extreme Royal Dutch/Shell parity
deviations persist last years, implying that if the transaction were spread over time, the

percentage of daily volume would be sufficiently small so as to allow for execution of the

20Because the price impact specification of Frazzini, Israel and Moskowitz (2018) relies on a normalization
of trading volume that employs one-year volume averages, it may be the case that we find different welfare
estimates in periods in which the arbitrage gaps are identical.
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Figure 7: Royal Dutch/Shell

Note: Figure Ta shows the gap-closing arbitrage trade for Royal Dutch/Shell. It also shows the price
deviation relative to parity (normalized to 1). At its peak, the gap-closing trade reaches just over £20B
(around $30B). This corresponds to an over 20% deviation from parity in the dual-listed shares, with an
underlying market capitalization of over $100B. Figure 7b shows the welfare gains from closing the arbitrage
gap for Royal Dutch/Shell. It also shows the price deviation relative to parity. The welfare gains peak in
1996 corresponding to over $2B USD. The welfare calculations use the price impact specification of Frazzini,
Israel and Moskowitz (2018). Peak deviations here are associated with significant welfare losses, with much
of the 1996-2000 period seeing welfare gains from closing the gap of over $1B USD.

trade.

5.2 Welfare Estimates and Gap-closing Trades
5.2.1 Royal Dutch/Shell

Figure 7b shows the welfare gains from arbitrage in GBP over the nearly sixteen-year
period, with a peak of approximately $2B in 1996 when converted to USD. This twin share
divergence appears to generate significant potential welfare gains, which is at odds with our
CIP results, for which we find lower welfare gains. Yet the magnitude of the deviations from
parity in the Royal Dutch/Shell is extreme — as detailed in Figure 7b, the divergence at
the time of maximum welfare gains from closing arbitrage gaps is over 20%, despite the fact
that the company had a market cap of over $100B at the time. Because of this significant
deviation from 1.5:1 parity as well as square root price impact, a trade size equal to around
20B pound sterling is required to close the arbitrage gap (see Figure 7a below). Unlike the
case of CIP deviations, the persistence of extreme deviations from parity over many years
results in an extended period over which the welfare gains from closing price deviations in
Royal Dutch/Shell are over $1B.

The existence of arbitrage opportunities in easy to trade dual-listed companies (DLC)
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may be hard to explain. Yet the arbitrage opportunity is not quite as promising as it may
appear: in a real world analogue of Shleifer and Vishny (1997), an arbitrageur in 1907 would
have had to wait nearly a century to see unification (or less time but still an average of
decades for a parity crossing point), during which time the marked-to-market value of the
positions would have oscillated wildly. Furthermore, unwinding such a large position would
simply have resulted in the price wedge being driven back to where it started — unification
of the DLC is the vital ingredient for a trade of this magnitude to succeed. In Appendix
C, we describe how to think about effects of the type described by Shleifer and Vishny
(1997) within our framework. There we show that, leaving aside distributive pecuniary
externalities, our measures capture the welfare gains from closing the arbitrage gap at a

specific point in time using a buy-and-hold strategy.

5.2.2 Smithkline Beecham

GlaxoSmithKline was created in 2000 as a combination of Glaxo Wellcome and Smithkline
Beecham. Smithkline Beecham was one of the world’s major pharmaceutical companies until
the merger, and had dual-listed shares as a result of the “stapled stock structure” ensuing
after the merger of its own precursors, Smithkline Beckham (US-based) and Beecham
(UK-based), as described in De Jong, Rosenthal and Van Dijk (2009). Unlike Royal
Dutch/Shell, the Smithkline Beecham twin share divergence ratio never reaches more than
20% and is vanishingly small in the later years of the sample. Figure 8b, which shows the
welfare implications of the Smithkline share class divergence, illustrates how the arbitrage
opportunity is small in magnitude and is several orders of magnitude smaller than the
maximal gains from arbitrage seen with Royal Dutch/Shell. This can be seen as a direct
result of the limited liquidity in the UK-traded H-share class.

5.2.3 Rio Tinto PLC/Ltd

Using the dataset from De Jong, Rosenthal and Van Dijk (2009), we explore the welfare
implications of arbitrage and gap-closing trade sizes in Rio Tinto, a dual-listed company that
represents one of the largest mining corporations in the world. Dual listings in Australia
and the United Kingdom resulted in share price divergences that cannot be explained by
a frictionless rational framework. As is readily apparent from Figure 9b, the share price
ratio of Rio Tinto’s dual listings is far less stable than the ratio of Royal Dutch/Shell and
diverges from unity less dramatically. As noted in De Jong, Rosenthal and Van Dijk (2009),
Rio Tinto experiences the smallest mean absolute divergence of all the studied twin shares
in their paper. Largely as a result of this fact, we find minimal welfare implications to

arbitrage throughout most of the price history, except when the ratio briefly diverges to
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Figure 8: Smithkline Beecham
Note: Figure 9a shows the gap-closing arbitrage trade for Smithkline Beecham. The maximum trade size
reaches around $250M and displays a clear time trend along with the price ratio. Figure 9b shows the welfare
gains from closing price deviations for Smithkline Beecham. The gains never exceed $16M due to the limited
liquidity of one of the two listings. Both sub-figures include the price deviation relative to parity.

its most extreme points with peak welfare gains from closing arbitrage deviations reaching
around $150M USD and maximal gap-closing trade sizes of approximately $3B USD (see
Figure 9a). The combination of lower liquidity than Royal Dutch/Shell as measured by
dollar trade volume and limited divergence from parity results in far less striking welfare

implications.

5.2.4 Final Remarks

As illustrated by this paper’s three DLC examples, the welfare implications of arbitrage for
dual-listed companies can vary by several orders of magnitude. These empirical findings can
be traced directly to the theoretical connection between liquidity and welfare: arbitrage gaps
that are resistant to closure because of minimal price impact from trades imply significant
welfare losses from the price wedge, whereas large price impact implies that the gap can
be closed easily and with minimal social gains from arbitrage. Given that virtually every
empirical and theoretical exploration of price impact finds a direct connection between dollar
liquidity of an instrument and price impact, the welfare gains from arbitrage in dual-listed
companies are directly tied to the liquidity of the dual-listed shares.

An intuitive prerequisite for finding large welfare implications of DLC divergence is a
balanced distribution of trading volume across the two venues. Consider a hypothetical
stock that represents one of the largest listed companies on an exchange: if its underpriced

dual-listed counterpart is thinly traded by comparison, any arbitrage gap can be closed with
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Gap-closing Trade: Rio Tinto Welfare Gains: Rio Tinto
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Figure 9: Rio Tinto PLC/LTD
Note: Figure 9a shows the gap-closing arbitrage trade for Rio Tinto PLC/Ltd. The maximum trade
size reaches around $3B, corresponding to the period of maximal deviation from parity. The visible high-
frequency oscillations are related to the unstable oscillations in the share price ratio, possibly due to the
non-overlapping time zones of the listings. Figure 9b shows the welfare gains from closing the arbitrage gap
for Rio Tinto PLC/Ltd. The gains never exceed $150M and display rapid fluctuations daily, consistent with
the fluctuations in the share price ratio. Both sub-figures include the price deviation relative to parity.

only a small transaction because the leg of the trade transacting in the illiquid stock will
trigger a sudden jump up price. Alternatively, if one venue represents the primary trading
venue, while the other venue is a foreign listing with limited trading volumes, then even
extreme divergences need not generate large welfare implications. On the other hand, if a
company is dual-listed in two major trading venues that feature significant liquidity (like
Royal Dutch/Shell), then the welfare implications can be surprisingly large, particularly if

the company possesses an outsized market capitalization.

