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Abstract

We develop a framework to theoretically and empirically analyze investor competi-
tion on financial markets. The classic view assumes that markets are very competitive:
if a group of investors changes its behavior, other investors react such that nothing
happens in equilibrium. Our framework quantifies the strength of the competitive re-
sponse. We estimate a demand system of institutional investors in the US stock market
accounting for two layers of equilibrium: how investors compete with each other in set-
ting their strategies and how prices adjust to clear asset markets. We find that investors
react to the behavior of others in the market: when an investor is surrounded by less
aggressive traders she trades more aggressively. This reaction reduces the equilibrium
consequences of changes in individual behavior by 50%. However, it also implies that
the stock market is far from the competitive ideal. A consequence of this result is that
the large increase in passive investing over the last 20 years has led to substantially
more inelastic aggregate demand curves for individual stocks, by 15%.
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1 Introduction

What happens to equilibrium prices when a subset of investors changes its behavior? For
example, what are the implications of investors switching to passive strategies, as has been
occuring on a large scale over the last few decades?' Answering this question relies crucially
on how other investors react to this change. In the standard view that “financial markets are
competitive”, the answer is simple: nothing happens, because other investors pick up any

2 Casually said: if you stop looking for $20

slack left off by those changing their behavior.
bills on the floor, someone else will replace you. In this paper, we propose a framework to
quantify investor competition in financial markets, combining information from prices and
portfolio positions. We implement the framework for the U.S. stock market.

We find that investors react to the behavior of others in the market: when an investor is
surrounded by less aggressive traders—that is, with a lower price elasticity of demand—she
trades more aggressively. While this reaction strongly mitigates the equilibrium consequences
of changes in individual behavior, the stock market is far from the competitive ideal. Our
estimates suggest that competition reduces the impact of an increase in passive investing in
half. Still, an increase as large as the one of the last 20 years leads to substantially more
inelastic aggregate demand curves for individual stocks, by 15%.

To get to these answers, we proceed in three steps. First, we present an equilibrium model
of investor competition. Each investor’s demand elasticity responds to the elasticity of others
in the market; the level of competition is the strength of this response. We demonstrate that
while simple, this approach embodies the economics of investor competition across many

theories such as those of Grossman and Stiglitz (1980) and Kyle (1989). Second, to take

these ideas to the data, we distill the model into a realistic demand system that enriches the

For example, the ICI factbook (ICI, 2020) reports that the total assets of passive mutual funds in the
U.S. have increased from $11bn to $2.8tn between 1993 and 2020.

2In the same way that efficient markets have a different meaning in the finance literature relative to the
remaining of economics, this is not the standard notion of competition. Rather than asking whether investors
are price-taker (the focus of Lee and Kyle (2018)), this notion captures how much substitution there is in
the strategies of investors. Going back to Kreps and Scheinkman (1983), it is understood that price-taking
is not the only aspect shaping competition.



framework of Koijen and Yogo (2019). We show how to overcome the estimation challenges
created by equilibrium interactions between investors. Third, we estimate the model using
detailed portfolio positions of institutional investors in the U.S. stock market. Using the
model, we quantify the impact of a rise in passive investing, and decompose the sources of
evolution in the demand for individual stocks.

Our model represents investor competition by its effect on demand elasticities, how much
an investor changes her position in an asset as a function of its price. A more elastic demand
curve implies more aggressive trading: the investor increases their position a lot when the
asset is cheap. Unlike in standard price theory, demand elasticities in financial markets are
not only determined by the investor’s preferences for the asset but also by the behavior of
other investors. Indeed, it matters why the asset is cheap, and decisions of other investors
shape the reason behind price movements. For example, asset prices convey information,
and depending on this information, the investor should be more or less aggressive in her
response to price movements. We assume that each investor’s demand elasticity combines
an investor-specific component and a response to the aggregate demand elasticity prevalent
in the market. The strength of this response is the level of competition. An equilibrium
combines two layers. First, the elasticities of all investors must be consistent with each
other: the average of all investor elasticities must be equal the aggregate elasticity. Second,
the asset price is such that the sum of all demand curves evaluated at this price is equal to
the supply of the asset.

This framework is simple because it reduces the problem of investor competition to an
equilibrium determination of elasticities. However, this simplicity does not impede its rich-
ness: we show that our setting unifies many foundations for competition. For example, we
consider a theory in which investors expend resources to obtain more precise information on
the assets they invest in, like in Grossman and Stiglitz (1980) — see Veldkamp (2011) for a
review. Two elements shape the demand for information: an investor’s own ability to gather

information and how much information other investors have acquired. If other investors have



more information, the value of acquiring information declines, and the investor chooses to
obtain less of it. This force is the source of competition between investors, and how eas-
ily an investor is able to adjust her information determines how competitive the market is.
Because when an investor acquires more information she trades more aggressively, the infor-
mation equilibrium can be recast exactly as an elasticity equilibrium. Elasticities inherit the
strategic substitutability of information choices, giving rise to competition. In contrast, in
theories where investors have market power, like in Kyle (1989), it is optimal to trade more
aggressively if others are more aggressive as well. In both cases, the equilibrium strategies of
investors boil down to a choice of elasticity.

What happens when a group of investors becomes passive? Their investment strategy
becomes irresponsive to the price of the asset, hence their demand elasticity becomes zero.
This pushes the aggregate elasticity down, which prompts a response from other investors,
potentially compensating the direct effect. When the competitive response is strongest, this
reaction completely offsets the direct effect, the equilibrium market elasticity is unchanged.
This corresponds to the ideal of “competitive financial markets”. In the other extreme, if
investors do not react, the elasticity provided by the traders who became passive is just
lost. We quantify the intensity of competition to obtain the pass-through of a rise in passive
investing into aggregate elasticities.

We adapt our basic two-layer equilibrium setting to be able to take it to the data. We
implement our framework as a demand system in the style of Koijen and Yogo (2019). The
level of demand and the individual-specific component of elasticity are functions of stock
characteristics. In addition, demand has a residual component unobservable to the econo-
metrician. The portfolio choice of investors across stocks is represented by a logit system.
These choices allow for a rich and realistic specification of demand, and capture heterogeneity
across investors. To this set of assumptions we add a second layer: the elasticity equilibrium.
The demand elasticity of an investor depends on her individual-specific component and a

response to the aggregate elasticity of demand for this stock. In equilibrium, the aggregate



demand elasticities must be the average of investor-level elasticities.

To estimate the model we overcome three challenges. First, the interaction between
investors through their elasticity decisions introduces a reflection problem (Manski, 1993): a
market with high elasticity could be the result of either high individual elasticities or strong
positive spillovers. The cross-section of stocks provides a solution to this issue because
we observe the same investor in different markets. This investor faces a different mix of
competing investors for each stock, therefore a different aggregate demand elasticity. This
variation allows us to isolate the spillover from the individual-specific component of elasticity.
We face a chicken-and-egg question: to implement this comparison we need to know the
elasticity of other investors, which itself has to be estimated in the same way. We prove
conditions on the graph of investor-stock connections that solve this issue.

Second, both the price and the aggregate elasticity are equilibrium quantities and therefore
depend on portfolio decisions. We construct an instrument for each of these two variables
using variation in investment universe across investors. Stocks that more investors can buy
naturally have more money chasing them and a higher price. This instrument for the price
is introduced in Koijen and Yogo (2019). Because individual components of elasticities are
not known a priori, the same idea cannot be directly implemented to craft an instrument for
aggregate elasticity. We construct a new model-based instrument combining the variation
in investment universe with the estimated individual component of elasticities. This adds a
challenge: we have to estimate the instrument and the demand system simultaneously. Still
this is valid strategy because model parameters are exogenous by definition.

Third, the inclusion of rich investor heterogeneity, the need to solve for an elasticity equi-
librium, and the presence of model-based instrument, all concur to a seemingly intractable
estimation. However, we develop a computationally efficient algorithm that estimates the
model. The key idea is to isolate low-dimensional fixed-point problems due to the elasticity
equilibrium from a larger but standard linear system with high-dimensional investor-specific

coefficients.



Our estimates suggest a substantial amount of competition. If the aggregate elasticity for
a stock increases by 1, an individual investor decreases her own elasticity of demand by 1.7.
This competitive response stabilizes the levels of aggregate elasticity. Intuitively, when a very
aggressive investor trades a specific stock, other investors in this stocks adjust by becoming
less aggressive. This force implies about 50% less cross-sectional variation in elasticity across
stocks than estimates ignoring competitive interactions, highlighting the importance of these
interactions.

We use these estimates to assess the impact of a rise in passive investing. To do so, we
ask how equilibrium elasticities change when a fraction of investors exogenously switches to
be passive. We obtain a simple formula for the pass-through of a change in the fraction of
active investor to the aggregate elasticity. This pass-through only depends on the intensity
of competition and the initial fraction of active investors. It is decreasing in both quantities.
Empirically, we find this pass-trough to be about 0.5. Half of a change in the fraction of
active investors translates into a reduction in demand elasticity. Given an estimate that the
fraction of active investors has decreased by about 30% over the last 20 years, this yields a
decrease in elasticities of 15%. This is a large change: for example, in the context of the
information model we studied, it would lead to less informative and more volatile prices.
Again, this prediction highlights that while competitive effects are strong, the stock market
is far from the competitive ideal. In competitive markets, the pass-through is 0, in which case
a rise of passive investing has no impact. On the other hand, without competitive effects,
the pass-through is 1, leading to a 30% decrease in elasticity.

The model also provides an account of the actual evolution of the demand for stocks over
the last 20 years. The entire cross-sectional distribution of stock-level elasticity has decreased
during that period, by 35%. Interestingly, the model attributes about equally this drop to
two investor-specific sources of change. First, the fraction of passive investors has increased
— the extensive margin. Second, the investor-specific component of the elasticity of active

investors has decreased — the intensive margin. This dimension is particularly interesting



because developments in computing power and access to big data would have instead sug-
gested that the most aggressive quantitative funds would have increased their elasticities on
their own.® However, another aspect played an important role: active investors also increased
their equilibrium elasticity in response to broad decrease in aggregate elasticities. In a coun-
terfactual exercise in which we shut down the competitive responses, we find that elasticities
would have decreased by 62%, while they would have barely moved with strong competition.

Taken together, our results highlight the importance of a finer approach to competition
in financial markets. No, it is not the case that “financial markets are competitive” and
that all shocks are fully absorbed by other investors. But also no, it does not mean that
investors do not interact together at all. This framework is a first step towards quantifying the
intensity of competition and its implications. Our estimates suggest that competition played
an important role in shaping the response to the rise of passive investment. Competition is
likely important for many other questions about investor demand. What happens when a
large set of financial institutions must change their trading because of new regulation? What

happens when some sophisticated specialized investors get in financial trouble?

Contribution to the existing literature. The idea of competition among investors has
a long history in finance. Grossman and Stiglitz (1980) first formalize the notion of competi-
tion for information between investors and show it does not lead to informationally efficient
markets.? Kyle (1989) highlights how market power also creates interaction among investors.
These seminal contributions have led to a large theoretical literature pointing out rich ways
in which investors react to each other and choose their trading strategy. In the context of the
rise of passive investing Subrahmanyam (1991) is an early contribution highlighting liquidity
concerns. More recent work includes Bond and Garcia (2018), Malikov (2019), Lee (2020),

Buss and Sundaresan (2020), and Kacperczyk, Nosal, and Sundaresan (2020). Farboodi and

3Farboodi and Veldkamp (2020) develop a theory of the effect of growth in financial data technology that
upends common wisdom.

4Coles, Heath, and Ringgenberg (2020) show that an increase in passive investing does not affect price
informativeness in this baseline model.



Veldkamp (2020) focus on the choice between information about fundamentals or about de-
mand in the context of the rise in big data. However, with the exception of Kacperczyk,
Van Nieuwerburgh, and Veldkamp (2016), these theories are rarely confronted to portfolio
data. Our new approach, summarizing competition through choices of demand elasticity,
allows us to bring the theory to the data.

We contribute to a recent literature on estimating demand systems accounting for the
large heterogeneity in portfolio holdings, started by Koijen and Yogo (2019). Koijen et al.
(2021), Koijen and Yogo (2020), Koijen, Richmond, and Yogo (2020), and Jiang, Richmond,
and Zhang (2020) also apply this approach. Balasubramaniam, Campbell, Ramadorai, and
Ranish (2021) estimate a factor model of portfolio holdings. Dou, Kogan, and Wu (2020)
study how mutual funds change their portfolios in response to common fund flows. Gabaix
and Koijen (2020) estimate the aggregate demand for stocks. Our key innovation on that
front is to incorporate strategic interactions between investors, a long-theorized feature we
find to be quantitatively important.

