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Abstract 

Anecdotes abound suggesting that the use of predictive analytics boosts firm performance.  

However, large-scale representative data on this phenomenon have been lacking. Working with 

the U.S. Census Bureau, we surveyed over 30,000 manufacturing establishments on their use of 

predictive analytics and detailed workplace characteristics. We find that productivity is 

significantly higher among plants that use tools to automate prediction—up to $918,000 higher 

sales compared to non-adopting competitors using similar inputs. Furthermore, both instrumental 

variables estimates and timing of gains suggest a causal relationship. However, this productivity 

payoff only occurs when predictive analytics is combined with key workplace complements. 

Significant accumulation of IT capital, educated workers, or workplaces designed for flow-

efficient production each enables non-trivial returns. Notably, managerial capacity – measured 

either as management practices or as manager headcount – also enables both predictive analytics 

adoption and performance gains. Our findings support claims that these fast-diffusing techniques 

can substantially improve productivity, while also explaining why some firms see no benefits at 

all. Further, they provide the first evidence of labor-augmenting automation in manufacturing, in 

contrast to the labor-substitution associated with robots. 

 

Keywords: digitization, big data, predictive analytics, productivity, complementarities, 
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 “What information consumes is rather obvious: it consumes the attention of its recipients…The 

real design problem is not to provide more information to people, but [to design] intelligent 

information-filtering systems.”  

 - Herbert A. Simon, Designing Organizations for an Information-Rich World (1971)  

1. INTRODUCTION  

Exponential growth in computing power, declining costs of information technology (IT), and 

the rise of new computational methods have created opportunities to extract more value from 

increasingly ubiquitous digital information (Tambe 2014; Bughin 2016; Wu et al. 2020). 

Worldwide revenue for “big data” and business analytics solutions is expected to reach $274.3 

billion by 2022 (IDC 2019). However, these investments have yet to yield measurable productivity 

gains in the aggregate (Syverson 2017; Brynjolfsson et al. 2021). At the firm level, managers report 

numerous challenges in realizing performance benefits from these investments (Ransbotham et al. 

2015 & 2017, Wu et al. 2019). This puzzling gap between voluntary firm adoption and tangible 

payoffs has been difficult to study due (perhaps ironically) to a dearth of large-sample data. 

We shed light on the adoption-payoff gap for predictive analytics by providing the largest and 

richest evidence to date on the adoption, performance implications, and enablers of predictive 

analytics use in over 30,000 diverse workplace settings. Collaborating with the U.S. Census 

Bureau, we collect the first direct measures of predictive analytics use in a representative sample 

of U.S. manufacturing establishments, 2  also capturing critical tangible and often-intangible 

workplace characteristics. We further link this survey from 2010 and 2015 to an annual panel of 

detailed administrative data. Addressing many common threats to identification, we explore both 

correlational and causal relationships between predictive analytics use and productivity. Further, 

we unearth both “classic” and novel complementarities that overwhelmingly predict the 

distribution of performance gains. One is a mutually-reinforcing relationship between human 

managerial labor and automation in this rapidly-digitizing sector.  

                                                 

2 Prior work has addressed the challenge of measuring firm use of fast-emerging analytics tools by triangulating on 

the human capital needed by adopters, typically in smaller samples (Tambe 2014, Wu et al. 2019 & 2020). In contrast, 

our data cover the majority of the U.S. manufacturing economy, including not only large public firms but also a 

representative swath of smaller establishments. We view our approach to be complementary, with distinct advantages 

and challenges. See Section 2.  
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In the face of considerable “hype” (Gartner 2020), our findings confirm that predictive 

analytics use has indeed spread throughout the American manufacturing sector. More than 70 

percent of plants relied on some level of predictive analytics as early as 2010, with pervasive 

penetration across geographies and industries, as well as across the plant size and age distributions. 

More variation exists at the intensive margin of use, with a mean frequency of slightly more often 

than annually, increasing to between monthly and weekly at one standard deviation above the 

mean. In this study, we develop representative statistics describing the diffusion of predictive 

analytics practices in recent years and present three central findings of interest to both academic 

researchers and practitioners. 