6 Conclusion

We show that arbitrage gaps and measures of price impact are sufficient to compute the
welfare gains associated with closing arbitrage gaps. The approach introduced in this
paper can be applied to any environment in which arbitrage conditions are violated. Our
results imply that tracing how arbitrage gaps react to changes in the size of arbitrage
trades is sufficient to be able to characterize the value of arbitrage. Therefore, measures
of quantities (price impact) are needed in addition to arbitrage gaps to understand the
value of arbitrage. While our welfare assessments are exact in models in which there are
strict arbitrage opportunities, one may expect that our results remain approximately valid

for quasi-arbitrages. Extending our approach to those situations is a fascinating topic for
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further research.
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APPENDIX

A Proofs: Section 3

Proposition 1. (Marginal value of arbitrage)

a) The indirect utility of an investor ¢ = A, B is given by
& (pi> = u; (cf)*) + Biu; (czi*) , (A.1)

where ¢f* and ci* are the consumption allocations implied by the optimal portfolio choice of the
investor which satisfies the first order condition
pi _ ﬁlu’/l (C,Ll*)d
ul; (06*)
From the market clearing condition, we have that p’ is a function of m. Therefore, differentiating

the indirect utility of investors in (A.1) and applying the envelope theorem implies

dq}
dm

dV? o dpt . ) . )
= —u (06*) dfri Agy + (—Uz‘ (06*) P+ Biu; (Cﬁ*) d)

dm

=0

ik dpz i
=l () Prag,

Defining A} = u/ (06*) and using the market clearing condition in market ¢ gives the first result in

a).

The indirect utility of arbitrageurs is given by
Ve (m,p?,p") = (pP —p*) m.

Differentiating this expression with respect to m taking into account that the equilibrium prices

depend on m through the market clearing conditions we have

dve dp®  dpA
:pB_pA+<p p)m
om

dm dm

Noting that Ay = 1 proves the second result in a).
b) The social marginal value of arbitrage is given by
oW v avE ave

7 _ Om om W_
om N\ * 2B * g
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Then, using the results from part a) of this proposition we have

dm dm

dpB  dp? dp? dp®
ow _ B_pA_|_<p p >m_d1;nAq6; N

om P

dp? dp®
=p? —p* - I (Agg +m) “am (Agy —m)

=0 =0

where the last line exploits the market clearing conditions Aqéx +m =0 and Ag¢F —m = 0 proves
the result.

Proposition 2. (Social value of arbitrage)

a) From the FOC of the investors and market clearing, we have the equilibrium prices p* and p? are

continuous in m. Then, aa% is a continuous real function of m and using the Fundamental Theorem

of Calculus we have that

W (m*) — W (mg) = / W' (m) dm.
mo
Using the result in Propositionlb) proves the result.
b) From part a), we have that
W (m*) — W (mo) = / G (m) dm.
mo

Using the Fundamental Theorem of calculus we can express the arbitrage gap at m as

(S

Gpa (m) = p® (mg) — p* (mo) + /
dp” (1)

Therefore, measures of the current arbitrage gap p? (mg) — p (mg) and price impacts - and

dp”® (1)
d

A

are sufficient to exactly compute the social value of arbitrage.

Proposition 3. (Market liquidity and the value of arbitrage)

From Proposition 2 we have that the social value of arbitrage is

m*

W (m*) =W (mg) = Gpa (m)dm, (A.2)

mo

where Gga (m) = p? (

dm

m)—p* (m) = (p? (0) — p* (0)) +f0m (m — W) dm. Price impact is

higher when the arbitrageur moves the price against him more, i.e., when ‘d’;’iy is higher. Therefore,
since N 5
d d
W) o ana P )
dm dm
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more liquid markets will have lower %2 ;Sn) and higher

% which imply a higher Gga (m).

Therefore, our results follows from the expression for the social value of arbitrage in Equation (A.2).

B Explicit Models of Limits to Arbitrage

There are alternative frictions that can lead to arbitrage gaps. In this section, we formally describe
how several leading explanations can be mapped to our framework. In particular, we consider
trading costs, market power in the arbitrageur sector, and short selling, funding or collateral
constraints. All these features limit the size of the arbitrage trade implemented by arbitrageurs
and prevent asset prices from equalizing in equilibrium. In other words, these frictions prevent the
actual arbitrage trade m from differing from the gap-closing trade m*, which would be chosen by
competitive unconstrained arbitrageurs. In our dynamic extension in Section C, the same frictions

can be used to explain why a given m4 (s) is not chosen by individual agents to close an arbitrage

gap.

B.1 Trading costs

Suppose that there are linear trading costs 74 and 72 in markets A and B, respectively. That is,
when trading in market i, an investor or arbitrageur trading a quantity ¢ faces a cost 7¢|q|. In this
case, the profit of an arbitrageur who buys m units of asset A and sells m units of asset B is

V7 (m)= (pB —pA) m — (TA +TB) |m] .
If the arbitrageur sector is competitive, the total amount arbitraged between markets A and B will
be mg such that the profits of arbitraging are zero. In this case, the arbitrage gap is given by

p? (mo) — p™* (mo) =74 + 77

B.2 Strategic arbitrageurs

Suppose that there is a finite number of arbitrageurs indexed by h = 1, ..., H who take into account
their price impact when trading in each market. Then, an arbitrageur h who buys m” units of asset
A and sells m” units of asset B when the total amount arbitraged by the other [ # h arbitrageurs

is m~", solves the following problem
VT (mhm") = (pP (m™" + m") — p? (m™" + mh)) m".

In a symmetric equilibrium with H strategic arbitrageurs, the optimal amount arbitraged mg will
be such that

ap™ (mo) _ 9p® (mo) mo
om om H-

p” (mo) — p™ (mg) = (

Note that when the arbitrageur sector is competitive, i.e., if H — oo, the arbitrage gap is 0 and

mgy = m*.
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B.3 Short sales/Borrowing constraints

Suppose that the arbitrageurs face a short selling constraint m such that m < m. Then, if the

arbitrageur sector is competitive, the total amount arbitraged will be min {m, m*}, where m* is the

gap-closing arbitrage trade. Then, the arbitrage gap will be

B
(

p? (min {m, m*}) — p? (min {m, m*}) > 0.

If the short selling constraint is binding, i.e., if m < m*, then the arbitrage gap is positive.

B.4 Price-dependent collateral constraint

We develop the simplest environment that yields price-dependent collateral constraints. We assume
that the arbitrage trade takes place in two stages. In the first stage, the arbitrageur gets paid pPm
for selling m units of asset B and receives the m units purchased of asset A. In the second stage,
the arbitrageur delivers the units of asset B and pays pm for the amount bought in market A. We
assume that between stages 1 and 2, the arbitrageur can hide a fraction (1 — ) of the proceeds from
the short sale of asset B. Then the total amount of resources that the arbitrageur can commit to
repaying the purchase of asset A are given by his endowment e; and the remaining fraction from
the short sale proceeds. The collateral constraint then is given by

pAm < 0pPm +ey.

If the collateral constraint binds and the arbitrageur sector is competitive, the total amount

arbitraged will be
el

p* (m) — Op® (m)°

As one would expect, the larger the amount the arbitrageur can commit to repaying, i.e., the larger

m =

0, the higher the amount that can be arbitraged and the lower the arbitrage gap. In this case, the

arbitrage gap satisfies

m) = p” (m) = = — (1-6) p” (m).

