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1 Introduction

�e barriers that limit access to health care in the United States today - a lack of providers in

rural areas, �nancial di�culties and poverty, insu�cient insurance, and structural impediments

such as a lack of transportation - were challenging patients almost 100 years ago in 1924, when

James Buchanan Duke established the Duke Endowment to relieve these burdens. �e Duke En-

dowment’s Hospital Section subsidized free care and funded the construction of new hospitals

and the expansion of existing ones, particularly in rural areas, throughout North Carolina.1 It also

provided funding for improved hospital equipment and increased the number of well-trained sta�

in existing hospitals. By the end of 1949, �e Endowment had poured over $27 million (nearly

$300 million in 2020 dollars) into hospital construction and modernization. Duke’s �nancial re-

sources signi�cantly increased North Carolina’s medical infrastructure in terms of both the num-

ber of hospitals and beds available. On the eve of Duke’s involvement in medical care in 1925,

North Carolina was served by 122 hospitals with 5,334 beds, but 49 percent of counties had no

hospitals. Across these hospitals, total capacity averaged 44 beds. By the end of 1949, the num-

ber of hospitals increased 41 percent to 172 hospitals, and the number of beds increased by 410

percent to 27,178, with the average hospital having 158 beds.

In this paper, we examine the Duke Endowment’s impact on access to hospital care, infant

mortality, and on the longevity of individuals exposed to Duke’s contributions during their pre-

natal and infancy years. To study the impact of Duke Endowment spending, we construct a new

data set that combines reports from the Duke Endowment with data on hospitals, physicians, and

nurses from a variety of sources. We rely on vital statistics information from North Carolina death

certi�cates and county-level information on natality and mortality from the ICPSR. To examine

how Duke funding may have impacted longevity, we use the 2007 version of the Social Security

Administration NUMIDENT data. In our analysis we pay particular a�ention to di�erential ef-

fects of spending by race. �is is important not only because of long-standing mortality gaps
1�e Duke Endowment subsidized these e�orts in both North and South Carolina, but due to limited data on

outcomes for South Carolina we limit our analysis to North Carolina only.
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between African Americans and Whites, but also because �e Duke Endowment’s Indenture of

Trust speci�cally stipulated that contributions be paid to hospitals “…whether white or colored,”

in keeping with the Duke family’s history of philanthropy on behalf of African Americans (Dur-

din 1998, 85). Econometrically, we estimate the e�ect of Duke Endowment funding on health

outcomes by estimating two-way �xed e�ects di�erence-in-di�erences (TWFE DiD) regressions

and event study speci�cations of changes in infant mortality rates and changes in the probability

of death by age 65.

Our rich data set also allows us to explore whether hospitals supported by the Duke En-

dowment a�racted more physicians and nurses, and how the human capital of these physicians

compared to the existing stock of physicians in a county. �us, we further investigate whether

gains in mortality can be a�ributed to the number and quality of physicians and nurses who

were present. Lastly, we interact Duke funding with the availability of sulfa drugs a�er 1937 to

measure the interaction between increased medical access and medical innovations. For example,

�omasson and Treber (2008) show that increased access to hospital care did not reduce mater-

nal mortality until the development of sulfa. Duke Endowment reports suggest that fatality rates

a�er surgery and caesarean sections fell signi�cantly between 1925 and 1949. In North Carolina,

for example, the fatality rate following surgery fell from 4.5 percent to 2.7 percent, while the fa-

tality rate following caesarean sections fell from 13.3 percent to 0.9 percent. By interacting Duke

funding with the availability of sulfa, we can disentangle the e�ect of having more hospitals and

physicians with the impact of adding improved technology.

We �nd evidence that exposure to Duke funding prenatally and in infancy reduced infant

mortality by about 10 percent and reduced the likelihood of death between ages 20 to 65 by

up to 4 percent. �ese average gains are not uniform across racial groups; infant mortality for

African Americans dropped by over 13 percent, while White infant mortality fell by only about

6 percent. We do not �nd statistically signi�cant estimates by race for long-run mortality, but

the estimate for African Americans is almost three-times larger than for Whites. In addition, one

of the reasons �e Duke Endowment funded hospitals was to a�ract providers to rural areas by
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providing adequate medical facilities (�e Duke Endowment 1925, 44). Our analysis con�rms that

Duke Endowment funding did lead to increases in the supply of more recently graduated and thus

be�er trained physicians, as well as increases in the supply of nurses. When we control for the

interaction of Duke funding and the availability of sulfa, due to lack of precision we do not �nd

any statistically signi�cant compounding e�ects. For both infant mortality and adult mortality,

however, the point estimates are almost twice as large in the a�ermath of the sulfa innovation.

Our analyses provide a unique set of contributions to several di�erent strands of literature.

First, our results contribute to the literature on the long-run consequences of access to health

care early in life. Several studies analyze the e�ects of access to health insurance on morality

and adult outcomes. In the U.S. context, Goodman-Bacon (2017) shows that childhood Medicaid

eligibility during the program’s introduction reduces mortality and disability, increases employ-

ment, and reduces receipt of disability transfer programs up to 50 years later. Similarly Medicaid

expansions in the 1980s have been shown to have positive long-run e�ects on health, human

capital, and earnings (Brown et al. 2020; Miller and Wherry 2019; Cohodes et al. 2016). However,

a complicating factor in these studies is that the expansions combine medical, food and, cash ben-

e�ts jointly rather than isolating the healthcare access component. Outside the U.S., Lührmann

and Wilson (2018) show that universal healthcare, with the introduction of the NHS in the United

Kingdom, not only immediately decreased infant mortality but also increased longevity later in

life. Bauernschuster et al. (2019) study the introduction of social health insurance during the 19th

century Bismarckian era of the German Empire and �nds large reductions in mortality despite the

lack of antibiotics and most vaccines. Importantly from our perspective, their main mechanism

hinges upon access to well-trained doctors who were able to diminish deaths from infectious

diseases.

Relatedly, Anderson, Charles, and Rees investigate a series of public health policies in the

early to mid 20th century in the US. Anderson et al. (2021a) study the racial desegregation in

Southern US hospitals in the 1960s - a period a�er time considered in this paper. Contrary to

our �ndings they don’t �nd e�ects of these policies on either White or African-American infant
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mortality. On the other hand, Anderson et al. (2020) �nd that midwifery reforms between 1900

and 1940 in the US reduced maternal mortality but had li�le if any e�ects on infant mortality.

Finally, Anderson et al. (2021b) document that among many public health policies implemented

to �ght against food- and water-borne diseases, only water �ltration lead to sizable declines in

infant mortality. �eir estimates of about 11-12 percent are very similar to what we �nd in this

paper for e�ects of improved hospital funding.

