Determinacy without the Taylor Principle

George-Marios Angeletos¹ Chen Lian²

¹MIT and NBER

²UC Berkeley and NBER

July 14, 2021

1 Introduction

- 2 A Simplified New Keynesian Model
- The Standard Paradigm
- 4 Uniqueness with Fading Memory
- **(5)** The Generalized Model
- 6 Observing Past Outcomes
- Discussion
- 8 Conclusion

The Equilibrium Selection Issue in the NK Model

- Can monetary policy regulate AD by adjusting interest rates?
- Important caveat (e.g., Sargent & Wallace):
 - Same nominal interest rate path consistent with multiple bounded eq.
 - Need for equilibrium selection
- Standard approach: Taylor principle (raise rates aggressively with inflation)
 - An off-eq. threat to trigger an explosion in π and y (Cochrane)
 - Or a reversion to *M* regime for large enough deviations (Atkeson, Chari, & Kehoe)
- Alternative: Fiscal Theory of the Price Level (Leeper, Sims, Woodford)
 - ► An off-eq. threat to blow out the government budget (Kocherlakota & Phelan)
 - Or other interpretations of non-Ricardian fiscal policy (Cochrane, Bassetto)
- Eq. selection debate is a war of "religious beliefs" (Kocherlakota & Phelan)
 - Cannot be guided by empirical evidence and are inherently untestable

This Paper: Determinacy without the Taylor Principle

- Sunspot eq. artifacts of perfect intertemporal coordination ("infinite chain")
 - · Current agents respond to "irrelevant" sunspots only if future agents respond in a specific way
 - Future agents respond only if they expect agents further in the future respond; and so on.
- Small perturbations in memory/coordination \Rightarrow breaks the infinite chain \Rightarrow determinacy
- Always selects the standard eq. (minimum-state-variable eq.)
- Taylor principle perhaps less consequential than previously thought
- No room for FTPL as currently formalized (as an eq. selection device)
 - ▶ but fiscal considerations can matter through the eq. conduct by MP
- Eases the potential conflict between stabilization and eq. selection

Pause for Questions

1 Introduction

- 2 A Simplified New Keynesian Model
- The Standard Paradigm
- 4 Uniqueness with Fading Memory
- **(5)** The Generalized Model
- 6 Observing Past Outcomes
- Discussion
- 8 Conclusion

A Simplified Model

• Dynamic IS $(\bar{E}_t[\cdot] = \int E_{i,t}[\cdot] di$ is the average expectation)

$$c_t = -\sigma\left(i_t - \bar{E}_t\left[\pi_{t+1}\right]\right) + \bar{E}_t\left[c_{t+1}\right] + \rho_t$$

• Phillips curve (static for now, forward looking later)

$$\pi_t = \kappa c_t + \xi_t$$

• Monetary policy

$$i_t = z_t + \phi \pi_t$$

An Equivalent Representation

 $\bullet\,$ Substituting monetary policy and Phillips curve in IS curve $\Rightarrow\,$

$$c_t = heta_t + \delta ar{E}_t \left[c_{t+1}
ight]$$

where $\{ heta_t\}$ is a function of $\{
ho_t, \xi_t, z_t\}$ and

$$\delta = \delta(\phi) \equiv rac{1+\kappa\sigma}{1+\phi\kappa\sigma}$$

• Taylor principle holds when

$$\phi > 1 \iff \delta < 1$$

• Equivalent formulation

$$\pi_t = ilde{ heta}_t + \delta ar{ extsf{E}}_t \left[\pi_{t+1}
ight]$$

▶ this nests the flexible price case $(i_t = \bar{E}_t [\pi_{t+1}])$ with $\kappa \to \infty (\delta \to \frac{1}{\phi})$

Fundamentals, Sunspots, and the Equilibrium Concept

• Fundamentals:

$$\theta_t = \rho \, \theta_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim_{\text{i.i.d}} \mathscr{N}(0,1)$$

► In paper: generalization allowing generic state space representations

• Sunspots:

$$\eta_t \sim_{\mathsf{i.i.d}} \mathscr{N}(0,1)$$

• State of nature, or (infinite) history, at t:

$$h^t = \{\theta_{t-k}, \eta_{t-k}\}_{k=0}^{\infty}$$

• Equilibrium concept: REE (based on potentially limited information about h^t)

$$c_t = \sum_{k=0}^{\infty} a_k \eta_{t-k} + \sum_{k=0}^{\infty} \gamma_k \theta_{t-k}$$

• Focus on **bounded** eq. ($Var(c_t)$ is finite). Can be justified by escape clauses by ACK.