Note that if p# < @p® the collateral constraint will never bind. Moreover, if the endowment of the

arbitrageur is large enough, i.e., if
e1 > (1—0)p? (m*)m*,

the collateral constraint does not bind.

B.5 No Frictions

It is clear from V* (m) that the problem of the arbitrageur sector does not have an interior solution

whenever there is a price differential between markets A and B. Formally, the optimal size of the
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arbitrage trade m® takes the form

—o0, ifpA>pP

0, if p4 < pB.

Therefore, as long as arbitrageurs can trade across both markets frictionlessly, the arbitrage
equilibrium will be identical to the integrated equilibrium. We will index our arbitrage equilibrium
by the size of the arbitrage trade m. This is the simplest way of considering frictions that prevent
arbitrageurs from fully equalizing prices. We can think that some frictions, which we left unmodeled,
restrict the ability of arbitrageurs to close the arbitrage gap, so by moving m we are effectively
relaxing those frictions. Alternatively, market power in the arbitrage market would imply that the
arbitrage gap does not close.

Note that there exists a level of m, which we denote by m*, such that p* = p®. We refer to this
level of trade as the optimal arbitrage trade. When m = 0, the arbitrage equilibrium is identical to
the autarky equilibrium. When m = m*, the prices in the autarky equilibrium correspond to the

integrated economy.

C Model Extensions

C.1 Static Framework: Uncertainty and Multiple Assets

In this section, we extend the model introduced in Section 2 to allow for uncertainty and an arbitrary
asset structure. All the results extend naturally. In Section C.4 we show how our results can be
further extended to multi-good economies.

There are two dates t = {0, 1} and a single consumption good (dollar), which serves as numeraire.
At date 1, a state s = 1,...,S is realized. There are J tradeable assets indexed by j = 1,...,J.
Investors are indexed by ¢ = 1,..., 1.

First, we describe the problem that each type of investor faces. Subsequently, we describe the

problem of arbitrageurs. We then present the counterpart of Proposition 1.

Investors’ problem The demand vector of type ¢ investors is given by the solution to

max u; (cf)) + B; Z?T (s)ui (cf (s)) .

i
90,5 j s

subject to the S + 1 budget constraints:
C% = ”6 - ZPjAQ§
J

¢t (s) =nt + Zdj (s) q;

J
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The first order conditions for the investor imply

b= B (s) “((”)d (s).

)
o
~

Uu-

Arbitrageurs The insights from Section 2 extend naturally to the case in which multiple assets
need to be combined to form a replicating portfolio. In this case, m can be defined as the scale of the
arbitrage trade and the vector x = (x1,...,xs) determines the direction of the arbitrage. Formally,

the date 0 revenue of arbitrageurs is given by

Ve (m) = =3 pjeym, (43)

where m = ¢f* and z; = ?TZ” subject to zero-cash-flow constraints at date 1
1
cf (s) = Zdj (s)xjm = 0.
J

Under the assumption that J > S, this system has a solution for x;’s in terms of d; (s). In the case

1
of Section 2, x = ( +1 )

Equilibrium

The zero-cash-flow constraints for the arbitrageur determine the direction of the arbitrage trade.
The size of the trade, m, is a parameter in our model and it will index the equilibrium in this

economniy.

Definition. (General arbitrage equilibrium) An arbitrage equilibrium, parameterized by the scale
of the arbitrage trades m, is defined as a set of consumption allocations, asset holdings, and prices
p; (m), such that i) investors maximize utility subject to their budget constraints, and ii) the asset

markets clear, that is,
ZAqé +z;m=0 Vj.
i

Given this equilibrium definition, we can define the payoffs for the investors and the arbitrageur

as functions of m.

Welfare

Proposition 5 directly generalizes Proposition 1. The counterpart of Proposition 2 is straightforward

and we omit it.

Proposition 5. (Marginal value of arbitrage: general environment)
a) (Individual marginal value of arbitrage) The marginal value of arbitrage, that is, the marginal

value of increasing the scale of the arbitrage trade m, measured in date O dollars, for type i investors
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and arbitrageurs, is respectively given by

av?

dp; X
A NP gy
A —dm
dve

dm
5 - 5 (fmire).

where Ny and \§ respectively represent the marginal value of consumption at date 0 for agent
i =1,....,1 and the arbitrageur, respectively.
b) (Aggregate marginal value of arbitrage) The social marginal value of arbitrage, that is, the

marginal value of increasing the scale of the arbitrage trade m, aggregated and measured in date O

= — ijl’j.
J

Proof. a) Differentiating V¢ with respect to m we have that the value of an additional unit of traded

dollars, is given by

in the arbitrage portfolio for investor i is

i = )

where we used the optimality conditions of the investor’s problem. Dividing by (cg) expresses the
marginal value in date 0 dollars and gives the first result above.

Differentiating Equation A.3 with respect to m we have that the marginal value of arbitrage for

dve dp;
dm = — ; <(;l’nixjm +ijj) .

Since A§ = 1, this shows the second part of a) above.

the arbitrageur is

b) The social marginal value of m is given by

dv<e dVJ
dw _ dm, + Z
dm 5 '

Using the results from part a) we have

d
—_— = —Z (xjm—i—pﬂc]) — p] ijxj
J

C.2 Dynamic Model: No Uncertainty

In this section, we extend the model introduced in Section 2 to a dynamic setting with three dates.

All the results extend naturally.

44



There are three dates ¢ = {0,1,2} and a single consumption good (dollar), which serves as
numeraire. There are two markets, indexed by A and B, at each date t. The economy is populated
by type A investors, type B investors, and arbitrageurs. At each date, type A investors exclusively
trade in market A while type B investors exclusively trade in market B. In each market ¢ a riskless
asset i is traded. Asset i pays a dividend di at date t.

First, we describe the problem that both types of investors face. Subsequently, we describe the
arbitrageur’s profits. We then present the counterpart of Proposition 1.

Investors’ problem In each market 4, the representative investor’s problem is

V' (ph,p1) = maxu; () + Biui (c1) + Biui (c3)

a5,91
subject to
PoAgs + ¢y = nf
Pigi + ¢ = ni+ (di + 1)
¢ = b+ di.

The first order conditions for the investor imply

i Biu; (Cll) i i
Do = o (cf)) (d1 +p1)

. B (022) i
PN

Arbitrageurs The arbitrageur follows an arbitrage strategy given by (qu, asB, ¢t B ) where
g is the arbitrageur’s position in market i at the end of date t. The arbitrage strategy has to satisfy

the following period by period zero-cash-flow constraints.

0=ct = (d +pi') a5 + (d7 +p7) 66" - pi'at” — pPat” (A4)

0=c§ =digt™ + dBg?B, (A.5)

We define trading directions as

B aB
7 q
xoz—gA and x1 = LA,
'5) q1

and the scales of the arbitrage trades by

qS‘A =mg and qf‘A =my.

45



The zero-cash-flow constraints determine the direction of the arbitrage trade for given scales
(mo, mq). Formally, from Equations (A.4) and (A.5) it follows that

po— _dpt (pi' +pfa1) 2t 48
df +pt df +p?
dA

xry = 7723. (A7)
d2

The direction of the arbitrage trade at date 1 depends only on the relative payoff of the assets at date
2, just as in the static model introduced in Section 2. Interestingly, the direction of the arbitrage
trade at date 0 depends on the relative payoff of the assets at date 1 and on an additional term that

incorporates the arbitrageur’s profits from the arbitrage trade at date 1.

