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Abstract

We evaluate the optimal fiscal policy in a standard incomplete-markets model with
uninsurable idiosyncratic shocks, where a Ramsey planner chooses time-varying paths
of proportional capital and labor income taxes, lump-sum transfers (or taxes), and
government debt. We find that: (1) short-run capital income taxes are effective in
providing redistribution since the tax base is relatively unequal and inelastic; (2) an
increasing pattern of labor income taxes over time mitigates intertemporal distortions
from capital income taxes; (3) the optimal policy expands the US social welfare sys-
tem significantly, increasing overall transfers by roughly 50 percent; (4) two thirds
of the welfare gains come from redistribution and the remaining third come mostly
from insurance; and (5) redistribution also leads to a more efficient allocation of labor
via wealth effects on labor supply—lower productivity households can afford to work
relatively less.
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1 Introduction
How and to what extent should fiscal policy be used to mitigate household inequality and
risk? We provide a quantitative answer to these questions by studying a Ramsey problem
in the standard incomplete-markets (SIM) model, a general equilibrium model with hetero-
geneous agents and uninsurable idiosyncratic labor income risk.1

We begin with a detailed calibration of the SIM model that replicates several aspects
of the US economy, including the cross-sectional distribution of wealth, earnings, hours
worked, consumption, and total income, as well as statistical properties of the labor income
process of households. We then consider a Ramsey planner that finances an exogenous
stream of government expenditures with proportional capital and labor income taxes, lump-
sum transfers (or taxes), and government debt. We allow policy to be time varying and
evaluate the welfare function over the transition path. To solve for the optimal paths of
fiscal instruments, we parameterize them in the time domain using flexible polynomials,
then maximize welfare using a global optimization algorithm.

For our benchmark calibration, we find that a utilitarian planner would tax capital income
heavily in the short run, but also at a positive rate of 27 percent in the long run. These
long-run taxes are lower than the prevailing ones in the US, which we calculate to be about
42 percent. Labor income taxes increase steeply in the short-run, reaching 39 percent in the
long run, higher than the prevailing rate of 23 percent. These changes in taxes are then used
to finance an increase in lump-sum transfers of roughly 50 percent on average over time.
The ratio of government debt to GDP more than doubles to 154 percent in the long run.
This policy leads to welfare gains equivalent to a permanent increase in consumption of 3.5
percent.

More generally, we provide new insights about the dynamics of the optimal policy in the
SIM model. High short-run capital income taxes are effective in providing redistribution,
since the tax base is relatively unequal and inelastic. Labor income taxes are increasing over
this period to mitigate the corresponding intertemporal distortions. Lump-sum transfers
are front-loaded allowing households to move away from their borrowing constraints. In the
long-run, positive capital and labor income taxes provide insurance for households’ long-run
risk. These qualitative features of the optimal policy are robust to significant changes to the
calibration of the model.

To disentangle the main forces that determine the optimal policy, we develop a procedure
to decompose welfare gains into what comes from the reduction of distortions to households’
1Originally developed by Bewley (1986), Imrohoruglu (1989), Huggett (1993), and Aiyagari (1994).
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decisions, from redistribution (the reduction of ex-ante risk) and from insurance (the re-
duction of ex-post risk). The welfare gains of 3.5 percent from the optimal policy can be
decomposed into: (i) 0.2 percent from a reduction in distortions, (ii) 1.2 percent from in-
surance, and (iii) 2.1 percent from redistribution. This decomposition is particularly useful
when considering policy variations since it allows us to measure the effects on each of these
components separately.

These components of welfare must be considered on balance in the design of the opti-
mal policy. Capital and labor income are both unequally distributed between households
and risky over time. Labor and capital income taxes distort households’ savings and labor
supply decisions, but rebating their revenue via lump-sum transfers effectively provides re-
distribution and insurance. We formalize and quantify this trade-off by: (1) analytically
characterizing the optimal policy in a two-period version of the SIM model; (2) consider-
ing perturbations to the optimal policy and quantifying their implications for distortions,
inequality, and risk; and (3) measuring the effect of varying the intertemporal elasticity of
substitution and Frisch elasticity on optimal taxes.

To investigate further the determinants of the optimal policy, we also consider a Ramsey
planner that disregards equality concerns and focuses only on efficiency (i.e. minimizing dis-
tortions and risk). The optimal policy in this case is remarkably similar to the benchmark
utilitarian one. This is particularly surprising since redistribution accounts for the largest
share of the welfare gains in the benchmark results. The reason for this is that redistribution
is actually complementary to efficiency. Transferring resources from rich/productive house-
holds to poor/unproductive ones leads, through wealth effects on labor supply, to a relative
increase in hours worked by the more productive. The end result is a substantial increase
in average labor productivity. This effect is strong enough that it is optimal to provide a
considerable amount of redistribution even if the sole purpose is to maximize efficiency.

We also show that disregarding transitional welfare effects or the time variation of fiscal
instruments can be misleading. To make this point, we first compute the stationary fiscal
policy that maximizes steady-state welfare. We show it is very different from the optimal.
Further, implementing it from the beginning and accounting for transitional effects, the
policy would actually lead to a welfare loss equivalent to a 3.5 percent permanent reduction
in consumption. This is a result of abstracting from the costs associated with accumulating
the eventual long-run level of capital and, more importantly, the distributional effects of
imposing the policy on the current population. Further, if transition is taken into account,
but fiscal instruments are restricted to being constant over time, the welfare gains are roughly
half of the optimal. Allowing front-loading of capital income taxes then generates 80 percent
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of the optimal gains, so a relatively simple time variation already delivers the lion’s share of
the welfare gains. However, allowing further movements in the paths of fiscal instruments,
besides delivering the extra 20 percent of welfare gains, is important for determining long-run
optimal tax levels and other properties of the long-run Ramsey allocation.

To illustrate the role of market incompleteness and highlight why and how our results
differ from the existing complete-markets Ramsey literature, we consider complete-markets
versions of our model in which we can analytically characterize the optimal fiscal policy. In a
representative-agent economy without any heterogeneity, it is optimal to obtain all necessary
revenue via lump-sum taxes. Heterogeneity in labor productivity rationalizes distortive labor
income taxes for redistributive purposes. Similarly, asset heterogeneity leads to high initial
capital income taxes that go to zero after a finite number of periods; in the short run with high
capital income taxes, labor income taxes are increasing over time to mitigate intertemporal
distortions. If both types of heterogeneity are present, the over-time pattern of optimal
capital and labor income taxes is qualitatively and quantitatively similar to those from the
SIM model with the notable exception that long-run capital income taxes are positive in
the SIM model. Hence, long-run capital income taxes in the SIM model are used to provide
insurance for the privately uninsurable risk that is present when markets are incomplete.

In the complete-markets model, the timing of lump-sum transfers and the corresponding
path of government debt is indeterminate since the Ricardian equivalence holds. In the
SIM model, this is not the case. We find that it is optimal to mostly front-load lump-sum
transfers so that households move away from their borrowing constraints, which allows them
to better absorb income shocks. With few constrained households for the majority of the
transition, the time paths of both lump-sum transfers and government debt have relatively
small welfare implications.

Related Literature

Aiyagari (1995) provides a rationale for positive long-run capital income taxes in the SIM
model: these taxes implement the modified golden rule by attenuating households precau-
tionary savings.2 We quantify, in particular, the specific value for the optimal long-run
capital income taxes. Acikgoz (2015) and, more recently, Acikgoz, Hagedorn, Holter, and
Wang (2018) obtained additional long-run optimality conditions.3 We extend the results
2Chamley (2001) provides a complementary rationale, transferring from the rich to the poor in the long-run
is Pareto improving since, far enough in the future, everyone has the same probability of being in either
condition. Chen, Yang, and Chien (2020) argue that the existence of the Ramsey steady state, assumed by
Aiyagari (1995), depends on the value of intertemporal elasticity of substitution.

3Acikgoz et al. (2018) also argue that in the SIM model, long-run fiscal policy can be characterized inde-
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from Acikgoz et al. (2018) to obtain long-run optimality conditions for the balanced-growth-
path preferences we use and show that our results do satisfy these conditions. We find this
to be reassuring about the accuracy of both methods.

Gottardi, Kajii, and Nakajima (2015) and Heathcote, Storesletten, and Violante (2017)
analytically characterize the optimal fiscal policy in stylized versions of the SIM model.
Krueger and Ludwig (2018) do the same in an overlapping generations setup. Their ap-
proaches lead to elegant and insightful closed-form solutions. We take a more quantitative
approach which allows us to match some aspects of the data, in particular measures of in-
equality and risk, which we find to be important for the determination of the optimal tax
system.

There is a limited but growing literature on Ramsey problems in quantitative frameworks
with heterogeneity. Itskhoki and Moll (2019) study optimal dynamic development policies
in an incomplete-markets model where heterogeneous producers are subject to financial fric-
tions. Nuño and Thomas (2016) use a novel continuous-time technique to solve for optimal
monetary policy, including optimal transition, in a version of the SIM model with money.
Ragot and Grand (2020) solve the Ramsey problem in the SIM model with aggregate tech-
nology shocks by truncating the histories of idiosyncratic shocks. Our contribution to this
literature is to develop a technique for solving Ramsey problems which can be applied to a
wide range of models including a realistically calibrated SIM model. Also, our welfare decom-
position offers a clean way of breaking down welfare gains in non-stationary environments
with heterogeneity and risk.

There is a larger literature analyzing optimal policy in the steady state—for instance,
Conesa, Kitao, and Krueger (2009)—or optimal constant policy including transitional effects—
Bakis, Kaymak, and Poschke (2015), Krueger and Ludwig (2016) and Boar and Midrigan
(2020). To our knowledge, Domeij and Heathcote (2004) were the first to quantify the im-
portance of accounting for transitional effects of fiscal policy in the SIM model, showing that
the short-run distributional losses that result from reducing capital income taxes dominate
the long-run gains.4 We show that, in our framework, it is important to not only account
for transitional effects but also to allow policy instruments to change over time.

We also contribute to the literature on the interaction between government-debt policy and
market incompleteness. In an influential paper, Aiyagari and McGrattan (1998) show that

pendently of initial conditions and solve backwards for the optimal transition. We discuss in detail the
relationship between our method and results and theirs in Appendix K.

4Huggett (1997) developed an algorithm to compute transition in the SIM model, and Conesa and Krueger
(1999) account for transitional effects of social-security policies in an overlapping-generations version o the
SIM model.
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current levels of debt-to-output are close to the level that maximizes steady-state welfare.
Röhrs and Winter (2017) show that calibrating the model to match inequality measures
leads to high levels of government assets being optimal.5 We target cross-sectional statistics
and properties of the labor income process, and compute optimal government debt not only
in the long run but also in transition. We then quantify the importance of time-varying debt
under optimal policy in the SIM model.

Finally, there is an extensive literature on Ramsey problems in complete-markets economies.
The most well-known result, due to Judd (1985) and Chamley (1986), that capital income
taxes should converge to zero in the long run6 has been refined by Straub and Werning
(2020). It remains true in the complete-markets version of our model since we allow for
lump-sum taxes.7 Werning (2007) characterizes optimal policy for this class of economies
allowing for complete expropriation of initial capital holdings. We extend that characteriza-
tion to impose an upper bound on capital income taxes and obtain complete-markets results
that are comparable to our benchmark results. Following a numerical approach similar to
ours, Conesa and Garriga (2008) use flexible time-dependent instruments to study social
security reform. Bassetto (2014), Saez and Stantcheva (2018), and Greulich, Laczó, and
Marcet (2019) also study optimal fiscal policy with heterogeneous households focusing on
different dimensions.