More broadly our paper relates to a broader literature studying the relation between
portfolio quantities and asset prices. De Long et al. (1990) argue that noise trader shocks
can affect prices. These ideas have found applications across multiple asset classes: stocks
(Shleifer (1986), Warther (1995)), government bonds (Vayanos and Vila (2021), Greenwood
and Vayanos (2014), Haddad and Sraer (2020)), options (Géarleanu, Pedersen, and Poteshman
(2009)), currency markets (Gabaix and Maggiori (2015), Greenwood et al. (2019), Gourin-
chas, Ray, and Vayanos (2019)), or corporate bonds (Haddad, Moreira, and Muir (2021)).
While our estimates concentrate on the stock market, we bring to the forefront the importance
of strategic interactions between investors, which likely also matter in other markets.

Finally our results provide new insights in the debate on the consequences of the long-term
rise in passive investing. French (2008) and Stambaugh (2014) provide empirical evidence of
a shift towards passive investing. Zooming in on portfolios, we uncover how passive investing

is altering how all investors trade and therefore its equilibrium implications. Other work



focuses on quasi-natural experiments around index or ETF inclusion such as Chang, Hong,
and Liskovich (2014) or Ben-David, Franzoni, and Moussawi (2018). Sammon (2021) studies
the response of stock prices around earnings announcements. Bai, Philippon, and Savov

(2016), Davila and Parlatore (2018), and Farboodi et al. (2021) document long term trends

in price informativeness.

2 An Equilibrium Model of Financial Markets with In-
vestor Competition

We present our framework for investor competition. The key idea is that there are two layers
to an equilibrium in financial markets. First, the price is such that the sum of investor
demands equals the supply of the assets. Second, investors compete with each other: they
choose how aggressively they trade as a function of how others trade. This aggressiveness is
measured by their demand elasticity. We introduce the two layers in turn, then highlight the

implications for the rise of passive investing. Table 1 summarizes the model.

2.1 First layer: the asset price clears the market given demand

curves

For the sake of simplicity, we focus on the case of one asset in supply S and a continuum
of investors indexed by . In an equilibrium each investor decides how much they buy as a

function of the price P of the asset: a demand curve D;(P), which we can log linearize:
d; =d; — & X p, (1)

where lowercase letters represent log values. The elasticity of this demand curve, &;, deter-
mines how aggressive the investor is. An investor with & = 0 does not react to changes in

prices, while a trader with large &; increases its position a lot when the asset is cheap. Other



Table 1. The 2-layer model of investor competition.

Individual Decision Equilibrium Condition
Elasticity E=E& — X X Eagg fl ED;|S = Euyg

aspects than the price can also affect the choice of positions. For example an investor could
have a preference for environmental, social, and governance (ESG) investing. We pack them
up all inside of the constant d;; the empirical analysis will be more rigorous about this.

These elasticities play an important role in the determination of equilibrium prices. The
aggregate demand curve is Doyq(P) = [ D;(P), and the equilibrium price solves Dggq(P*) =
S. Aggregate demand has elasticity

Errs = Jf—DD @)

How strongly aggregate demand for the asset responds to prices is the (position-weighted)
average of individual elasticities. This aggregate elasticity shapes the behavior of the equilib-
rium price. If investors are very aggressive, aggregate demand is perfectly elastic, £,4, — 00,
and prices are pinned down at a fixed level. In such a situation, changes in individual
investor characteristics dy; or in supply S do not affect the price. This is what people some-
times describe as “efficient markets”: any deviation of the price from a fundamental value is
immediately traded away by aggressive investors. On the other hand, when demand is more
inelastic, small changes in the market structure can have a large effect on prices, because
investors are unwilling to change their positions. More fleshed-out models such as the one

we present in Section 3 show how the aggregate elasticity affects other equilibrium properties



such as volatility or price informativeness.’

2.2 Second layer: investors set their demand elasticity in response

to others

In standard price theory, the elasticity of demand reflects only an individual’s preference
for a good. In particular, it does not depend on the decisions of other market participants.
When deciding how many apples to put in your shopping cart, it does not matter what
other shoppers are doing beyond their effect on the price level. However, a dimension that is
important in financial markets is missing from the standard theory: it matters why the price
is moving. For example, asset prices convey information to investors, and depending on this
information, one should be more or less aggressive in its response to price movements.

This relation adds a second layer to the equilibrium. Individual elasticities depend on the
structure of price movements; this structure depends on the aggregate demand elasticity. But
conversely, the aggregate demand elasticity is an average of individual elasticities. Formally,
we can represent this feedback by endogenizing individual demand elasticities as a function

of the aggregate demand elasticity:

Ei =& — X Eagg- (3)

The parameter y controls the strength of the response to the aggregate elasticity. &, is a
baseline level of elasticity reflecting the investor’s own preferences for the asset, for example
shaped by her risk aversion, her beliefs about the payoffs. Together, the individual decision
equation (2) and the aggregation condition of equation (3) pin down the equilibrium layer of
elasticities.

We call x the competition parameter. If y = 0, individual investors do not respond at all

to the aggregate elasticity. This is a world where financial markets are not competitive: each

5See also Gabaix and Koijen (2020) for a discussion of the role of the elasticity of demand in financial
markets.
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investor follows a strategy that is independent of the actions of other investors. For example,
under this view, if a group of sophisticated investors goes bankrupt, nobody else steps in
to take advantage of the opportunities that are left untouched. The aggregate elasticity
drops sharply. On the other hand if y is large, financial markets are competitive. If the
group of sophisticated investors goes away, other investors pick up the slack by trading more
aggressively. This stabilizes the aggregate elasticity and makes the market insensitive to the
composition of investors.

Formally, the parameter y measures the extent of strategic substitutability in demand
elasticities.’ This substitutability is essential to go from individual actions to aggregate equi-
librium outcomes, the focus of this paper. The framework does not microfound the decision
problems leading to these policies. We make this choice so as to be flexible in measurement
without giving up on the presence of strategic interactions. We would not want to convey the
idea that theoretical foundations do not exist, quite the opposite. In many theories, demand
elasticities are a key feature of investors’ strategies and exhibit substitutability or comple-
mentarity.” Because elasticities are directly measureable in trading and portfolio data, we do
not need to take an a priori stand on which theory is correct. Still it is useful to understand
what different theories predict for y.

Section 3 presents a model in the style of Grossman and Stiglitz (1980) where elasticity
choices relate to information acquisition. This case provides a foundation for a positive Y.
When traders are more informed, they trade more aggressively. This additional informa-
tion reduces the value of information for others, who respond by acquiring less information
and trading less aggressively. Appendix Section B.1 presents a related mechanism, absent
information decisions. When traders are more aggressive, they “arbitrage” away more of

the effect of noise trading, and prices are more informative. This implies less profits to be

SWe consider strategic substitutes and complements in the sense of Bulow, Geanakoplos, and Klemperer
(1985) and defined in chapter 4 of Veldkamp (2011).

"Technically, other aspects of investor decisions may be the source of substitutability (e.g. information
acquisition or social interactions). However, because elasticities are directly related to these other decisions,
the substitutability manifests itself in the demand elasticity.
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made from responding to prices, hence leading to lower individual elasticity. More generally,
we can motivate competition from investors’ efforts in finding good trading opportunities,
with the analogy of dollar bills on the floor. An individual’s demand elasticity captures how
aggressively they go after investment opportunities, how hard they look for dollar bills. The
aggregate elasticity is the total effort of investors in looking for these dollar bills. Therefore
the level of competition y characterizes how much more intensely investors look for dollar
bills when others are not.

One can also imagine situations where y is negative. In the same way that a positive
X materializes substitution between investors’ aggressiveness, a negative y corresponds to
complementarity. In Appendix Section B.2, we show that a model of market power in the
style of Kyle (1989) yields negative value of x.® This is a common pattern in models with
liquidity considerations: when other investors bring more liquidity to the market by being
more agressive, it enhances my ability to trade aggressively.” Social interactions where in-
vestors follow their peers, as in Hong, Kubik, and Stein (2004), could also lead to negative

values of .

2.3 The effect of a rise in passive investing

We study the effect of a rise in passive investing in a simple version of this structure. For
now, consider the following thought experiment. We start from an economy with homogenous
investors who, in this initial equilibrium, each have elasticity & = &,. The aggregate elasticity
is therefore also &. What happens when a fraction 1 — « of these investors becomes passive,
that is keep the same holdings, but reduce their elasticity to zero? The answer depends
crucially on the level of competition .

The direct effect of this change is that now, only a fraction « of investors contribute to

the aggregate elasticity. In the new equilibrium, &,,, = a&; which decreases the aggregate

8We also show that the measure of price impact Kyle’s A is closely related to the inverse of aggregate
elasticity.
9For example, such a situation also occurs in Vayanos and Wang (2007).
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elasticity. In turn, this fraction of active investors do respond to the change in aggregate elas-
ticity, AE; = —xA&,qy. This response compensates the direct effect when x > 0. Each active
investor responds again to the response of other active investors, until a new equilibrium is

found.!® The new aggregate elasticity is:

ax
& = ab +(1-a)& 4
NEW 0 ( ) 0 1+ ay ( )
~—~ ~ -
direct effect competitive response

When financial markets are competitive, x is large and Eypw = &), the aggregate elasticity
is unchanged. The drop in elasticity due to the new passive investors is exactly compensated
by a greater elasticity of the remaining active investors. On the other hand when investors
are insensitive to market conditions, x close to zero, there is only the direct effect and the
elasticity declines by a factor a.

Anticipating our quantitative exercise, we can put numbers in this formula. We estimate
a level of competition y of 1.7. Over the last 20 years, the fraction of active investors has
decreased by 30%, so we set a = 70%. This implies that the initial elasticity is multiplied by
a factor of (1.74+1)/(1.74+1/(70%)) = 0.86. The rise of passive investing leads to a meaningful
drop in elasticity of 14%. This is about half of the direct effect that would have led to a
decrease of 30%. However, this is still much more than the 0 predicted by the competitive
market ideal.

In Section 4, we fully specify our framework to account for the heterogeneity across
investors and stocks, and estimate using holdings data. This allows us to revisit the question
of the rise in passive investing in the context of a realistic quantitative model in Section 5.1.

Before doing so, we present a foundation of our demand model based on information.

10Formally, we do not model this tAtonnement, but rather focus directly on equilibria.
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3 An Information-based Foundation for Competition

While there are many justifications for competition and its implications for the choice of
demand elasticity, we present a specific one based on information acquisition in financial
markets. We write down a fully micro-founded theory in the spirit of Grossman and Stiglitz
(1980) and Veldkamp (2011). This theory delivers four insights. First, demand elasticities are
connected to the choice of information: when an investor decides to acquire more information,
they trade more agressively. Second, individual information acquisition responds to aggregate
information, hence individual elasticities respond to the aggregate elasticity. This provides
a justification for the structure of equation (3). Third, we show how in this model, the
ease of changing information decisions determines the competition parameter y. Fourth, we
highlight the importance of equilibrium elasticities for the behavior of prices: volatility, price

informativeness, etc. All derivations are in Appendix A.

3.1 Setting

There is one period and one asset, and a continuum of agents indexed by ¢ € I, where [ is a

set of measure one. Each agent has CARA preferences with risk aversion p;:
U; = Ej[—e "], (5)

and initial wealth W ;. The gross risk-free rate is 1, and the (random) asset payoff is f. The

asset is in noisy supply Z + x with T an exogenous fixed parameter and x ~ N(0, c2).
Initially, each agent is endowed with an independent signal u; of the fundamental f,

distributed p; ~ N(f,0?)."" Each agent can acquire a private signal n; ~ N(/, azn) at

monetary cost ¢;(0; 240, %), with ¢;(.) a non-decreasing positive function.'® That is, obtaining

HEollowing Veldkamp (2011), we assume agents start with a flat prior on f, hence their initial belief is
12This parametrization is without loss of generality relative to a cost function that would only depend on
the acquired signal o, ;.
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more precise signals is more costly. The signal being private implies in particular that signal
realizations are uncorrelated across agents conditional on the fundamental f.
We study rational expectations equilibria, and among those linear equilibria specifically.

These are equilibria in which the price takes the form:

p=A+Bf+Cr. (6)

An equilibrium is a set of coefficient (A, B, ('), information choices me, demand curves
D;(p|n;) such that: (i) each demand function and information choice maximizes expected

utility, taking as given the price function; (ii) the market for the asset clears: = 4+ = =

[ Dy(pln;)di.

Solving for the equilibrium. To solve the model, we proceed in two steps. First we
solve for asset demand and the price given information decisions. Later on, we solve for the
equilibrium information decision. These two steps reflect the two layers of the equilibrium of
Section 2.

In equilibrium, an investor chooses how much of the asset to buy based on the signal and
the price, as well as knowledge of the equilibrium price function. Given all this information,
her posterior belief is that f ~ N (fi;, 62), with

2

B
672 =02+ 0;]2 + EU;Q, (7)

2 B? _QP—A)

NS, _9 _
Hi = 0; (Ui Hi + 0471 + % g (8)

In each of the sums, the first term is the initial information, the second term is the acquired
signal, and the last one the information about fundamental conveyed by the price.