First, this phenomenon has important implications for the real economy. Plants adopting at 

least some use of predictive analytics demonstrate higher productivity of 1 to 3 percent, on average. 

In dollar terms, this represents $464,000 to $918,000 greater sales for adopters versus non-adopters, 

holding constant other inputs to production. Moreover, while benefits manifest at the extensive 

margin, they also increase with frequency of use, consistent with a dose-response relationship. 

Within the range of behavior we observe, more-frequent reliance on predictive analytics is 

associated with increasingly higher productivity. 

Second, we find evidence for a causal relationship. In addition to addressing a number of time-

varying confounds, we leverage a quasi-experimental approach (instrumental variables) and the 

timing of the effects (performance improves only after plants adopt predictive analytics, not before) 

to argue that using predictive analytics causes higher performance, not the other way around. 

Third, despite a significant average benefit and voluntary adoption, productivity gains are 

almost entirely confined to workplaces with certain complements in place. These include 

accumulated IT capital and educated employees, what we call “classic complements” based on 

foundational studies of earlier general-purpose IT (Black and Lynch 1996, Bresnahan et al. 2002, 

Tambe and Hitt 2012). We identify a novel third complement: production process designs favoring 

flow efficiency. Predictive analytics use is much more productive in flow-efficient contexts 

compared to flexibility-focused ones. This quasi-fixed workplace characteristic is useful for 

identification but difficult for firms to adjust as technology advances. 

A fourth complement warrants particular attention: human managers. Workplaces with high 

managerial capacity for interpreting and responding to objective information show outsized returns 
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from predictive analytics use. This is further associated with a sustained level of managerial 

headcount over time. These benefits of keeping “humans in the loop” are important in light of 

rising apprehension about labor demand in the face of increasing automation (e.g., Autor 2015, 

Acemoglu and Restrepo 2018, Brynjolfsson et al. 2018, Furman and Seamans 2019) and recent 

evidence that humans may hinder, rather than enhance, the gains achievable with enhanced 

prediction (e.g., Glaeser et al. 2021). To our knowledge, ours is the first robust evidence of labor 

augmentation in a sector that is rapidly digitizing (Zolas et al. 2020) and has shown evidence of 

labor displacement associated with robotics investment (Acemoglu et al. 2020), particularly for 

managers (Dixon et al. 2019).  

Another important feature of our study is the five-year span of time it covers. Heterogeneity in 

the distribution of “classic complements” is not only widespread – it persists. Evidence that the 

rate of organizational change has lagged the advances in technology– despite longstanding 

evidence about what effective digitization may demand – is informative. It helps explain why some 

firms achieve significant gains from predictive analytics, while others see no benefit at all. It also 

highlights the ongoing need for more micro-level attention to organizational adjustment and co-

invention in studies of technological change and firm performance (Bresnahan and Greenstein 

1996, Tambe and Hitt 2012, McElheran 2015, Raj and Seamans 2018, Brynjolfsson et al. 2021).  

Also of note, our findings hold while controlling for a wide range of other practices associated 

with productivity (e.g., Brynjolfsson and McElheran 2016 & 2019, Bloom et al. 2019, Scur et al. 

2021). Disentangling these time-varying margins is a critical advance. Like the digital frontier, 

many contributors to firm “quality” or intangible organizational capital are not fixed. A number of 

practices and tools similarly aimed at extracting insights from data have previously been linked to 

higher Tobin’s q and profits (Brynjolfsson et al. 2011, Saunders and Tambe 2015) and greater 

productivity (Tambe et al. 2012, Aral et al. 2012, Tambe 2014, Brynjolfsson and McElheran 2019, 

Wu et al. 2020). Now, even-newer computational techniques that leverage data to improve 

prediction are argued to lower the cognitive costs of decision-making, improve precision, and 

speed execution (e.g., Agrawal et al. 2019). Yet the theory-evidence gap is only growing. A clearer 

and updated understanding of how distinct technological, human, and organizational “ingredients” 

may be combined into productive recipes is urgently needed in both research and practice. 