2 Mechanism: Two-Period Economy
In this section, we consider a general-equilibrium two-period economy to explore how exoge-
nous changes to risk and inequality affect the optimal tax system. We show that the presence
of uninsurable labor-productivity risk creates a reason to use distortive labor income taxes
even if the planner is able to obtain all necessary revenue via undistortive lump-sum trans-
fers. Similarly, we show that more inequality leads to higher optimal levels of capital income
taxes. These takeaways are useful to interpret the results of the more complicated quanti-
tative model that follows.
5Bhandari, Evans, Golosov, and Sargent (2017) investigate the role of government debt in an incomplete
markets economy with fixed heterogeneity and aggregate risk. They highlight that having some households
borrowing constrained can be beneficial since it magnifies price effects of changes in government debt. This
mechanism plays a role in some of our results.

6Among others, Jones, Manuelli, and Rossi (1997), Atkeson, Chari, and Kehoe (1999) and Chari, Nicolini,
and Teles (2018) show this result is robust to a relaxation of a number of assumptions.

7We discuss this in detail in Appendix F.8.
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2.1 The effect of risk

Consider an economy with a measure one of ex-ante identical households who live for two
periods. Suppose the period utility function is given by

𝑢(𝑐, ℎ) = (𝑐𝛾(1 − ℎ)1−𝛾)1−𝜎

1 − 𝜎 , (2.1)

where 𝑐 and ℎ are the levels of consumption and labor, 𝛾 controls the consumption share, and
𝜎 controls the preference for risk and over-time smoothness. Also, suppose that households
discount the future by a factor of 𝛽.

In period 1, each household receives an endowment of 𝜔 consumption goods, which can
be invested into a risk-free asset 𝑎, and supplies ℎ̄ units of labor inelastically. In period 2,
households receive income from the asset they saved in period 1 and from labor. Labor is
supplied endogenously in period 2. The productivity of the labor supplied is random and can
take two values: 𝑒𝐿 with probability 𝜋𝐿, and 𝑒𝐻 > 𝑒𝐿 with probability 𝜋𝐻, with the mean
productivity normalized to 1. These productivity shocks are independent across consumers,
and a law of large numbers applies so that the fraction of households with each productivity
level equals their probability.

In period 2, output is produced using capital, 𝐾, and labor, 𝑁 , and a constant-returns-to-
scale neoclassical production function 𝐹 (𝐾, 𝑁) which includes undepreciated capital. The
government needs to finance an expenditure of 𝐺. It has three instruments available: labor
income taxes, 𝜏ℎ, capital taxes, 𝜏𝑘

𝑅,8 and lump-sum transfers 𝑇 (which can be positive or
negative). Let 𝑤 be the wage rate and 𝑅 the gross interest rate.

Definition 1 A tax-distorted competitive equilibrium is (𝐾, ℎ𝐿, ℎ𝐻, 𝑤, 𝑅, 𝜏ℎ, 𝜏𝑘
𝑅, 𝑇 ) such

that

1. (𝐾, ℎ𝐿, ℎ𝐻) solves

max
𝑎,ℎ𝐿,ℎ𝐻

𝑢(𝜔 − 𝑎, ℎ̄) + 𝛽𝐸[𝑢(𝑐𝑖, ℎ𝑖)], s.t. 𝑐𝑖 = (1 − 𝜏ℎ)𝑤𝑒𝑖ℎ𝑖 + (1 − 𝜏𝑘
𝑅)𝑅𝑎 + 𝑇 ;

2. 𝑅 = 𝐹𝐾(𝐾, 𝑁), 𝑤 = 𝐹𝑁(𝐾, 𝑁), where 𝑁 = 𝜋𝐿𝑒𝐿ℎ𝐿 + 𝜋𝐻𝑒𝐻ℎ𝐻;

3. and, 𝜏ℎ𝑤𝑁 + 𝜏𝑘
𝑅𝑅𝐾 = 𝐺 + 𝑇 .

8Below we denote capital income taxes by 𝜏𝑘, but here it is more convenient to use 𝜏𝑘
𝑅.
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The Ramsey problem is to choose 𝜏ℎ, 𝜏𝑘
𝑅, and 𝑇 to maximize welfare in equilibrium.

Since households are ex-ante identical there is no ambiguity about which welfare function
to use. If there is no risk, i.e. 𝑒𝐿 = 𝑒𝐻, the households are also ex-post identical and the
usual representative-agent result applies: since lump-sum taxes are available, it is optimal
to obtain all revenue via this undistortive instrument and set 𝜏ℎ = 𝜏𝑘

𝑅 = 0. When there is
risk, this is no longer the case:9

Proposition 1 The optimal tax system is such that

𝜏ℎ = Ω
1 − 𝑁 + 𝛾Ω, and 𝜏𝑘

𝑅 = (1 − 𝛾)𝜏ℎ

1 − 𝛾𝜏ℎ ,

where
Ω ≡ 𝜋𝐿(1 − 𝑒𝐿)𝑢𝑐,𝐿 + 𝜋𝐻(1 − 𝑒𝐻)𝑢𝑐,𝐻

𝜋𝐿𝑢𝑐,𝐿 + 𝜋𝐻𝑢𝑐,𝐻
≥ 0.

Further, Ω = 0 if 𝑒𝐿 = 𝑒𝐻, and for an increase in risk via a mean-preserving spread 𝜀, such
that productivities become (𝑒𝐿 − 𝜀/𝜋𝐿, 𝑒𝐻 − 𝜀/𝜋𝐻), we have that 𝜕Ω(𝜀)/𝜕𝜀 > 0.

The proof of the results in this section can be found in Appendix B.10 Notice that Ω,
which is an endogenous object, can be interpreted as a measure of the planner’s distaste for
risk: it is zero if there is no risk and increases when risk is increased via a mean-preserving
spread. Thus, it follows from the formula for 𝜏ℎ that labor income taxes are increasing in the
amount of risk faced by households. This effectively provides insurance to households since
it reduces the proportion of total household income that is risky. The optimal tax system,
then, balances this provision of insurance with the reduction of distortions. Capital taxes
do not affect the risk faced by households, but do allow the planner to mitigate some of the
distortion caused by labor taxes via wealth effects: taxing capital reduces wealth in period
2 which increases labor supply.11

2.2 The effect of inequality

Consider the environment described above but replacing productivity risk with initial wealth
inequality. That is, suppose that 𝑒𝐿 = 𝑒𝐻 = 1, and that the initial endowment can take two
9In a similar two-period environment, Gottardi et al. (2016) establish some properties of the solution to the
Ramsey problem for general utility functions. They do, however, impose assumptions about the sign of
general equilibrium effects, which are satisfied for the utility function considered here.

10Appendix B also discusses the case with both risk and inequality and connections with the results of Dávila
et al. (2012) who study the related issue of constrained inefficiency in this environment.

11When there are no wealth effects on labor supply, a case considered in an earlier version of this paper,
Dyrda and Pedroni (2016), optimal capital income taxes are set to zero.
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values: 𝜔𝐿 for a proportion 𝑝𝐿 of households and 𝜔𝐻 > 𝜔𝐿 for the rest. Let �̄� denote the
average endowment. In this economy, the concept of optimality is no longer unambiguous.
For the utilitarian welfare function we can show that:

Proposition 2 If 𝜎 = 1,12 then the optimal tax system is such that

𝜏𝑘
𝑅 = 𝛾 + 𝛽

𝛽
Λ

�̄� − 𝐾 + Λ, and 𝜏ℎ = 0,

where
Λ ≡ 𝑝𝐿(𝐾 − 𝑎𝐿)𝑢𝑐,𝐿 + 𝑝𝐻(𝐾 − 𝑎𝐻)𝑢𝑐,𝐻

𝑝𝐿𝑢𝑐,𝐿 + 𝑝𝐻𝑢𝑐,𝐻
≥ 0.

Further, Λ = 0 if 𝜔𝐿 = 𝜔𝐻, and for an increase in inequality via a mean-preserving spread 𝜀,
such that the initial endowments become (𝜔𝐿−𝜀/𝑝𝐿, 𝜔𝐻 −𝜀/𝑝𝐻), we have that 𝜕Λ(𝜀)/𝜕𝜀 > 0.

Here, Λ, which is again endogenous, can be interpreted as a measure of the planner’s
distaste for inequality. The planner chooses a positive capital income tax which distorts
savings decisions but allows for redistribution between households. The ex-ante wealth
inequality is exogenously given. However, households with different wealth levels in period
1 save different amounts and have different asset levels in period 2. This endogenously
generated asset inequality is the one the tax system is able to affect. A positive capital
income tax directly reduces the proportion of household income that depends on unequal
asset income achieving the desired redistribution.

Optimal labor income taxes are set to zero. To see why, consider increasing labor taxation
and rebating the extra revenue via a lump-sum. Since asset-poorer households have a higher
proportion of their income coming from labor, this change would have a negative redistribu-
tive effect. On the other hand, this would lead to higher savings for poor household which
actually mitigates the distortion to their savings decisions. These effects exactly cancel each
other.

The two-period example is useful for understanding some of the key trade-offs faced by
the Ramsey planner, since it allows the levels of risk and inequality to be set exogenously.
In the infinite horizon version of the SIM model, however, risk and inequality are inevitably
intertwined. The characterization of the optimal tax system therefore becomes considerably
more complex. Labor income taxes affect not only the level of risk through the mechanism
12In the proof of this proposition, we obtain a more general result that applies for any 𝜎. We impose this

condition here to simplify the exposition, otherwise the formula for 𝜏𝑘
𝑅 would be more cumbersome, though

it remains optimal to set 𝜏ℎ = 0.
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described above, but also labor income inequality and the distribution of assets over time.
The asset level of a household in a particular period depends on the history of shocks the
household has experienced. Therefore, capital income taxation affects both ex-ante and ex-
post risk faced by households. Nevertheless, these results are useful for understanding some
features of the optimal fiscal policy in the infinite horizon model, as will become clear in
what follows.

3 The Infinite-Horizon Model
In this model, time is discrete and infinite, indexed by 𝑡. There is a continuum of households
with standard preferences 𝔼0 [∑𝑡 𝛽𝑡𝑢 (𝑐𝑡, ℎ𝑡)] where 𝑐𝑡 and ℎ𝑡 denote consumption and hours
worked in period 𝑡. Individual labor productivity, denoted by 𝑒 ∈ 𝐸 with 𝐸 ≡ {𝑒1, … , 𝑒𝐿},
follows a Markov process governed by the transition matrix Γ. Households can only accumu-
late a risk-free asset, 𝑎. Let the set of possible values for 𝑎 be 𝐴 ≡ [𝑎, ∞), and let 𝑆 ≡ 𝐸 ×𝐴.
Households are indexed by the pair (𝑒, 𝑎) ∈ 𝑆. Given a sequence of prices {𝑟𝑡, 𝑤𝑡}∞

𝑡=0, labor
income taxes {𝜏ℎ

𝑡 }∞
𝑡=0, capital income taxes {𝜏𝑘

𝑡 }∞
𝑡=0, and lump-sum transfers {𝑇𝑡}∞

𝑡=0, each
household at time 𝑡 chooses 𝑐𝑡 (𝑎, 𝑒), ℎ𝑡 (𝑎, 𝑒), and 𝑎𝑡+1 (𝑎, 𝑒) to solve

𝑣𝑡(𝑎, 𝑒) = max
𝑐𝑡,ℎ𝑡,𝑎𝑡+1

𝑢(𝑐𝑡(𝑎, 𝑒), ℎ𝑡(𝑎, 𝑒)) + 𝛽 ∑
𝑒𝑡+1∈𝐸

𝑣𝑡+1(𝑎𝑡+1(𝑎, 𝑒), 𝑒𝑡+1)Γ𝑒,𝑒𝑡+1

subject to

(1 + 𝜏𝑐)𝑐𝑡(𝑎, 𝑒) + 𝑎𝑡+1(𝑎, 𝑒) = (1 − 𝜏ℎ
𝑡 ) 𝑤𝑡𝑒ℎ𝑡(𝑎, 𝑒) + (1 + (1 − 𝜏𝑘

𝑡 )𝑟𝑡)𝑎 + 𝑇𝑡

𝑎𝑡+1(𝑎, 𝑒) ≥ 𝑎.