Given this belief, the individual posts the standard CARA demand:

15



where ¢; is a number of shares. The market clearing condition is:

/qi(p)di =T+ (10)
I
Using a law of large number for ji;, we solve for A, B, C' and we find that:

1 -1 1 -1
A=-7 { —&ﬁdz} , B=1, andC=— [/— (0,2 +0,7)di| . (11)
IPi I Pi

3.2 Equilibrium and Elasticities

We show how this model of information can be cast with investors’ demand elasticities. We
find that the equilibrium elasticities exhibit the two-layer property of equation (3), and that

the information acquisition technology determines the level of competition in the economy.

What determines individual elasticities? The slope of the demand curve characterizes

how agressively an investor changes their portfolio when the price moves. This slope is'?

g= - _ L2y oy (12)

i T

Two elements shape the agressivity of an investor’s trading: their risk aversion and their
information. If an investor is more risk averse, higher p;, they trade less agressively. Increasing
an asset position to take advantage of a good deal requires taking a larger amount of risk,
something they are reluctant to do. The second term in equation (12), o; 2 + 0;72, is the
precision of the investor’s belief about f conditional on their private information: their
prior and the acquired signal. If an investor is better informed, they trade more agressively,

because they do not see it as that risky. Importantly, information is a choice in this model,

and therefore we will show that it is not only the primitive characteristics of an investor

13For all of this section we study the slope of the demand curve, rather than the elasticity stricto sensu,
which we still denote &; in a small abuse of notation. This approach lends itself to the linearity of the
CARA-Normal framework, but is less appealing for empirical applications.
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which drive the elasticity, but also the structure of the market they trade in.

The aggregate elasticity shapes the behavior of the equilibrium price. As we have
discussed in Section 2, the aggregation of individual demand curve shapes the behavior of
prices. Equation (11) characterizes the price. In the theory, the price moves one-to-one with
fundamental, B = 1, because beliefs average out to f. Still, the price is sensitive to noise
trading, C' # 0. The aggregate aggressivity of traders determines how much. Specifically the

sensitivity of the price to noise trading is the inverse of the aggregate elasticity:

C=- (/I&-di) o —Egn (13)

Taking these two results together we can write p = A+ f — Ea_g; x. If investors are very
aggressive, large &,4, and low C, and prices are pinned down at the fundamental f. The
price does not respond to shocks to supply or demand which are immediately traded away.
On the other hand, when demand is more inelastic, small shocks have a large effect on prices.

This property has important consequences for volatility and price informativeness. In
equilibrium the asset returnis f —p=—-A+ 5(;92 x, such that volatility is larger with more
inelastic investors. With a large aggregate elasticity, the price reflect the fundamental: the
absolute amount of information in price (Var(f|p)~!) is large. More subtly, the same result

holds for the relative price informativeness Z; — how much does an investor learn from the

price above and beyond their signals. We show in Appendix A.6 that

Var(ﬂ#iﬂ?iap)fl gagg -2
;= =14 gy 299 52, 14
Var(f |, n:)~" T Eagg pi&i 7 (14)

Holding an investor’s characteristics constant, they learn more from prices in a more elastic

market.

Individual elasticity responds to aggregate elasticity. This central role of the aggre-

gate elasticity for the behavior of prices makes it relevant for individual information choices.
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Let us show this result by deriving the optimal information choice. We show in Appendix A.3
that the utility gain from the signal is proportional to the precision gain about fundamental
from observing the signal, including the information from prices. This reduces the optimal

information choice to balancing this benefit with the monetary cost of the signal:

‘o0, +E 00
max - log p S i )—plcl( +0;,7) (15)
oy ( +5399 ;2
— n}gax log (plé’ —i—c‘:fgg o ) — pici(pi&;) (16)

The total precision of the investor knowledge combines her own information with the one
obtained from prices. These two pieces correspond to the investor’s individual elasticity and
the aggregate elasticity, respectively. The optimal choice of elasticity solving problem (16)
therefore includes a response to the aggregate elasticity. This relation gives a foundation to
the elasticity equation (3) in our simple model. Closing the model, individual elasticities must
aggregate to the aggregate elasticity. The equilibrium of information decisions is equivalent

to an equilibrium of elasticity.

The determinants of y. This theory makes further predictions on the determinants of the
competition x. Approximately, we have x = —0&; /0,4, Competition y is always positive.
When others trade more agressively, the price is more informative. The marginal value of
an additional unit of information is lower. It is therefore optimal to acquire less information
and trade less agressively, reducing my own elasticity.

The strength of the competitive response depends on how easy it is to adjust my infor-
mation choice. In Appendix A.5, we show that y is decreasing in a form of curvature of
the information cost function, ¢/ /. When it is relatively to change how much information
investors seek, more competition takes place as they can respond more strongly to others. If
information cannot be adjusted, there simply cannot be any competitive response.

The relation between &; and &4, is not linear in general. In Appendix A.3 we find a
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two-parameter family of simple cost functions under which this relation is exactly linear as in
equation (3). Each of the two parameters maps to in closed-form to the value of competition

x and individual elasticity &;.

4 Estimating Investor Competition

In this section, we estimate the level of competition x and investor demand elasticities in the
context of the US stock market. First, we enrich our model to account for the heterogeneity
of stocks and investors. Then, we design and implement a new identification strategy for

demand estimation in presence of a two-layer equilibrium.

4.1 Quantitative Model

Individual decisions. Recall the model of individual decisions developed in Section 2:

d; = C_Zz - &ip, (17)

& =E — XEngy- (18)
99

We complete the specification of this model to account for the richness of the data while still
being able to estimate competition y.

In most empirical settings, including ours, agents can invest in many assets. Therefore,
an empirical model must make sure that portfolio positions add up to total assets for each
investor. In addition, it should also account for the portfolio aspect of financial decisions,
that is some form of substitution across assets. Koijen and Yogo (2019) show that a logit
framework satisfies both of these requirements. We denote each security by the index k, the
total assets of an investor by A;, and the portfolio share of investor i in security k& by wg.
Therefore d;, = log(w;irA;) — pr. The framework of Koijen and Yogo (2019) corresponds to

specifying a log-linear model for relative portfolio shares wj/w;o instead of the individual
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demand directly, with index 0 being the outside asset. We follow this approach. For each
investor, we take as given total assets under management, A;, and their investment universe,
IC;, that is the set of assets they can invest in.

Second, we need to specify the baseline levels of demand and elasticity d, and £;. We
assume that each of those combines potentially distinct sets of asset characteristics using
investor specific coefficients. This corresponds to expressing the baseline demand as d;, =
dy; + d1; X ,id) and the baseline elasticity as £, = &, + §/11-X,ge>, where the two vectors of
characteristics are X ,id) and X ,ge). Going back to the setting of Section 3, an interpretation of
this assumption is that investors form priors on different assets based on their characteristics.
We also account for asset-specific changes in demand by including a shock €, in d;,. For
example, €;. captures the private signal 1 and noise trading = of the model of Section 3.

Finally, we estimate the model using only the cross-section in each time-period. Thus,
we allow all quantities and parameters of the model to depend on time. For ease of notation
we drop the subscript .

Putting it all together, our model of portfolio demand is:**

Wy
b= dy; + C_lllingd) — &k Dk + €k, (19)

log
Wio¢

gik - QO@' + §/11X](:) — Xt gagg,k- (20>

Starting from the relative shares w;; = w; /wjo;, the actual shares can be obtained by

Wik
Wiy =~ 21
1+ ZkelCz‘ Wik ( )

1
Wip = ————— (22)

1+ ZkEICz‘ Wik.

Interestingly, the demand system of Koijen and Yogo (2019) is a special case of this frame-

1To match equation (19) with equation (1), recall that: d;, = log A;—‘;“‘ Then d;;, = do; + dy; Xy +
log(A;) + log(wo;) + €k
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work. In their framework, demand elasticities are fixed structural parameters.'> This cor-
responds to setting £,, = 0 and x = 0. Therefore, their model implicitly assumes no com-
petition at all. For example, when some investors are removed from the markets, the other
ones do not step in with larger elasticities. This is the extreme opposite from the standard
hypothesis of perfect competition that would be materialized by x — oo. Our framework

lets us quantify how close or far reality is from these extremes.

Passive investors. In addition to this baseline type of investors, we include passive in-
vestors. By passive, we mean that these are investors whose demand does not respond to
prices. Index funds are a specific example of such investors. Our notion is larger though,
because it accommodates arbitrary fixed portfolios. To represent such behavior, we simply
replace equation (20) by & = 0. Separating out these investors is important, not only
because of their low level of elasticity, but also because they do not respond to aggregate
trading conditions. We denote the set of active investors for asset k by Active, and the total

assets under management of this group of investors as |Activey|.

Equilibrium prices and elasticities. Going from individual decisions to an equilibrium
relies on market clearing. Here, two equilibrium objects play a role in individual decisions:
prices, p, and aggregate elasticities, Ey4q%x. Closing the model therefore requires two equi-
librium conditions. The aggregate demand for assets is equal to the supply, and individual

elasticities add up to aggregate elasticities:

Z wirAi = pr, VEk, (23)
A
3 e = Euggs VE. (24)
Pk

i

5Technically in the logit model the demand elasticity is 1 — (1 — w;;)(1 — Eix). For values of w;;, that are
small relative to one, as in the data, this expression is close to &;;. Hence we refer to & as the demand
elasticity throughout the paper.
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We normalize the number of shares available to 1 to obtain the market-clearing condition for
assets, equation (23). Said otherwise, py denotes the log market capitalization.
In the appendix, we present the details of an algorithm to solve for the equilibrium

efficiently; we rely on a quasi-Newton method.

4.2 Data

We estimate the model for the U.S. stock market. We use stock level data from CRSP, price,
dividend, shares outstanding. We merge the CRSP file with COMPUSTAT for balance
sheet information and compute stock level characteristics: book equity, profitability, and
investment.

We obtain portfolio holdings data from the 13F filings to the SEC from 2000 to 2016. We
use the dataset constructed by Backus, Conlon, and Sinkinson (2019, 2020) from the SEC
Edgar website. The SEC requires that every institution with more than $100m of assets
under management file a quarterly report of their stock positions. We find that collectively
the holdings reported in the 13F account for 80% of the total stock market capitalization.

We follow Koijen and Yogo (2019) to construct the final panel dataset.

4.3 Identification

To estimate the model described above we have to overcome three difficulties: (i) first, the
classic problem of endogenous demand; (ii) a reflection problem induced by the interactions
between investor; and (iii) how to implement the estimation given that one of the “regressors”,

the aggregate elasticity, is unknown.

4.3.1 Identifying demand

Combining equation (19) and (20), the model is similar to a regression equation:

w;

< - Pe = dy; + dllitXlgd) - <§0i + §/1in£8) - X 5agg,k) Pkt €ik- (25)

Wjo

log
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The parameters are d;, d;, £y, €15, and x. There are two challenges to identify these
parameters: (i) residual demand ¢, is unobservable, (ii) aggregate elasticities &4, 1 is itself a
function of £,, and the dependent variable wy; as expressed in the equilibrium condition (24).
To solve these issues we make identification assumptions.

The simplest possible assumption takes residual demand as exogenous to all other vari-

ables to get the moment condition
E [Eik‘X[gd)a Xlge)apky gagg,k =0. (26)

Thus we could estimate (25) using ordinary least squares. The independence of €; from
X}, is naturally motivated by taking the supply of assets as exogenous, as in endowment
economies (Lucas, 1978). Furthermore, the independence from pj and &,y relies on the
logic that residual demands do not matter for equilibrium outcomes because they “cancel
out” in the aggregate. This rules out both the presence of non-atomistic investors and
correlated demand shocks — see the equilibrium conditions in equations (23) and (24). Both
of these last assumptions are not likely to hold for institutional investors. Therefore we relax
these assumptions and propose an alternative identification strategy.

We follow Koijen and Yogo (2019) and assume that the variation in total assets and the
investment universe is exogenous to the residual demand. They argue that the investment
universe is often determined by mandates, which are predetermined rules on which assets
can be held. Similarly assets under management are also predetermined.

Building on this we construct instruments for equilibrium outcomes p, and Eqgg . The

instrument for the price of asset k is
R liex;
j#i !

where 1zcx; is an indicator variable of when stock £ is in investor j investment universe. This

instrument corresponds to how much money would flow to stock k if all investors other than
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¢t had an equal-weighted portfolio. Variation in the instrument comes from variation across
investors’ investment universe. For example, a stock with a large investors has more money
flowing towards it. Given our assumption of downward-sloping demand for stocks, a larger
exogenous demand generates higher prices that are uncorrelated with residual demand.