1 Introduction

- 2 A Simplified New Keynesian Model
- The Standard Paradigm
- 4 Uniqueness with Fading Memory
- **(5)** The Generalized Model
- 6 Observing Past Outcomes
- Discussion
- 8 Conclusion

The Standard Paradigm

• FIRE (full information rational expectations)/perfect recall benchmark:

 $c_t = \theta_t + \delta E_t [c_{t+1}]$

• $E_t[\cdot]$ is rational expectation conditional on entire history h^t

• The MSV (minimum state variable) solution:

$$c_t = c_t^{ extsf{F}} \equiv rac{1}{1 - \delta
ho} heta_t$$

- guess and verify $c_t = \gamma \theta_t$
- Is MSV the only solution?
 - Taylor principle holds when $\phi > 1 \iff \delta < 1$
 - If it does not hold $\delta>1,$ solve backward \Longrightarrow sunspot and backward looking eq.

The Standard Paradigm

Proposition 1. Perfect Recall Benchmark

- ullet When the Taylor principle is satisfied ($|\delta|<$ 1), the MSV equilibrium is the unique one
- When this principle is violated $|\delta| > 1$), there exist a continuum of equilibria

$$c_t = (1-b)c_t^F + bc_t^B + ac_t^\eta,$$

where

• Sunspot equilibria (non-zero solution to $c_t = \delta E_t[c_{t+1}]$)

$$c_t^\eta \equiv \sum_{k=0}^\infty \delta^{-k} \eta_{t-k}$$

• Backward fundamental equilibria

$$c^B_t \equiv -\sum_{k=1}^\infty \delta^{-k} heta_{t-k}$$

Understanding the Multiplicity

Using the sunspot eq. as an example:

$$c_t^\eta = \delta E_t \left[c_{t+1}^\eta
ight]$$

Infinite chain of perfect intertemporal coordination:

- Current agents respond against their intrinsic interest because they expect to be rewarded by future agents
- Future agents themselves respond based on a similar expectation

o ...

What's Next: Breaking the Infinite Chain

What's next: two perturbations breaking the infinite chain of perfect coordination

Two equivalent representations of the sunspot equilibrium

$$\begin{array}{ll} \mathsf{Sequential}: & c_t^\eta = \sum_{k=0}^\infty \delta^{-k} \eta_{t-k} \\ \mathsf{Recursive}: & c_t^\eta = \delta^{-1} c_{t-1}^\eta + \eta_t \end{array}$$

• c_t^{η} needs to respond to distant-past sunspots (directly or indirectly)

First perturbation motivated by the sequential representation

• Fading social memory about $\eta_{t-k} \Longrightarrow$ determinacy

Second perturbation motivated by the recursive representation

ullet Bounded social memory what drives (a tiny part of) $c^\eta_{t-1} \Longrightarrow$ determinacy

1 Introduction

- 2 A Simplified New Keynesian Model
- The Standard Paradigm
- Output A State A St
- **(5)** The Generalized Model
- 6 Observing Past Outcomes
- Discussion
- 8 Conclusion

The First Perturbation

Memory:

- $\bullet\,$ In each period, a randomly $\lambda\in[0,1]$ of agents are replaced by newborn agents.
- Agents know fundamentals & sunspots during their lives but not before
- The period-t information set of an agent born s periods ago is given by

$$I_t^s \equiv \{(\theta_t, \eta_t), ..., (\theta_{t-s}, \eta_{t-s})\}$$

The First Perturbation

$$I_t^s \equiv \{(\theta_t, \eta_t), ..., (\theta_{t-s}, \eta_{t-s})\}$$

Interpretation:

- OLG with "fading" social memory
 - ► Consistent with perfect individual recall & standard rational expectations solution concept
 - > Equivalent behavioral interpretation: agents are infinitely-lived but have bounded recall

Standard paradigm:

 \bullet Perfect social memory, nested by $\lambda=0$

Properties:

- For any $\lambda > 0$, zero mass of agents has *infinite* memory
 - \blacktriangleright But as $\lambda \rightarrow 0,$ almost all agents have arbitrarily long memory
- Prevent direct knowledge about history of endogenous $\{c_{t-k}\}$
 - ▶ But as $\lambda \rightarrow 0$, arbitrarily well informed long histories of $\{c_{t-k}\}$

Determinacy without the Taylor Principle

Proposition 2. Determinacy without the Taylor Principle

With fading social memory, the unique equilibrium is the MSV solution, $c_t = c_t^F$

- Regardless of the value of δ , or equivalently monetary policy ϕ .
- No matter how slow the memory decay is (how small λ is).

Proof sketch: focusing on responses to $\eta_0(a_t)$.