Equilibrium

For any given scales of the arbitrage trades mg and m;, the market clearing conditions in markets
A and B in periods t = 0,1 together with the four first order conditions of the investors, the
investors’ budget constraints, and the zero-cash-flow constraints in Equations (A.6) and (A.7)
determine the equilibrium allocations for the investors, equilibrium prices, and trading directions

for the arbitrageurs.

Definition. (Dynamic arbitrage equilibrium) A dynamic arbitrage equilibrium, parameterized by
the scales of the arbitrage trades mg and mq, is defined as a set of consumption allocations, asset
holdings, and prices pg (mo,m1), p& (mo,m1), pit (mo, m1), and pP (mg, my) such that i) investors
maximize utility subject to their budget constraints, and ii) the asset markets A and B clear at date
t =0,1, that is,

Aq()4 +my =0

Aqé? + xomo =0

Aqf‘ +my—mpg=0
AqlB + xz1mq — xgmg = 0.

The direction of the arbitrage trade at date 0 in Equation (A.6) can be written as function of

the equilibrium prices at t = 1 and the scales of the arbitrage trades, i.e.,

Zo (pfﬂplB;m07m1) 3

which is helpful in decomposing the direct effect and the pecuniary effects from changes in mg and

my. Differentiating xo with respect to m; we have

dro  Oxg Oxo dplA Oz dpP?

dm;  Omy @dmt apP dm,’

where the first term represents the direct effect of a change in m; on the direction of the arbitrage

trade at date 0 and the last two terms represent the pecuniary effects from changing m;. The Lemma

46



dajo
dmy *

below characterizes

Lemma 1. (Effects on arbitrage direction at date 0) The total derivatives of xo with respect to mg

and my are given by

dzo 1 ( dft +pft  my —mg dpf  xymy — oMo dp?)
—I

Y _ T —
dmy mo dlB +p{3 d{g —|—p1B dmy dlB +plB dmy

and

drg 1 <1?7’14 +pPr1  my—mo dpy | wimi — zemg dpig)

dmy  mo \ dB+pB dP + pP dmy dB +pP  dmy

Proof. Partially differentiating Equation (A.6) with respect to mgy and m; gives

oo (pi+pfer)mi 1 1 (x +d‘14+p‘14>
dmgy dP +pB mogmo  mo 0 df + pf
D p{‘+p{3x111(x +d{‘+p{‘)
omy — dP+pPf me om0 dP +pPF )

and with respect to pi' and p? gives

Org 1 myp—mg
opi'  mo df +pf
83:0 o 1 r1miq — xoMmo

opf  mo df +p?

Using that

drg  Oxg %ﬁ Oxo dpP

dm;  Omy; = Opidmy  OpP dmy
gives the results. O
Welfare

The arbitrageur’s utility from following a trading strategy with scales my and m; is
Ve (mo,m1) = — (b5 ay” +po a5 ™) = — (ps womo + pjmo) | (A8)

where xg depends on mg and m; and is given by Equation (A.6). Moreover, the utility of an investor
i depends on mg and m; only through the equilibrium prices p§ and p{. The following proposition

characterizes the individual (for investors and arbitrageurs) and social marginal values of arbitrage.

Proposition 6. (Marginal value of arbitrage: dynamic no uncertainty)
a) (Individual marginal value of arbitrage) The marginal value of arbitrage, that is, the marginal

values of increasing the scale of the arbitrage trades mg and my, measured in date O dollars, for type
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i investors and arbitrageurs, are respectively given by

dme . 9Po A i Pi%i\C1) OP1 A i
N, om0 T T @) om0
0 my up (ch) Omy
v A A A B B A
dmy _ (A1 +P1 B a my —mo dp; | x1m1 — Tomo dpy dpy o0+ dpy "
= - - - 0
g dB +pB70 0 i te? dmg aftp? dmg dmy dmg
Po Po
A% A B A B B A
dmg _ P1 T prw1 | mi—modpy | wimy — Tomo dpj dpy oo+ dpy m
= - 0 0
)\8 dp +p? dp +p? dmq dp +p? dmq dmq dmy ’
B B B
P Dy P

where )\6 represents the marginal value of consumption at date 0 for agent j = A, B,«
b) (Aggregate marginal value of arbitrage) The social marginal value of arbitrage, that is, the
marginal value of increasing the scale of the arbitrage trades mg and my, aggregated and measured

in date 0 dollars, are given by

aw (d?’f‘ +p‘14p3 _pA> ([ Boup (cf)  Bauly (cf) ) dp (1 — 1)
dmg b +pP 0 0 Uy (COB) uy (064) dmyg
dw _ pt+pPer [ Bpulp (cF)  Baul (cf) P mo)
dmy d{:}%”? ulp () uy () ) dma ’
where T1 = fj—lj.
1

Proof. a) The value of an additional unit of arbitrage at date 0 for investor i is

dVi__/ idp(i) i na idpli i
dm; i(CO) dimg Agy — Biu; (01) drms Aqy,

where we used the optimality conditions of the investor’s problem. Dividing by (cé) expresses the
marginal value in date 0 dollars and gives the first result above.
Differentiating the expression in Equation (A.8) we have that the marginal value of mq for the

mw__<3dwmm+,v_(@€x+¢ﬁ)mo (A.9)

8m0 o Po dm() Po dmo 0 dmo

arbitrageur is

Using Lemma 1 we have

d (zomo) _ i —mg dpi  xymy — xomg dpP B dit + p¢t
dmo  df +pf dmo AP +pP  dmo  df +pP’

and using this expression in Equation A.9 gives the second result in a) above, where we used that
Ao = 1.
Differentiating the expression in Equation (A.8) with respect to m; we have

oV« pdry (dp(]fx N dpf?)mo.

Gml =P dm1 dm1 0 dm1
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Using Lemma 1 gives

6m1 T dpP+p? df';p? dm1 dp+p? dm1

ove pit + pPay my —mo dpit  xymy — zomg dpP <deB dpi! >
= — | —z0+ — ) mo,
125 Po Py

B dm1 0 dm1
which concludes the proof of part a).
b) The marginal social value of m; is given by

ave ov4 avE
ow _ Omy Om + Om

am, Ay M T AB

Using the results from part a) for mg this implies

dw  [(di+pf g oa) [ ma—me dpit  xymy — xomg dp? _ dp¥ - dpi! m
dmo — \dP +pp"* ~ M0 ol dmy el dmo | \dmo™ T dmo )
Po
_ dP64 Al — Bauly ( ) dpi! Ag A dpf} AP — Bpup (01) dP1 ¢
dmg 0 uy (cft) dmo dmo— ° uy (c§)  dmo L

and using the market clearing conditions and the FOCs for the investors gives

aw _ (d’fl—l—p‘f‘pB —pA) n ﬁBUB (0113) B 5AUA (01) dp1 Aq A
dmg — \df +pf" " () uly (cg) ) dmo

which proves the first part of b).