Our setting include the additional equilibrium variable &,y 1, for which we develop a new

instrument:

. - 1 ZjeAcmek A /1K - Lrex, “Eik
agg,k — .
99 1+ X|ACt’lU€k’ ZjEActivek AJ/|]CJ| ' 1k€K1

(28)

This instrument is the solution to the elasticity equilibrium defined by equations (20) and
(24), where we have replaced the endogenous weights w;;, with counterfactual weights under
the assumption that each investor holds an equal-weighted portfolio.'® As a robustness
check, we also consider weights proportional to book equity. Here again the variation from
the instrument comes from variation across investors’ investment universe. We are interested
in the response to the interaction of aggregate elasticity with the price (see equation (25)). To
isolate this interaction from linear effects, we also include a linear control for the instrument

of aggregate elasticity, that is as part of X ,gd).

The two instruments allow us to weaken the moment condition (26) to:
E eik‘X]E;d)y Xlge)aﬁka éagg,k =0 (29)

The instrument for the aggregate elasticity depends on the model parameters (€, and

£1;)- This is not an issue for identification as parameters are by definition not endogenous.

6Qur instrument for aggregate elasticity is the solution to the following problem:
(cjik = §7,k; — X gagg,k; Z wjkAj/pké]k: = (cjagg,k:a
J

where the counterfactual weights w0, are defined as:

AR Lkex,
Wik = .
> Ai/IKi Lkek,
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However this precludes us from using standard methods such as two-stage least squares
to estimate the model. Appendix Section C.1 lists the unconditional moments derived from
condition (29) that we use for estimation. In Section 4.3.3, we detail our numerical procedure

for estimating the model.

Relevance condition. To evaluate the strength of our instruments, we run what would
be a first-stage regression in a standard two-stage least square estimation. First, we regress
the price onto the instrument and the other characteristics for each manager. For each date,
we compute the first and the fifth percentile of the (Kleibergen and Paap, 2006) F-statistics
across managers. Figure 1 reports the histogram of these percentiles across all dates. At
least 95% of the F-statistics in any given date are above 18 (panel A); furthermore, for all
but one date, 99% of the F-statistics are above 9 (panel B). We also confirm the relevance of
the elasticity instrument. In the panel, we regress the product of the price interacted with
the aggregate elasticity onto their instrumented version and the other characteristics. We
represent the histogram of the F-statistic of this regression for each date in panel C; the

F-statistic is always above 10.!7

4.3.2 The reflection problem.

While our instruments provide us with as many moment conditions as parameters, we discuss
how the estimation can disentangle the individual component of elasticity from different
competitive effects. Individual investor elasticities £ depend on an investor specific term, &,

and on the aggregate elasticity &4, as:

gz’k — (‘—:zk - Xgagg,k~ (30)

We need to disentangle whether investors are elastic because of their own characteristics or

in response to other investors on the market. For example, if we see in a market that all

17 Appendix Figure IA.4 reports the results for the book-equity weighted instrument.

25



A. Price: F-statistic bth pct. B. Price: F-statistic 1st pct.

10} I ? ]
; s 5F
: 10F
5l :
a |
\ E rlf \ —|_| \ I_I | \ I_I ;l\ m | \—|_| | |
010 25 50 100 150 0 10 25 50 75
C. Aggregate Elasticity: F-statistic
of
.
[ [ | | ‘
0 10 25 50 75 100

Figure 1. Relevance condition for the price and elasticity instruments.
Figure 1 shows the F-statistic of the first-stage for the price and aggregate elas-
ticity variables. For the price, We estimate the F-statistic (Kleibergen-Paap) at
the manager level for each year. We summarize these statistics at every date with
the bth percentile (Panel A) and the 1st percentile (Panel B). Panel A shows that
95% of all F-statistics are above 10, and Panel B shows that 99% of all F-statistics
across all years but one are above 9. For the aggregate elasticity instrument we
regress the elasticity interacted with the price onto their instrumented version and

report the F-statistic for each date.

investors behave in a very elastic manner, it could be that each of them if fundamentally very

elastic, high £,. But it could also be the consequence of a strong positive feedback where

X < 0. This identification problem is the reflection problem (Manski, 1993).

Two features of our model let us solve the reflection problem. First, there is variation

in investor composition across stocks, K;.
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Figure 2. Illustration of Identification Strategy.

component depends on observable asset characteristics, £;, = £y; + £1;Xk. To measure the
effect of competition, the ideal experiment would be to compare the behavior of the same
investor for the same stock with variation in the characteristics of the other investors.

With the second assumption, two stocks with the same characteristics Xy, will elicit
the same baseline elasticity £, for the same investor. In addition because the coefficients
on stock characteristics is investor specific, we focus on variation within the same investor
across different stocks. Finally to estimate x, we need variation in &4 5 across stocks. The
different investment universe for different investors guarantees such a source of variation.
Figure 2 illustrates this idea: we need to compare how Alice trades differently when facing
different groups of other investors, such as for GameStop and Tesla. Last, we need to ensure
that the system of equations for all investors and stocks given by (30) and the equilibrium
condition for aggregate elasticity (24) has a unique solution. In our example, to estimate
Alice’s behavior, we also simultaneously need to figure out the elasticity for Bob, Charles,
Daunte, etc. The following theorem formalizes the intuition behind the needed identifying

variation and proves uniqueness.

Theorem 1. A decomposition of demand elasticities {E;y, }ix into individual elasticities {€;}:

and the competition parameter x is unique if:
(a) The graph G of investor-stock connections is connected.
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(b) Position-weighted averages of demand elasticities are not constant across stocks: there

exists k and k' such that Zielk Wik P AiE; # Zielk, Wi [P A&,

We derive and discuss this theorem in Appendix C.2. In particular, we explain that the

two conditions for the result to apply are satisfied in our setting.

4.3.3 Implementation

Last, we need to implement the estimation free of the identification issues mentioned above.
We cannot estimate (25) using standard methods. We must jointly estimate the competition
parameter y and the aggregate elasticities &,44 1, both parts of the two-layer equilibrium. We
find the pair as a fixed point. Starting from a value for the competition parameter y, we
estimate individual level regressions which yield estimates of investor-level elasticities £, and
of aggregate elasticities &,45%. We iterate these regressions to reduce the distance between
these estimates which are linked through the aggregation of elasticities (see equation (24)).

After iterating over individual regressions, we vary x according to a Newton scheme
and reestimate the individual regressions to minimize the distance between individual and
aggregate elasticities. We iterate this last step until convergence. Appendix Section C.3
details this method, which reduces computation time for a given quarter from virtually

infinite using naive methods to about 5 minutes.

4.4 Estimates

We estimate the model for each quarter from 2000Q2 to 2016Q4. Recall that our identifi-
cation comes from the cross-section, such that for each time period the model is estimated

independently.

Competition y. The average value of the competition parameter is y = 1.7. We represent
an histogram of the estimates of the competition parameter y for each quarter in Figure 3.

The estimates show little variation around their mean. There is only one estimate slightly
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Figure 3. Distribution of the estimates of competition y across dates.
Figure 3 presents an histogram of our estimates of the competition parameter y
for each date between 2000 and 2016. The average estimate over the time-period
is x = 1.7 (dashed redline).

below 1 and only three estimates above slightly 2.5. Further we confirm the estimates are
stable over time; Appendix Figure [A.2 reports the time-series of our estimates.

Recall that the perfect competition benchmark corresponds to y — 400 and the no-
competition benchmark to xy = 0. If aggregate elasticity increases by 1, then an atomistic
investor would decrease their elasticity by 1.7. This response is substantial at the individual
level: competition is present. However, it does not point to an equilibrium behavior in line
with perfect competition either. For example our simple calculation in equation (4) shows
that we need large values of x for strong equilibrium effects. Making 50% of investors passive,
a value of y of at least 18 is necessary to compensate 90% of the drop in aggregate elasticity.
This is an order of magnitude bigger than our mean estimate of 1.7, and actually than all
of our estimates. We investigate the implications of the competition parameter y for the
impact of the rise of passive investing in Section 5.

We also estimate the model without instrumenting for aggregate elasticity. In this case

we find an average value of y of 0.4. This low estimate suggests that it is important to
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account for the endogeneity of elasticities — because they depend on actual portfolio weights
which themselves depend on residual demand. However, even these biased estimates are
consistent with a non-negligible individual response, but far from perfect competition. In
addition, we confirm the robustness of our conclusion to the choice of the instrument with an
alternative pseudo-elasticity using book equity as portfolio weights. We find similar results

to our estimates in this case. We report this estimate in Appendix Figure [A.3.

Stock-level Elasticities. The model also delivers estimates of aggregate elasticity, E,qq.x,
for each stock. Figure 4 represents these elasticities for the date of 2011Q3 as a function
of stock market capitalization. Each green dot corresponds to the elasticity estimate of one
stock in our model for that date. We compare our estimates to a model where individual
level elasticities are fixed, where £, ; = 0 and x = 0. These estimates are represented with
red dots in Figure 4.

There is substantial cross-sectional variation in elasticities, lending credence to our ability
to identify the competition parameter x. In both sets of estimates, the demand curve for
individual stock is inelastic with average values around 0.3. This magnitude is far from the
typical asset-pricing benchmark of perfectly horizontal demand curves with infinite elasticity.
However, it is consistent with other empirical estimates, in particular based on portfolio data;
see for example the discussion in Chang, Hong, and Liskovich (2014) and Koijen and Yogo
(2019).

Figure 4 demonstrates a few ways in which accounting for the endogeneity of demand
elasticities is important. First, the full model estimates exhibit less variation than the model
with constant elasticities. With constant individual elasticities, variations in investor compo-
sition directly translates in variation in aggregate elasticities. However, with positive levels
of competition y, investors react to each other and soften those variations. For example, if
an active investor with high-elasticity takes positions in a stock, other investors respond by
trading less aggressively. Thus, stocks become more similar to each other.

Second, the full model exhibits a stronger negative relation between the size of a stock and
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Market Capitalization (logl10)

Figure 4. Aggregate elasticity at the stock level: &,y . Figure 4 represents
estimates of the aggregate elasticity &,44, Where each stock is represented by a
circle, as a function of their market capitalization (in logarithm) for the date
2011Q3. Green circles are our estimates, while red circles correspond to a model
where elasticities are fixed.

its elasticity. Koijen and Yogo (2019) point out that large stocks tend to have more inelastic
investors overall. Once we allow individual elasticities to respond to stock characteristics
and the aggregate elasticity, the data reveals an additional source for this relation: the same
investor behaves more inelastically for large stocks than small stocks. This additional source
of variation within investor rather than across investors leads to a steeper relation between
size and elasticity. We estimate a linear relation between size and elasticity at the investor-
level for computational tractability; this linearity leads to extremely low values of elasticity
for the very largest stocks.

Table TA.1 shows that these conclusions hold not only for this specific date, but across
our sample. We report the distribution across dates of various statistics of the cross-section

of £,4¢. In particular, we confirm that our estimates have less variation in elasticity across
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stocks (Panel B), by about 50%, and a steeper relation between elasticity and stock size

(Panel C), by about 25%.

Table 2.
Properties of Aggregate Elasticity &,y

Elasticity Eqq4
Fixed elasticity

Panel A: Statistics of average elasticity across stocks

Average 25th pct. Median 75th pct.
0.193 0.159 0.181 0.215
0.492 0.467 0.486 0.503

Elasticity Eqq4
Fixed elasticity

Panel B: Statistics of in the cross-section of the elasticity within dates

Average 25th pct. Median 75th pct.
0.107 0.0905 0.103 0.115
0.156 0.135 0.144 0.179

Elasticity Eqq4
Fixed elasticity

Panel C: Regression coefficient (by dates) of elasticity on size

Average 25th pct. Median 75th pct.
—0.0569 —0.0603 —0.053 —0.0466
—0.0432 —0.0475 —0.0442 —0.0412

Table IA.1 presents statistics of the aggregate elasticity Eqqq(k,t). We estimate the elasticity in our
model accounting for competition y and without competition as in Koijen and Yogo (2019) (denoted
by fixed elasticity). Panel A has summary statistics of the average elasticity by date. Panel B has
summary statistics of the cross-sectional standard deviation by date. Panel C has summary statistics of
the coefficient ; of the regression E,44(k,t) = ay + Bisizer + €+ The sample period is 2000 to 2016.

The negative relation between size and elasticity might appear surprising given the ev-

idence on prices suggesting that large stocks are more informationally efficient.'® However

there are good reasons to think that institutions are more reluctant to change their positions

for large stocks than for small stocks. Mechanically, the largest stocks occupy a larger share

of portfolios. As of July 2021, the five largest corporations in the U.S. stock market account

for about 18% of total market capitalization.'® As a consequence, a large change in portfolio

weight would have a large effect on an institution’s portfolio return. Many institutions are

18See Lo and MacKinlay (1990), Jegadeesh and Titman (1993), Lakonishopk, Shleifer, and Vishny (1994),
and Hong, Lim, and Stein (2000).