Note that the value and policy functions are indexed by time, because policies {𝜏𝑘
𝑡 , 𝜏ℎ

𝑡 , 𝑇𝑡}∞
𝑡=0

and aggregate prices {𝑟𝑡, 𝑤𝑡}
∞
𝑡=0 are time-varying. The consumption tax, 𝜏𝑐, is a parame-

ter.13 Let {𝜆𝑡} be a sequence of probability measures over the Borel sets 𝒮 of 𝑆 with 𝜆0
given. Since the path for taxes is known, there is a deterministic path for prices and for
{𝜆𝑡}

∞
𝑡=0. It follows that we do not need to keep track of the distribution as an additional

state; time is a sufficient statistic.
13It is not without loss of generality that we do not allow the planner to choose 𝜏𝑐. There are two reasons

for this choice. The first is practical: we are already using the limit of the computational power available
to us, and allowing for one more choice variable would increase it substantially. Second, in the US, capital
and labor income taxes are chosen by the federal government while consumption taxes are chosen by the
states, so this Ramsey problem can be understood as the one relevant for the federal government. We add
𝜏𝑐 as a parameter for calibration purposes.
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Competitive firms own a constant-returns-to-scale technology 𝑓 (⋅) that uses capital, 𝐾𝑡,
and efficient units of labor, 𝑁𝑡, to produce output each period: 𝑓 (⋅) denotes output net
of depreciation, while 𝛿 is the depreciation rate. A representative firm exists that solves
the usual static problem. The government needs to finance an exogenous constant stream
of expenditure, 𝐺, and lump-sum transfers with taxes on consumption, labor income, and
capital income. The government can also issue debt, {𝐵𝑡+1}, subject to the constraint that
the sequence is bounded. The government’s intertemporal budget constraint is given by

𝐺 + 𝑟𝑡𝐵𝑡 = 𝐵𝑡+1 − 𝐵𝑡 + 𝜏𝑐𝐶𝑡 + 𝜏ℎ
𝑡 𝑤𝑡𝑁𝑡 + 𝜏𝑘

𝑡 𝑟𝑡(𝐾𝑡 + 𝐵𝑡) − 𝑇𝑡, (3.1)

where 𝐶𝑡 denotes aggregate consumption.

Definition 2 Given 𝐾0, 𝐵0, {𝜏𝑘
0 , 𝜏ℎ

0 , 𝑇0}, an initial distribution 𝜆0, and a policy 𝜋 ≡
{𝜏𝑘

𝑡 , 𝜏ℎ
𝑡 , 𝑇𝑡}∞

𝑡=1, a competitive equilibrium is a sequence of value functions {𝑣𝑡}∞
𝑡=0, an

allocation 𝑋 ≡ {𝑐𝑡, ℎ𝑡, 𝑎𝑡+1, 𝐾𝑡+1, 𝑁𝑡, 𝐵𝑡+1}∞
𝑡=0, a price system 𝑃 ≡ {𝑟𝑡, 𝑤𝑡}∞

𝑡=0, and a
sequence of distributions {𝜆𝑡}∞

𝑡=1, such that for all 𝑡:

1. Given 𝑃 and 𝜋, 𝑐𝑡(𝑎, 𝑒), ℎ𝑡(𝑎, 𝑒), and 𝑎𝑡+1(𝑎, 𝑒) solve the household’s problem and
𝑣𝑡(𝑎, 𝑒) is the respective value function;

2. Factor prices are set competitively,

𝑟𝑡 = 𝑓𝐾(𝐾𝑡, 𝑁𝑡), 𝑤𝑡 = 𝑓𝑁(𝐾𝑡, 𝑁𝑡);

3. The sequence of probability measures {𝜆𝑡}∞
𝑡=1 satisfies

𝜆𝑡+1(𝒮) = ∫
𝐴×𝐸

𝑄𝑡 ((𝑎, 𝑒), 𝒮) 𝑑𝜆𝑡, ∀𝒮 in the Borel 𝜎-algebra of 𝑆,

where 𝑄𝑡 is the transition probability measure;

4. The government budget constraint, (3.1), holds and debt is bounded;

5. Markets clear,

𝐶𝑡 + 𝐺𝑡 + 𝐾𝑡+1 − 𝐾𝑡 = 𝑓(𝐾𝑡, 𝑁𝑡), 𝐾𝑡 + 𝐵𝑡 = ∫
𝐴×𝐸

𝑎𝑡(𝑎, 𝑒)𝑑𝜆𝑡.
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3.1 The Ramsey problem

We assume that, in period 0, the government announces and commits to a sequence of taxes
{𝜏𝑘

𝑡 , 𝜏ℎ
𝑡 , 𝑇𝑡}∞

𝑡=0.

Definition 3 Given 𝐾0, 𝐵0, and 𝜆0, for every policy 𝜋, equilibrium allocation rules
𝑋 (𝜋) and equilibrium price rules 𝑃 (𝜋) are such that {𝜋, 𝑋 (𝜋) , 𝑃 (𝜋)} together with
the corresponding {𝑣𝑡}∞

𝑡=0 and {𝜆𝑡}∞
𝑡=1 constitute a competitive equilibrium. Given a welfare

function 𝑊 (𝜋), the Ramsey problem is to max𝜋∈Π 𝑊 (𝜋) subject to 𝑋 (𝜋) and 𝑃 (𝜋) being
equilibrium allocation and price rules, and Π is the set of policies 𝜋 = {𝜏𝑘

𝑡 , 𝜏ℎ
𝑡 , 𝑇𝑡}∞

𝑡=0 for
which an equilibrium exists.

In our benchmark experiments we assume that the Ramsey planner maximizes the utili-
tarian welfare function: the ex-ante expected lifetime utility of a “newborn” household who
has its initial state, (𝑎0, 𝑒0), chosen at random from the initial stationary distribution 𝜆0.
The planner’s objective is, thus, given by

𝑊 (𝜋) = ∫
𝑆

𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑢 (𝑐𝑡 (𝑎0, 𝑒0|𝜋) , ℎ𝑡 (𝑎0, 𝑒0|𝜋))] 𝑑𝜆0.

We consider alternative welfare functions in Sections 6 and 9.

3.2 Solution method

Solving the Ramsey problem as stated would involve searching in the space of infinite se-
quences of fiscal instruments. To convert the problem into a finitely dimensional one we as-
sume the existence of a Ramsey steady state—in the long run, all optimal fiscal instruments,
including government debt, become constant and the economy settles in a final stationary
equilibrium.14 To decrease the dimensionality of the problem further, we build on Judd
(2002) and parameterize the time paths of fiscal instruments as follows:

𝑥𝑡 = (
𝑚𝑥0

∑
𝑖=0

𝛼𝑥
𝑖 𝑃𝑖(𝑡)) exp (−𝜆𝑥𝑡) + (1 − exp (−𝜆𝑥𝑡)) (

𝑚𝑥𝐹

∑
𝑗=0

𝛽𝑥
𝑗 𝑃𝑗(𝑡)) , 𝑡 ≤ 𝑡𝐹 , (3.2)

where 𝑥𝑡 can be any of the fiscal instruments 𝜏𝑘
𝑡 , 𝜏𝑛

𝑡 , or 𝑇𝑡; {𝑃𝑖(𝑡)}
𝑚𝑥0
𝑖=0 and {𝑃𝑗(𝑡)}

𝑚𝑥𝐹

𝑗=0 are
families of Chebyshev polynomials, {𝛼𝑥

𝑖 }𝑚𝑥0
𝑖=0 and {𝛽𝑥

𝑗 }𝑚𝑥𝐹

𝑗=0 are weights on the consecutive
elements of the family, 𝜆𝑥 controls the convergence rate of the fiscal instrument, and 𝑡𝐹
14By stationary equilibrium we mean that all objects in Definition 2 become time invariant.
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is the period after which the instrument becomes constant. The orders of the polynomial
approximations are given by 𝑚𝑥0 and 𝑚𝑥𝐹 for the short-run and long-run dynamics. Given
the calibrated initial stationary equilibrium, for any policy with instruments satisfying equa-
tion (3.2) we can compute the transition to the corresponding final stationary equilibrium,
and evaluate welfare. We, then, pick the parameters that determine the policy to maximize
welfare.

To implement this method we need to choose the orders of the Chebyshev polynomials.
Generally, the larger they are the better the approximation is. In practice, however, as
pointed out by Judd (2002), researchers should be interested in the smallest order that yields
an acceptable approximation. Accordingly, we start with small orders and increase them for
each instrument until the welfare gains from additional orders and changes in the instruments
themselves are negligible. In our baseline experiment, we arrive at 𝑚𝜏𝑘0 = 𝑚𝜏𝑛0 = 2,
𝑚𝜏𝑘𝐹 = 𝑚𝜏𝑛𝐹 = 0, 𝑚𝑇 0 = 2 and 𝑚𝑇 𝐹 = 4.15 We set the terminal period at which taxes
become constant to be 𝑡𝐹 = 100,16 and the upper bound on the capital income tax ̄𝜏𝑘 = 100
percent following the Ramsey literature.17 Given these choices, we end up with the following
17 parameters:

𝜋𝐴 = {𝛼𝑘
0, 𝛼𝑘

1, 𝛼𝑘
2, 𝛽𝑘

0 , 𝜆𝑘, 𝛼𝑛
0 , 𝛼𝑛

1 , 𝛼𝑛
2 , 𝛽𝑛

0 , 𝜆𝑛, 𝛼𝑇
1 , 𝛼𝑇

2 , 𝛼𝑇
3 , 𝛼𝑇

4 , 𝛽𝑇
0 , 𝛽𝑇

1 , 𝜆𝑇 }, (3.3)

which determine the time paths of fiscal instruments.

In order to solve problem described above we design a numerical algorithm for global
optimization, based on insights from Guvenen (2011), Kan and Timmer (1987a), and Kan
and Timmer (1987b). A detailed description is contained in the Appendix D.3, here we
present a brief overview of the procedure. The algorithm is divided into two stages: a global
and a local one. In the global stage we draw from a quasi-random sequence a very large
number of policies in the domain of 𝜋𝐴. We compute transition and evaluate welfare 𝑊(𝜋𝐴)
for each of those policies and select the ones that yield the highest levels of welfare. The
selected policies are then clustered: similar policies in terms of welfare are placed in the same
cluster. Next, in the local stage we run, for each cluster, a derivative-free optimizer based
15In Appendix G.3 we discuss how the optimal policy changes as we gradually increase the number of choice

variables.
16This is different from the length of the transition, which we set to 250 years so the economy has an

additional 150 years to converge to a new stationary equilibrium. In Appendix G.4, we show that 100
is enough years of tax change. This can also be appreciated from the fact that all fiscal instruments stop
moving well before this limit is reached. We also recomputed the optimal policy increasing the length of
the transition from 250 to 500 and obtained essentially identical results.