Analogously, using the results from part a) for m; we have

aw _ _p‘f‘ + pPay [ ma—me dp$! n T1my — TeMo dp1 de dp(;‘ m
dmg df+pf dP+pf dmq dP+pP dm1 dm1 0
e 24 24
dpo o g Bauly (ct') dp1 . dpg’ A B _ Bpufy (cf') dp? AgP
dm 'y (c64) dm; % dm ulg (cOB) .
Using market clearing and the FOCs for the investors gives
aw pit4pPa (Bpup (cf)  Bauy(cf) ) dpt (i — m0)
dm; dlB";plB Uy (663) uy (cg‘) dmy & 0/
Po
This proves the result since A\, = 1. O

Note that for both % and jx/ the social marginal value of arbitrage is given by i) a direct

effect, given by the arbitrage gap at either date 0 or at date 1 (appropriate discounted) and ii) a set

of distributive pecuniary externalities (using the language of Davila and Korinek (2018)). Déavila and

Korinek (2018) show that distributive pecuniary externalities are always given by i) differences in
Baus (Cl ) pit

/ B
MRS’s, in this case ﬁj,“?c(;l)) ERACIE , 1i) price sensitivities, in this case s , and iii) net trading
0 0
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positions, in this case As long as markets are incomplete, these externalities will have a first-order
effect on welfare. However, these are zero sum when measured in terms of date 1 dollars.

Even when markets are incomplete, there are situations in which such distributive pecuniary
externalities do not enter welfare calculations. For instance, when arbitrageurs follow a buy-and-
hold strategy, m; = mg and the distributive externalities vanish. This is natural, since there are not

net trades taking place at date 1 in that case.

Corollary 2. The social marginal value of a buy-and-hold strategy is equal to the adjusted price

gap. Formally,
dw _di g 4

I £ L

mi=mgo

C.3 Dynamic Model: Uncertainty

In this section, we extend the model introduced in the previous subsection to a dynamic setting with
uncertainty.

There are three dates ¢ = {0,1,2} and a single consumption good (dollar), which serves as
numeraire. At date 1 the state s = 1,..., S is realized. There are two markets, indexed by A and B,
at each date t. The economy is populated by type A investors, type B investors, and arbitrageurs.
At each date, type A investors exclusively trade in market A while type B investors exclusively
trade in market B. In each market ¢ a potentially risky asset 7 is traded. Asset i pays a contingent
dividend d: (s) at date t = 1,2.

First, we describe the problem that both types of investors face. Subsequently, we describe the

arbitrageur’s profits. We then present the counterpart of Proposition 1.

Investors’ problem In each market i, the representative investor’s problem is

V' (ph,pl) = max u; () + B Zw (s)u; (¢ (s)) + B} Zw (s) u; (c (s))

98,41 (s)
subject to
PoAgy + cp =g
pidi () +¢i (s) = nj (s

i
C2

DN =
—
i)
—~
»
~
i~
[Sny
—~
VA
~—
~
S
o=

s) = n!

—~

The first order conditions for the investor imply
v = Bi o (s) i (ci (s)) (di (s) +pi ()
g = .
 Bl(B)
i 7 7

K3

Arbitrageurs The arbitrageur follows an arbitrage strategy given by (g5, ¢5%, ¢ (s) , 492 (s))

ai

where ¢f** is the arbitrageur’s position in market i at the end of date ¢. The arbitrage strategy has
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to satisfy the following period by period cash-flow constraints.

0<cf (s)=(df () +pi () a5 + (dF () + 07 (5)) 46" — 1 () a8 (s) — P (5) 5P (), Vs,
(A.10)

0=1c5(s) =dj (s) a5 (s) +dF' a7 (s), Vs. (A.11)

Analogous to the case without uncertainty we define trading directions as

aB aB
Tg = % and 1z (s) = qLA (5), Vs.
) a” (s)

and the scales of the arbitrage trades by
qg‘A =mo and ¢®(s) =mq(s), Vs.

Note that the scale and direction of the arbitrage trade are contingent on the state s. The zero-
cash-flow constraints determine the direction of the arbitrage trade for given scales (mg,mq (s)).
Formally, from Equations (A.10) and (A.11) it follows that

B ) tpis) L (o) + P ()1 (5)

T K e A A (A12)
A

v (s) =2y (A.13)

U
Ny

(s)

The direction of the arbitrage trade at date 1 depends only on the relative payoff of the assets at
date 2 in state s, just as in the static model introduced in Section 2 and dynamic model without
uncertainty. However, while in the model without uncertainty one could freely choose two the
scales of the arbitrage trades mg and mq, this is no longer the case when there is uncertainty. The S
equations in (A.12) impose S restrictions that need to be satisfied by the S+ 1 scales of the arbitrage
trades, mo, {m1 (s)},_; g and the direction of the arbitrage trade at t = 0, zo. In particular, there

may be scales {my (s)},_, ¢ such that an arbitrage trade does not exist. More specifically, there

yeery

may be some arbitrage trades at {m1 (s)},_, ¢ for which negative consumption at date 1 by the
arbitrageur may be unavoidable: this is exactly the scenario consider in Shleifer and Vishny (1997).
When the assets are riskless, i.e., di(s) = di, an arbitrage buy and hold strategy in which

mq (s) = mg always exists as long as

5

dit +pf (s) 5
af +p? (s)

Ny

Vs.

Note that in this case we are outside the Shleifer and Vishny (1997) scenario, because there are
not interim portfolio adjustments for the arbitrageur. Finally, if di = d;, the S constraints on
collapse to

zo > —1.

and we are back to the static model case.
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C.4 CIP Model

Here we briefly describe how to extend Proposition 2 to the CIP case, in which there are multiple

goods.
Market A (USD) The problem of type A investors is given by
Ir;%qu (064$) + Baua <c’14$)
0
subject to the budget constraints

A$ A A A A
PP AGe* + c§® = ng®
A A A$ A
' = nf® + %",
where Agf = ¢! — ¢, and where ¢! and ¢{! denote the consumption of type A investors at dates

0 and 1, respectively.

Market B (EUR) Investors in market B face the same problem as investors in market

A. Investors in market B also have time-separable utility, with flow utility of consumption
ct—B

up (¢) = T, and discount factor Sp. They have dollar endowments nF€ and nP€ and hold

an initial position ¢Z¢ in the traded asset. Hence, type B investors choose ¢ as the solution to

max u (cég) + Bpup (cf)
dq

subject to the budget constraints

B€ A B€E , BE Be€
PTEAGY T ey - =1y

BE BE | ;BE BE
e =mny o +di g

9

BE _  BE _ _BE BE
where Agg™ = g5~ — ¢2) 0

and where ¢€ and ¢P€ denote the consumption of type B investors at

dates 0 and 1, respectively.

Arbitrageurs Arbitrageurs (indexed by «) are the only agents who can trade in both markets
A and B. Arbitrageurs have no initial endowments of euros or dollars. Arbitrageurs can exchange
date 0 euros for date 0 dollars at rate Sy, and write contracts to exchange date 1 euros for date 1
dollars at rate Fj.

Arbitrageurs implement a trading strategy with zero cash-flows at date 1 in order to maximize the
date 0 revenue raised by such a strategy. Formally, denoting by q8‘A$ and ¢3P€ the respective asset
purchases of arbitrageurs in markets A and B denominated in their domestic currencies, the objective

function of an American arbitrageur (a symmetric setup obtains for a European arbitrageur) is given
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A €
— | phas ™ + v 6g7¢ |, (A.14)
~—
Sop$
subject to a zero-cash-flow constraint
di¥eg™ + aP® g€ =0, (A.15)
~—
FodB€

where p%, = Sop$, and dP¥ = FydPe€.

We can then exploit the zero-cash-flow constraint to rewrite,

AS
an€ — dl iqu$
0 dPe R
1
Letting m = q8A$, we can then write the arbitrageur’s portfolio as x = ( s g ) m.
abB€ Fy

Market clearing The market clearing conditions in this environment are given by

Agy® + g% =0
Agy€ +q57¢ =0,

which can be equivalently written as

A +m=0
a1

AgP€ — -t —m =0.
4P R

Therefore

Agg® + g5 =0
Agg€ +q5"¢ = 0.