• "Twin" economy with perfect memory but modified best response:

$$c_t = heta_t + \delta \bar{E}_t [c_{t+1}] \implies c_t = \delta \mu_t E_t [c_{t+1}],$$

where $\mu_t = (1 - \lambda)^t \rightarrow 0$ is the proportion of agents remembering η_0 at t.

• But $\delta \mu_t < 1$ eventually, so always determinacy.

- I can see the current sunspot very clearly
- It would make sense to react if all future agents will keep responding to it in perpetuity
- But I worry that agents far in the future will fail to do so
 - either because they will have forgotten it
 - ▶ or because they may worry that agents further into the future will not react to it
- It therefore makes sense to ignore the sunspot

1 Introduction

- 2 A Simplified New Keynesian Model
- The Standard Paradigm
- 4 Uniqueness with Fading Memory
- 5 The Generalized Model
- 6 Observing Past Outcomes
- Discussion

8 Conclusion

A Micro-funded NK Model

• A micro-founded IS curve robust to incomplete information

$$c_t = - eta \omega \sigma \left\{ \sum_{k=0}^{+\infty} \left(eta \omega
ight)^k ar{\mathcal{E}}_t \left[i_{t+k} - \pi_{t+k+1}
ight]
ight\} + (1 - eta \omega) \left\{ \sum_{k=0}^{+\infty} \left(eta \omega
ight)^k ar{\mathcal{E}}_t \left[c_{t+k}
ight]
ight\} +
ho_t$$

- $\omega = 1 \lambda$ is the survival probability (as the OLG structure above)
- embeds individual optimality + market clearing + budgets
- ▶ reduces to the RA Euler equation (plus transversality) when $\overline{E}_t[\cdot] = E_t[\cdot]$
- Standard dynamic NKPC

$$\pi_t = \kappa c_t + \beta E_t \left[\pi_{t+1} \right] + \xi_t$$

• Monetary policy

$$i_t = z_t + \phi_c c_t + \phi_\pi \pi_t$$

The Generalized Model and Nesting

• The generalized model

$$c_t = heta_t + ar{E}_t \left[\sum_{k=0}^{+\infty} \delta_k c_{t+k}
ight]$$

- \blacktriangleright only requires that the sum $\sum_{k=0}^{\infty} |\delta_k|$ is finite
- Nests the previous micro-founded NK with

$$\delta_k = (1 - eta \omega - eta \omega \sigma \phi_c) \left(eta \omega
ight)^k + \omega \sigma \kappa \left(-\phi_\pi eta + (1 - \omega \phi_\pi eta) rac{1 - \omega^k}{1 - \omega}
ight) eta^k.$$

The Generalized Results -

Proposition 3. Fading Memory Rules out Sunspot Volatility

With fading social memory ($\lambda > 0$), the equilibrium is unique and is given by the MSV solution.

Proof sketch: focusing on response to $\eta_0(a_t)$.

• "Twin" economy with perfect memory but modified best response:

$$c_t = heta_t + ar{E}_t \left[\sum_{k=0}^{+\infty} \delta_k c_{t+k}
ight] \quad \Longrightarrow \quad c_t = oldsymbol{\mu}_t E_t \left[\sum_{k=0}^{+\infty} \delta_k c_{t+k}
ight],$$

where $\mu_t \rightarrow 0$ is the proportion of agents remembering η_0 at t.

- But $\mu_t(\sum_{k=0}^{\infty} |\delta_k|) < 1$ eventually, so always determinacy
- Effective complementary < 1, uniquely pinned down by iterating of best responses

1 Introduction

- 2 A Simplified New Keynesian Model
- The Standard Paradigm
- 4 Uniqueness with Fading Memory
- **5** The Generalized Model
- 6 Observing Past Outcomes
 - Discussion
- 8 Conclusion

Observing Past Outcomes

- Baseline: preclude *direct* observation of past outcomes, such as c_{t-1}
- But note: agents have almost perfect knowledge of past outcomes
 - ▶ for any T, almost all agents learn $\{c_{t-1},...,c_{t-T}\}$ nearly perfectly as $\lambda \to 0$
- Still, what if perfectly observing past outcomes?
 - Could long memory of sunspots and past fundamentals be efficiently "stored" in short memory of past outcomes?
- For example, the recursive formulation of the sunspot equilibrium (turn off θ_t briefly)

$$c_t = \eta_t + \delta^{-1} c_{t-1}$$

- Perfect memory of c_{t-1} suffice as the memory of the history of sunspots
 - sunspot equilibria strike back?