Fulfilling this need requires additional precision with respect to both the conceptualization of 
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the phenomenon and its measurement. As the large literature on routine-biased technical change 

(RBTC) robustly demonstrates, the automation of cognitive work is distinct from the automation 

of physical tasks (e.g., Autor et al. 2013). This distinction, while not always crisp in recent 

conversations, yields disparate predictions for labor market outcomes in different sectors and 

different occupations. Less-understood, it also likely requires different complementary 

combinations of technology, people, and practices. Further focusing in on the category of cognitive 

work, predictive analytics is usefully distinguishable from an “evidence-based” culture (Pfeffer 

and Sutton 2006) or “data-driven decision-making” management practices (Brynjolfsson and 

McElheran 2019). Even more granularly, there are widely-recognized differences between 

descriptive versus predictive analytics (Berman and Israeli 2020, Blum et al. 2015). These 

distinctions are essential for capturing the right margins of firm investment and process innovation. 

Disentangling key complements also requires enhanced precision. While prior research 

explores how a number of organizational and human factors explain variation in returns to IT (e.g., 

Black and Lynch 2001, Bresnahan et al. 2002, Melville et al. 2004; Tambe 2012, Tambe et al. 

2012, Tambe 2014, Bapna et al. 2013), a significant amount of unexplained variation has been 

attributed to an undifferentiated cluster of “intangibles” that appear increasingly important, yet 

remain difficult to measure (Brynjolfsson et al. 2002, Bloom et al. 2012; Saunders and 

Brynjolfsson 2016). Leaving too much to the “measure of our ignorance” (Abramovitz 1956) 

creates non-trivial barriers to leveraging research insights into actionable management practices 

and/or public policies. 

This study innovates along a few dimensions to make progress against these concerns. First, 

our data come from a purpose-designed mandatory survey covering the vast majority of the U.S. 

manufacturing economy. In addition to being representative, our approach directly captures early 

use of a rising technological advance, rather than relying on digital artifacts from unrelated 

economic activity.  

Second, causality has been notoriously difficult to pin down, due to self-selection of firms into 

adoption (Müller et al. 2018; Berman and Israeli 2020). Here, we exploit a novel instrumental 

variable (IV) approach enabled by another survey question we designed on government-mandated 

data collection. This new measure captures an arguably exogenous and plant-specific “nudge” to 

predictive analytics by shocking data availability and monitoring (see Brynjolfsson and McElheran 
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2019, which similarly exploits this measure). 

Finally, linking multiple Census data sets allows us to assemble in one place a large number 

of tangible and typically intangible workplace investments. We thus make considerable headway 

in disentangling different dimensions of the phenomenon – some never-before explored – that 

matter for theory, policy, and practice. These complementarities are not subtle nuances, but rather 

first-order concerns. The magnitude of each of the four organizational interactions is large: 

predictive analytics use contributes meaningfully to productivity only when combined with at least 

one complement. Adoption may be widespread, but payoffs are not. 

Our findings contribute to several streams of prior work. First, we build on early research in 

IT productivity that emphasizes heterogeneity across industries and firms (e.g., Stiroh 2002; 

Brynjolfsson and Hitt 1995), as well as theory arguing that this heterogeneity may arise from 

investments in complementary assets and managerial practices (Kandel and Lazear 1992; Milgrom 

and Roberts 1990, 1995; Holmstrom and Milgrom 1994; Athey and Stern 1998; Brynjolfsson and 

Milgrom 2013; Brynjolfsson et al. 2021). Several empirical studies have found support for this 

theory with respect to general-purpose IT and computer use (Black and Lynch 2001; Bresnahan et 

al. 2002; Aral and Weill 2007; Bloom et al. 2012), specific IT applications such as electronic 

medical records (Dranove et al. 2014), and earlier waves of data-centered management practices 

(Aral et al. 2012; Tambe et al. 2012; Tambe 2014; Brynjolfsson and McElheran 2019). Attention 

has recently turned to whether similar contingencies apply to analytics deployed in specific 

applications, such as innovation (Wu et al. 2019 & 2020) and marketing (Berman and Israeli 2020). 