Without loss of generality, we assume that d’f‘$ =1and dP€ =1.

Welfare Here compute the marginal value of increasing m for both types of investors, measured

in date O dollars:

dv4 A$

e d

- dmA - _ b Aqélfﬁ
uly (Co ) dm

av’® BE€

e dp €

So—""5v dE"B =-S5 - - Aqp

Up Co)
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We can then consider the indirect utility of the arbitrageurs, denoted by V,, (m), as

dVo (m) _ @quﬁE L dgg*® n dpy OBE 1 dqu€.
dm dm *° A dm dm *° B dm

Leaving aside pecuniary effects, we can write the aggregate marginal value of arbitrage as

AW di® So ¢ s
dm — dPE€R,PB T PA

So
= Fop% - Pix
So 1 1

TRy l4r€ 1408

where we set d‘14$ = dP€ in both countries without loss of generality.

D Detailed Data Description

This Appendix describes in detail the sources of data used in the CIP application in Section 4 and

the Dual-Listed Companies application in Section 5.

D.1 CIP Application: FX futures Data

Price impact estimation was conducting using bid, offer, and trade data from FX markets traded
at the CME Group. Direct feed “L1” (top of book and trade) data from the Chicago Mercantile
Exchange (CME) were recorded on a server in real time and stored in a database. Every transaction,
bid change, and offer change were recorded with a millisecond timestamp corresponding to the
time that the CME’s matching engine processed the order book change or trade. Bid and offer
updates consist of a price and size that reflect the highest bid and lowest offer at each point in time.

Transaction updates reflect all executed trades in the studied markets, with a transaction price and

size.
Table 1: CME Data Summary Statistics (1)

Market AUD/USD GBP/USD CAD/USD EUR/USD JPY/USD
Transactions 7,951,935 8,656,364 6,150,197 17,607,450 10,088,058
Volume 97,221,569 27,314,833 18,659,840 51,922,628 28,683,280
Trading Days 305 305 305 305 305
Minimum Fluctuation (Tick) 0.00005 0.0001 0.00005 0.00005  0.0000005
Contract Multiplier 100,000 62,500 100,000 125,000 12,500,000

Note: Table 1 provides summary statistics of the various contract markets at the Chicago Mercantile
Exchange. Aggregate figures in the top section of the table cover all trading days, including holidays and
roll periods, while trading day totals exclude the days immediately preceding liquidity migration from the
front-month to the subsequent contract. Contract specifications are included along with statistics specific
to the period 12/15/2019 — 02/26/2021.

o4



The dataset covers the period 12/15/2019 — 02/26,/2021 and corresponds to five contract months
for each of five different futures contracts. Specifically, the March 2020, June 2020, September
2020, December 2020, and March 2021 futures contracts are covered for the AUD/USD, GBP/USD,
CAD/USD, EUR/USD, and JPY/USD.

All studied CME Group FX markets have similar contract specifications. They feature a quantity
of currency, a pricing convention, and a minimum fluctuation. For the EUR/USD, for instance, the
quantity is 125,000 since the seller of a single contract (the minimum allowed size in any futures
market) is promising to deliver 125,000 euros in exchange for dollars; the pricing convention is
dollars per single Euro since in “EUR/USD” the “EUR” is listed first; the minimum fluctuation
is 0.00005 ($6.25 = 125,000 x $0.00005 in trading gains) so that prices must move in integer
multiples of 0.00005. The CME Group determines minimum fluctuations and contract sizing based
on liquidity and microstructure considerations. Less liquid markets generally feature larger minimum
fluctuations whereas highly liquid markets feature smaller minimum fluctuations (also known as “tick
size”).

The CME’s FX markets are open from 6pm EST on Sunday to 5pm EST on Friday with a daily
maintenance window from 5pm EST to 6pm EST. All trading takes place via a continuous limit
order book, except for at the market open during each 24 hour cycle, in which case a “Pre-Open”
period allows for an opening price auction to take place during which time the market’s opening
price and quantity are determined by orders in the book.

During the continuous trading period, a single large order that is matched against multiple
smaller orders will appear in the data feed as a string of consecutive individual prices and sizes.
This paper’s CIP price impact analysis aggregates these strings of transactions (which originate
from a single “aggressive” order that crossed the spread to take liquidity from resting orders on the
opposite size) into an average fill price and total trade size. By way of illustration, if an aggressive
1000 lot buy order was filled 500@1.2000 and 500@1.2001, we would study it as a 1000 lot order
filled at an average price of 1.20005.
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Table 2: CME Data Summary Statistics (2)

AUD/USD GBP/USD CAD/USD EUR/USD JPY/USD

Min Price 0.5512 1.1439 0.682 1.0671 0.0089
Mean Price 0.7056 1.3033 0.7548 1.1557 0.0094
Max Price 0.7956 1.4142 0.799 1.233 0.0097
Avg Daily Dollar Volume 6114468402 7140772800 4497738880 23939036247 10805096107
10P Daily Volume 26567 16253 13153 44751 19237
Median Daily Volume 86988 87992 59771 166217 92155
90P Daily Volume 212480 205379 185292 370850 407432
# Transactions/Day 25287 27824 19630 56458 32475

Note: Table 2 contains price, daily volume, and daily transaction summary statistics for the different
contract markets’ data sets. All FX futures contracts are quoted in USD per single unit of foreign currency:
this results in values in the range of 0.5 to 1.5 for most markets but values in the neighborhood of 0.01 for the
yen. For parsimony, all price values are converted into ticks for the empirical analysis: a tick is the minimal
allowed price fluctuation in the contract market. The average daily dollar volume is generally increasing in
the size of the corresponding economy, with smallest transaction volume in the AUD/USD and CAD/USD
markets and the largest volumes in the EUR/USD (the most actively traded pair).

D.2 CIP Application: Price/Rates Data

We used Bloomberg to obtain data for spot currencies, forward points, and interest rates (secured
and unsecured three-month lending rates). The exact data series used can be found be inputting
the following symbols into a Bloomberg terminal: GB03 Govt, GTDEM3MO Corp, ADBB3M
CMPN Curncy, CDORO03 Index, BP0003M, JY0003M Index, EUR BGN Curncy, EUR3M BGN
Curncy, AUD BGN Curncy, AUD3M BGN Curncy, CAD BGN Curncy, CAD3M BGN Curncy,
GBP BGN Curncy, GBP3M BGN Curncy, JPY BGN Curncy, JPY3M BGN Curncy; these represent
(respectively) 3M T-Bills, 3M EUR, German Debt, 3M Australian Bank Bills, 3M Canadian Bankers
Acceptances, 3M GBP LIBOR, 3M JPY LIBOR, EUR/USD Spot, EUR 3M Forward Points,
AUD/USD Spot, AUD 3M Forward Points, CAD/USD Spot, CAD 3M Forward Points, GBP/USD
Spot, GBP 3M Forward Points, JPY/USD Spot, and JPY 3M Forward Points .