Another strand of related literature focuses on the physical infrastructure of health care and

access to nurses, doctors, and preventative services. Moehling and �omasson (2014) document

that the Sheppard-Towner Act increased one-on-one contacts with physicians and nurses which

in turn reduced infant mortality, and the e�ects were particularly pronounced among nonwhites

for whom deprivation in access to health care was the greatest. In the Scandinavian context, both

Bütikofer et al. (2019) and Hjort et al. (2017) show long-term health bene�ts of access to nurse

home visiting programs in Norway and Denmark, respectively. Furthermore, Bütikofer et al.

(2019) show that treated children experienced improved socioeconomic outcomes. Similarly, for

Sweden, Lazuka (2020) �nds that access to maternity wards had a short-run e�ect on neonatal

mortality and long-run impacts on labor income and disability pensions. Some of the proposed

mechanisms behind these �ndings include not only improved nutrition at critical stages of life, but

also availability of fast referral of ill infants to a doctor. �is �nding motivates our investigation

of improved access to doctors and hospital care. On the other hand, work by Carrillo and Feres

(2019) in Brazil suggests that physician and nurse care, at least in a contemporary se�ing, could

be good substitutes in the production of infant care, given that the authors do not �nd that the

increased supply of physicians who replaced nurses lead to health gains in the short-run. Our

se�ing is somewhat di�erent, however, since the historical Duke Endowment funding increased

supply of both nurses and doctors as well as improved the quality of hospitals.

Since we investigate an interaction between access to health care and technological change

in medicine brought on by the invention of sulfa drugs, we naturally rely heavily on work ex-

ploring the consequences of this scienti�c breakthrough. Jayachandran et al. (2010) documents

4



that the introduction of the sulfa drugs in 1937 in the U.S., which we adopt as our de�nition of

treatment, lead to large declines in several types of mortality from infectious diseases and an

overall decrease in mortality of 2 to 3 percent. �e bene�ts from antibiotic therapies translated

into other positive long-run outcomes for children exposed in infancy but were less bene�cial for

African Americans (Bhalotra and Venkataramani 2015). Socioeconomic gains were observed in

adult education, employment, disability, income and income mobility. One reason why African

Americans did not reap the full bene�ts of this innovation could have been the lack of access to

hospital care. �is motivates the examination of exogenous variation in access to hospital care

due to funding from the Duke Endowment in this study. It is also worth noting that bene�ts from

sulfa drugs introduction were not limited to the U.S. as Lazuka (2020) shows similar gains in the

case of Sweden.

Very few studies in the extant literature examine how policies or economic shocks interact

with each other, and in particular how changes in physical and human capital can interact with

technological improvements. �e closest in spirit to our work is Alsan and Goldin (2019) who

examine the interaction between clean water provision and technological innovation in sewerage

disposal and its e�ects on child mortality in the context of the late-19th and early-20th century

U.S. Two other studies investigate interactions between multiple health inputs. Both Bütikofer

et al. (2021) and Gunnsteinsson et al. (2019) show that early post-natal policies, access to health

checkups in the former study and vitamin A supplementation in the la�er one, can o�set negative

prenatal health shocks. Furthermore, Rossin-Slater and Wüst (2020) study an interaction between

nurse home visiting program and the availability of high quality preschool while research from

developing countries generally focuses on the interaction between a �nancial shock (e.g., through

rainfall among farmers) and poverty alleviation programs (Adhvaryu et al. 2018; Duque et al.

2019).

Our work further complements studies examining the determinants of mortality and longevity.

Previous research has focused on the relationships between education and mortality (Clark and

Royer 2013; Galama et al. 2018), income and mortality (Cesarini et al. 2016; Che�y et al. 2016),
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pollution and mortality (Hanlon 2018; Alsan and Goldin 2019), or climate change and mortality

(Deschenes and Greenstone 2011; Barreca et al. 2016). On the other hand, we focus on improved

access to hospital care and medical technology for both the immediate mortality e�ects as well

as longer-run longevity outcomes.

Finally, our paper connects to the broader literature on the long-run consequences of prenatal

and early childhood health. Evidence to date shows that prenatal health (Black et al. 2007b; Figlio

et al. 2014; Bharadwaj et al. 2018) is important for cognitive development, labor market outcomes,

and elderly health. Much less is known about health in childhood but both contemporaneous

(Currie et al. 2010) and historical (Karbownik and Wray 2019) evidence suggests that it ma�ers

for both health and socioeconomic outcomes.

2 Duke Endowment and Medical Care

James Buchanan Duke established �e Duke Endowment with initial funding of $40 million

to improve access to health care, education, and spiritual services for people in North and South

Carolina. He directed that 80 percent of the income from the invested funds would then be ap-

portioned as follows: 32 percent to Duke University; 32 percent to the maintenance and construc-

tion of hospitals; 10 percent to the care of orphans and “half orphans”; 14 percent to be divided

between Davidson College, Furman University, and the Johnson C. Smith University; and the re-

mainder to Methodist ministers and the building and maintenance of rural Methodist churches.

�e Duke Endowment limited assistance to nonpro�t and public hospitals, stating “..sickness

is too big a problem for private resources and too socially important a problem to be neglected,

avoided or shirked by the community” (�e Duke Endowment 1925, 138). Under the provisions

of the Deed of Trust, �e Endowment could give one dollar per day to hospitals treating patients

free of charge.2 Any surplus over this expenditure could be used to build new hospitals, expand
2$1 per day represented about 1/3 of the average daily cost of treating a patient. �e Duke Endowment was

reluctant to pay more because it feared that doing so would “…tend to paralyze community interest and e�ort”
involved with paying for charity care (�e Duke Endowment 1925, 144). However, as this amount was �xed in
nominal terms in the Deed of Trust, it did not grow over time and its real value declined as the cost of care increased.
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existing ones, or add new equipment. Special a�ention was paid to racial equality and funding

was more abundant for hospitals which accepted patients of both races. In fact, the charity would

o�en buy shares in a White-only hospital so that they could convert it to a mixed-race institution.

Duke also noted that the development of improved hospital facilities was the means to their

greater objective of improving the number and quality of doctors and nurses practicing medicine

in an area. In its �rst report, �e Hospital Section noted, “Hospitals hold and a�ract the be�er type

of physicians…So it is that a local hospital builds up a profession, raises professional standards

and serves to improve the practice of medicine not only for patients in the hospital but for patients

in the whole county” (�e Duke Endowment 1925, 144-45). �e additional resources reached a

fertile ground as North Carolina struggled with providing quality health care for their citizens.