19The total market capitalization of Apple, Microsoft, Amazon, Alphabet (Google), and Facebook amount
to $8.8tn for total U.S. market capitalization of $49tn.
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either benchmarked to the index or have hard dollar limits on how much they can trade
a given stock, and hence they would be unwilling to take on such large changes. As an
illustration, Figure 5 decomposes trading activity—the sum of squared relative change in
portfolio position—across percentiles of portfolio weights; Appendix Section D.1 details this
calculation. There is much less trading activity for the larger portfolio positions: the top 50%
of portfolio positions only account for 9% of trading activity. As such, the interpretation of
our results is not so much that large stocks experience more mispricing but rather that high

investor elasticity cannot be the explanation for the evidence on their returns.?
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Figure 5. Trading activity across portfolio positions. Figure 5 presents the

cumulative share of trading activity (defined in equation (IA.97)) by quantiles of investor
portfolio weights.

5 Implications

20Tn the model of Section 3, both elasticity and the quantity of noise trading determine price informative-
ness. Farboodi et al. (2021) use a richer structural model to decompose informativeness into data, growth,
and volatility.
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Figure 6. Share of Passive and Active Funds. Figure 6 shows the share of
domestic mutual funds and ETFs as a fraction of the US stock market capitalization for
passive funds (black solid line) and active funds (blue dashed line); Source ICI (2020).

5.1 The Rise of Passive Investing

The last 20 years have seen a large increase in passive investing, a fact documented in French
(2008). More recently Stambaugh (2014) shows that both the fraction of mutual funds that
are actively managed (at the extensive margin) and the active share of the portfolio of active
equity mutual funds (at the intensive margin) have declined. We update and confirm these
trends in Figure 6. The share of passive funds of the US stock market has grown from nearly
zero at the beginning of the 1990s to more than 15% in 2019. Concurrently, the share of
active funds topped out at the end of the 1990s and has declined from 20% to 15% from 2000
to 2019.2!  Our model takes a more comprehensive view of who are the passive investors,
not restricting ourselves to mutual funds. With this approach we find that the share of
passive strategies has grown by 20 percentage points over the last 20 years (see Appendix
Figure 1A.6).

Has the shift to passive portfolios impacted the behavior of prices? Understanding how

21'We report the dollar numbers in Figure IA.5. Net assets of passive funds has grown from virtually zero
to 5.4%tn in 2019, whereas the net assets of active funds only increased from 600$bn in 1993 to 5.5$tn in
2019.
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investors react to changes in the behavior of other investors is crucial to answer this question.
In the standard view of competitive markets, when some investors stop looking for profitable
trading opportunities, some other investors step in to replace them; prices do not change. In
contrast, if investors do not respond to others, the demand for stock becomes more inelastic
wich strongly affects the behavior of prices. For example in the theory of Section 3, more
inelastic demand leads to prices that are more volatile and less informative. Our model,
and in particular the parameter y, accounts for the strength of this reaction. We use the
estimated parameters to quantify the impact of the rise in passive investing on aggregate
demand elasticities.

Starting with the demand system from Section 4, we impose an exogenous change in
the fraction of active investors and compute the new equilibrium elasticities. Of course the
rise of passive investing is not a purely exogenous phenomemon. However, most plausible
explanations of this phenomemon are independent from the rest of the demand system. For
example, the development of financial technology made it cheaper to pursue passive strategies:
fees on passive funds have dropped dramatically and ETFs became available. Or, one subset
of investors, maybe after listening to finance professors, realized they were making mistakes
when pursuing active strategies. We show in Appendix ?7? that such shocks are equivalent to
exogenous change in the fraction of passive investors in the micro-founded model of Section 3.

Computing the effect of the rise of passive investing corresponds to the calculation of
equation (4), accounting for heterogeneous investors. Combining the individual demand

elasticity &y in equation (20) with the equilibrium condition of (24), we have

wir A; . 1
&a k= -Eip X |Actwek| X - . (31)
" iEz%i:vek ZjEActivek wjrA; 1+ x |Activey|

The aggregate elasticity is the product of three terms: (i) the average baseline elasticity
among active investors, weighted by their respective positions; (ii) the fraction of the asset

held by active investors, |Active|; and (iii) an adjustment for the response of active investors
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to the aggregate elasticity, which depends on Y.

From this expression we obtain the effect of a change in the fraction of active investing.
If we change | Activey| while holding everything else constant corresponds to the assumption
that the set of active investors that become passive are a representative sample of the active

population. This leads to a simple formula:

dl0g gy 1
dlog|Activey| 1+ x |Activer|

(32)

The pass-through from a rise in active investment to aggregate elasticity is determined by two
numbers: the competition parameter xy and the fraction of active investors. In competitive
financial markets, when y is large, aggregate elasticity does not respond to shift in passive
investing, the pass-through is zero. At the opposite end, when y = 0 such that investors
do not respond to market conditions, the pass-through is 100%. An increase in the fraction
of passive investors translates into a one-to-one decrease in aggregate demand elasticity.
Further, because only active investors change their elasticities in response to others (passive
investors always have an elasticity of zero), starting with a larger fraction of active investors
leads to a smaller pass-through.

We can readily compute the pass-through: it solely depends on two observable quantities,
x and |Activeg|. In Section 4, we estimated the competition parameter and found that
x = 1.7. Recall we measure the total quantity of passive investors as investors with an
elasticity of zero in the Koijen-Yogo demand system. Not surprisingly, we find a trend down
from 78% in 2000 to 58% in 2016. Taking the average across dates for the share of active
investors, 65%, and for the competition parameter, Y = 1.7, we find a value of the pass-

through of??

1 1
1+ x |Activer| 1+ 1.7 x 0.65

= 47.5%. (33)

22When the share of active investors is at 78% as in 2000 the pass-through is 43%, while when it is towards
its lowest value of 58% at the end of the sample it is 50%.
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This implies that competition is strong enough to compensate about half of the direct effect
of a rise in passive investing. It is still far from the full cancellation of the competitive market
view.

We multiply this pass-through by the rise in the proportion of passive investing to obtain
the total effect on elasticity. We consider different takes for the size of the exogenous change.
First we use our comprehensive measure of passive investing. The decline from 78% to
58% corresponds to a 30% drop, leading to elasticities lowered by 47.5% x 30% = 14.25%.
Second we look at a more narrow measure of the rise in passive investing centered around the
assets under management of passive mutual funds and ETFs. Their fraction of total market
capitalization has increased by 15 percentage points in the last 30 years. Starting from a
baseline of 78% of active investors, this represents a 21% drop in the total fraction of active

investors. With our pass-through of 0.47, this reduces elasticities by 10%.

5.2 Decomposing the evolution of the demand for stocks

In the previous exercise, we isolated the causal effect of a change in passive investing on equi-
librium demand elasticities. Next, we propose a positive account of the data: we decompose

the actual changes in elasticity over the last twenty years in light of our model.

5.2.1 The downward trend in aggregate elasticity

Figure 7 presents the time series of the distribution of equilibrium elasticities across stocks.
For each date, we compute quantiles of the cross-section of aggregate elasticities, &4 5. We
find a striking downward trend in equilibrium elasticities across the whole distribution of
stocks. The average elasticity (bold solid line) goes from 0.23 to 0.16, a 35% drop. The tails
of the distribution also decrease. The 90th percentile (upper dashed line) drops from 0.38 to
0.27 (a 33% decrease). The 10th percentile (lower dashed line) also drops from 0.085 to 0.05.
The downward trend in equilibrium elasticities affects the whole distribution of stocks. We

further our understanding of what is behind the decline in the next section through a simple
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decomposition.

0.4

0.0

2004Q2 2008Q2 2012Q2 2016Q2

Figure 7. Distribution of aggregate elasticity across stocks.

Figure 7 traces out the distribution of aggregate elasticity y4q,1 over time. The
bold line represents the average elasticity across stocks for each year. The solid
lines represents the 25th and 75th percentile and the dashed lines the 10th and
90th percentile.

5.2.2 Sources of change in elasticity

In Section 4, we estimated the demand elasticities for each investor-stock in each quarter from
2000 to 2016. While our identification strategy is purely cross-sectional, we can use the time-
series dimension of our estimates as a description of the evolution of the demand for stocks
over time. To make parameters such as the investor-specific demand elasticity £, comparable
across periods, we reestimate the model under the assumption that the competition parameter
is constant over time. We set y equal to its average value of 1.7. This is a small departure

from the original estimation since the estimates are not very dispersed, and exhibit no trend

in the time series.

We decompose changes in elasticity from year to year into three components using equa-
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tion (31). We denote by (£,;) the position-weighted average of the individual-specific compo-
nent of the elasticity of active investors, £;;; this corresponds to the first term in equation (31).

We derive the effect of a change in investor composition,

dgagg,k = |ACt’iU€k’ . d<§zk> —+ <§zk’> . d‘ACtZ’UGk‘ +
~—— ~ ~ _

v Vv
Change in aggregate elasticity =~ Individual elasticity of active investors  Share of active investors

—x|Activey] _ —|Activey| _
1+ x| Activex| (sl Activer]) + (14 x|Activey|)? (Eix) - dlActiven
Response to \d,irect changes Fraction ?gsponding

Vv
Competitive response

(34)

The first component corresponds to the average individual-level component elasticity of active
investors; how their own characteristics contribute to the elasticity. The second component
accounts for changes in the share of active investors over time and their ultimate effect on
the elasticities. These forces correspond respectively to the intensive and extensive margin
of individual elasticities. The last component corresponds to the equilibrium forces and are
largely shaped by the parameter y. It has two parts. First, the equilibrium response itself
wich dampens the total effect of both the extensive and intensive margins (d((£;,) Activey)).
When competition is low and x = 0, this term is zero and there is no equilibrium response;
when competition is high and x — +o00, the equilibrium coefficient goes to —1 and there
is full compensation of the direct effect on aggregate elasticity. The second part represents
the change of the equilibrium effect itself when the number of active investors changes; only
active investors’ demands respond to others and the more there are, the larger the equilibrium
response will be.

We present the three terms of this decomposition over time in Figure 8 and we summarize
the total effects in Table 3. Over time we estimate that the aggregate stock-level elasticity
has decreased by 35% on average. Consistent with the importance of the rise in passive

investing discussed in Section 5.1, we find that the direct effect of the decrease in the fraction
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Figure 8. Decomposition of the change in aggregate elasticity.

Figure 8 shows the decomposition derived in equation (34) over time. We compute
each term of the decomposition for each date and accumulate the changes over
time.

of active investors contributes a drop of 49%. Interestingly, investors also decrease their own
elasticities at the intensive margin. This second direct force furthers adds 42% to the drop.
However, the competitive response strongly mitigates these individual changes in equilibrium.
Competition reverses more than half of the decline, leading to the total change in aggregate

elasticity of —35%.

5.2.3 Individual elasticity trends across investors

Our decomposition reveals that the change in the individual-specific component of the elas-
ticity of active investors, £;, is a key contributor to the decline in aggregate elasticities. We
zoom in on the properties of this component across investors. We evaluate the quantiles of
individual elasticities £;;, at the stock level across investors for each date. We draw the mean

of these statistics across stocks in Figure 9. The decline we found on average extends to the
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Table 3. Decomposition of the change in aggregate elasticity &,

Aggregate elasticity Decomposition
Total change (2004-2016) Active share Active elasticity Competition
—35% —49% —42% 55%

Table 3 reports the total change in aggregate elasticity and its decomposition, as derived in equation (34).
We compute each term of the decomposition for each date and accumulate the changes over time. We report
each term as a fraction of the total change in elasticity.

whole distribution of investors. The least elastic investors did become more inelastic: the
individual elasticity of the 10th percentile goes from 0.25 at the end of 2003 to 0.05 at the end
of our sample in 2016. Strikingly, the most elastic investors, at the top of the distribution,
also experienced a significant decline from 1.2 to to 0.95. This dimension is particularly inter-
esting because developments in computing power and access to big data would have instead
suggested that the most aggressive quantitative funds would have increased their elasticities
on their own. Farboodi and Veldkamp (2020) propose a more nuanced view of the effects of

data improvements.

5.2.4 The cross-section of the stock-level evolution of elasticities

Our results so far show that, on average, both the rise of passive investing and a decrease in
individual-level elasticity at the intensive margin contribute to the secular decline in individ-
ual stock elasticity. It is tempting to think that changes in these two components originate
from the same forces. Zooming in on the cross-section of stocks, we can assess whether the
comovement of these two trends also holds at the stock level.