D.3 Dual-Listed Companies Application: Price Data

We use the publicly available data on dual-listed companies provided by Mathijs A. Van Dijk.
This data is based on De Jong, Rosenthal and Van Dijk (2009) and can be found on the website:
http://www.mathijsavandijk.com/dual-listed-companies. Van Dijk’s data includes share prices,
currency conversions, and volumes, which are used in our paper to compute the deviations of twin
share prices from parity as well as the annual average daily dollar volume required to use the price

impact specification in Frazzini, Israel and Moskowitz (2018).
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Table 3: CIP Summary Statistics

Mean  St. Dev. P10 Median P90

AUD/USD -0.0007 0.0011 -0.0013 -0.0004 -0.0001
GBP/USD -0.0014 0.0014 -0.0024 -0.0009 -0.0005
CAD/USD -0.0015 0.0010 -0.0021 -0.0012 -0.0009
EUR/USD -0.0005 0.0007 -0.0011 -0.0004 0.0000
JPY/USD -0.0017 0.0012 -0.0029 -0.0013 -0.0008

Note: This table provides statistics for the three-month cross-currency bases by currency for the period
02/29/2008 through 02/26/2021. Wherever possible, three-month secured government paper was used for
the cross currency basis, and three-month LIBOR (unsecured) rates were used whenever necessary.

Table 4: Dual-Listed Companies Summary Statistics

Mean St. Dev. P10 Median P90

Royal Dutch/Shell 1.07510 0.05599  0.99436 1.07869 1.14640
Smithkline/Beecham 1.07968 0.04993  0.99439 1.09231 1.13279
Rio Tinto PLC/Ltd  0.98152 0.04666  0.91744 0.98540 1.03904

Note: Table 4 provides summary statistics of the relative pricing of various twin shares over the sample
periods. A value of 1 represents parity (no arbitrage opportunity), while 1.1 or 0.9, for example,
represent 10% deviations. Royal Dutch/Shell and Smithkline/Beechman in particular feature substantial
and persistent fluctuations away from parity, with median deviations of around 8% and 9% respectively.
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E Foreign Exchange Market: Institutional Background

Foreign Exchange (“FX” or “Currency”) trading takes place through bilateral agreements between
market participants as well as across a wide variety of trading platforms. While some platforms
facilitate anonymous trading, other platforms are relationship-based. In the context of our CIP
application, it is helpful to understand the workings of the spot FX markets and the futures FX
markets.

The spot FX market is a fragmented market where institutions or individuals can exchange
currencies. The most commonly traded and liquid currencies are frequently referred to as the
“majors,” though the definition can differ across papers and platforms. The USD (US Dollar), EUR
(Euro Currency), JPY (Japanese Yen), GBP (British Pound), CHF (Swiss Franc), AUD (Australian
Dollar), and CAD (Canadian Dollar) are the group of major currency pairs components, with the
most commonly traded pairs being EUR/USD, USD/JPY, GBP/USD, USD/CHF, USD/CAD, and
AUD/USD. When quoting a currency pair, the convention is that the price is quoted in units of the
second currency per single unit of the first. By way of illustration, a price of 1.20 for the EUR/USD
implies that 1 Euro = 1.20 USD. “Cross currencies” are combinations of liquid currencies that are
less commonly traded than their dollar counterparts: these include markets like the EUR/GBP or
EUR/JPY. As this paper considers deviations from Covered Interest Parity between the US and
foreign bonds, we consider only majors.

Spot FX are largely transacted through major dealing platforms, the two most well-known
institutional platforms being EBS (owned by CME Group) and Retfinitiv (owned by the London
Stock Exchange Group). The platforms are offered in various flavors, some of which involve
relationship-based dealing where liquidity takers (hedgers, hedge funds, and other buy-side
institutions) and liquidity providers (market-makers, banks, and other sell-side institutions) interact
subject to greater rules and longer processing delays (EBS Direct, for instance). Other platforms
involve an anonymous centralized limit order book that would be familiar to participants in other
centralized markets like futures. Swaps and forwards are also traded through dealing platforms and
interbank relationships.

In parallel with the spot FX markets, futures FX markets provide trading opportunities in
currencies. The primary venue for such trading is the CME Group, though other exchanges also
offer such contracts throughout the world. The CME Group’s FX trading takes place on the Chicago
Mercantile Exchange (CME) Designated Contract Market (DCM). The CME Group also offers
trading in other sectors beyond FX, with trading taking place across the CME DCM as well as
its other DCMs, the NYMEX (New York Mercantile Exchange, mostly energies), the COMEX
(Commodity Exchange, mostly metals), and the CBOT (Chicago Board of Trade). Trading in FX
futures takes place across individual contracts, which are specified in a quarterly cycle each year (the
coding scheme used in this paper’s raw data files as well as by all futures exchanges is H = March, M
= June, U = September, Z = December). Cessation of trading in quarterly FX contracts typically
takes place 2 days before the third Wednesday of the delivery month, after which point the contract
is physically settled via the contract seller’s delivery on the third Wednesday to the contract buyer
via the exchange’s clearinghouse. All trades formally take place between market participants and
the exchange clearinghouse so that the clearinghouse is the counterparty to all transactions.

Liquidity is fragmented in FX markets between the spot FX and futures markets, both of
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which can be thought of as approximately equal sources of direct, platform-based trading volumes.
Although futures involve delivery of a specified amount of foreign exchange at a specific date in the
future just like an OTC (over-the-counter) forward contract, institutional traders will commonly
express directional opinions about currencies through an almost interchangeable combination of
futures and spot FX due to the similar price impact and the fact that price impact in one of the two
markets will spill over almost instantaneously into the other market. For example, if a large trader
wished to purchase $500M USD worth of Euros, the trader could either purchase that amount in
the spot FX market, purchase that amount via an appropriately sized futures trade (taking into
account the fact that a single EUR/USD contract is for the purchase of 125,000 euros in exchange
for dollars), or simultaneously purchase $Y in the spot market and $500M-Y in the futures market.
All of these trades will push the price of EUR/USD up by essentially the same amount because they
are simply different ways of expressing the same trade.

Currencies are typically quoted to the fifth decimal place with bid-ask spreads commonly quoted
as 1.21005/1.21010 for example with a spread of half a “pip” (a “pip” is a ten thousandth, the fourth
decimal place). If a participant sends an order to purchase simultaneously at two different venues
(say, at the CME Group via both their futures market for EUR/USD as well as the EBS dealing
platform), the participant can take advantage of any resting liquidity in both markets, but because
of how closely spot foreign exchange markets and futures markets are tied together (by CIP), any
large orders in one market will have significant spillover effects in the other market if trades are
executed sequentially. For example, a large buy order (relative to resting order liquidity) submitted
in the futures will generally push up the price in the spot market by approximately the same amount.
Arbitrageurs can take advantage of any fleeting differences in price induced by the continuous limit
order book structure; this kind of “stale quote sniping” is extensively reviewed in Budish, Cramton
and Shim (2015).

Spot FX markets and futures markets differ in their margin requirements as well. Spot FX
markets generally allow very high levels of leverage, with the CFTC (Commodity Futures Trading
Commission), which regulates currency and futures trading in the US, imposing restrictions that
cap leverage at 50:1 for retail traders (who are naturally subject to more restrictive regulation than
institutional traders). Futures markets feature margin requirements determined by the exchanges,
which at the CME Group consists of the SPAN margining system. SPAN allows for participants
to see reductions in margin requirements based on relationships across contracts. For example, a
position long 100 E-mini S&P 500 contracts and short 100 E-mini Nasdaq 100 contracts would require
less margin than a position long 100 in both markets, as they typically have a very high positive
correlation. Futures Commission Merchants (FCMs), which are the clearing member organizations
that process trades from clients and clear them through the exchange clearinghouse, might require

higher margin requirements as a buffer based on client credit risk.