At baseline in 1925, there were 122 hospitals in 51 counties, while 49 percent of counties did

not have any hospital facility. �is situation has changed dramatically over the �rst 17 years of

the endowment’s activity and by 1942 only 7% of counties did not have any hospital.3 Figure 1a

depicts the roll-out for the share of counties receiving Duke funding (panel A) and total number

of beds per 100,000 (panel B). A similar picture can be drawn when investigating young physician

density, which increased from 26 per 1000 population in 1923 to 56 per 1000 population in 1940.

�e actual utilization likewise increased as the fraction of births a�ended by physicians increased

from 1925 to 1940 as well, moving from 85.9% to 99.6% for whites and nearly tripling for blacks

from 29.5% to 76.6%. �us, due to the Duke Endowment, there is clearly an increase in coverage,

utilization, and �nancing of hospital care in North Carolina.

�e investments also had important consequences for racial disparities in access to health

care. Although African Americans constituted about 30 percent of the population in the Caroli-

nas in 1924, they could only access a far more limited set of hospitals due to segregation. �e

inequality in access to health care was likewise re�ected in the inequality of outcomes. For ex-
3�e Duke Endowment funding was actually distributed beyond 1942, and we collected data for the period up to

1962. Since one of our outcomes of interest is longevity we cut the sample in 1942 so that we can observe individuals
up to the age of 65 in 2007 which is the last year for which we have information on deaths from the Social Security
Administration. Post-1942 expansion was relatively smaller than the initial shock from the start of the Fund while
in Section 6 we document that our infant mortality results remain very similar when we consider using the whole
data span of 1925 to 1960.
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ample, in 1925 only 29.5 percent of non-white births were a�ended by a physician as compared to

85.9 percent for white births. Likewise, African-American women in North Carolina were twice

as likely as white women to die from complications of childbirth. �e investment studied in this

paper provided opportunity to massively narrow these racial disparities.

3 Data

Our paper draws on a new data set of hospital-level information that we compiled from Duke

Endowment reports between 1925 and 1942. We link this data to historical death certi�cates from

North Carolina as well as to individual-level vital statistics information from Numident. �e three

data sets allow us to combine variation in access to and quality of hospital care in infancy and

early childhood with contemporaneous and long-run mortality information for the universe of

births to residents of North Carolina between 1920 and 1942.

3.1 Duke Endowment Records

Our �rst data set consists of annual reports of the Duke Endowment between 1925 and 1942

which include detailed information about the health projects �nanced by the Duke Endowment.

We digitized and transcribed this information from books issued annually by the foundation. Each

volume contains somewhat di�erent information and not all information is available for every

year. Nonetheless, we were able to extract consistent information on hospital-level contributions

for both newly built as well as existing institutions and information on hospital operations. In-

formation from the la�er set of variables includes number of beds, number of total days of care

as well as number of free days of care (i.e., those funded by the Duke Endowment). Auxiliary

information on these hospitals is also available to us and includes location within a county and

when the hospital started its operations. We harmonize all these data across years and construct

a panel of hospitals with all available information. We then aggregate this information up to the

county-by-year level.
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3.2 North Carolina death certi�cates

Our e�orts to study the e�ects of Duke Endowment funding on mortality are complicated by

incomplete birth and death registration during our sample period, especially in the U.S. South.

Ideally, we would like to observe deaths by place of residence at birth. However, data on infant

deaths that are available for North Carolina throughout our study period are reported by place of

occurrence. Somewhat be�er are data on deaths by place of residence, but these are not reported

until 1942 - the �nal year of our sample (Bailey et al. 2016). Deaths by place of occurrence are

problematic for our objectives since they are endogenous to hospitalization - more deaths occur

in places where more hospitals are built. Even deaths by place of residence may be problematic

if families selectively migrated to locations with be�er health care during a child’s infancy.

Instead, we use a database containing the universe of North Carolina death certi�cates from

1906 to 1976 (Cook et al. 2014, 2016).4 Importantly, the data include place of birth. �us, we

identify the county of residence at birth corresponding to the reported birth location and then

aggregate the individual deaths to the county-by-year of birth level. Given that we link these

cohorts to county-by-year variation in Duke Endowment funding, our assumption is that indi-

viduals did not move across county lines between birth and death during infancy. However, in

the presence of migration, we can interpret our estimates as intention-to-treat e�ects for the

county of birth. As infant mortality rates are typically expressed as the number of infant deaths

per 1,000 live births - either in levels or in logs - our analysis requires not only data on infant

deaths, but also on births.5 We use data on births by year and county of occurrence from Bailey

et al. (2016) to construct infant mortality rates and to use as weights in regressions with data at

the county-by-year level.
4We thank John Parman for sharing these data.
5Our later-life mortality rate variables are also constructed as the ratio of mortality counts to birth cohort size.
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3.3 Numident

We face two primary challenges when it comes to estimating the e�ect of Duke Endowment

funding on longevity. First, we do not observe completed lifespan seeing as some individuals from

birth cohorts in our sample period, especially those towards the tail end, remain alive today. Sec-

ond, to our best knowledge, publicly-available data on mortality for the cohorts of interest do

not extend to the present day. �us, we turn to the public-use version of the Social Security Ad-

ministration (SSA)’s Numerical Identi�cation Files (NUMIDENT) that is provided by the National

Archives and Records Administration (NARA).

�e NUMIDENT series contains records for every social security number (SSN) assigned to

individuals with a veri�ed death or who would have been over 110 years old by December 31,

2007. With 1942 births being the latest cohort used in our analysis, the right-censoring of the

NUMIDENT in 2007 implies that for all cohorts in our sample we can observe mortality by age

65 (i.e. a death at age 66 from the 1942 birth cohort would have occurred in 2008 and would only

be found in the restricted-use data). An additional limitation with the public-use version is that it

excludes so-called State reported deaths, which consist primarily of deaths of children who had

not collected Social Security bene�ts, such as in the case of disability. Given these data features,

we use deaths between the ages of 20 and 65 as a measure of later-life mortality.

�e NUMIDENT also enables us to link exposure to Duke Endowment funding to county-by-

year birth cohorts as it contains date and place of birth. However, since the place of birth text

string is truncated at the 20th position, we use a crosswalk �le that maps the text strings to a

geocoded location and collapse the data by county and year of birth (Black et al. 2015).

3.4 Physicians and Nurses

One of our hypothesized mechanisms for the improvement in outcomes is that more and

be�er quali�ed physicians and nurses moved to countries that received the Duke funding. We

explore this possibility using two data sources. First, we use data on U.S. physicians from the
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American Medical Directories which are available for 1914, 1918, 1923, 1927, 1931, 1936 and 1940.

�ey include the physician’s name, their place of practice, the medical school from which they

graduated, their year of birth, year of medical school graduation, and year of licensing, as well as

detailed information on their specialization. We limit our analysis to doctors working in North

Carolina. A�er cleaning the data we construct indicators for physician quality: experience prox-

ied by age and years from graduation as well as admission requirements in their medical school

for a respective cohort of graduates. We a�ach this information to our baseline data at the county-

by-year level.