Storing Memory in Endogenous Outcomes

- Still takes a strong, fragile, form of intertemporal coordination
 - Current agents respond because they expect future respond in a perfect way
 - Infinite chain of coordination ···
- Add i.i.d. fundamental shocks $\zeta_t \in [-arepsilon, arepsilon]$ (arbitrarily small) known only to t

$$c_t = \zeta_t + \delta \bar{E}_t \left[c_{t+1}
ight]$$

• For a sunspot eq, requires perfect knowledge of ζ_t at t+1

$$c_{t+1} = \eta_{t+1} + \delta^{-1}(c_t - \zeta_t)$$

• But if ζ_t unknown to agents at t+1, the sunspot equilibrium collapses

The Second Perturbation

• Bring back fundamentals θ_t with arbitrarily small. i.i.d. perturbations $\zeta_t \in [-\varepsilon, \varepsilon]$

$$c_t = heta_t + \zeta_t + \delta \mathbb{E}[c_{t+1}|I_t]$$

• A representative agent in each period, with info set

 $I_{t} = \{\zeta_{t}\} \cup \{\theta_{t}..., \theta_{t-K}\} \cup \{\eta_{t}..., \eta_{t-K}\} \cup \{c_{t-1}, \cdots, c_{t-K}\}$

- ► Long memory of past sunspots, fundamentals, & outcomes for arbitrarily large but finite K
- But knowledge of only current ζ_t & no memory of past ζ s

Proposition 5. Storing Memory in Endogenous Outcomes

With above info. structure, regardless of δ , there is a **unique equilibrium** and is given by $c_t = c_t^F + \zeta_t$, where c_t^F is the same **MSV** solution as before.

 $\bullet\,$ Break the infinite chain $\Longrightarrow\,$ MSV as the unique eq

1 Introduction

- 2 A Simplified New Keynesian Model
- The Standard Paradigm
- 4 Uniqueness with Fading Memory
- **5** The Generalized Model
- 6 Observing Past Outcomes

⑦ Discussion

8 Conclusion

Fiscal Theory of Price Level (FTPL)

- Essence of the FTPL: non-Ricardian fiscal policy
 - primary surplus do respond enough to public debt level
 - An off-equilibrium threat to blow out the government budget (Kocherlakota & Phelan)
 - Or other interpretations (Cochrane, Bassetto)
- Standard paradigm: FTPL perfectly logical with "passive MP" ($\phi < 1$)
 - ► concur with passive-monetary and active-fiscal regime in Leeper (1991)
- \bullet Our contribution: no need/space for eq selection from FTPL
 - underscores the fragility of existing formalization of FTPL
 - but allow fiscal considerations to matter on eq. through conduct of MP

Feedback Rules and the Ramsey Implementation

- Consider the Ramsey optimum. How can monetary policy uniquely implement it?
- If the monetary authority observes the underlying shocks, uniquely implemented with:

$$i_t = i_t^o + \phi(\pi_t - \pi_t^o),$$

where i_t^o and π_t^o are rates and inflation in the optimum and $\phi > 1$.

- What if the monetary authority does not observe the underlying shocks?
 - implemented through feedback rules?

$$i_t = \phi \pi_t$$

- Two conflicting roles
 - **Stabilization** ($\phi < 1$ possible in the Ramsey optimum)
 - **Eq. selection** ($\phi > 1$ necessary in the standard paradigm)
- Here: Liberates the stabilization role of monetary policy from its eq. selection role

Alternative Boundedly-Rational Solution Concepts

- Group 1: relax REE but maintain a "fix point" between expectations & actual eq.
 - ▶ e.g., Cognitive discounting in Gabaix (20); Diagnostic expectations in Bordalo et. al (20)
 - may shrink the determinacy region but the indeterminacy problem remains
- Group 2: completely shuts down the "fix point"
 - e.g. level-k thinking (Garcia-Schmidt & Woodford, 19; Farhi & Werning, 19)
 - produces a unique solution but opens a new issue
 - ▶ whenever $\phi < 1$, Level-k solution becomes infinitely sensitive to Level-0 behavior

1 Introduction

- 2 A Simplified New Keynesian Model
- The Standard Paradigm
- 4 Uniqueness with Fading Memory
- **(5)** The Generalized Model
- 6 Observing Past Outcomes
- Discussion

Conclusion

- Main lesson: NK indeterminacy/FTPL hinge on strong info assumptions
- A small friction in memory & intertemporal coordination can result in determinacy
- Taylor principle perhaps less consequential than previously thought
 more crucial: boundedness (commitment to rule out large deviations)
- No room for FTPL as currently formalized (as an eq. selection device)
 - ► but fiscal considerations can matter if internalized by MP
 - ▶ Model MP-FP interaction as a game of between monetary & fiscal authority?