Our study is the first to specifically target prediction, documenting uneven returns to this 

increasingly popular type of automation and making progress in establishing causality. 

Next, our attention to production process design recalls insights from a neglected stream of 

management research advocating for tighter alignment between product market strategy and 

production process design throughout the product lifecycle (Hayes and Wheelright 1979a & b, 

1984). Reviving these insights is useful for at least two reasons. First, they identify a set of 

essentially fixed organizational commitments around which other workplace choices must align. 

This is helpful for empirically pinning down the right dependencies, rather than some omitted 

factor that might drive both adoption of the observed factors and outsized productivity gains 

(Athey and Stern 1998, Hong et al. 2019). They also make tangible a cluster of previously 
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unobserved and accumulated organizational decisions.  

Our approach, therefore, is also closely linked to growing research in economics and 

management that seeks to more concretely measure and estimate contingencies among 

understudied dimensions of firm strategy, management practices, technology adoption, and human 

capital (e.g., Arora and Gambardella 1990, Bloom et al. 2012, Hong et al. 2019, Blader et al. 2019, 

Felten et al. 2019, Choudhury et al. 2020).  

Finally, we contribute to a burgeoning literature on the “future of work” for humans in the face 

of ever-accelerating technological change. High-profile studies have predicted large reductions in 

labor demand due to rising digitization and automation (e.g., Frey and Osborne 2017, Arntz et al. 

2020), though primarily in the context of robot investment in manufacturing (e.g., Acemoglu and 

Restrepo 2018 & 2019) or, increasingly, “AI” (Agrawal et al. 2018, Brynjolfsson et al. 2018, Felten 

et al. 2019, Webb 2020). Micro-level evidence to date has been mixed (Bessen et al. 2019, 

Acemoglu et al. 2020), though managers in the manufacturing sector have been particularly 

displaced by increased robot investment (Dixon et al. 2019). Recent studies related to ours have 

looked at software or general-purpose IT (Bessen and Righi 2019, Barth et al. 2020), with limited 

attention to manufacturing. Also, while economics studies have dominated news headlines, 

attention to digitization and automation in strategic management is dramatically on the rise (e.g., 

Adner et al. 2019,  Felton et al. 2019 & 2021,  Benett 2020a & b, inter alia), including attention 

to how humans shape returns to automation at the micro level (e.g., Choudhury et a. 2020, Glaeser 

et al. 2021). 

2. CONCEPTUAL MOTIVATION AND PRIOR WORK 

2.1 Predictive Analytics and Average Performance 

While definitions for emerging technology tend to shift (a significant hurdle for measurement 

– see Section 3), predictive analytics is increasingly understood to be a set of techniques used to 

analyze historical and current data in order to make predictions about future or unknown events. 

This may include older techniques from data mining to statistical modeling, as well as, most 
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recently, machine learning and “AI” (Agrawal et al. 2018 & 2019).3 Predictive analytics leverages 

computer systems to investigate large data sets more quickly and more comprehensively than 

would otherwise be humanly possible. Because digital information is rapidly becoming cheaper to 

gather and growing in volume and complexity, leveraging these increasingly rich digital resources 

is often predicted to generate large returns (Davenport 2006, Bughin 2016).  

Rising anecdotal evidence suggests, however, that while many firms have benefitted from 

predictive analytics, others have struggled to realize returns from these investments (Schrage 2014). 

Unaligned workplace organization and a lack of employees with complementary skills have at 

times been flagged as key challenges (e.g., Ransbotham et al. 2015).  

Organizational complementarity theory suggests that investing in mutually-reinforcing assets 

(both tangible and intangible) will boost firm performance, though appropriate complements may 

take time to develop, and a mismatch may be temporarily very costly (Kandel and Lazear 1992; 

Milgrom and Roberts 1990, 1995; Holmstrom and Milgrom 1994; Brynjolfsson and Milgrom 2013; 

Brynjolfsson et al. 2021). Empirical studies have validated the importance of complementary 

investments and organizational alignment for realizing the value of IT (Bresnahan and Greenstein 

1996; Black and Lynch 2001; Caroli and Van Reenen 2001; Bresnahan et al. 2002; Melvill et al. 