As a measure of access to nurses, we turn to the complete count U.S. census data for the

1910 to 1940 censuses. We use the IPUMS occupation and industry codes to identify nurses and

collapse the data at the county-by-census-year level to obtain counts of medical practitioners for

each census year. �e census data have the advantage of including pre-treatment years prior to

the introduction of Duke Endowment funding and having information on nurses which the AMD

data lack. �e downside is that the data are lower frequency at only the decennial level.

4 Methods
We use a di�erence-in-di�erences framework to estimate the causal e�ects of exposure during

the in utero and infancy periods to improved access to medical care. In our baseline speci�cation

we assign treatment based on the timing of the �rst appropriation for capital expenditure from

the Duke Endowment to a county. �us, the �rst di�erence compares cohorts born before versus

a�er the �rst appropriation in a county (time variation), while the second di�erence contrasts

counties that received funding at a given point in time with those that did not (spatial variation).

We assign exposure based on a child’s place of birth because this is the geographic unit at which

our mortality variables are measured. We �rst estimate the following regressions:

Yct = α0+α1First appropriationct +γc+δt+ΘXct+εct (1)

where c indexes county of birth while t indexes birth year. Yct is one of the two dependent
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variables: (1) the natural log of the county-by-birth year infant mortality rate de�ned in sec-

tion 3.2 and (2) the probability of death between ages 20 and 65 as de�ned in section 3.3. �e

vector Xct, included in some speci�cations, contains the following control variables: percent of

the population that is illiterate, percent of the population that is black, percent of the population

that is of other (non-white) race, percent of the population residing in urban areas, retail sales

per capita, and manufacturing wages per capita. Furthermore, all speci�cations include county

of birth (γ) and year of birth (δ) �xed e�ects. We cluster the standard errors (εct) by county of

birth to account for correlated errors within a county.

Our variable of interest is First appropriationct which takes the value of one for the �rst year,

and all the years therea�er, that a county received an appropriation from the Duke Endowment.

�us, in this regression model, the coe�cient (α1) measures the e�ects of exposure to additional

�nancial resources for health care on the two mortality outcomes. �is is an intent to treat e�ect,

and it does not account for either utilization of the �nancial resources (i.e., actual spending size)

or allocation of funding (i.e., what the money was spend on). We also present even-studies of the

following form:

Yct = α0+

−2∑
j=−7

βjFirst appropriationct +

7∑
j=0

βjFirst appropriationct +γc+δt+ΘXct+εct (2)

Here coe�cients β−7 to β−2 capture trends prior to the start of the funding while coe�cients β0

to β7 capture e�ects of access to Duke Endowment resources. �e omi�ed category is one year

prior to the start of the treatment. Our event study plots omit the le�-most and right-most coef-

�cients which are binned such as the coe�cient on β−7 includes time periods between −20 and

−7 while the coe�cient on β7 includes time periods between 7 and 15. We weight observations

by county birth cohort size and do not include additional controls for ease of interpretation.

We are also interested in the interaction e�ect between improved access to health care facili-

ties and medical technology. �erefore, we overlay our Duke Endowment di�erence-in-di�erences

estimation strategy with cohort-level variation stemming from the introduction of sulfa antibi-

otics. We estimate the following equation for both infant mortality as well as for the mortality
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rate at ages 20 to 65:

Yct = α0+α1First appropriationct +α2First appropriationct ×Sulfa innovationt

+ γc+δt+ΘXct+εct (3)

where the variables and �xed e�ects are identical to those de�ned in Equation (1), but we add the

term First appropriationct×Sulfa innovationt. �is variable interacts our Duke exposure (i.e., an

indicator for the �rst year, and all the years therea�er, that a county receives an appropriation)

with a dummy variable that takes a value of one for all cohorts born in or a�er 1937, the year

when sulfa drugs were introduced to the U.S. market. In this se�ing, α1 estimates the e�ect of

Duke funding prior to sulfa innovation whileα2 estimates the additional e�ect from Duke funding

when sulfa drugs became available and were used in medical practice. Since this treatment is only

time-varying we do not need an additional term for Sulfa innovationt as this variable is collinear

with our birth year �xed e�ects δ.

We also implement a stacked regression estimator following Cengiz et al. (2019) to ensure that

no previously treated counties are included as part of the control group. We do so by creating

treatment-timing group speci�c data sets that include counties �rst exposed to Duke Endowment

funding in a particular year and “clean control” counties that have not yet been treated in the

estimation window of t = −6 to t = 6. We stack these data sets and estimate DiD regressions

and event study speci�cations that modify equations 1 and 2, respectively, by saturating the

county and year �xed e�ects with indicators for each of the stacked data sets. Lastly, we apply

the Callaway and Sant’Anna (2021) estimator using only never-treated counties as controls to

estimate event study speci�cations and an aggregate treatment e�ects.

5 Results
We present our main results in Table 1. Columns (1) and (2) present results for infant mortality

while columns (3) and (4) present e�ects for our measure of longevity. We �nd that exposure to

�nancial resources from the Duke Endowment in the county of birth during the prenatal period
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reduced infant mortality by 9.4 to 10.4 percent. Additionally, it reduced the mortality rate between

ages 20 to 65 by 3.4 to 4.3 percent. In line with our quasi-experimental se�ing, the e�ects are very

similar whether or not we control for additional time-varying variables. Furthermore, in Figures 2

and 3, we present event studies for the two variables of interest. In each case we observe parallel

trends prior to the start of Duke funding that then turn into negative mortality e�ects a�erwards.

�is not only provides support for our identifying assumptions but is also consistent with �ndings

presented in Table 1.

�e �ndings presented in Table 1 suggest statistically signi�cant and economically meaning-

ful e�ects on mortality and longevity, but it is worth comparing our e�ect sizes to other reduced

form e�ects presented in the relevant literature. Anderson et al. (2020), who study midwifery

laws in the U.S. during roughly the same period of time as this paper, �nd reductions in infant

mortality rates of about 2.6 percent on average which is roughly 4 times smaller than our esti-

mates. On the other hand, Anderson et al. (2021b) show that water �ltration in U.S. cities between

1900 and 1940 lead to 11-12 percent declines in infant mortality. However, they do not �nd any

positive e�ects from other sanitation methods. More directly related to hospital access, Anderson

et al. (2021a) do not �nd any mortality e�ects of the federal desegregation of hospitals.

Similar to Anderson et al. (2021a), we are also interested in understanding di�erential e�ects

of Duke funding by race. We present the results for infant mortality and longevity in Table 2.