17In Appendix M.6 we show how the policy is affected for different choices for ̄𝜏𝑘, whereas in Appendix I we
consider the case without any upper bound.
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on an algorithm designed by Powell (2009). The sequence of global and local searches is
repeated until the number of local minima found and the expected number of local minima
in our problem, determined by a Bayesian rule, are sufficiently close, or until the bounds on
parameters converge. Then, we pick the global optimum from the set of local optima.18

4 Calibration
We calibrate the initial stationary equilibrium of the model to replicate key properties of the
US economy relevant for the shape of the optimal fiscal policy. We use three sets of statistics
to discipline model parameters: (i) time series of macroeconomic data from 1995 to 2007,
(ii) cross-sectional, distributional moments on hours worked, wealth, and earnings, and (iii)
panel data on the dynamics of labor income. Even though it is understood that all model
parameters impact all equilibrium objects, the discussion below associates some parameters
to specific empirical targets for clarity of exposition. In total, we have 38 parameters in
the model and we use 45 targets to discipline them, hence the system is overidentified.
Parameter values, targeted statistics, and their model counterparts are presented in Tables
1 and 2. Appendix A contains a detailed description of how we calculated the targets from
the data.

4.1 Households versus individuals

The unit of analysis in the model is a household rather than an individual. Thus, we
consistently measure all the relevant statistics in the data at the household level using the
equivalence scales proposed by the US Census. We then interpret consumption, hours, and
asset positions in the household problem (3) in per-capita terms within the household.

4.2 Preferences and technology

The discount factor, 𝛽, is chosen to match a capital-output ratio of 2.5.19 The two parameters
in the balanced-growth-path utility function (2.1), 𝛾 and 𝜎 are disciplined with two targets:
(1) an intertemporal elasticity of substitution (IES) of 0.65 (which implies a relative risk
aversion of 1.55), (2) the average hours worked of employed households in the Current
Population Survey (CPS) between 1995 and 2007, which is equal to 0.32.

To discipline the extensive margin labor-supply decision we target the fraction of employed
18The baseline experiment was conducted using 1200 cores on the Niagara supercomputer at the University

of Toronto, see Ponce et al. (2019) and Appendix D.3 for details about the cluster.
19Capital is defined as nonresidential and residential private fixed assets and purchases of consumer durables.

For more details, see Appendix A.1.
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households in the economy. We follow Heathcote et al. (2010) and consider a household to be
employed if they work more than five hours per week, that is, if ℎ ≥ ℎ ≡ 0.05 = 260/52000.
Using data from the CPS we calculate that 79 percent of households are employed—see Ap-
pendix A.3 for more details. Since household-level Frisch elasticities depend on the house-
hold’s labor supply, we measure the intensive-margin aggregate Frisch elasticity with the
unweighted average of household-level Frisch elasticities for employed households, that is

Ψ ≡ ∫
ℎ(𝑎,𝑒) ≥ ℎ

(𝛾 + (1 − 𝛾) 1
𝜎) 1 − ℎ(𝑎, 𝑒)

ℎ(𝑎, 𝑒) 𝑑𝜆0(𝑎, 𝑒). (4.1)

Our calibration implies a value for Ψ of 0.49 which is close to the 0.54 reported by Chetty
et al. (2011) in their survey on estimates of the Frisch elasticity.20 We conduct sensitivity
analysis with respect to our choice for the IES and this measure of Frisch elasticity in Section
9.

The production function, net of depreciation, is given by 𝑓(𝐾, 𝑁) = 𝐾𝛼𝑁1−𝛼 − 𝛿𝐾. The
depreciation rate, 𝛿, is set to match an investment-to-output ratio of 26 percent, and the
capital share, 𝛼, to its empirical counterpart of 0.38.21 These choices imply an interest rate
of 4.7 percent. Finally, to discipline the household borrowing constraint, 𝑎, we target the
fraction of households with negative net worth in the 2007 Survey of Consumer Finances
(SCF), which is 9.7 percent.

4.3 Fiscal policy

For the tax rates in the initial stationary equilibrium we use the effective average tax rates
computed by Trabandt and Uhlig (2012) from 1995 to 2007. We set initial capital income
tax to 41.5 percent, labor income tax to 22.5 percent and consumption tax to 4.7 percent.
We discipline the lump-sum transfer, 𝑇 , by targeting average transfer-to-GDP ratio in the
US from 1995 to 2007, which amounts to 11.4 percent.22 We set government debt-to-output
20To check whether the extensive-margin elasticity of labor supply is also in line with the data, we consider the

transitional dynamics following a temporary 1 percent increase in the wage rate and compute the elasticity
of employment with respect to this change. Aggregate hours, 𝐻, can be expressed as 𝐻 = 𝑚 × ℎ, where
𝑚 denotes the employment rate and ℎ mean working hours. It follows that the corresponding elasticities
satisfy 𝜂𝐻 = 𝜂𝑚 + 𝜂ℎ. Our calibration implies that, on impact, 𝜂𝑚 = 0.57 and 𝜂ℎ = 0.45. The
contribution of the extensive margin is in line with the findings in Erosa, Fuster, and Kambourov (2016).

21These numbers are computed in a consistent way with the capital-output ratio, and Appendix A.1 descripes
their calculation in detail.

22We define transfers in the data as personal current transfer receipts, which include social security transfers,
medicare, medicaid, unemployment benefits, and veteran benefits. We choose this for two reasons: First,
we include retired and unemployed households in our inequality moments. Second, lump-sum transfers in
the model can be interpreted as a basic income in the case of not working. For more details, see Appendix
A.1.
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Table 1: Benchmark Model Parameters

Description Parameter Value

Preferences and technology
Consumption share 𝛾 0.510 Implied IES: 0.65
Preference curvature 𝜎 2.069 Implied Frisch (Ψ): 0.49
Discount factor 𝛽 0.954
Capital share 𝛼 0.378∗

Depreciation rate 𝛿 0.104
Borrowing constraint 𝑎 −0.078

Fiscal policy
Capital income tax (%) 𝜏𝑘 41.5∗

Labor income tax (%) 𝜏𝑛 22.5∗

Consumption tax (%) 𝜏𝑐 4.7∗

Government expenditure 𝐺 0.069
Transfers 𝑇 0.088

Labor productivity process
Productivity process curvature 𝜂 1.153
Persistent shock Transitory shock

Γ𝑃 =
⎡
⎢⎢
⎣

0.994 0.002 0.004 3E−5
0.019 0.979 0.001 9E−5
0.023 0.000 0.977 5E−5
0.000 0.000 0.012 0.987

⎤
⎥⎥
⎦

𝑒𝑃 =
⎡
⎢⎢
⎣

0.580
1.153
1.926
27.223

⎤
⎥⎥
⎦

𝑃𝑇 =

⎡
⎢
⎢
⎢
⎢
⎣

0.263
0.003
0.556
0.001
0.001
0.176

⎤
⎥
⎥
⎥
⎥
⎦

𝑒𝑇 =

⎡
⎢
⎢
⎢
⎢
⎣

−0.574
−0.232

0.114
0.133
0.817
1.245

⎤
⎥
⎥
⎥
⎥
⎦

Note: ∗ denotes exogenously set parameters.

ratio in the initial equilibrium to be 61.5 percent, averaging out federal debt over GDP from
1995 to 2007. The calibrated value implies a government expenditure to output ratio of 8.9
percent, while the data counterpart (federal government expenditure) for the relevant period
is approximately 6.9 percent. Further, we also closely approximate the actual income tax
schedule—see Figure 1.
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Figure 1: Income tax schedule
Note: The data was generously supplied by Heathcote et al. (2017) who used PSID and the TAXSIM program
to compute it. The axis units are income relative to the corresponding mean.

4.4 Labor productivity process

The stochastic process for individual labor productivity levels, 𝑒, is calibrated to match
statistical properties of the labor income process as well as the cross-sectional distributions
of hours worked, wealth, and earnings. We model it as a product of a persistent component 𝑒𝑃
with Markov matrix Γ𝑃 and a transitory component 𝑒𝑇 with probability vector 𝑃𝑇 .23 There
are 4 persistent and 6 transitory productivity levels. We normalize the average productivity
to one, so we are left with 26 parameters in the labor income process to choose.

There are two approaches commonly used in the literature. The first is to reduce the
number of parameters using a discretization procedure, such as Tauchen (1986) or Rouwen-
horst (1995), and target a small set of moments usually only focusing on the labor-income
process itself. The second approach, put forward by Castañeda et al. (2003), abstracts from
labor-income process targets and, instead, targets enough distributional moments to identify
the large set of parameters. We largely follow this second approach but, importantly, we
also include moments of the labor income process itself. This gives us, at the same time, the
ability to match important inequality measures and moments of the labor income process,
including higher moments such as skewness and kurtosis which the first method struggles
with. Thus, we discipline the amount of inequality and risk that households face.

Inequality. We target the share owned by every quintile, the Gini coefficient, and the share
owned by the bottom and top 5 percent of the wealth, earnings, and hours distributions. For
wealth and earnings we use data from the SCF, and for hours we use the Current Population
23In the notation of the model, Γ = Γ𝑃 ⊗ diag(𝑃𝑇 ), and 𝑒 = 𝑒𝑃 + 𝑒𝑇 𝑒𝜂

𝑃 . For instance, if 𝜂 = 0, the
transitory shocks are additive, whereas, if 𝜂 = 1, they are multiplicative.
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Survey (CPS). To account for the joint distribution of earnings and wealth we also target
the cross-sectional correlation between them.

Risk. Pruitt and Turner (2020) document statistical properties of the labor income process
for households using administrative data from the IRS. We exploit their findings and compute
the variance, Kelly skewness, and Moors kurtosis of the growth rates of labor income, which
we target. These moments, however, do not include self-employed households. To deal with
this, we identify one element of the vector 𝑒𝑃 with self-employed status. We think of this
state as representing, in a reduced form, entrepreneurial opportunities of households in our
model. Entrepreneurs, on average, earn higher incomes and account for a disproportional
fraction of wealth in the SCF data which we include as targets. On the other hand, for
consistency, we exclude households in this state from the computation of the labor-income
moments.24

4.5 Model performance

Table 3 presents income sources over the quintiles of income. The composition of income,
especially of the consumption-poor households, plays an important role in determining the
optimal fiscal policy. The fraction of uncertain labor income determines the strength of the
insurance motive while the fraction of unequal asset income affects the redistributive motive.
Our calibration delivers, without targeting, a good approximation of the composition of
household income. Figures 3a–3d present the model’s fit with the cross-sectional distributions
of the targeted wealth, earnings, and hours. The last two panels of the figure show that the
model also approximates well the untargeted distributions of income and consumption.

5 Main Results
The optimal paths for the fiscal policy instruments are presented in Figure 3. The capital
income tax is front-loaded, hitting the upper bound for 16 years, and decreasing to 26 percent
in the long run. The labor income tax drops on impact to 9 percent and then monotonically
increases to 39 percent in the long run. Lump-sum transfers jump to 40 percent of GDP
on impact, follow a U-shaped pattern in the short-run and, starting from period 22, fall
monotonically toward 15 percent of GDP in the long run. The government debt-to-output
ratio rises in the initial periods. Then, since the capital income is kept at the upper bound but
transfers fall, the government accumulates assets. Finally, the reduction of capital income
24A similar strategy has been employed by Kindermann and Krueger (2014) and Nakajima and Ríos-Rull

(2019).