2004; Aral and Weill 2007; Bloom et al. 2012; Bapna et al. 2013), as well as data-centered 

practices (Aral et al. 2012; Tambe et al. 2012; Brynjolfsson and McElheran 2019).  

Increasingly, attention is turning to the broader competitive implications of these increasing 

and persistent differences among firms. Concentration and inequality in workplace conditions and 

employee earnings are not only receiving increased scrutiny (Song et al. 2018, Autor et al. 2020), 

but these trends are increasingly attributed to technology investment within industries and firms 

(Bessen 2017; Bennett 2020b; Lashkari et al. 2020; Barth et al. 2020). 

Recent studies have moved beyond general-purpose IT to specifically studying analytics. 

Tambe (2014) and Wu et al. (2019, 2020) rely on large-scale resume data to home in on analytics 

use via the complementary human skills hired to deploy it in firms. Combining this with public 

firm data (Compustat) or smaller-scale surveys yields insights into performance and how analytics 

                                                 

3 Our survey approach will tend to pick up the practices designed to take advantage of prediction, such as supply chain 

management and demand forecasting, leaning on older techniques and creating “use cases” for newer machine learning 

and “AI”-related technologies that have only recently begun to move out of the testing phase and into actual 

application in production in the U.S. (Zolas et al. 2020). 
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is deployed in innovation activities. Berman and Israeli (2020) explore marketing applications of 

descriptive analytics, with fine-grained usage data from one analytics vendor. 

Our approach conceptually complements these studies in a few ways. To begin, because we 

use a direct survey measure that distinguishes both the extensive and intensive margin of use, we 

can make useful “dose-response” predictions: if some use is beneficial, more use along some 

dimension should yield greater returns up to a point.4 Variation in intensity is difficult to measure 

indirectly, as it is less clear that intensity of use scales directly with demand for labor complements.  

In addition, our direct measure more-accurately captures specific uses of what can often be 

quite general-purpose technology and skills. Our approach is inclusive to a range of analytics tools 

and techniques, giving up precision on specific programming inputs to focus more precisely on 

automation that facilitates prediction. We view this as the right tradeoff for our research question 

given the constraints of our survey-based approach (described below). It further disentangles 

prediction from other uses of data for decision-making, as well as from general managerial 

capacity, either or both of which might be complementary but are conceptually distinct.  

Ultimately, given the widespread awareness of this phenomenon and the voluntary nature of 

adoption, the most straightforward prediction is that adopters of predictive analytics will enjoy a 

productivity payoff. Thus, we first  hypothesize: 

Hypothesis 1a: The use of predictive analytics will be associated with greater workplace 

productivity, on average, all else equal. 

Hypothesis 1b: More-intensive use of predictive analytics will be associated higher productivity, 

on average, compared to less-intensive use (all else equal). 

2.1   “Classic” Complements: IT Capital and Worker Skill  

However, as touched on above, average returns typically mask critical variation in how 

technological change plays out in practice – often unobserved by researchers. To begin, prior work 

has compellingly established the importance of interactions between digital infrastructure and 

complementary human labor in shaping returns to technology adoption. 

                                                 

4 Research on the value of big data shows that an increase in the amount of data available to firms has positive but 

diminishing impacts on prediction accuracy (Bajari et al. 2019). 
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2.1.a   IT Capital Stock 

The collection, storage, and communication of data inputs for predictive modeling all require 

tangible investments in infrastructure such as sensors, transmission equipment, and data storage 

hardware. Building, training, and implementing analytics tools all require corresponding data 

processing hardware and software. Thus, firms with existing IT capital investments that are more 

prepared for the industrial Internet of Things (IoT) and related “big data” innovations at the time 

of our study may possess fully-depreciated investments in infrastructure to collect and analyze 

data, as well as richer data inputs, giving them an advantage in analytics. Building and adapting 

such infrastructure to a particular firm setting is known to be risky and time-consuming (Bresnahan 

and Greenstein 1996), particularly in our manufacturing context (McElheran 2015). Thus, we 

expect that firms with a significantly larger and embedded IT infrastructre will outperform other 

users of predictive analytics: 

Hypothesis 2:   More accumulated IT capital stock will be complementary to predictive analytics, 

showing correlated adoption and mutually-reinforcing productivity gains. 