Since our data for mortality by race are available for years 1920 to 1939 only, we �rst replicate

the main result from Table 1 on this restricted sample. �e results, presented in column (1) and

(5), are somewhat smaller but nonetheless remain statistically signi�cant at conventional levels.

�en, in columns (2) and (6), we restrict to White and African-American mortality. Our �nding

for infant mortality rate remains largely unchanged, but the longevity estimate is now smaller in

magnitude and no longer statistically signi�cant at conventional levels. Columns (3) to (4) and (7)

to (8) present results separately for White and African-American mortality. We �nd larger health

bene�ts accruing to African Americans compared with whites, but neither longevity estimate is

signi�cant. On the other hand, for infant mortality we �nd a reduction of 13.4 percent for African
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Americans while only 6.1 percent reduction for Whites. �is implies a racial gap in mortality

gains of 7.3 percentage points which contrasts with �ndings in Anderson et al. (2021a).

What explains our positive mortality and longevity e�ects? We propose that a major driver

of improvements in health care quality due to Duke Endowment funding is the ability of the

hospitals to a�ract a workforce of physicians and nurses in larger numbers and of higher quality.

We test this proposition by studying the e�ects on the number of nurses and doctors practicing

in counties that received Duke funding. Columns (1) and (2) in Table 5 present results for the

number of nurses based on U.S. Census data while columns (3) to (12) present results for quality

of doctors. We posit that younger doctors were be�er educated and of higher quality given the

changes induced by the Flexner report - this is explored in columns (3) to (6). Alternatively

we measure doctor quality based on their graduation date and graduating institution. We label

doctors as high quality if they were licensed more than two years a�er the medical school they

a�ended introducted a two-year degree requirement as an admission pre-requisite.

Our results suggest statistically signi�cant increases in the number of nurses as a result of the

additional �nding. In particular, treated counties have between 40 and 65 more nurses per 100,000

population. Furthermore, we �nd increases in number of young and higher quality doctors as

well as simultaneous decreases in number of old and lower quality doctors practicing in these

counties in the a�ermath of increased funding. �ese �ndings are consistent with our proposed

mechanism of improvements in the human capital of medical sta�.

Our �nal set of results explores the possibility that hospital care could have been more e�ec-

tive in the a�ermath of the sulfa drugs invention. We present the results of this analysis based on

Equation (1) in Table 6. We do not �nd any statistically signi�cant interaction e�ects for either

outcome of interest. At the same time, the point estimates suggest potentially large mortality

gains in the a�ermath of this technological change. In that, point estimate on the interaction

term in column (3) is only 25 percent smaller than the e�ect of additional funding in pre-sulfa

cohorts. Similarly, for longevity, it is almost identical to Duke exposure indicator. Although we

lack statistical power, the near doubling of hospital funding e�ects in the a�ermath of antibiotic
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introduction, suggests that new medical technologies can be potentially bene�cial in both the

short- and the longer-run.

6 Robustness Checks

We explore the robustness of our main results to the functional form of the dependent vari-

ables, the weighting of observations and the inclusion of control variables in the regressions,

as well as the set of relative time indicators ��ed in the event study speci�cations. Given con-

cerns about potential bias to the TWFE DiD estimates due to the staggered timing of exposure

to Duke Endowment funding and the lengthy roll-out period, we then examine the sensitivity of

the results to panel length and implement the Goodman-Bacon (2019) diagnostic to decompose

the ATT estimate into its component using 2x2 DiD comparisons. Additionally, we compare our

TWFE DiD estimates to estimates from a stacked regression setup (Cengiz et al. 2019) and the

Callaway and Sant’Anna (2021) estimator.

Table A1 examines the sensitivity of the main results to weighting as well as changing the

functional form of the dependent variable from logs to levels of the mortality rate. For infant

mortality, the estimates from unweighted regressions with log outcomes are slightly smaller that

the weighted estimates in Table 1, while the e�ects on levels of the mortality rate are comparable,

regardless of weighting or the inclusion of controls. �us we conclude that our infant mortality

results are not driven by the choice of functional form for the outcome variable. On the other

hand, estimates of the e�ects on mortality at ages 20 to 65 are substantially smaller in levels, as

well as in logs without weighting, and are no longer statistically signi�cant.

While it has been a relatively standard practice in the literature to estimate event study spec-

i�cations which bin relative time periods further away from the introduction of treatment (An-

derson et al. 2020, 2021b,a), others caution against this approach and suggest that practitioners

�t indicators for each unique relative time period, with the exception of the period prior to the

introduction of the treatment, which is traditionally excluded (Baker et al. 2021). Our choice to
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estimate binned indicators for the time periods t = −20 to t = −7 and t = 7 to t = 15 is mo-

tivated by Figure A1, which shows a drop-o� in the number of counties that contribute to the

estimation of relative-time indicators further away from the introduction of treatment. How-

ever, this restriction may be problematic as it imposes a constant treatment e�ect assumption for

the binned time periods. In Figure A2 we relax this speci�cation choice and show event study

estimates from speci�cations that include separate indicators for all unique event time periods.

We suppress the display of these additional coe�cients for expositional clarity. �e results are

substantively unchanged in comparison to the main estimates in Figures 2 and 3.

�e extended roll-out period of Duke Endowment funding implies that additional concerns

may follow from Goodman-Bacon (2019) and be relevant to our empirical se�ing. Namely, that

the overall DiD estimate may be sensitive to the panel length and places greater weight on treat-

ment groups that are treated closer to the middle of the panel (Baker et al. 2021). In �gure A3 we

examine the robustness of our main results to changing the panel length, which will shi� a subset

of counties between the ever-treated and never-treated groups. Panels (a) and (b) indicate that

the e�ects on the natural log of the infant mortality rate and the mortality rate at ages 20 to 65

that were presented in columns 2 and 4 of Table 1 are unchanged when shortening or lengthen-

ing the number of pre-treatment periods included in the sample. Panel (c) shows that the infant

mortality results are also una�ected when shortening or lengthening the treatment period by up

to 10 years, to 1933 and 1952 respectively. Additionally, the stability of the estimates across these

alternate speci�cations suggests that the overall TWFE DiD estimate is not biased by dynamic

treatment e�ects that vary across treatment timing groups or by selection into the never-treated

group. �e results are also una�ected by including the World War II period in the sample. When

it comes to long-run mortality, we can only show in panel (d) that the results are robust to short-

ening the treatment period as early as 1933, since deaths by age 65 are only observed for cohorts

born up to 1942. Taken together, these speci�cation checks strongly suggest that our main results

are not driven by choice of panel length.