18



Table 2: Benchmark Model Economy: Target Statistics and Model Counterparts

(1) Macroeconomic aggregates
Target Model

Intertemporal elasticity of substitution 0.65 0.65
Average hours worked 0.32 0.33
Capital to output 2.50 2.49
Capital income share 0.38 0.38
Investment to output 0.26 0.26
Transfer to output (%) 11.4 11.4
Debt to output (%) 61.5 61.5
Fraction of employed (%) 79.0 79.3
Fraction of hhs with negative net worth (%) 9.7 7.9
Correlation between earnings and wealth 0.43 0.43
(2) Cross-sectional distributions

Bottom (%) Quintiles Top (%) Gini
0–5 1st 2nd 3rd 4th 5th 95–100

Wealth
US data −0.2 −0.2 1.0 4.2 11.2 83.8 60.0 0.82
Model −0.1 0.1 2.0 4.0 9.3 84.5 56.4 0.81

Earnings
US data −0.2 −0.2 4.1 11.6 20.9 63.6 35.6 0.64
Model 0.0 0.0 5.7 11.3 20.2 62.8 34.8 0.62

Hours
US data 0.0 3.0 13.7 20.7 25.4 37.2 12.9 0.34
Model 0.0 0.0 13.2 23.4 27.1 36.3 10.0 0.36
(3) Statistical properties of labor income

Target Model

Variance of 1-year growth rate 2.33 2.32
Kelly skewness of 1-year growth rate −0.12 −0.13
Moors kurtosis of 1-year growth rate 2.65 2.28
(4) Self-employed status statistics

Target Model

Share in population (%) 12.5 12.7
Share of wealth (%) 45.8 38.9
Share of earnings (%) 28.7 30.5
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Table 3: Income Sources of Households by Quintile of Income

Quintile Model US data

Labor Asset Transfer Labor Asset Transfer

1st 80.1 0.2 19.7 83.6 0.4 16.1
2nd 77.0 2.6 20.4 86.5 1.1 12.3
3rd 74.1 5.3 20.5 85.6 1.9 12.5
4th 74.8 9.4 15.8 84.1 3.8 12.2
5th 63.1 31.2 5.7 70.4 21.4 8.2
All 70.4 16.7 12.9 77.3 12.3 10.4

Note: Table summarizes the pre-tax total income decomposition. We define the
asset income as the sum of income from capital and business. Data come from the
2007 Survey of Consumer Finances.
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Figure 2: Fit to Inequality Data

tax combined with the increase in transfers leads to an increase in government debt toward
154 percent of GDP in the long run. This policy yields welfare gains equivalent to a 3.52
percent permanent increase in the consumption of all households. Figures 4 and 5 summarize
the main effects of the optimal policy on aggregates and on the distribution of households.25

25Appendix M.1 contains a more exhaustive list of figures.
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In what follows, we briefly describe aggregate and distributional statistics that summarize
the effects of the Ramsey policy. Then, to understand the economic forces behind the results
and to inspect the role played by each fiscal instrument, we introduce a decomposition of
the welfare effects and conduct policy perturbations around the optimum.

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

(a) Capital income tax
0 20 40 60 80 100 120

0.1

0.2

0.3

0.4

(b) Labor income tax

0 20 40 60 80 100 120

0.1

0.2

0.3

0.4

(c) Lump-sum/Initial output
0 20 40 60 80 100 120

0

0.5

1

1.5

(d) Debt/Initial output

Figure 3: Optimal Fiscal Policy: Benchmark
Note: Black dashed lines: initial stationary equilibrium; Red solid curves: optimal transition.

5.1 Aggregates

High capital income taxes in the initial periods lead to a reduction in the capital stock of
about 10 percent. The substantial fall in these taxes later on does not imply a recovery for
three reasons: (1) government debt increases, which crowds out private capital, (2) labor
decreases over time as a result of higher labor income taxes, which reduces the marginal
product of capital, and (3) the optimal policy implies a reduction in risk faced by households,
which reduces precautionary savings.

Aggregate consumption increases on impact, then decreases towards a level also about 10
percent lower than the pre-policy-change value. The low after-tax interest rates account for
the downward slope in the initial periods, and the long-run decrease is consistent with the
decrease in output associated with the overall lower long-run levels of capital and labor.

Even with lower labor income taxes in the initial periods, aggregate hours fall on impact.
This is due to the redistribution achieved by the increase in initial capital income taxes and
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lump-sum transfers. The associated wealth effects on labor supply reduce the labor supply
of the more numerous lower-productivity households. The subsequent reduction in hours
worked are due to increasing labor income taxes. In the long run, aggregate hours fall by 15
percent relative to the initial equilibrium.

Most of the welfare gains associated with this policy come from redistribution and in-
surance. However, the average household is also better off under this reform—see Section
5.3. This is partially due to the higher levels of leisure associated with the reduction in
hours worked. More importantly, though, it is due to a more efficient allocation of labor
supply. The redistribution achieved by the policy makes low-productivity households rela-
tively wealthier, and the associated wealth effects reduce their labor supply.26 The opposite
occurs with high-productivity households. These changes result in a significant increase in
average labor productivity—measured by the ratio of effective labor to hours worked—which
can be seen in Figure 4f. In Section 6, we show that, as a result of this mechanism, even a
planner that does not value reductions in inequality would be in favor of some amount of
redistribution.
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Figure 4: Optimal Fiscal Policy: Aggregates
Note: Black dashed lines: initial stationary equilibrium; Red solid curves: optimal transition.

26Marcet, Obiols-Homs, and Weil (2007) show that wealth effects on labor supply also play an important
role in determining whether there is over- or under-accumulation of capital in the SIM model.
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5.2 Distributional effects

The optimal policy implies a reduction in the amount of inequality and risk faced by house-
holds. This is achieved, to a large extent, simply by the increase in the share of households’
income that comes from equal and certain lump-sum transfers, which we illustrate in Figure
5e. This translates into less overall risk and inequality. To show this in a compact way
it is useful to define a consumption–hours composite, 𝑐𝛾(1 − ℎ)1−𝛾, which is the term that
enters the household period utility function. In Figures 5c and 5d, we show that the optimal
policy implies a reduction in the amount of inequality (measured by the Gini coefficient of
the composite) and risk (measured by the variance of the growth rate of the composite) that
households face.

The reduction in inequality of the composite, however, masks a different effect of the policy
on consumption and hours. Figures 5a and 5b show that the policy implies a significant
reduction in consumption inequality, but an increase in hours inequality. This increase
comes from the more efficient allocation of labor supply highlighted above.

Figure 5f shows how the welfare gains are distributed between households with different
levels of wealth and labor income. In line with the redistribution achieved, to a large extent
via high initial capital income taxes, wealthy households lose and asset-poor households win.
Conditional on wealth quantile, however, the welfare gains remain similar across quantiles of
labor income. This is because the provision of insurance benefits all households in a similar
way—risk is more consequential to low-productivity households, but since transitory shocks
are roughly multiplicative these households actually face less income risk.

5.3 Sources of welfare improvement

In this section, we present a decomposition of average welfare gains that is helpful for under-
standing the properties of the optimal fiscal policy. This decomposition is similar to the ones
introduced by Benabou (2002) and Floden (2001), but here we allow not only for welfare
comparisons between steady states, but also for transitional effects of policy.27

Average welfare gains. Consider a policy reform and denote by {𝑐𝑗
𝑡 , ℎ𝑗

𝑡} the equilibrium
consumption and labor paths of a household with and without the reform, with 𝑗 = 𝑅 or
𝑗 = NR respectively. The average welfare gain, Δ, that results from implementing the reform
is defined as the constant (over time and across households) percentage increase to 𝑐NR

𝑡 that
27In Appendix E.3, we consider an alternative decomposition that aims at setting appart the effects of policy

on consumption and labor-supply decisions.
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Figure 5: Optimal Fiscal Policy: Distributional Effects
Notes: Panels (a)–(d): Black dashed lines: initial stationary equilibrium; Red solid curves: optimal tran-
sition. Panel (f): In the axis we have 20-quantiles of wealth and labor income. The size of the tiles is
proportional to the density of households in the initial stationary distribution. The color of the tile rep-
resents the welfare gain or loss associated with the optimal policy conditional on the household’s level of
wealth and labor income.

equalizes the utilitarian welfare to the value associated with the reform; that is,

∫ 𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑢 ((1 + Δ)𝑐NR
𝑡 , ℎNR

𝑡 )]𝑑𝜆0 = ∫ 𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑢 (𝑐𝑅
𝑡 , ℎ𝑅

𝑡 )]𝑑𝜆0, (5.1)

where 𝜆0 is the initial distribution over states (𝑎0, 𝑒0). These welfare gains associated with
the utilitarian welfare function can be decomposed into three effects which we introduce one
at a time.

1. Level effect. First, the average welfare gain can come from increases in the utility of the
average household. Reductions in distortive taxes or a more efficient allocation of resources
achieve this goal. This is the only relevant effect in a representative agent economy without
any source of heterogeneity. Let the aggregate level of 𝑐𝑡 and ℎ𝑡 at each 𝑡 be

𝐶𝑗
𝑡 ≡ ∫ 𝑐𝑗

𝑡𝑑𝜆𝑗
𝑡, and 𝐻𝑗

𝑡 ≡ ∫ ℎ𝑗
𝑡𝑑𝜆𝑗

𝑡,
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where 𝜆𝑗
𝑡 is the distribution over (𝑎0, 𝑒𝑡) conditional on whether or not the reform is implemented—

𝑒𝑡 denotes a history of productivity realizations from period 0 to 𝑡. The level effect, Δ𝐿, is
then given by

∞
∑
𝑡=0

𝛽𝑡𝑢 ((1 + Δ𝐿)𝐶NR
𝑡 , 𝐻NR

𝑡 ) =
∞

∑
𝑡=0

𝛽𝑡𝑢 (𝐶𝑅
𝑡 , 𝐻𝑅

𝑡 ) . (5.2)

2. Insurance effect. Since households are risk averse, average welfare increases if, con-
ditional on a household’s initial asset and productivity state, the riskiness of its future
consumption and labor paths is reduced. A tax reform that transfers from the ex-post lucky
to the ex-post unlucky reduces the risk faced by households. To define this component pre-
cisely, first let { ̄𝑐𝑗

𝑡(𝑎0, 𝑒0), ℎ̄𝑗
𝑡(𝑎0, 𝑒0)} denote a certainty-equivalent sequence of consumption

and labor conditional on a household’s initial state that satisfies

∞
∑
𝑡=0

𝛽𝑡𝑢 ( ̄𝑐𝑗
𝑡(𝑎0, 𝑒0), ℎ̄𝑗

𝑡(𝑎0, 𝑒0)) = 𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑢 (𝑐𝑗
𝑡 , ℎ𝑗

𝑡)] . (5.3)

Next, let ̄𝐶𝑗
𝑡 and �̄�𝑗

𝑡 denote aggregate certainty equivalents, that is

̄𝐶𝑗
𝑡 = ∫ ̄𝑐𝑗

𝑡(𝑎0, 𝑒0)𝑑𝜆0, and �̄�𝑗
𝑡 = ∫ ℎ̄𝑗

𝑡(𝑎0, 𝑒0)𝑑𝜆0, for 𝑗 = 𝑅, NR. (5.4)

The insurance effect, Δ𝐼 , is defined by

1 + Δ𝐼 ≡ 1 − 𝑝𝑅
𝑟𝑖𝑠𝑘

1 − 𝑝NR
𝑟𝑖𝑠𝑘

, where
∞

∑
𝑡=0

𝛽𝑡𝑢 ((1 − 𝑝𝑗
𝑟𝑖𝑠𝑘)𝐶𝑗

𝑡 , 𝐻𝑗
𝑡 ) =

∞
∑
𝑡=0

𝛽𝑡𝑢 ( ̄𝐶𝑗
𝑡 , �̄�𝑗

𝑡 ) . (5.5)

Here, 𝑝𝑗
𝑟𝑖𝑠𝑘 is the welfare cost of risk in the economies with and without reform.