F Additional Results

F.1 Price Impact Estimates

Table 5 reports the average estimates of the price impact coefficients over our full sample.
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Table 5: Price Impact Estimates

Market AUD/USD GBP/USD CAD/USD EUR/USD JPY/USD
o 0.1333 0.1289 0.1215 0.1225 0.1160
SE(a) 0.00014 0.00012 0.00012 0.00008 0.00019

Note: Table 5 presents the average of the daily price impact estimates over our full sample: December 15,
2019 to February 26, 2021.

F.2 CIP Deviations: Welfare Gains between 2010 and 2019

Figure A.1 shows the welfare gains from closing CIP deviations from the beginning of 2010 through
the end of 2019. To compute such welfare gains, we backward-extrapolate the price impact estimates
from the period 12/15/2019-02/26/2021, which we combine with the CIP deviations presented in

Figure 5a. We recover estimates for welfare of similar order of magnitude as in the 2019-2021 period.
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Figure A.1: Welfare gains from CIP Arbitrage: 2010-2019

Note: Figure A.1 shows the welfare gains from closing CIP deviations from the beginning of 2010 through
the end of 2019. To compute such welfare gains, we backward-extrapolate the price impact estimates from
the period 12/15/2019-02/26/2021, shown in Figure 4, and combine them with the CIP deviations shown
in Figure 5a. The yen-dollar cross currency basis features deviations from CIP sufficient to cause a modest
$1.6B reduction in welfare at its extreme, while for other bases the welfare reductions remain small in
magnitude.

F.3 CIP Deviations: Welfare Gains Isoquants

Figure A.2 shows isoquants of CIP deviations and price impact estimates that yield the same level
of welfare gains, corresponding to $100M, $1B, and $10B in the EUR/USD case.
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Figure A.2: Isoquants: CIP Welfare Gains (EUR/USD)

Note: Figure A.2 shows isoquants of CIP deviations and price impact estimates (« coefficients) that yield
the same level of welfare gains, corresponding to $100M, $1B, and $10B in the EUR/USD case. A similar
qualitative and quantitative relation applies to the other currencies considered in the paper. The solid red
dot represents the average estimates of CIP deviations and the average price impact coefficient o in our
sample. The solid red dot represents the maximum measure of CIP deviations and the highest price impact
estimate « in our sample. This figure illustrates that large welfare gains from closing CIP deviations can
only emerge when CIP deviations are extremely large and price impact estimates are low.

F.4 CIP Deviations: LIBOR Estimates

We rerun the same analysis as the main body of the paper using exclusively the same LIBOR rates
used in Du, Tepper and Verdelhan (2018) for the calculation of the various cross-currency bases.
The results are detailed in Figure A.3. The primary difference versus the main results can be seen
in the EUR/USD cross-currency basis, where a large spike toward the end of 2011 in welfare gains
from arbitrage is visible. Our main body’s results use secured three-month lending rates whenever
such instruments are available, and do not find such a large cross-currency basis for T-Bills versus
German three-month paper. One can then view the noticeable surge in 2011 as corresponding to
differences between secured and unsecured lending in the midst of the European sovereign debt
crisis.

As noted in Du, Tepper and Verdelhan (2018), use of LIBOR to compute the cross-currency
basis is imperfect because of the potential for some of the basis being accounted for by differential
credit risk, which does not perfectly correspond to the pure arbitrage of identical legs described in
our model. For completeness, however, we include it here and note that the switch to all unsecured
lending rates does not change the order of magnitude of maximal welfare gains from arbitrage and
in fact, for the period where we are able to estimate daily price impact functions including the
recent COVID-19 crisis, we find minimal gains from arbitrage despite some of the most negative
cross-currency bases in the larger dataset. We suspect that if we were able to obtain data for the
EUR/USD futures in 2011, we would similarly find larger price impact than our average estimates
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for December 2019-February 2021.
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Figure A.3: LIBOR Results

Note: Figure A.3 includes the counterparts of Figures 5a, 6a, and 6b in the text, and Figure A.1 in the

Appendix when using LIBOR as riskless rate.

G Price Impact Estimates:

Multipliers

Gabaix and Koijen (2021)

Gabaix and Koijen (2021) highlight the importance of stock market order flows in causing

fluctuations in stock market prices. Using a granular instrument variables (GIV) approach, which

uses the granular character of idiosyncratic trading by large institutions, they show that flows into

US equities generally have a “multiplier” of approximately 5. This means that, according to their
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estimates, one dollar of flows into the stock market increases the market capitalization of the stock
market by around five dollars. This large multiplier implies that demand is more inelastic than
standard frictionless models predict. Gabaix and Koijen (2021) refer to this insensitivity to price as
the “inelastic markets hypothesis.” As a consequence of our model’s need for price impact estimates
to compute welfare gains from arbitrage, we have tested this hypothesis in currency markets and
find strong evidence that even modest flows of funds in currency markets can have a material impact

on prices.

Table 6: Price Impact Estimates: Gabaix and Koijen (2021) Style Multipliers

AUD/USD GBP/USD CAD/USD EUR/USD JPY/USD

$50M Trade  7.042 13.869 7.210 36.087 12.875
$100M Trade 4.979 9.807 5.098 25.517 9.104
$1B Trade 1.575 3.101 1.612 8.069 2.879

Note: Table 6 reports multipliers in the style of Gabaix and Koijen (2021) — expressed as the percentage
movement in the currency price versus the percent of foreign GDP that the order represents — from our
estimation of price impact in the FX futures markets. Since our estimates of price impact are non-linear, we
report estimates of the multipliers for different trade sizes. Multipliers are decreasing in the size of the trade,
since we estimate a concave price impact function. We find a high multiplier for the EUR, JPY, and GBP
because a given trade size represents a very small amount as a fraction of GDP for those countries/regions.
See Table 7 for exact computations.

Table 6 shows our estimates of the multipliers for different trade sizes: the percentage movement
in the currency price versus the percent of foreign GDP that the order represents. For example,
if we had a row for $180B it would represent around 1% of Eurozone GDP and so the multiplier
would be equal to the percent price change we estimate would be induced by the order divided
by 1%. We must present different multipliers depending on the size of the trade because we find
strong support in currencies for the approximately square root price impact specification of Gabaix,
Gopikrishnan, Plerou and Stanley (2006); small trades then carry a large multiplier while the largest
trades carry a much smaller multiplier. The biggest trades listed in this table correspond to over
10% of a typical day’s dollar transaction volume in outright futures contracts at the CME and so
can be considered comparable to transactions from the largest institutions. These values represent
significant responses of price to institutional trade sizes and underline the central message of Gabaix
and Koijen (2021) that order flows by large institutions and investors create much larger market

fluctuations than captured by most current models.
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Table 7: Percent of foreign GDP of a given order

AUD/USD GBP/USD CAD/USD EUR/USD JPY/USD

$50M Trade  0.35714 0.17668 0.28736 0.02732 0.09843
$100M Trade 0.71429 0.35336 0.57471 0.05464 0.19685
$1B Trade 7.14286 3.53357 5.74713 0.54645 1.96850

Note: Table 7 reports the size of the trade for each currency normalized by the GDP of the country. That
is, a $100M trade of AUD represents 0.71bps of Australia’s GDP.

The diminishing multiplier we find versus the linear GIV approach used in Gabaix and Koijen
(2021) on equity market data is why welfare gains from arbitrage are a convex function of the price
wedge. Linear price impact results in the estimation of a triangular wedge that can be substantial
even for moderate gap-closing trade sizes, whereas concave price impact implies that small wedges
will be closed with small orders and the importance of price wedges to welfare is an increasing

function of the absolute size of the wedge.
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