Yet, concerns about bias to the TWFE DiD estimate may remain due to the staggered roll-out
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of the Duke Endowment funding. �us, we conduct a Goodman-Bacon (2019) decomposition

in Table A2 and Figure A4 and �nd that the overall TWFE DiD estimate is composed primarily

of 2x2 DiD comparisons of treated vs. untreated units and that these comparisons with high

weight are close to the overall average DiD estimate. Furthermore, we �nd evidence that the

early vs. late and late vs. early treated comparisons are also negative albeit smaller in magnitude

compared to the overall DiD estimate, but these comparisons receive much lower weights. �ese

�ndings ease concerns about bias in the TWFE DiD results. We also obtain DiD ATT estimates

and implement event study speci�cations using a stacked regression design (Cengiz et al. 2019)

and the Callaway and Sant’Anna (2021) estimator. �e stacked regression results use later-treated

and never-treated counties as the control group and are shown in Table A3 and Figure A7, while

the Callaway and Sant’Anna (2021) event study results use never-treated counties as the control

group and are presented in Figure A8. In the la�er case, we also estimate aggregate treatment

e�ects by relative event time of 11.0 percent for infant mortality and 5.4 percent of mortality at

ages 20 to 65.6 Our estimates by race, for infant mortality, also hold when using speci�cation

proposed by Callaway and Sant’Anna (2021) as documented in Figure A9. Using these alternate

estimators, we �nd strong treatment e�ects that are similar to or larger in magnitude compared

to the main TWFE DiD estimate, in addition to evidence of parallel pre-trends.

7 Conclusions

�ere is ample evidence in the literature that increased access to health insurance during

prenatal period and in infancy is bene�cial for children in short- as well as long-run. Much less is

known, however, about potential consequences of improved access to medical facilities or speci�c

treatments available in these facilities. We contribute to this literature by studying the e�ects of

increased access to hospital care in the �rst half of the twentieth century in the U.S.

We obtain exogenous variation in access to hospitals stemming from Duke Endowment fund-
6We do not have enough timing group-speci�c variation (e.g. �rst treatment in 1927) to plot timing group speci�c

event-studies as in Callaway and Sant’Anna (2021).
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ing which provided money for building of new and expansion of existing hospitals between 1925

and 1942 in North Carolina. We document that these additional �nancial resources indeed lead

to increases in hospital capacity as well as improvements in their sta�ng. At the same time, our

di�erence-in-di�erences estimates imply that counties exposed to Duke funding experienced re-

ductions in infant mortality while the surviving babies were also less likely to die between ages

20 to 65. �ese health gains are particularly pronounced for African-American babies compared

with White babies, and the estimate for the former group is over twice the size of that for the

la�er. Finally, we �nd some suggestive evidence that gains from new pharmaceutical treatments

available to hospital patients lead to further improvements in their outcomes albeit we lack sta-

tistical power to estimate these interaction e�ects precisely.
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8 Tables

Table 1: Two-way �xed e�ects DiD estimates in logs

Ln(infant mortality) Ln(mortality at 20 to 65)

(1) (2) (3) (4)

=1 if Duke exposure –0.104*** –0.094*** –0.043*** –0.034**
(0.031) (0.030) (0.016) (0.015)

N 2,300 2,300 2,300 2,300
Controls No Yes No Yes

Notes: Each cell represents an estimate from a separate OLS regression using a bal-
anced panel of North Carolina counties from 1920 to 1942. �e dependent variables are
natural logs of deaths per 1,000 live births of individuals born in county c and year t:
infant deaths in columns 1 and 2 and deaths at ages 20 to 65 in columns 3 and 4. All
regressions control for county �xed e�ects and year �xed e�ects. All regressions are
weighted by average the number of live births in county c. Regressions in columns 2
and 4 include controls for the percent of the population illiterate, black, other (non-
white) race, and urban, as well as retail sales and manufacturing wages per capita.
Standard errors are clustered at the county level.
Point estimates marked ***, **, and * are statistically signi�cant at the 1, 5, and 10 per-
cent levels, respectively.

24



25

Table 2: Two-way �xed e�ects DiD estimates by race in logs

Ln(infant mortality) Ln(mortality at 20 to 65)

(1) (2) (3) (4) (5) (6) (7) (8)
All Pooled White Black All Pooled White Black

=1 if Duke exposure –0.086*** –0.079*** –0.061** –0.134*** –0.014 –0.014 –0.005 –0.014
(0.026) (0.027) (0.028) (0.046) (0.014) (0.014) (0.020) (0.021)

N 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000

Notes: Each cell represents an estimate from a separate OLS regression using a balanced panel of North Carolina counties from 1920 to 1939. �e de-
pendent variables are natural logs of deaths per 1,000 live births in county c and year t: infant deaths in columns 1 to 4 and deaths at ages 20 to 65 in
columns 5 to 8. Mortality rates are reported for all races in columns 1 and 5, and pooled for blacks and whites in columns 2 and 6. Mortality rates are
computed separate for whites in columns 3 and 7, and for blacks in columns 4 and 8. All regressions include county �xed e�ects and year �xed e�ects,
and controls for the percent of the population illiterate, black, other (non-white) race, and urban, as well as retail sales and manufacturing wages per
capita. All regressions are weighted by average the number of live births in county c. Standard errors are clustered at the county level.
Point estimates marked ***, **, and * are statistically signi�cant at the 1, 5, and 10 percent levels, respectively.25
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Table 3: Two-way �xed e�ects DiD estimates for infant mortality by hospital type in logs

Log infant mortality rate per 1,000 births

(1) (2) (3) (4)

=1 if Duke funding for black-only hospital –0.147*** –0.107**
(0.042) (0.051)

=1 if Duke funding for white-only hospital –0.178*** –0.120*
(0.065) (0.072)

=1 if Duke funding for mixed hospital –0.090** –0.062*
(0.036) (0.034)

N 2,300 2,300 2,300 2,300

Notes: Each column represents a separate OLS regression. �e dependent variables are natural logs of infant
deaths per 1,000 live births in county c and year t. All regressions include county �xed e�ects and year �xed
e�ects, and controls for the percent of the population illiterate, black, other (non-white) race, and urban, as
well as retail sales and manufacturing wages per capita. All regressions are weighted by average the number
of live births in county c. Standard errors are clustered at the county level.
Point estimates marked ***, **, and * are statistically signi�cant at the 1, 5, and 10 percent levels, respectively.
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Table 4: Two-way �xed e�ects DiD estimates for infant mortality by funding type in logs

Log infant mortality rate per 1,000 births

(1) (2) (3) (4) (5)

=1 if Duke funding for new hospital –0.043 –0.038
(0.047) (0.041)

=1 if Duke funding for addition to hospital –0.184*** –0.182***
(0.048) (0.053)

=1 if Duke funding for equipment –0.055 –0.007
(0.049) (0.045)

=1 if Duke funding for hospital purchases –0.006 0.014
(0.084) (0.057)