3. Redistribution effect. The utilitarian welfare gain increases if inequality across house-
holds with different initial states is reduced. A tax reform reduces the inequality if it redis-
tributes from rich (ex-ante lucky) to poor (ex-ante unlucky) households, that is by reducing
the behind-the-veil-of-ignorance risk. Formally, the redistribution effect, Δ𝑅, can be defined
as

1+Δ𝑅 ≡ 1 − 𝑝𝑅
𝑖𝑛𝑒𝑞

1 − 𝑝NR
𝑖𝑛𝑒𝑞

, where
∞

∑
𝑡=0

𝛽𝑡𝑢 ((1 − 𝑝𝑗
𝑖𝑛𝑒𝑞) ̄𝐶𝑗

𝑡 , �̄�𝑗
𝑡 ) = ∫

∞
∑
𝑡=0

𝛽𝑡𝑢 ( ̄𝑐𝑗
𝑡(𝑎0, 𝑒0), ℎ̄𝑗

𝑡(𝑎0, 𝑒0))𝑑𝜆0.

(5.6)
Analogously to 𝑝𝑗

𝑟𝑖𝑠𝑘, 𝑝𝑗
𝑖𝑛𝑒𝑞 denotes the cost of inequality. Redistribution, according to this

definition, is also a type of insurance but with respect to the ex-ante risk a household faces
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concerning which initial condition (𝑎0, 𝑒0) they will receive.

Welfare decomposition. The following proposition establishes that it is possible to de-
compose the average welfare gains into the components described above.

Proposition 3 If preferences are such that, for any scalar 𝑥, 𝑢(𝑥𝑐, ℎ) = 𝑔(𝑥)𝑢(𝑐, ℎ) for
some totally multiplicative function 𝑔(⋅), then

1 + Δ = (1 + Δ𝐿)(1 + Δ𝐼)(1 + Δ𝑅).

Note that none of the elements of the decomposition are defined residually, hence this is
indeed a decomposition and not a definition. Moreover, the balanced-growth-path utility
satisfies the condition with 𝑔(𝑥) = 𝑥𝛾(1−𝜎).

Choice of certainty equivalents. Notice that there can be many certainty-equivalent
paths that satisfy equation (5.3). These paths could differ over time and over levels of
consumption and labor. In general, these choices can affect the components of the decom-
position. If the certainty equivalents for consumption and leisure follow parallel paths over
time, however, these choices are immaterial.

Assumption 1 The certainty equivalents display parallel patterns if ̄𝑐𝑗
𝑡(𝑎0, 𝑒0) = 𝜂𝑗(𝑎0, 𝑒0) ̃𝐶𝑗

𝑡 ,
and 1 − ℎ̄𝑗

𝑡(𝑎0, 𝑒0) = 𝜂𝑗(𝑎0, 𝑒0)(1 − �̃�𝑗
𝑡 ), for some function 𝜂𝑗(𝑎0, 𝑒0) and paths { ̃𝐶𝑗

𝑡 }, and
{�̃�𝑗

𝑡 }.

There are two ways in which this assumption is restrictive. First, it assumes that the certainty
equivalents of households with different initial conditions are a proportion of the same paths,
with only the degree of proportionality, 𝜂𝑗(𝑎0, 𝑒0), changing; this is the property we are
referring to as “parallel patterns”. Second, it assumes that the degree of proportionality
applies in the same way to the path of consumption and leisure. Reasonable deviations from
the first restriction lead to small changes in the results benchmark results in Table 4 below.
The second restriction is more consequential, because the way one decomposes the differences
between consumption and leisure affects the amount of curvature that is absorbed by the
insurance and redistribution effects.28 The choice of certainty equivalents, however, never
28More precisely, the degree of proportionality is taken to a different power if it multiplies only consumption,

for instance, (𝜂𝑐)𝛾(1 − ℎ)1−𝛾 = 𝜂𝛾(𝑐)𝛾(1 − ℎ)1−𝛾 versus if it multiplies consumption and leisure as in
Assumption 1, (𝜂𝑐)𝛾(𝜂(1 − ℎ))1−𝛾 = 𝜂(𝑐)𝛾(1 − ℎ)1−𝛾.
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matters for the magnitude of the level effect. Under this assumption, we can establish the
following proposition.

Proposition 4 For balanced-growth-path preferences, as specified in equation (2.1), if the
certainty equivalents satisfy Assumption 1, then the components Δ𝐿, Δ𝐼, and Δ𝑅 are inde-
pendent of the paths { ̃𝐶𝑗

𝑡 }, and {�̃�𝑗
𝑡 }.

In particular, one could impose that the certainty-equivalent paths should follow their cor-
responding aggregates, that is ̃𝐶𝑗

𝑡 = 𝐶𝑗
𝑡 and �̃�𝑗

𝑡 = 𝐻𝑗
𝑡 . In any case, as long as Assumption

1 is satisfied this choice does not matter. Table 4 shows the welfare-decomposition results
for our benchmark experiment and for experiments in which we hold each instrument fixed,
one at a time.

Table 4: Welfare Decomposition for the Benchmark Experiment and
Fixed-Instrument Experiments

Δ Δ𝐿 Δ𝐼 Δ𝑅

Benchmark 3.5 0.2 1.2 2.1
Fixed capital income tax 0.8 −0.6 1.3 0.1
Fixed labor income tax 2.0 0.6 −0.3 1.7
Constant lump-sum 3.3 −0.1 1.3 2.1
Fixed debt-to-output 3.2 −0.2 1.4 2.0
Fixed prices 4.9 1.5 1.1 2.2

Note: In every experiment, the level of lump-sum transfers in every period of time is
set such that the intertemporal budget constraint of the government is satisfied. In
the constant lump-sum experiment, this means that transfers are allowed to change
on impact then kept constant at that level in all future periods.

Fixed instruments. Fixing capital income taxes at their initial steady-state level, while
all other instruments are set to their optimal paths from the benchmark experiment, leads to
a substantial reduction in redistributive gains. The drop in the level effect is also significant,
due to (1) the significantly higher long-run capital income taxes fixed at the initial level
and (2) the loss of the productivity improvements that result from redistribution via wealth
effects on labor supply. The second most welfare-relevant instrument is the labor income
tax. Fixing it at its pre-reform level reduces average welfare by roughly 1.5 percentage
points, mostly through the insurance channel. The time paths of both lump-sum transfers
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and government debt contribute only marginally to average welfare with the losses coming
mostly from the level effect. Both instruments are used mostly to smooth distortions over
time. Finally, we consider an out-of-equilibrium experiment in which prices are kept at their
initial values. Since aggregate output decreases in the benchmark results, with fixed prices
households have relatively more income, which explains the larger level effect. The general
equilibrium price effects on insurance and redistribution are relatively small: prices do not
move much since capital and labor move together.

5.4 Perturbations around the optimal taxes

In this section we vary the taxes around the optimal paths and calculate the welfare decom-
position at each step in order to better understand the main determinants of the optimal
values. Notably, we consistently find that welfare peaks at the paths we found and falls in
their neighborhood, which is indicative of the fact that we have indeed found an optimum.
For each experiment, the entire path of lump-sum taxes is shifted up or down in order to
balance the government’s intertemporal budget constraint.
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Figure 6: Varying the Number of Years Capital Income Taxes are Kept at the Upper Bound
Notes: (a) Black dashed line: initial stationary equilibrium; Red and blue solid curves: optimal transition
and perturbations of it; (b) the 𝑥-axis represents the movement in number of periods capital income taxes
are kept in the upper bound from the optimum, 𝑦-axis shows change in the welfare gains in percent points.

Number of years of capital income taxes in the upper bound. The optimal path of
capital income taxes features 16 years of taxes at the upper bound of 100 percent. Figure
6 shows what happens to the components of welfare if capital income taxes are kept at the
upper bound for more or fewer periods. The effect on insurance is of second order and, in line
with the result in Proposition 2, the relevant trade-off is between extra redistribution and
negative distortionary effects. These two effects, however, largely offset each other, leading
to a relatively flat average welfare function.

Long-run capital income taxes. Varying the level of long-run capital income taxes yields
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Figure 7: Varying Long-Run Capital Income Taxes
Note (a) Black dashed line: initial stationary equilibrium; Red and blue solid curves: optimal transition and
perturbations of it; (b) The 𝑥-axis represents the movement of long-run capital income taxes away from the
optimum, 𝑦-axis shows change in the welfare gains in percent points.

the results in Figure 7. The changes considered here affect the path of capital income taxes
starting in period 16, and therefore still have a sizable effect of ex-ante risk captured by the
redistribution effect. The main difference relative to Figure 6 is that the insurance effect is
of comparable magnitude to redistribution. As highlighted by Chamley (2001) and Acikgoz
et al. (2018), far enough in the future every household’s dependence on their initial condition
fully dissipates, so that changes in income taxes have no effect on redistribution, but only
on level and insurance. Indeed, in Section 6 we show that the insurance effect by itself can
rationalize levels of capital income taxes very similar to the long-run levels seen here. Finally,
notice again how flat the average welfare function is in response to relatively sizable changes
in the path of capital income taxes.
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Figure 8: Varying Labor Income Taxes
Note (a) Black dashed line: initial stationary equilibrium; Red and blue solid curves: optimal transition and
perturbations of it; (b) The 𝑥-axis represents the movement of labor income taxes away from the optimum,
𝑦-axis shows change in the welfare gains in percent points.

Labor income taxes. Here we change the average level of labor income taxes up and down
by 10 percentage points, leading to the results in Figure 8. First notice that the effect of
changes in labor income taxes are an order of magnitude higher than the previous ones.
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Besides this quantitative difference, the main qualitative difference is that the insurance
effect is larger than the redistribution effect. Hence, though labor income taxes do have
important effects on ex-ante risk, the mechanism highlighted in Proposition 1 plays a more
important role here. That is, a higher labor income tax which is rebated via lump-sum
transfers (exactly the experiment here) effectively reduces the labor income risk to which
households are exposed.
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Figure 9: Varying Lump-Sum Transfers
Note (a) Black dashed line: initial stationary equilibrium; Red and blue solid curves: optimal transition and
perturbations of it; (b) The 𝑥-axis represents the homotopy parameter between the initial optimal path at
𝑥 = 0 and a flat path at 𝑥 = 1, 𝑦-axis shows change in the welfare gains in percent points.

The path of lump-sum transfers. Figure 9 shows what happens to welfare when the path
of lump-sum transfers is gradually replaced by a constant.29 This change leads a reduction in
average welfare gains of about 0.2 percent. For households close enough to their borrowing
constraints, the initial sharp front-loading of lump-sum transfers mitigates the distortions
associated with high capital income taxes. Hence, moving to a flatter lump-sum path reduces
the gains that occur via the level effect. It is also relevant to notice that, absent borrowing
constraints, households would be indifferent to the timing of lump-sum transfers.30 Since
households do face borrowing constraints, however, they would, ceteris paribus, always prefer
29Appendix H provides more details about this exercise and an additional perturbation towards a monoton-

icaly decreasing path for lump-sum transfers.
30Without borrowing constraints, the households’ lifetime budget constraint would not be affected by a

revenue-neutral change in the timing of lump-sum transfers (holding other taxes fixed). So, for this type
of variation, the Ricardian equivalence would hold. If instead we were considering a change in the timing

30



lump-sum transfers to be front-loaded as much as possible. The reason this is not optimal,
and why lump-sum transfers actually increase in the medium run, is because front-loading
lump-sum transfers to this extent would lead to a substantial increase in government debt.
The corresponding crowding out of capital would compound with the reduction that already
occurs due to high initial capital income taxes and the reduction in precautionary savings
that results from the extra insurance. The sharp drop in transfers followed by the rising
pattern between periods 5 and 20 brings almost 30 percent of households close to their
borrowing constraints—Panel 9c shows the proportion of households with negative assets
over the transition. Avoiding the constraint provides additional incentive for saving in the
periods when capital taxes are very high. Finally, these changes to the path of lump-sum
imply significant changes to debt as seen in Panel 9d which, nevertheless, do not lead to
significant consequences for welfare.