We regress annual log changes in stock-level elasticity on changes in the fraction of active

mvestors:

log(Eaggkt) — 10g(Eaggki—1) = Blog(|Activeyt|) — log(|Active—1]) + o + 7 + exs.  (35)
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Figure 9. Distribution of individual-specific elasticities £,;.

Figure 9 shows the quantiles of the distribution of individual elasticities £,; across
investors for each stock and each date. We average the quantiles for each date to
plot their time series. The black bold line is the average across investors. The
two think grey lines represent the 25th and 75th percentiles. The two dashed grey
lines represent the 10th and 90th percentiles. And the solid blue line represent
the average individual elasticities of the household investor.

The inclusion of time and stock fixed effects allow to focus on variation independent of
the average variation. A benchmark value for the coefficient g is the pass-through from
equation (32), about 50%. However, if changes in individual-level elasticities or other types
of changes in investor composition, are correlated with the active share, this would push
£ away from the theoretical pass-through. So effectively, we are assessing whether other
trends in investor behavior are correlated with change in passive investing beyond through
the competition effect.

Table 4 presents the result, using the unconstrained cross-sectional model estimates. Col-
umn 1 is a univariate regression; column 2 and 3 add date then stock fixed effects. Throughout
we find a coefficient of about 0.7, close to the theoretical pass-through.?® This result sug-

gests that the two aggregate-level trends, rise of passive investing and decrease in elasticity

23Gtatistical significance is not completely meaningful in this setting, because the left-hand-side of the
regression is model-generated.
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Table 4. Change in aggregate stock-level elasticity &,,,; on the active
share

Log Change in Elasticity

(1) (2) (3)
Change in Active share 0.696*** 0.721%%* 0.700%***
(0.142)  (0.103)  (0.099)

Date Fixed Effects Yes Yes
Stock Fixed Effects Yes
N 25,947 25,947 25,360
R? 0.014 0.886 0.894

Table 4 reports a panel regression of annual log change in stock level elasticity £,44,% on the annual log change
in the active share |Activey|. Column 2 adds date fixed effects. Column 3 adds stock fixed effects. Standard
errors are 2-way clustered by date and stock.

of active investors, are distinct phenomena. They do not occur for the same stocks. Fur-
thermore, because our model estimates are only based on cross-sectional evidence, this result
from including the time series dimension provides additional support for our theory. Going
in this direction, in Appendix Table [A.2, we confirm that the regression results are mostly

unchanged when using the estimates that impose a constant value of y through time.

5.2.5 Evolution under counterfactual levels of competition

Finally we can ask how the changes in the individual components of investor demand would
have affected the aggregate elasticities under different competition regimes. We start from
the equilibrium levels of demand elasticity at the beginning of our sample (2003Q4). We feed
into the model the two direct components highlighted above: how individual elasticities, &;;,
change over time and who becomes passive. However we make different assumptions on how
investors react to changes in the behavior others. We show the time series of the results in
Figure 10. The black line represents the actual evolution of the average aggregate elasticity
across stocks; the colored lines show the counterfactual results.

We first consider the case of competitive investors, corresponding to x — +oo. In this
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Figure 10. The evolution of aggregate elasticity under alternative com-
petition regimes.

Figure 10 shows the evolution of aggregate elasticity &4 1 under alternative com-
petition regimes. The bold black line presents our baseline estimate. The top red
line shows the elasticity with fully competitive investors (y — o). The bottom
green line shows the elasticity with no competition (y = 0).

situation any change in individual behavior is completely counteracted by other investors.
The aggregate elasticities for each stock are pinned down at their initial level. The only
source of variation in the average elasticity over time are changes in the composition of the
universe of stocks. This is the red line in Figure 10, which experiences very little change over
our sample. This result also confirms that the trends that we have documented of a decline
in aggregate elasticities are not the consequence of changes in which stocks are traded.

The other extreme is the situation where investors do not react to others at all and y = 0.
Then, all the changes in individual investor behavior directly feed into aggregate elasticities.
This leads to a more dramatic drop in elasticities overtime than our baseline estimates. This
is the green line in Figure 10. We observe a strong decrease, 75% larger than the baseline.

Overall these results confirm that changes in the behavior of investors have profoundly
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changed the aggregate demand curves for individual stocks. Competition among investors
played an important role in mitigating the total impact of those changes. However, compe-
tition was not strong enough to fully negate the course of a downward trend in aggregate

elasticities.

6 Conclusion

The idea that investors compete with each other is fundamental in financial markets. In
theories of financial decisions, how others trade has a large impact on how you trade. We
put forward a framework to measure competition and analyze its impact on equilibrium
outcomes. Our framework is simple yet encompasses many theories of investor competition.
In the US stock market we find evidence that investors do react to each other but also that
this response is much weaker than anticipated by classic views. The effects of changes in
the composition of investors on the demand for stock is reduced by 50%. This implies for
example that the rise in passive investing leads to substantially more inelastic markets.

The presence of measurable competition bears on many other important issues in finance.
To assess the impact of financial regulation on some market participants, for example the
Basel III leverage constraint on banks, one cannot ignore how other institutions will re-
spond. Likewise to understand how the distress of some financial institutions creates fire-sale
spillovers, one must realize that other investors will step up. Our framework measures how
many actually will. Recent work in international finance emphasizes the importance of cross-
border flows and global imbalances. What happens if a large sovereign institution stops
investing in one market, like China with US treasuries? Again the competition among in-
vestors will be a crucial input in determining the final impact of such momentous shift. Last,

the rise and availability of big data promises to change the face of institutional investing.
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A Model of Information Acquisition

A.1 Setup

There is one period and one asset, and a continuum of agents indexed by i € [0, 1]. Each
agent has CARA preferences with risk aversion p;:

U; = Ej[—e "), (IA.1)

and initial wealth W;. The gross risk-free rate is 1, and the (random) asset payoff is f. The
asset is in noisy supply Z + x with Z an exogenous fixed parameter and z ~ N(0, 02).

Each agent has a prior that f ~ AN (p;,02). Following Veldkamp (2011), agents start
with a flat prior on f and receive signal y; such that the signal is distributed u; ~ N'(f, 0?).
Each agent can acquire a private signal n; ~ N(f,07,) at cost ci(o? + 0;,]2), with ¢(.)
a non-decreasing positive function. That is, obtaining more precise signals is more costly.
The signal being private implies in particular that signal realizations are uncorrelated across
agents conditional on the fundamental f.

We focus on rational expectations equilibria, and among those linear equilibria specifi-
cally. These are equilibria in which the price takes the form:

p=A+Bf+Ca. (1A.2)

An equilibrium is a set of coefficient (A, B,C), information choices ¢? , demand curves

i,m
D;(p|n;) such that:

(a) Each demand function and information choice maximizes expected utility, taking as
given the price function.

(b) The market for the asset clears: T+ x = [ D;(p|n;)di.

To solve the model, we process in three steps: first we solve for the price given information
decisions; then we will maximize utility within the model with respect to the information
choice, keeping separation between information decision and portfolio allocation.

A.2 Solving Prices given Information

We are going to solve for the price function p = A+ Bf + Cz. First we solve for allocations
given the information choice and finally we use market clearing to pin down the price.
Agents form posterior on the fundamental f based on their prior p;, signal 7;, and from
prices. The signal agents can extract from prices about f is:
p—A C

Given the three signals, we are able to derive the posterior belief about f which will be
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distributed as N (fi;, 67) as follows:

B2
6,2 =0,"+0,’+ 50—;2 (1A 4)
2 2 2 B> _,
fi; = 67 (02- i + 0 M+ EJ; s(p)) (IA.5)

Asset Demand. Abstracting from the cost of acquiring information, the utility function
is for a given asset holding ¢;:

Ui(q:) = —Elexp (—pi (fai — pai))] (IA.6)

~ —exp (= (BLS) — )+ Gt )] ) 1A.7)

The first order condition with respect to ¢; gives us immediately:

— pi (E[f] — p) + p°q; Var[f] = 0

1
D; Var[f] (E[f] - p)

1., .
= ¢ =—07; *(f1; — p) (IA.8)

i

— @ =

Market Clearing. The market clearing condition reads:

/qidi =T+ (IA.9)
Given asset demand this translates into:
1
/ Lo —p)di—7+a (TA.10)
Pi

The goal now is to find (A, B, C'), which we identify directly from the market clearing con-
dition. First we replace the expressions for the price function and the posteriors mean and
variances in the market clearing equation:

~2
/i&# [f+§ﬁx] di—/l&ﬁ [A+ Bf+Cr|di=7+x (IA.11)

(2
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First, we identify all the terms that are linear in f and find that B = 1. Next, we group the
terms that are linear in  we have:

I I
——o,di— | —o,°Cdi=1
pi C Pi
1[1 1
— /E l@U’CQ —C6;2=Co,? — aagﬁ] di =1
1 -1
— C=- U o (0, +0,,°) dz'] . (IA.12)

Where we used the expression of the posterior found above to substitute into the second
equation. Last we gather the constant terms to find A and

-1
A=-7 { %&;de} (IA.13)
A.3 Optimal Information

Computing Expected Utility Conditional on the signal and the price, expected utility
is:

Ui(a:) = —E[exp (=pi (f@ — pai)) [p, 1] (IA.14)
= —exp (—piqi (Blflp.n) ~ ) + 2o Var[fIp. n]) (1A.15)
B 1 (E[f|p,n] — p)*
——oo (-3 Nt ) A0

where the last line is derived using standard properties of quadratic functions.?*

We can write:

E[fIp,n] —p = (E[flp,n] — E[f|p]) + (E[f|p] — p) (IA.17)

-~
z

Conditional on p, z has mean 0 and its variance o2 can be obtained from:

f—Elflp] = —E[flp,n]) +2 (IA.18)
—— —
variance: (o 2405 2/C2)~1 variance: 67
2For a function f(x) = ax? + b, the maximum is reached for z* = —b/(2a) and its value is f(x*) =

—b?/(4a).
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Using Veldkamp equation (7.32), this maps to:*°

11
0;
1
G = (Elflp] = p) (IA.20)
1 9 1
H =~ (Blflp] - 1)’ (1A.21)
2 o;
So expected utility conditional on the price is:
1 _
U0|p: —(1—20'§F)_1/2€Xp (§G2 (1—20_§F) 10'5—|—H)
2 2 2
o T2\-1/2 1<E[f|])] —p) o1l o
ol - 1 (E[f|p] — p)* o2 1,1 o?
ol 1 (E[f|p] —p)° oz
==+ 25) e | —5—— 5 {(H =)
ol 1 (E[f|p] —p)°
Uo‘p: —(1+§) 1/2€Xp —56_2—_’_02 . (IA22)

Expected utility is:

2 2
_ 92\—1/2 L(E[f|p] — p)
E[Ulp] = —(1 + &_22) E exp (‘5—@,2 =

xp <_1 (EL/[p] — p)° )] 1

2(0;7 +0,2/C?)7

1/2

O—’L _|_ 0_$ / . E

7 - .
0,2+ 0,7 +0,2/C?

where we use (IA.18) in the second equality.

Optimal information. To derive the optimal information choice, we trade off utility with
the cost of acquiring information which translates in utility terms:

UL = Uy - exp (pici(o; 2 +0,,7)) (IA.24)

25There is a general formula for the mean of the exponential of the quadratic of a normal variable. If we

take the multivariate normal z ~ N(0, X):

1
Elexp(2'Fz+G'z 4 H)] = |I — 22F|" % exp (QG’(I —2XNF)7ING + H)
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¢i(+) is a function that is increasing in the signal precision and can depend on the i. The
first order condition that determines the information choice is (maximizing — log(—U)):

m?g( - log(_UO) pzcz< + U )

in

> max-— log(—=Up) — pici(pi&i)
1 1 /(=2 -2
— = — pc(o; :
20, + 0, +0;2/C? pici(oi” +oiy)
1 1
= = = pic:(pi&; IA.25
2pE e Pl (IA.25)

Example 1: linear cost function. We consider the case of a constant marginal cost for
any information acquired past the initial endowment: cl(a:) = (1, Mmax (:1: o> O) Note
that in this case not all agents acquire information since o;, 2> 0, so the actual precision is:

-2 o
0, = Mmax <

This demand for information and the formula for the coefficient C' characterizes the equilib-

rium. We recall that:

1 2

C2%= { / ;(aj—? + 0;772)6[]} (IA.27)
J

1

2pici;

—0;2—C%0, 2, 0) (TA.26)

Example 2: linear response to aggregate elasticity. To relate to the model of Sec-
tion 2, we ask if there is a reasonable family of cost functions that give rise exactly to
equation (3). We are looking for a cost function such that & = a — 8&,,,. Equivalently, this
corresponds to &,y = = (a — &;). Plugging in the first order condition, this gives:

B
202 (i) = ! (TA.28)
,02 i\PiCi) = =2 '
57; + p;cﬁg (CY — 51)2
1
=def (&) = 2y — (IA.29)
pgffﬂg (1_2p52)gi+ i

The denominator of the righ-hand-side is a second degree polynomial, we solve for its
roots. The discriminant is:

—2 2 a20_2
A=1{1- 2 — 4 TA.30
( pzﬁz ) pzﬁ2 pi3? ( )
2

2

Let us assume A < 0. This is equivalent to p;3* < 4ao, 2. In this case, we have, using
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standard results on the primitive of the inverse of a polynomial:

27z’ 5-+(1—2‘“’52)
1

2 arctan ”62\/ — piP”
4%z 1
&(&) = — o +K (IA.32)
4pi52 -1

The cost function is convex as long as the argument of the arctangent is negative, so:

pif3?
E<a-— .
=« 202

(IA.33)

We can see that if the right-hand-side of this condition is positive, the condition of A < 0 is
automatically satisfied.
1

After rescaling, 2pici(pi€i) = ¢(&;), or equivalently ¢;(x) = 3-¢i(x/p;) we have:

1 Bﬂ + (1 — aB -
arctan pi ( ) K

_ 1 1
Ci(m)_pu/m@—l \/208 — 1

with 5 = 20,2/(p:5?), and the condition o — p;32/(20;2) > 0 becomes aff > 1. We can
collect these results in a proposition.