N 2,300 2,300 2,300 2,300 2,300

Notes: Each column represents a separate OLS regression. �e dependent variables are natural logs of infant deaths per 1,000
live births in county c and year t. All regressions include county �xed e�ects and year �xed e�ects, and controls for the per-
cent of the population illiterate, black, other (non-white) race, and urban, as well as retail sales and manufacturing wages per
capita. All regressions are weighted by average the number of live births in county c. Standard errors are clustered at the
county level.
Point estimates marked ***, **, and * are statistically signi�cant at the 1, 5, and 10 percent levels, respectively.
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Table 5: Mechanisms: E�ects on numbers of doctors and nurses

Doctors

Nurses Young Old High quality Low quality

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

=1 if Duke exposure 62.057*** 40.210*** 11.428*** 7.451** –8.135*** –4.931** 8.772*** 6.953*** –7.609*** –5.575***
(14.847) (13.777) (4.219) (3.152) (2.727) (2.084) (2.548) (2.136) (1.773) (1.422)

N 388 388 700 700 700 700 700 700 700 700
Controls No Yes No Yes No Yes No Yes No Yes

Notes: Each column represents an estimate from a separate OLS regression. �e dependent variables are the number of nurses (columns 1 and 2), young doctors (columns 3 and 4),
and old doctors (columns 5 and 6), respectively, per 100,000 population. Column 1 and 2 are based on complete count population census data from IPUMS for 1910, 1920, 1930, and
1940. Individual doctors and nurses are identi�ed from occupation and industry codes and aggregated to the county level for each census year. Columns 3 to 10 are based on the
American Medical Directory for the years 1914, 1918, 1923, 1927, 1931, 1936, and 1940. A young doctor is de�ned as having graduated from medical school or received a medical license
a�er 1910 or being born a�er 1885. All others are considered “old” doctors. Doctor are considered high quality if they were licensed more than two years a�er the medical school they
a�ended introduced a two-year degree requirement as an admission pre-requisite. Low quality doctors were licensed earlier. All regressions control for county �xed e�ects and year
�xed e�ects. Control variables are listed in Table 1. Regressions are weighted by total population in county c and year t. Standard errors are clustered at the county level.
Point estimates marked ***, **, and * are statistically signi�cant at the 1, 5, and 10 percent levels, respectively.
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Table 6: Interaction of Duke exposure with sulfa

Ln(infant mortality) Ln(mortality at 20 to 65)

(1) (2) (3) (4)

=1 if Duke exposure –0.082*** –0.073*** –0.034** –0.025*
(0.026) (0.027) (0.015) (0.015)

Duke exposure × sulfa –0.058 –0.056 –0.024 –0.023
(0.055) (0.050) (0.018) (0.018)

N 2,300 2,300 2,300 2,300
Controls No Yes No Yes

Notes: Each cell represents an estimate from a separate OLS regression. �e dependent
variables are natural logs of deaths per 1,000 live births of individuals born in county c
and year t: infant deaths in columns 1 and 2 and deaths at ages 20 to 65 in columns 3
and 4. Sulfa exposure is measured by an indicator that equals to one for all years from
1937 onward. All regressions control for county �xed e�ects and year �xed e�ects. All
regressions are weighted by average the number of live births in county c. Regressions in
columns 2 and 4 include controls for the percent of the population illiterate, black, other
(non-white) race, and urban, as well as retail sales and manufacturing wages per capita.
Standard errors are clustered at the county level.
Point estimates marked ***, **, and * are statistically signi�cant at the 1, 5, and 10 percent
levels, respectively.
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9 Figures

Figure 1: Hospital access in North Carolina, 1927-1942

(a) DiD roll-out design

(b) Hospital beds

Notes: Figure 1a plots the fraction of ever-treated counties in North Carolina by calendar year. Treatment
is measured by appropriations for capital expenditures from the Duke Endowment. Treatment timing
is based on the Annual Report of the Hospital Section for the years 1927 to 1942, published by the Duke
Endowment. Figure 1b plots the total number of beds in general hospitals per 100,000 population from
1927 to 1942. Data are not available prior to 1927. Hospital bed counts are based on the annual reports of
the American Medical Association and annual population �gures are linearly interpolated from decennial
census data (Manson et al. 2019). �e vertical dashed lines denote the �rst year of Duke Endowment
treatment in 1927.
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Figure 2: Event study estimates for infant mortality

Notes: Figure 2 plots OLS estimates of coe�cient values and 95% con�dence intervals for the lead and lag
indicator variables for time periods from t=−20 to t= 15 around the �rst year that a county received an
appropriation for capital expenditures from the Duke Endowment. �e plot omits binned indicators for
the time periods t=−20 to t=−7 and t= 7 to t= 15, respectively. �e omi�ed category is 1 year before
initial treatment. An observational unit in the regression is a county-by-year birth cohort. �e dependent
variable is the natural log of the number of infant (age 0 to 1) deaths per 1,000 live births in birth county c
and year t. Control variables include county �xed e�ects and year �xed e�ects. Regressions are weighted
by birth cohort size in county c and year t. Standard errors are clustered by county of birth.
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Figure 3: Event study estimates for long-run mortality

Notes: Figure 3 plots OLS estimates of coe�cient values and 95% con�dence intervals for the lead and lag
indicator variables for time periods from t=−20 to t= 15 around the �rst year that a county received an
appropriation for capital expenditures from the Duke Endowment. �e plot omits binned indicators for
the time periods t=−20 to t=−7 and t= 7 to t= 15, respectively. �e omi�ed category is 1 year before
initial treatment. An observational unit in the regression is a county-by-year birth cohort. �e dependent
variable is the natural log of the number of deaths at ages 20 to 65 per 1,000 live births in birth county c
and year t. Control variables include county �xed e�ects and year �xed e�ects. Regressions are weighted
by birth cohort size in county c and year t. Standard errors are clustered by county of birth.
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A Appendix Tables

Table A1: Two-way �xed e�ects DiD estimates in logs and levels

Logs Levels

(1) (2) (3) (4) (5) (6)

Panel A: E�ects on infant mortality

=1 if Duke exposure –0.092*** –0.088*** –6.570*** –5.094** –6.475*** –5.574**
(0.031) (0.031) (2.368) (2.409) (2.250) (2.272)

Panel B: E�ects on mortality at ages 20 to 65.