5.5 Long-run optimality conditions

Aiyagari (1995) analyzes optimal long-run capital income taxes in an environment similar
ours.31 He argues that the Ramsey planner’s decision to move aggregate resources across
time is risk-free and the associated Euler equation, in the long run, implies the modified
golden rule. Lining this up with households’ precautionary motivation for savings rationalizes
positive long-run capital income taxes. Figure 10 shows that the modified golden rule is
satisfied in our benchmark results. We view this as corroborating evidence for the accuracy
of our numerical long-run results.
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Figure 10: 𝛽(1 + 𝑓𝐾(𝐾, 𝑁))
Note: Red solid curve: benchmark experiment; Dashed blue curve: optimal transition with constant policy
(see Section 7.2).

Acikgoz et al. (2018) have made advances in obtaining a better characterization of the

of capital or labor income taxes, this would affect the risk faced by households, which would then violate
Ricardian equivalence as in Barsky et al. (1986). Bhandari et al. (2017) formalize a similar argument.

31In Aiyagari (1995)’s environment the planner cannot use lump-sum taxes, and chooses the level of govern-
ment expenditure every period—which enters separately into the utility function of households.
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long-run optimal tax system in the same environment as ours, except that they use a sep-
arable utility function. They argue that the long-run optimal tax system is independent of
initial conditions and of the transition into it, and show that the modified golden rule and
three additional optimality conditions must hold. In Appendix K, we extend their results
to the BGP preferences used in this paper and show that our long-run results do satisfy
those three additional conditions. We also compute the optimal paths using our method
but with their calibration, and find long-run results that are consistent with their findings.
Quantitative differences between our results and theirs must, therefore, be due to differences
in the calibration and not the solution method.32 In Appendix K we also compare the two
calibrations and discuss in detail the likely roots of these differences. We also provide there
an extensive discussion of the advantages and disadvantages of both numerical methods.

6 Maximizing Efficiency: The Role of Redistribution
The utilitarian welfare function, which we consider in our benchmark results, places equal
Pareto weights on every household. This implies a particular social preference with respect
to the equality-versus-efficiency trade-off. Here, we consider a different welfare function that
rationalizes different preferences about this trade-off,

𝑊 �̂� = ⎛⎜⎜
⎝

∫ 𝔼0 [
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡, ℎ𝑡)]
1−�̂�
1−𝜎

𝑑𝜆0
⎞⎟⎟
⎠

1−𝜎
1−�̂�

,

where 𝜆0 is the initial distribution over individual states (𝑎0, 𝑒0). Following Benabou (2002),
we refer to �̂� as the planner’s degree of inequality aversion. If �̂� = 𝜎, maximizing 𝑊 𝜎

is equivalent to maximizing the utilitarian welfare function. If �̂� → ∞, this becomes the
Rawlsian welfare function. Finally, if �̂� = 0, then maximizing 𝑊 0 is equivalent to maximizing
efficiency. We formalize claim in the following proposition.

Proposition 5 If the certainty equivalents satisfy Assumption 1, then, maximizing 𝑊 0 is
equivalent to maximizing (1 + Δ𝐿) (1 + Δ𝐼).

In Appendix G.1 we consider different levels of inequality aversion, but here we present
results only for the extreme case in which the planner cares only about efficiency, namely
32The most stark differences are that they find substantially higher optimal labor income taxes and debt-to-

output ratios than we do. The higher levels of labor income taxes result, to a large extent, from stronger
wealth effects on labor supply under their calibration. Appendix K presents a detailed comparison between
the two calibrations and how, in particular, our strategy leads to a significantly better fit to the distributions
of earnings, wealth, and hours worked which also indirectly discipline wealth effects.
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Figure 11: Optimal Fiscal Policy: Maximizing Efficiency
Note: Black dashed line: initial stationary equilibrium; Red solid curve: path that maximizes efficiency
optimal transition; Blue dashed curve: path that maximizes the utilitarian welfare function (benchmark
results).

�̂� = 0.33 Figure 11 presents the results in comparison with the benchmark results. Relative to
the initial stationary equilibrium, the welfare gains associated with the policy are equivalent
to a permanent 1.8 percent increase in consumption, 0.8 percent from reduction in distortions
and 1.0 percent from extra insurance. Even though the planner does not take this into
consideration, the policy implies a redistributive gain of about 1.1 percent.34

Relative to the benchmark experiment, capital labor income taxes are lower throughout
the transition. Higher income taxes are beneficial both for insurance and redistributive
motives, so it makes sense that removing one of these motives from consideration leads to
lower levels of optimal income taxes.

Redistribution leads to efficiency gains. It is not at all obvious why it is optimal
for maximizing efficiency to tax capital income at 100 percent for the first eight years. In
a representative-agent setup without lump-sum taxes, the reason for front-loading capital
income taxes is that the earlier the taxes are imposed, the less saving decisions are distorted.
Here, the planner could reduce lump-sum transfers in every period, which would be distortive
33The experiment of considering a planner that ignores redistributive concerns is similar to the experiment

in Chari et al. (2018) restricting policies from reducing the value of initial wealth in utility terms, which
effectively removes the planner’s possibility to provide redistribution.

34Appendix M.2 contains the figures for aggregates associated with this experiment.
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Figure 12: Reducing Initial Capital Income Taxes
Note (a,c,d) Black dashed line: initial stationary equilibrium; Red and blue solid curves: path that maximizes
efficiency and variations upon it; (b) the 𝑥-axis represents the homotopy parameter between the initial
optimal path at 𝑥 = 0 and a flat path at 𝑥 = 1, 𝑦-axis shows change in the welfare gains in percent points.

only to the extent that it brings households closer to their borrowing constraints. In Figure
12 we entertain exactly this experiment: we reduce the level of initial capital income taxes
and decrease lump-sum in every period by the same amount to balance the budget.

First, notice, from Figure 12b that this hardly affects the insurance effect, although it
does lead to a significant reduction in the level effect. This can be puzzling at first since it
follows from a reduction in distortive taxes. Moreover, this variation actually reduces the
proportion of households with negative assets (since capital income taxes subsidize negative
asset holdings), so it is hard to argue the welfare losses are coming from forcing households
toward their borrowing constraints. The key to make sense of these results is the increase in
labor productivity, which follows from the redistribution achieved by the high initial capital
income taxes. As explained above, redistribution generates wealth effects on labor supply
that lead to a more efficient allocation of hours in the economy, with higher productivity
households working relatively more—see Figure 12d. This effect is strong enough that it
outweights the distortions associated with the high initial capital taxes.35

Capital levy. An alternative way to investigate how much of the optimal policy has to do
35This effect is not present in the earlier version of this paper, Dyrda and Pedroni (2016), since there we

assume a utility function without wealth effects on labor supply.
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with redistribution is to consider an economy without initial inequality. In Appendix I, we
present results for an experiment in which we remove the upper bound on capital income
taxes. We show that, as a result, the planner completely expropriates the initial asset position
of all households, removing all wealth inequality.36 What is surprising, however, is that this
actually leads to higher capital income taxes in future periods as well. This happens for three
reasons: (1) in the short run, savings decisions are inelastic as households try to rebuild their
buffer stocks of assets; (2) the large amount of assets acquired by the government crowds in
capital, further mitigating distortions to capital accumulation; and (3) capital income taxes
are still beneficial to provide redistribution (mostly in the short run) and insurance (mostly
in the long run). Importantly, even though capital income taxes are overall higher relative
to the benchmark, the equilibrium capital stock is still higher throughout the transition.

7 Effects of Transition and of Time-Varying Policies
In this section we quantify the importance of transitional effects and of the time variation of
policy instruments. We first compute the optimal fiscal policy ignoring transitional welfare
effects altogether. We show this leads to results that are substantially different from the
benchmark. Then we solve for the optimal policy accounting for transitional welfare effects
but subject to instruments remaining constant. The welfare loss associated with the constant-
instrument constraint are still significant. The results are summarized in Table 5.

Table 5: Final Stationary Equilibrium: Transitional Effects

𝜏𝑘 𝜏ℎ 𝑇 /𝑌 𝐵/𝑌 𝐾/𝑌 Δ Δ𝐿 Δ𝐼 Δ𝑅

Initial equilibrium 41.5 22.5 11.4 61.5 2.49 − − − −
Stat. equil. − 36.4 18.8 −265.1 3.53 14.8 8.1 0.7 5.5
Stat. equil. no debt −7.2 27.1 9.1 61.5 2.85 1.2 2.8 0.0 −1.5
Constant policy 67.5 27.9 19.7 53.9 2.02 1.7 −0.7 0.8 1.6
Benchmark 26.7 39.1 15.1 154.3 2.48 3.5 0.2 1.2 2.1
Note: All values, except for 𝐾/𝑌 , are in percentage points.

36The expropriation of assets is combined with substantial lump-sum transfers in period 0, so that different
savings in period 0 already bring the wealth Gini back to 0.25 by period 1.
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7.1 Maximizing steady state welfare

Suppose the planner can choose stationary levels of all four fiscal policy instruments to
maximize steady-state welfare. In particular, the planner can choose any level of government
debt without incurring the transitional costs associated with it. It then chooses a debt-to-
output ratio of −265 percent. At this level the amount of capital that is crowded in is close
to the golden rule level, which implies zero interest rates (net of depreciation). Since capital
income is zero, capital income taxes are not relevant which is why we do not display that
number in Table 5. The average welfare gain associated with this policy is 14.8 percent.
These are large welfare gains precisely because they ignore transitional effects, as if the
economy has jumped immediately to a new steady state with a new distribution of assets, a
much higher capital stock, and in which the government has a large amount of assets instead
of debt.37

An alternative experiment, which is closer to the one studied by Conesa et al. (2009),
is to restrict the level of debt-to-output to remain at its initial level and choose only the
other fiscal instruments. With this constraint, we find it is still optimal for the planner to
focus on the level effect. Though the golden rule level of capital is not achieved, a negative
capital income tax of −7.2 leads the capital level in that direction. The planner also sets
relatively low labor income tax and transfer levels which are detrimental to insurance and
redistribution, but reduce distortions. Ignoring transitional effects, the policy leads to an
average welfare gain of 1.2 percent. However, accounting for its transitional effects the policy
would actually lead to a welfare loss equivalent to an 3.5 percent permanent reduction in
consumption.

7.2 Transition with constant policy

If the planner does take transitional effects into account but cannot change taxes over time,
the optimal fiscal instruments are set to a weighted average of the time-varying instruments
from our benchmark results—see Figure 13.38 More weight is put on the short-run levels
since those are more relevant for welfare. The long-run levels of the fiscal instruments,
however, are significantly different. Long-run capital income taxes and debt-to-output are
different since they vary more over the transition. Hence, if one is interested in the long-run
properties of the fiscal instruments, it is important to allow them to vary over time. In
37In Appendix L.1 we compare these results with the ones in Aiyagari and McGrattan (1998) in detail. The

main reason for the differences in the results is that the calibration in that paper leads to significantly
lower levels of inequality.

38Figures with the corresponding aggregates are presented in Appendix M.3.
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Figure 13: Optimal Fiscal Policy: Constant Policy
Notes: Black dashed line: initial stationary equilibrium; Red solid line or curve: path that maximizes
efficiency optimal transition; Blue dashed curve: benchmark results.

particular, as we noticed above in Section 5.5, whereas the modified golden rule holds for
the benchmark policy, it does not hold under this restriction—see Figure 10. Finally, this
policy leads to welfare gains that are less than half those of the optimal dynamic policy.