(IA.34)

Proposition 2. For any a > 0 and b > 0 so that ab > 1, assume the information cost
follows the function:

ci(z) =0, i x <0,

c-(x)—l;arctan w +K,if0<z/pi<a—0b""!
' piV2ab—1 V2ab -1 ’ ==

ci(w) = +oo, if x/pi>a—0b"", (TIA.35)

where K is such that ¢;(0) = 0. This cost function is increasing and conver. Then the
optimal elasticity 1s:

51' = 5071' — Xgagg; (IA36)

with & ; = a and x = +/(20;2)/(p:b)
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A.4 Demand Elasticity

We recall the demand schedule for agent ::

G = %a—;? (f1; — )
— é&ﬁ (67 [0 2pi + 03°n + C %0, %s(p)] — p)
= L (072 + o+ C %0 (p— A) — 67)
_ l (0721 + 0y mi+ (C 20,2 —67%) p— C %0, 2A) . (IA.37)

)

We can read the demand elasticity as:

' L —2
& i > (C %07 =677 > (072 + Til) - (IA.38)

In the model the regression of ¢; on p would not give us the proper elasticity. There is a
bias in the regression because p is correlated with p; and 7;. It is still possible to recover
the elasticty using an instrument; for example the supply shock x covaries with p but is
uncorrelated with p; and ;.

We can express the equilibrium in terms of demand elasticities. We define the aggregate
demand elasticity as:

£ = /dej =-Cn (TA.39)

We can rewrite the choice of information as a choice elasticity:

1 —2
o= g -2z g2 (IA.40)
&,iz/ pi market elasticity

Investor characteristics

A.5 Flexibility in Information Acquisition

We turn to the study of flexibility in the acquisition of information. First we look at how
oy changes as we vary the aggregate elasticity C~2 We take (IA.25) and using the implicit
function theorem:

2 1
—(a{2+0;2—|—0—2c7;2)— —
Pi ! C{i<0-i7] )
Y= _claij?2 _ 2/pio? _ 0,

02 " 2p+ jE 1189

cl?

=0

2

(IA.41)

The response depends on the curvature of the information acquisition cost function. If the
curvature is zero (as is the case in our linear cost example), then the response is highest.
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Whereas a large curvature will elicit a weaker response.

A.6 Price Informativeness

We define price informativeness for investor ¢ as the ratio of the precision of their belief
about the fundamental when they condition on their private information and on the price
and the precision of their belief using private information only:

_ N -
L Va’r(f“’bzanzap) ! o o +O_i77 +8399 0-12

= [A.42
Var(f]pi, n:)~! o+, (14.42)
Eagg _—
=1 b Pz‘g O 2
We also define the absolute price informativeness of the price as
Laps = Var(flp)™" = E5y027. (1A 43)
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B Other foundations for competition y

B.1 Learning from Prices

We consider a model in which agents can learn from prices which highlights a distinct
mechanism from that of the previous section. Two main assumptions differ: agents cannot
acquire information, and there is residual uncertainty about the asset payoff that cannot be
learned. This setting leads to a new determinant of demand elasticity, beyond risk aversion
and prior information. When many traders are aggressive, prices are more informative. How
should one react? On the one hand, the extra information implies that price variation are
less indicative of future return, and that pushes the investor to trade less aggressively. On
the other hand, the extra information implies that returns appear less risky, and that pushes
the investor to trade more aggressively. Increased price informativeness reveals relatively
more about the fundamental than the payoff risk, exactly because of the presence of residual
uncertainty.?® Therefore the first effect dominates: the investor responds by being less
aggressive, Y > 0. This response is stronger when residual uncertainty is higher.

B.1.1 Setup

The asset trades at endogenous price p and pays off f + ¢, with € ~ N(0,0?%). There is a
continuum of mass 1 of agents indexed by i. Each agent has CARA preferences with risk
aversion p;. Each agent has a flat prior on f and receives an independent signal p; such that
pi ~ N(f,c?). The asset is in noisy supply Z + = with  a constant and x ~ N(0, 02).

We look for a rational expectations equilibrium, with:

p=A+Bf+Cx (IA.44)

B.1.2 Equilibrium

Learning from the price. After observing the price, agent ¢’s posterior belief about the
fundamental f is N (fi;, 62), with:

B2
6% =0+ 750," (IA.45)
1; =67 | 0;? B -2 IA .46
Hi =05\ 04 /Li‘*‘@‘% s(p) (IA.46)
where the signal from the price is:
—A C
s(p) = pT =f+ g (IA.47)

Taking the average over agents of type i (we will use a law of large numbers in the

26In the model of the previous section, the two effects exactly cancelled out. The response was coming
from changes in information acquired, which is shut down here.
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population), we have

2
E; i) = 67 <o’i2f + %0x2 [f + %xD (IA.48)
B’
=[+ ok (IA.49)

Asset Demand. Asset demand g¢; is given by the standard optimum portfolio choice:

o= [f +elpi,p] —p (1A.50)

~ pi var [f + €|, p]

-
-t P (IA.51)
pi 0"+ o?

Market Clearing. The total demand for the asset must equal its supply:

/ qidi = % + =, (TA.52)
11 B2
P Z{f—l-a%x—A—Bf—C’x}:f—i-x. (TA.53)
io_i 0-5 x
This gives:
B=1, (termsin f) (TA.54)
11 B G;?
p’i O-i O-e Ua:
Plugging in the definition of 6;%, we obtain
11 16> . _
11 1, 1 1. _
—_—— | = —— —1|di=C"", TA .57
/Pi(fiQ‘f'U? [02% 0;2"'%0;2 | ' ( )
1 UA«? [ -2 L 5] -1
/EOA_ZQ i 0_2 |:ECTQ: — 0, — Eax dZ = O . (IA58)

Therefore we have:

(IA.59)

0t = —di. (IA.60)
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Define C' = —C, which is positive. We can rewrite:

! = /l ! %dz’. (TIA.61)
Pil + o2 <ai_2 + éa;z> 7;
The left-hand-side of this equation is decreasing in C. The right-hand-side is increasing
in C. If C — 0, the left-hand-side goes to co and the right-hand-side goes to 0. If C' — oo,
the left-hand-side goes to 0 and the right-hand-side has a finite positive limit. Therefore,
there is a unique solution to the equation, and a unique linear equilibrium.

B.1.3 Equilibrium Elasticities

We now derive demand elasticities. We show how individual demand elasticities respond to
the aggregate elasticity. Demand is given by:

L i —p
= ———— IA.62
4 pi 6,2 + o? ( )

1 62 (o7 + Brorsv)) — p

= E 521 o2 ) (TA.63)
Therefore the slope of the demand curve is:
& = —lAf—"Q (ian — &ﬁ) (IA.64)
pio;i-+ o2 \C?
= _%@20——502 (%U;Z —0; %~ %0;2) (IA.65)
L_of 1 (IA.66)

=—~3, 3
pi ;" +020;

Here, we observe clearly the intuition for the role of price informativeness. When prices
are more informative, low 62, expected returns respond less to the price, the numerator of the
first fraction. However, the perceived risk of the asset also decreases, the denominator of the
first fraction. Because of residual uncertainty o2, the effect on the asset risk is weaker than
the effect on expected return: the ratio decreases and the trader becomes less aggressive.

More aggregate elasticity leads to more informative prices, so this mechanism will lead
to a negative response of individual elasticity to aggregate elasticity. Formally, note that
fi Ei = Eugg = C~!. Plugging in, we obtain:

1 1 1
;= — — [A.67
pil+o? (0,7 +E2,0,2) 0f ( )
1 1
(IA.68)

= 3 2. 2 2 2¢2
Pi 0; +05+0i060x gagg

Clearly, the individual elasticity & is decreasing in the aggregate elasticity &£,44. Lin-
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earizing this expression, we obtain the counterpart of competition y > 0:

dE;
AE g

1 2020202
S 0i0:0; agy , (IA.70)

2
(2 2 2 2 2092
Pi (O'Z- ‘ot o000, Sagg)

Y= (IA.69)

B.2 Price Impact

We now consider a model in which investors have non-negligible price impact and take it into
account when making trading decisions in the style of Kyle (1989). This leads to a foundation
for a negative competition parameter y. Intuitively, when other traders are aggressive, I face
a very elastic residual supply curve when sending orders to the market. This implies that
my trades will not have a large price impact, hence I can also trade aggressively.

B.2.1 Setup

There are I investors indexed by i. Each agent has CARA preferences with risk aversion p;:
U; = Ej[—e "], (IA.71)

and initial wealth W;. The gross risk-free rate is 1, and the random asset payoff f is dis-
tributed A (u1, 02). The asset is in noisy supply Z + x with Z an exogenous fixed parameter
and z ~ N(0, o2).

As in Kyle (1989) we are interested in rational expectation equilibria with imperfect
competition. We look for a linear pricing rule p = A + Cxz. We solve for the individual
demand strategies and look for linear strategies of the form:

di =d; — &Ep (IA.72)

B.2.2 Solving for optimal demand strategies

Investor ¢ maximizes their profit taking as given the residual demand from other investors’
demand schedule. We use market clearing to find the residual supply curve:

Y di=z+u
di=z+x—Y d+ (Z&c)p

ki ki
-1 -1
p(di) = (Z 5k> d; + (Z 5k) - <Z d— 7 — w) . (IA.73)
k#i k#i k#i
T e
—i pP—i
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To find the optimal demand of investor i for the asset, we write their program?’

max B{f — p(d)|p-i}d — 5 Var({f = p(d)|p_i} (1A.74)

max (pp—p_i)d — A_yd* — %d202.
The first order condition gives us:

H—p
= —. IA.75
pio? + A ( )
We can already see that stronger \_; leads to less aggressive trading because of a larger
price impact. Remember that A_; is the aggregate of demand elasticities of other investors,
a quantity closely related to aggregate elasticity. We now close the equilibrium to show this
relation more clearly.

B.2.3 Solving for aggregate demand elasticity

Given our original demand d; = d;

, — &ip, we are able to identify the linear terms as:

W 1 1
d = —"——: = = , [A.76
= opiot 4+ AL pio? + A pio? 4 (Eugy — Ei)_l ( )
where we define the aggregate elasticity:
Eagg = D _ &i. (IA.77)

Next we show that there is a unique solution for the aggregate elasticity. From the expression
in equation (IA.76), we remark that &; solves a quadratic. We rule out the larger of the two
roots and the solution is®

1{ 2 2 \?
(C/’i = 5 W + gagg - \/(pO'Q) + gggg (IA?S)

To show that there is a unique stable equilibrium we consider the fixed point problem
F(z) = x, with F' defined by:

1{ 2 2 \?
. — _ _ 2
fi(x) 3 | 202 +x \/(picﬂ) +a? ], (IA.79)

F(z)=>_ fi(x). (IA.80)

2"Note that expectation and variances are conditional on the residual demand curve p_; which is equivalent
to conditioning on p
ZThe larger root is such that & > E,4, which violates Y, & = E,99.
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The function F' is positive, increasing, and concave. Moreover F'(0) = 0, F'(0) = I/2, and
lim, 4o F'(z) = 0, we conclude that there is a unique non-zero solution for &,,, as long as
I >3.

The relation derived in (IA.78) between &; and &,y is not linear. We can approximate
this equation linearly by & = &; — xE444 With

1 Eagg

=———|1-
X 2 ) 5 \2
gagg"’_(%?)

This expression gives bounds on the value of x: —1/2 < x < 0.