=1 if Duke exposure –0.025 –0.019 –2.269 –2.150 –1.854 –1.937
(0.018) (0.018) (1.451) (1.451) (1.518) (1.426)

N 2,300 2,300 2,300 2,300 2,300 2,300
Controls No Yes No Yes No Yes
Weights No No Yes No Yes No

Notes: Each cell represents an estimate from a separate OLS regression. �e dependent variables are the natural log of
the number of deaths (columns 1 and 2) and the number of deaths (columns 3 to 6) per 1,000 live births of individuals
born in county c and year t. Mortality is measured by infant deaths in panel A and deaths at ages 20 to 65 in panel B.
All regressions control for county �xed e�ects and year �xed e�ects. Regressions in columns 3 and 4 are weighted by
the number of live births in county c and year t. Regressions in columns 2, 4, and 6 include controls for the percent of
the population illiterate, black, other (non-white) race, and urban, as well as retail sales and manufacturing wages per
capita. Standard errors are clustered at the county level.
Point estimates marked ***, **, and * are statistically signi�cant at the 1, 5, and 10 percent levels, respectively.
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Table A2: Goodman-Bacon (2019) decomposition diagnostic

Type Average Number of 2x2 Total
Estimate Comparisons Weight

Earlier Treated vs. Later Treated Controls –0.044 66 0.099
Later Treated vs. Earlier Treated Controls –0.044 66 0.077
Treated vs. Untreated Controls –0.102 12 0.824

DD coe�cient –0.092 144 1.000

Notes: �e table decomposes the TWFE DiD ATT estimate from panel A and column 1 of Ta-
ble A1 into the average estimate and total weight contributed by earlier vs. later treated com-
parisons, later vs. earlier treated comparisons, and treated vs. untreated comparisons, as well
as the number of unique 2x2 comparisons found in each category.

Table A3: Stacked regression DiD estimates in logs

Ln(infant mortality) Ln(mortality at 20 to 65)

(1) (2) (3) (4)

=1 if Duke exposure –0.084*** –0.086*** –0.036*** –0.036**
(0.027) (0.030) (0.014) (0.015)

N 9,152 9,152 7,813 7,813
Controls No Yes No Yes

Notes: Each cell represents an estimate from a separate OLS regression. �e dependent
variables are natural logs of deaths per 1,000 live births of individuals born in county
c and year t: infant deaths in columns 1 and 2 and deaths at ages 20 to 65 in columns
3 and 4. All regressions control for county �xed e�ects and year �xed e�ects. All re-
gressions are weighted by average the number of live births in county c. Regressions
in columns 2 and 4 include controls for the percent of the population illiterate, black,
other (non-white) race, and urban, as well as retail sales and manufacturing wages per
capita. Standard errors are clustered at the county level.
Point estimates marked ***, **, and * are statistically signi�cant at the 1, 5, and 10 per-
cent levels, respectively.
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B Appendix Figures

Figure A1: Number of treated counties by event-time period

Notes: Figure A1 plots the number of treated North Carolina counties in each event-time period in the
birth county-by-year panel used in the regressions reported in Table 1 and the event studies plo�ed in
Figures 2 and 3.
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Figure A2: Event study without binned endpoints

(a) Log infant mortality rate

(b) Log mortality rate age 20 to 65

Notes: Figure A2 modi�es the event study speci�cations in Figures 2 and 3 to estimate separate coe�cients
for each event study period for the time periods t=−20 to t=−7 and t= 7 to t= 15 instead of replacing
them with binned indicators. Figure A2 plots the coe�cients for time periods t=−6 to t= 6 to correspond
to the unbinned coe�cients shown in Figures 2 and 3.
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Figure A3: Robustness of TWFE DiD estimates to changing panel length

(a) Changing �rst year of panel (log IMR) (b) Changing �rst year of panel (log mortality age 20-65)

(c) Changing last year of panel (log IMR) (d) Changing last year of panel (log mortality age 20-65)

Notes: Figure A3 plots estimates of the TWFE DiD coe�cient for exposure to Duke Endowment funding from separate regressions while varying
the �rst (�gures A3a and A3b) or the last year (�gures A3c and A3d) of the panel. In �gures A3a and A3b the last year of the panel is kept unchanged
at 1942, while in �gures A3c and A3d the �rst year of the panel is kept unchanged at 1920 to correspond to the end points of the panel in the main
sample. Aside from these changes to panel length, the speci�cations correspond to columns 2 and 4 of Table 1. In each sub-�gure, the vertical
dashed denotes the �rst panel year (1920) or the last panel year (1942) from the main sample. Figure A3d only shows estimates up to 1942 since
mortality by age 65 is not observed for later birth cohorts.
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Figure A4: Goodman-Bacon (2019) decomposition diagnostic

Notes: Figure A4 decomposes the TWFE DiD estimate from column 1 and panel A of Table A1 into separate
2x2 DiD components. �e speci�cation does not include controls, except for county and year �xed e�ects,
it not weighted, and has the log of the infant mortality rate as the dependent variable. �e �gure depicts
the distribution of all unique treatment timing comparisons used to identify δ̂DD. For example, one symbol
may represent a comparison between counties treated in 1935 and counties treated in 1937. �e horizontal
red line displays the overall TWFE DiD estimate.
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Figure A5: Event study estimates for black infant mortality

Notes: Figure A5 plots OLS estimates of coe�cient values and 95% con�dence intervals for the lead and
lag indicator variables for time periods from t=−20 to t= 15 around the �rst year that a county received
an appropriation for capital expenditures from the Duke Endowment. �e plot omits binned indicators for
the time periods t=−17 to t=−7 and t= 7 to t= 12, respectively. �e omi�ed category is 1 year before
initial treatment. An observational unit in the regression is a county-by-year birth cohort. �e dependent
variable is the natural log of the number of infant (age 0 to 1) deaths per 1,000 live births in birth county c
and year t. Control variables include county �xed e�ects and year �xed e�ects. Regressions are weighted
by birth cohort size in county c and year t. Standard errors are clustered by county of birth.

Figure A6: Event study estimates for white infant mortality

Notes: Figure A6 plots event study estimates for white infant mortality that are otherwise identical in
speci�cation to the estimates in Figure A5.
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Figure A7: Stacked regression event study

(a) Log infant mortality rate

(b) Log mortality rate age 20 to 65

Notes: Figure A7 plots stacked regression results in which the control group for a treatment-timing group
(e.g. counties treated in 1927) consist of counties that were not-yet-treated or never-treated in the window
from t−6 to t+6.
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Figure A8: Callaway and Sant’Anna (2021) event study estimates

(a) Log infant mortality rate

(b) Log mortality rate age 20 to 65

Notes: Figure A8 plots event study results from the Callaway and Sant’Anna (2021) estimator using never-
treated units as controls. Estimates for time periods t=−20 to t=−7 and t= 7 to t= 15 are not shown.
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Figure A9: Callaway and Sant’Anna (2021) event study estimates by race

(a) Log infant mortality rate, blacks

(b) Log infant mortality rate, whites

Notes: Figure A9 plots event study results by race from the Callaway and Sant’Anna (2021) estimator using
never-treated units as controls. Estimates for time periods t = −17 to t = −7 and t = 7 to t = 12 are not
shown.
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