7.3 Flexibility of time paths

To illustrate how increasing the flexibility of the parametrization of the paths of fiscal instru-
ments affects the results we present, in Figure 14, some stages of this process for the path
of capital income taxes. We are only showing the path for capital income taxes, but at each
stage all fiscal instruments are allowed to follow more flexible paths and reoptimized. Figure
14a shows what happens when allow capital income taxes to be front-loaded: this minimal
amount of flexibility increases welfare gains from 1.65 percent to 2.79. In Figure 14b, we
show what happens when capital income taxes can follow the simplest form of equation (3.2),
with only polynomials of degree zero, this involves choosing 8 parameters and improves wel-
fare gains to 3.40 percent. Finally, Figure 14c shows what happens when we move from the
8-parameter solution to our benchmark 17-parameter solution, which brings welfare gains
to 3.52 percent. At each step in which we add more flexibility, welfare increases by less.
Nevertheless, some of the fiscal instruments still change in meaningful ways, as can be seen
from the still significant reduction in long-run capital income taxes in Figure 14c. So, to
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determine optimal long-run policy accurately we keep adding flexibility until both welfare
and policy are no longer affected. In Appendix G.3, we document all the intermediate steps
of our implementation of this procedure with the corresponding figures and welfare gains.
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Figure 14: Adding Flexibility to Paths: Capital Income Taxes
Notes: Black dashed line: initial stationary equilibrium; Blue dashed curve in (a): optimal constant taxes;
Red solid curve in (a) and blue dashed curve in (b): optimal transition allowing front-loading of cap-
ital income taxes; Red solid curve in (b) and blue dashed curve in (c): optimal transition with 8 pa-
rameters (𝛼𝑘

0 , 𝛽𝑘
0 , 𝜆𝑘, 𝛼ℎ

0 , 𝛽ℎ
0 , 𝜆ℎ, 𝛽𝑇

0 , 𝜆𝑇 ); Red solid curve in (c): benchmark optimal transition with 17
parameters—using 𝑚𝑘𝐹 = 𝑚𝑛𝐹 = 0, 𝑚𝑘0 = 𝑚𝑛0 = 𝑚𝑛𝐹 = 𝑚𝑇𝐹 = 2, and 𝑚𝑇0 = 4 in equation (3.2).

8 Complete Market Economies
To understand how market incompleteness and different sources of inequality affect the
optimal policy, we provide a build-up to our benchmark result. We start from a representative
agent economy, without any heterogeneity whatsoever. Then, we introduce, labor-income
and wealth inequality, in turn. Introducing uninsurable idiosyncratic productivity shocks
and borrowing constraints brings us back to the SIM model. At each step, we analyze the
optimal fiscal policy identifying the effect of each feature.

Importantly, for the complete market economies we can characterize the optimal policy
analytically. We can also compute the optimal policy using this characterization and with the
parameterized paths we used to obtain our benchmark results. The comparison between the
two gives an idea of how well our numerical method approximates the actual optimal path.
Notice that, in this complete-markets environment (without ad hoc borrowing constraints)
the Ricardian equivalence holds, so the optimal paths for lump-sum taxes and debt are
indeterminate, which is why we do not discuss or plot them.

The complete market economy is simply the SIM economy with the Markov transition ma-
trix, Γ, set to the identity matrix and borrowing constraints replaced by no-Ponzi conditions.
In order to keep the amount of labor-income inequality comparable with the benchmark cal-
ibration we rescale the productivity levels so as to keep the variance of the present value of
labor income the same. Since the wealth distribution is indeterminate in the steady state

38



of this economy, we can set the initial distribution to be the same as in our benchmark
economy. We recalibrate the discount factor, 𝛽, to keep the same capital-to-output ratio.

Consider the same Ramsey problem as in Definition 3. With complete markets we can
show that:

Proposition 6 There exist a finite integer 𝑡∗ and a constant Θ such that the optimal tax
system is given by 𝜏𝑘

𝑡 = 1 for 0 ≤ 𝑡 < 𝑡∗; while for 𝑡 ≥ 𝑡∗ 𝜏𝑘
𝑡 follows

1 + (1 − 𝜏𝑘
𝑡+1)𝑟𝑡+1

1 + 𝑟𝑡+1
= 1 − 𝑁𝑡

1 − 𝑁𝑡+1

1 − 𝜏ℎ
𝑡+1

1 − 𝜏ℎ
𝑡

𝜏ℎ
𝑡 + 𝜏𝑐

𝜏ℎ
𝑡+1 + 𝜏𝑐 ; (8.1)

for 0 ≤ 𝑡 ≤ 𝑡∗, 𝜏ℎ
𝑡 evolves according to

1 + (1 − 𝜏𝑘
𝑡+1)𝑟𝑡+1

1 + 𝑟𝑡+1
= Θ + 𝜎 (1 − 𝑁𝑡+1)−1

Θ + 𝜎 (1 − 𝑁𝑡)
−1

1 − 𝜏ℎ
𝑡+1

1 − 𝜏ℎ
𝑡

1 + 𝜏𝑐 + 𝛼 (𝜎 − 1) (𝜏𝑐 + 𝜏ℎ
𝑡 )

1 + 𝜏𝑐 + 𝛼 (𝜎 − 1) (𝜏𝑐 + 𝜏ℎ
𝑡+1); (8.2)

and for all 𝑡 > 𝑡∗, 𝜏ℎ
𝑡 is determined by

𝜏ℎ
𝑡 (𝑁𝑡) = (1 + 𝜏𝑐)

(1 − 𝑁𝑡) Θ + 𝛼 + 𝜎 (1 − 𝛼) − 𝜏𝑐. (8.3)

In Appendix F, we apply the method introduced by Werning (2007) to prove this propo-
sition, and analogous ones for versions of this economy without labor–income and/or wealth
inequality.39 In particular, we also show that the magnitudes of 𝑡∗ and Θ are related to the
levels of wealth and labor–income inequality, respectively. Figure 15 illustrates the numerical
results obtained using this proposition.

Representative agent. To avoid a trivial solution, Ramsey problems in a representative-
agent economy usually do not allow lump-sum taxation. We do, so the solution in this case
is indeed very simple. It is optimal to obtain all revenue via lump-sum taxes and set capital
and labor income taxes so as not to distort any of the agent’s decisions. This amounts to
setting 𝜏𝑘

𝑡 = 0 and 𝜏ℎ
𝑡 = −𝜏𝑐 for all 𝑡 ≥ 0. Since consumption taxes are exogenously set

to a constant level, zero capital income taxes leave savings decisions undistorted and labor
income taxes set equal to the negative of the consumption tax ensures labor supply decisions
are not distorted either.
39Werning (2007) allows complete expropriation of initial capital holdings. For comparability with our bench-

mark results, we impose an upper bound on capital income taxes and introduce an exogenous consumption
tax.
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Figure 15: Optimal Taxes: Complete Market Economies
Notes: Black dashed line: initial taxes; Red solid curve: optimal taxes for representative economy; Dotted
blue line: optimal taxes with only labor-income inequality; Yellow dashed curve: optimal taxes with labor-
income and wealth inequality.

Labor-income inequality. When labor income is unequal, there is a redistributive reason
to tax it. In Figure 15, we see that, in this case, it is optimal to have labor income taxes be
virtually constant over time and capital income taxes virtually equal to zero in every period.

Wealth inequality. When there is wealth inequality there is a redistributive reason to tax
asset income. With complete markets, however, capital income taxes are fully front-loaded,
hitting the upper bound for 𝑡∗ periods before converging to zero.40 While capital income
taxes are at the upper bound, labor income taxes are increasing. This leads to a decreasing
(or less increasing) path for labor supply, which mitigates distortions to the households’
intertemporal decisions: it leads to a smoother path for period utility as leisure increases
while consumption decreases.

Uninsurable risk. Figure 16 contains the numerical results obtained using the same so-
lution method used for the benchmark results together with the ones obtained using the
proposition. This shows that, at least for this economy, the parameterized paths are able to
approximated the actual solution relatively well (average welfare gains are similar as well:
2.253 percent using the proposition versus 2.246 percent using the parameterized paths).
The figure also shows, for comparison, the results from the benchmark SIM model. The only
important qualitative difference is the fact that for the SIM model capital income taxes are
positive in the long run.
40Straub and Werning (2020) show that optimal long-run capital income taxes can be positive in environments

similar to this one. The reason why their logic does not apply here is the fact that the planner has lump-
sum taxes as an available instrument which removes the need to obtain revenue via distortive instruments.
In Appendix F.8 we include a more detailed discussion of this issue.
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Figure 16: Optimal Taxes: Complete Market Economies
Notes: Black dashed line: initial taxes; Red solid curve: optimal taxes from Benchmark SIM model; Solid
blue curve: optimal taxes calculated using the same parameterized paths used in the Benchmark experiment;
Yellow dashed curve: optimal taxes calculated using Proposition 6.

9 Sensitivity Analysis and Robustness
In Appendix G we present the following robustness experiments: First, we show that higher
degrees of inequality aversion for the planner are associated with higher taxes overall. How-
ever, particularly for values of inequality aversion above the benchmark utilitarian level,
further increases have surprisingly small effects. Second, we show that changes in the IES
have large effects specially on the path of optimal capital income taxes, because a different
IES leads to a different relative risk aversion for households and a different degree of planner
inequality aversion. The combined effect of all these changes can be large. Finally, we show
that increases in the Frisch elasticity unsurprisingly reduce labor income taxes though by
relatively small amounts.

In Appendices K and L, we present results for four alternative calibrations: (1) an economy
that disciplines the labor income process without using any distributional moment, a com-
mon calibration strategy in the literature; (2) the calibration from Aiyagari and McGrattan
(1998); (3) a calibration that introduces return-risk; and (4) the calibration from Acikgoz
et al. (2018). There are two main takeaways from these experiments: the qualitative fea-
tures of the Ramsey policy in the SIM model that we highlight in the paper—high short-run
capital income taxes combined with increasing labor income taxes, and the front-loading of
lump-sum transfers—are robust to substantial changes to the calibration; the quantitative
results are sensitive to the calibration, which justifies the extensive effort we put into all the
details of it.
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10 Concluding Comments
In this paper, we quantitatively characterize the solution to the Ramsey problem in the stan-
dard incomplete markets model. We find that it is optimal to use distortive income taxes
since they provide redistribution and insurance when rebated via lump-sum transfers—a util-
itarian planner would expand the US social welfare system significantly, increasing overall
transfers by roughly 50 percent. We quantify the associated welfare effects with a decom-
position that accommodates transitional effects. We show that high initial capital income
taxes are an effective way to provide redistribution, which also leads to a considerably more
efficient allocation of labor via wealth effects on labor supply. Increasing labor income taxes
over time mitigates the intertemporal distortions associated with high capital income taxes.
Front-loading lump-sum transfers allows households to move away from their borrowing
constraints making the government debt level less consequential for welfare.

Finally, this paper abstracts from several important aspects that could be relevant for
fiscal policy. For instance, in the model studied above, a household’s productivity is entirely
a matter of luck. It would be interesting to understand the effects of allowing for human
capital accumulation. We also assume the government has the ability to fully commit to
future policies. Relaxing this assumption could lead to interesting insights. The model also
abstracts from the effects of international financial markets; capital income taxes as high as
the ones we find optimal in this paper are unlikely to survive if households are able to move
their assets overseas. We also abstract from life-cycle issues, and maintain a relatively simple
tax structure. Our method, however, could be used to approximate the solution to Ramsey
problems in more elaborate models, the main constraint being computational power.
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