<0 (TA.81)
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C Identification Strategy

C.1 Moment Conditions

We estimate the model using the method of moments. All of the moment conditions derive
from the identifying assumption of equation (29). We list these moments here:

E [e;51(=] = 0,Vi (IA.82)

E [Ejkx,gdh{j:,;}' —0,Vi (IA.83)

E [ejipril gn] = 0,Vi (IA.84)

E [ejkx,ge)ﬁk,ﬂ{j:i}' = 0,Vi (IA.85)
( )

[A.86

E [Ejkéagg,kpk,j =0

There are exactly as many moment conditions as model parameters.

C.2 Solving the Reflection Problem

One challenge for identification is the reflection problem. How can we separate the individ-
ual component of demand elasticity from the competitive response to other investors. We
show that the presence of variation in investor population across stocks allows to solve this
problem. To isolate this argument from other identification concerns, we assume that we
observe individual elasticities, &;,. For exposition purposes, we focus on a simplified version
of the model in which £, does not depend on asset characteristics.

We provide sufficient conditions for the uniqueness of a decomposition of the individual
elasticities into investor specific elasticities £ and the competitive response controlled by x.
After proving this result, we come back to the economic content and the empirical relevance
of these conditions.

Before stating the theorem, we introduce a few notations. We define the undirected graph
G of investor-stock connections. The vertices (the nodes) are the investors ¢ and the stocks
k. There is an edge between ¢ and k if and only if ¢ € I;. There are no edges between two
investors or two stocks.

Theorem 3. A decomposition of demand elasticities {E. }ix into individual elasticities {E,}:
and the competition parameter x is unique if:

(a) The graph G of investor-stock connections is connected.

(b) Position-weighted averages of demand elasticities are not constant across stocks: there
exists k and k' such that Zidk Wi /P AE; # Zielk, Wi [P A&,

Proof. Let us assume that there exist two distinct decompositions ({égl)}i,x(l)) +
({§§2)}i,x(2)) and the two conditions (a) and (b) hold. Each decomposition for [ € {1,2}
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satisfies the two conditions of the elasticity layer

Eaggk = ZwikAi/pk&-k, for all k € (TA.87)
ie[k
En=EY — D&, forallke K andie I (IA.88)

We subtract the decomposition of &, for [ = 1 from the decomposition for [ = 2 and obtain:
(X® = XV Eugore =P =€V forall k € K and i € I, (IA.89)

Here we see immediately that if (V) = x(? then for all i, le) = §§2), thus violating the
initial assumption of distinct decompositions. Hence, we focus on the case of y™) # y3).
We define the function:

(X@ = xW) gy forz e
= ’ IA.90
f@) {éf) —&W for x € I. ( )
We restate the equality of equation (IA.89) as:
f(z) = f(2'), if and only if there is an edge between z and 2z’ on G. (TA.91)

Therefore, since the graph G is connected: Vz, 2/, f(x) = f(2’), and f is a constant. We write
the constant f = a, and plug in the constant in the aggregation of individual elasticities:

ga,gg,k - Z U)zkAz/pkgzk == Z kaAl/pkéz(l) _ X(l) Z wikAi/pkgagg,k (IAQ?)

1€l i€l
<~ (1 + X(1)>gagg,k = Z wikAi/pkzégl) (IAQS)
i€},
— (1+ x(”)ﬁ = S waAi/p” forall k, (IA.94)
i€},

where we use Eugr = a/(x® — xV). Equation (IA.94) violates assumption (b), which
concludes the proof. |

The intuition behind theorem 3 is that identification relies on comparing the behavior of
one investor for two different stocks with different populations of investors. If this investor
trades less agressively when surrounded by more agressive investors, we conclude that com-
petition y is positive. A challenge to implement this comparison is that we already need to
know the elasticity of these other investors. This is a chicken-and-egg question. The ability
to find a unique solution to this problem relies on being able to cycle through investors with
enough variation in composition: this is the essence of conditions (a) and (b).

To better understand why these conditions are important, we show examples of how
the model is not identified when either (a) or (b) is violated. Starting with (a), let us
consider the case where each stock has its own non-overlapping population of investors. In
this case, there is no identification. Because a given investor only invests in one stock, it
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is not possible to tell if this investor is agressive because of her own characteristics or in
response to the other investors. As an example that violates condition (b), consider the
case in which all investors have the same size and relative portfolio positions such that:
Yk, k' wirA; [pr = wipr Ai/prr. Investor composition is the same for all stocks and therefore
there is no information in comparing different stocks. Relatedly, we could also consider a
violation of (b) where all individual elasticities are identical across investors: £, = £. Then,
for all k we have Zielk wi /P AiE; = E: the aggregate elasticity for all stocks is identical.
Intuitively, even though there is variation in investor composition across stocks, all investors
behave the same way in terms of elasticity. This is equivalent to having a single investor,
and we cannot separate individual elasticities from the response to other investors.

How can we assess these conditions empirically? The graph G of investors-stocks connec-
tions can be observed directly in our data and we can assess immediately that condition (a)
is satisfied using known algorithms such as depth-first-search. Condition (b) is potentially
more challenging because it relies on parameter estimates £,. However, the inspecting the
condition shows it holds generically. Condition (b) stipulates the equality of K linear forms
applied to the vector (£;);. It is violated if and only if (£;); € N, (wr — w1)*, a set of
measure 0 for almost all combinations of wy. In addition, there is still the possibility of
verifying whether the condition is satisfied empirically, once the econometrician has found a
set of parameter estimates.

C.3 Numerical Procedure

The main numerical challenge is that we need to solve for the equilibrium elasticity Eqgq1 at
the same time as we are estimating the model, and in particular the competition parameter
x. We describe a tractable approach to do so. We solve a series of nested problems.

Step 1. Given a guess for x and {&.g4. } %, We can estimate all remaining model parameters
by two-stage least squares regression investor by investor. This corresponds to the run for
each investor ¢ the regression:

w

w © — P — X Eaggi Pr = do; + C—lllitXlgrd) - (§0i + §/uXIEE)) Pk + €k, (IA.95)
70

log

where p;, and X,ge)pk are instrumented by pj,; and X ,ge)ﬁkﬂ-. Running these regressions is
equivalent to solving moment conditions (IA.82) to (IA.85).

Step 2. Given a guess for y, we look for equilibrium values of {&,4yx}r. We start from the
aggregate elasticities implied by the model of (Koijen and Yogo, 2019). We run step 1 above.
With the newly estimated £, and the parameter x, we solve explicitly for the equilibrium
elasticity they imply by solving the linear system of equations (20) and (24). We update our
guessed aggregate elasticity by taking a weighted average of the previous iteration and these
new implied values with weights of 75% and 25%. We repeat this updating process until the
values of {&,44.x }1 converge. This step ensures that our estimated model satisfies the 2-layer
equilibrium.
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Step 3. We estimate xy. We start from a guess for y and run step 2 to find the aggregate
elasticities it implies. With these values, we estimate the pooled regression of equation (25):

Wik

log — pr = dgy; + dllitXl(cd) B <§Oi + éllz‘XIE;e) - X gagg,k) Pk + €k, (IA.96)

i
Wio
using two-stage least squares with all the instruments of investor-level regression and
é’awkﬁm. This is a very large scale regression with many fixed effects and investor-specific
coefficients. We speed up the estimation of this large-scale regression tremendously by tak-
ing advantage of the Frisch-Waugh-Lovell theorem. We absorb all individual-level variables
using investor-specific regressions, and are left with only the coefficient y to estimate in the
pooled data.

The pooled regression gives us a new guess for x. We use a univariate Newton method
to find a fixed point for y. With such a fixed point, we are sure that our estimates satisfy
simultaneously all the moment conditions of Appendix Section C.1 and the 2-layer equilib-
rium.
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D Additional Empirical Results

D.1 Trading big and small stocks

We investigate whether firms trade big and small stocks differently. Our estimates of elas-
ticities by stocks suggest that the demand for large stocks is more inelastic (see Figure 4).
To explain this result, one hypothesis is that large stocks mechanically tend to receive a
high portfolio weight and that investors are unwilling to adjust their largest positions. For
example, a 10% relative increase in portfolio weight would create much larger tracking error
to the index for large positions than for small positions. Also, the granular nature of large
stocks imply that they have fewer substitutes.

To complement our structural results and investigate this hypothesis, we compare the
trading activity of investors across the distribution of their portfolio. For a given investor-
quarter, we compute for each stock the squared relative change in the number of shares:

A yw; A i Wik A wins1?
Trading ACtiVityiykyt _ |:( it Wikt At 1Wik t 1>/ it zk,t:|

(IA.97)
Dkt Pkt—1 Pkt

We sort positions by portfolio weights, and compute the ratio of the cumulative sum of
trading activity to the total sum. This gives us a relation between the percentile of portfolio
weight and the cumulative share of total trading activity. We average this relation within
size groups of investors and present our results in Figure [A.1 for various dates.

If trading activity for all portfolio weights, this curve should coincide with the 45 degree
line. Instead, we see the curve is always above the 45 degree line and particularly flat along
the largest investor positions. This implies there is relatively less trading activity for the
largest stocks. In addition, we observe that this pattern is more pronounced for the largest
investors (panel D) than for small investors (panel A). Because larger investors are more
important for the biggest stocks, this will amplify the lack of trading activity for the biggest
stocks.
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Figure IA.1. Trading activity across portfolio positions. Figure TA.1 presents
the cumulative share of trading activity (defined in equation (IA.97)) by quantiles of
investor portfolio weights. We aggregate the statistics by date and quartiles of assets

under management.



E Appendix Tables

Table TA.1.
Summary Statistics of Aggregate Elasticity &,4, with book-equity weighted in-

strument
Panel A: Statistics of average elasticity across stocks
Average 25th pct. Median 75th pct.
Elasticity g4 0.264 0.24 0.279 0.297
Fixed elasticity 0.501 0.467 0.487 0.552
Panel B: Statistics of in the cross-section of the elasticity within dates
Average 25th pct. Median 75th pct.
Elasticity Eagg 0.133 0.124 0.141 0.152
Fixed elasticity 0.157 0.135 0.144 0.179
Panel C: Regression coefficient (by dates) of elasticity on size
Average 25th pct. Median 75th pct.
Elasticity .44 —0.0686 —0.0763 —-0.071 —0.0664
Fixed elasticity —0.0431 —0.0481 —0.0441 —0.0408

Table TA.1 presents statistics of the aggregate elasticity Eqqq(k,t). We estimate the elasticity in our
model accounting for competition x and without competition as in Koijen and Yogo (2019) (denoted
by fixed elasticity). Panel A has summary statistics of the average elasticity by date. Panel B has
summary statistics of the cross-sectional standard deviation by date. Panel C has summary statistics of
the coefficient f; of the regression Eq44(k,t) = oy + Bisizeyt + k¢ The sample period is 2000 to 2016
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Table TA.2. Change in aggregate stock-level elasticity &, on the
active share using estimates from the model with a constant y

Log Change in Elasticity

(1) (2) (3)
Change in Active share 0.678%%% (0.655%%*  (.624***
(0.066)  (0.034)  (0.035)

Date Fixed Effects Yes Yes
Stock Fixed Effects Yes
N 27,725 27,725 27,121
R? 0.128 0.288 0.338

Table IA.2 reports a panel regression of annual log change in stock level elasticity £qqq,% on the annual log
change in the active share |Activer|. We use the estimates from the model with a constant value of x over
time. Column 2 adds date fixed effects. Column 3 adds stock fixed effects. Standard errors are 2-way
clustered by date and stock.
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Figure IA.2. Time-series of competition Y.
Figure IA.2 shows the time-series of the estimates for the competition parameter
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Figure TA.3. Estimates of y using the book-equity weighted instru-
ment.

Figure IA.3 presents an histogram of our estimates of the competition parameter
x where the instrument for aggregate elasticity weights portfolios by book equity,
for each date between 2000 and 2016. The average estimate over the time-period
is x = 1.1 (dashed redline).
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Figure TA.4. Relevance condition for the the book-equity weighted
elasticity instrument.

Figure IA.4 shows the first-stage F-statistics (Kleibergen-Paap) when the instru-
ment of aggregate elasticity weights portfolio by book equity.
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Figure IA.5. Net Assets of Passive and Active Funds.
Figure TA.5 shows the net assets of domestic mutual funds and ETFs in trillions of

dollars (year-end) for passive funds (black solid line) and active funds (blue dashed
line); Source ICI (2020).
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Figure IA.6. Fraction of Active Investors.

Figure TA.6 reports the fraction of active investors according to our model. For
each stock, we compute the ratio of total position of active investors and the
market capitalization. We report the average across stocks.
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Figure TA.7. Distribution of aggregate elasticity.

Figure IA.7 traces out the distribution of aggregate elasticity &g over time. The
bold line represents the average elasticity across stocks for each year. The solid lines
represents the 25th and 75th percentile and the dashed lines the 10th and 90th per-
centile.
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