2.1.b  Skilled Labor 

Prior work has established that more-skilled and better-educated workers are key drivers of 

growth in both manufacturing productivity (e.g.,) and returns to IT (Brynjolfsson and Hitt 2000, 

Black and Lynch 2001, Bresnahan et al. 2002). With increasing digitization and growing 

prevalence of business applications that rely on data, firms increasingly need workers that know 

how to deploy “smart” technologies in production settings (Helper et al. 2019).  They often also 

need workers who can translate analytical output into meaningful business insights (Ransbotham 

et al. 2015). While competition for these workers may drive up wages to a point where there remain 

no excess returns to labor (once appropriately measured), we expect that increasing returns to 

worker skill will boost predictive analytics’ observed contribution to productivity due to the 

underlying complementarities. 

It is an open question whether these skills need to be widely-dispersed throughout the firm or 

only concentrated within a subset of employees who more-intensively interact with the technology. 

We explore a few approaches in the empirical section. As a first cut, we predict that firms with a 

higher share of educated workers will be more likely to have the requisite skills in the requisite 
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roles to leverage more-automated prediction. Thus: 

Hypothesis 3:   Skilled labor will be complementary to predictive analytics use, showing correlated 

adoption and mutually-reinforcing productivity gains. 

Before moving on to other hypotheses, it is worth noting that complementarity between IT 

capital and/or worker skill is not conceptually novel.5 Our intention here is to apply prior theory 

in a novel setting to verify whether these intuitions hold for this latest technological advance. While 

we articulate our formal hypotheses in line with prior predictions, it is not obvious, a priori, that 

they should play out for this latest round of technological change. In fact, precisely because these 

insights have been developed and confirmed for prior generations of IT diffusion, complementarity 

theory predicts that firms will increasingly learn about the importance of these complements. 

Moreover, they should increasingly have pursued mutually-reinforcing bundles of practices and 

investments – possibly to the extent that they are no longer a source of differentiation (Brynjolfsson 

and Milgrom 2013). It thus remains an open empirical question requiring investigation – and 

frequent re-investigation – with data, preferably over reasonably long time periods to reveal the 

direction and extent of organizational adjustment. More on this, below. 

2.2  Process Design Complementarities 

Adjustment becomes a central concern for the next complement we investigate. Predictive 

analytics relies on historical and current data to predict future or currently unobserved outcomes, 

moving beyond descriptions of currently-available data (e.g., Blum et al. 2015, Berman and Israeli 

2019). In general, workplaces with greater automation will provide richer data inputs, for instance 

due to instrumentation embedded in production machinery. This will lower the cost or improve 

the quality of inputs for a given prediction task, all else equal.  

Automation is also likely to enhance returns to prediction by aligning past “states of the world” 

with current and future outcomes. Because automation tends to reduce variance in the production 

process (an oft-cited benefit of robot use in manufacturing, see Dixon et al. 2019), predictions are 

likely to be more accurate. This is particularly true for older, less-flexible automation, provided 

                                                 

5 Though, most prior studies investigate the complementary between general-purpose IT and skilled labor, rather than 

how each interacts with a new technical application, which is what we emphasize, here.  
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the production tasks remain consistent. 

This need for consistency, in turn, has led manufacturing environments with a high degree of 

physical automation to pursue other design choices that reduce variance. A distinction commonly 

understood in operations management, “continuous flow” production processes are typically 

characterized not only by high levels of physical automation but also by low product mix, along 

with high volume per product (e.g., Safizadeh et al. 1996). These processes tend to be more capital 

intensive, which requires more frequent monitoring to maintain machine uptime and ensure 

adequate capacity utilization (McElheran et al. 2020). Notably, this not only boosts the amount of 

objective data available for analysis, but it also raises the stakes with respect to anticipating and 

preventing equipment failure and downtime, forestalling supply chain hiccups, and maintaining a 

steady stream of outbound finished materials. The costs of being reactive versus proactive are 

much higher in these production environments. 

It is conceptually useful to contrast these continuous flow processes with those operating in 

so-called “job shops,” batch-manufacturing plants, or R&D-focused facilities. The latter are more 

likely to have a “jumbled flow” process, support flexible and high-mix but generally low-volume 

(per product) operations, and have shorter setup times between products. Novelty and 

experimentation in both product and process design are frequently emphasized in these settings. 

These lower flow-efficiency processes are central to product innovation, prototyping, and iterating 

on production design (Hayes and Wheelwright 1979a &b).  In such settings, variance is actually 

“more a feature than a bug.” Failures to optimize capacity utilization can still be costly, but 

prediction is unlikely to be as effective in avoiding these costs.  

These considerations have largely been overlooked outside of operations management, 

excepting work by Hayes and Wheelright (1979a & b, and Hayes et al. 1984) advocating for 

alignment between production process design and product market strategy over the product 

lifecycle. Recent work leverages the quasi-fixed nature of these workplace characteristics to 

identify important contingencies shaping the adoption and effectiveness of many “structured 

management” practices (McElheran et al. 2020). Because these features of the production process 

are embedded in expensive and slow-moving capital investments, physical infrastructure, and 

process steps with multiple interdependencies, we expect that they will be slow to adjust to faster-

moving technological advances. This makes them particularly useful for identifying 
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complementarities with predictive analytics use, as one side of the interaction is quasi-fixed over 

relatively long time horizons (Hong et al. 2019). Our hypothesis here has more directionality (we 

would not expect the use of predictive analytics to have any impact on the choice of process design): 

Hypothesis 4:   Production process designs focused on high flow efficiency will promote a greater 

likelihood of predictive analytics adoption and higher returns from predictive 

analytics use. 

2.3  Humans in the Loop – Managerial Capacity and Managers 

We explore a few approaches to understanding the role of humans in this increasingly 

automated activity. We first leverage recent findings that certain managerial practices improve the 

capacity of firms to take advantage of more objective information (e.g., Bilicka and Scur 2019) 

and that objective measures can further reinforce the development of intangible managerial 

capacity to communicate and coordinate informally (e.g., Gibbons and Kaplan 2015), provided 

internal alignment is maintained (Blader et al. 2019).  

Hypothesis 5:   Greater managerial capacity to interpret and respond to objective information 

will be complementary to predictive analytics, showing correlated adoption and 

mutually-reinforcing productivity gains. 

A related and open question, however, is whether increased automation of prediction will increase 

the productivity of individual managers. This could happen to the extent that overall demand for 

human labor in these tasks declines. On the other hand, rising productivity could boost labor 

demand across the board. Given conflicting theoretical predictions (e.g., Acemoglu and Restrepo 

2019), we view the relationship between managerial headcount and predictive analytics as a 

fundamentally empirical question. The net answer to this question is the one of ultimate importance 

for making predictions about the “future of work.” 
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3. DATA 

3.1   Managerial and Organizational Practices Survey (MOPS) 

To generate large-scale, representative panel data on predictive analytics use and sufficiently 

rich workplace characteristics we collaborated with the U.S. Census Bureau to add new, purpose-

designed questions to the 2015 Management and Organizational Practice Survey (MOPS).6 Survey 

response is required by law, yielding a response rate of 70.9 percent and 30,000 complete 

establishment-level observations. Combined with rigorous sample stratification and data 

validation by Census, this obviates the standard concerns about response and selection bias that 

apply to most survey efforts. Our sample contains data for reference year 2015 along with recall 

values for 2010. Measure validity is also high: adding questions to Census surveys requires 

rigorous cognitive testing and validation (Buffington et al. 2017), essential for measuring a recent 

and fast-emerging technology across different industry settings. 

The key question for our study asks, “How frequently does this establishment typically rely on 

predictive analytics (statistical models that provide forecasts in areas such as demand, production, 

or human resources)?” Respondents—typically a senior plant manager or accounting expert with 

the help of business-function or line managers—are asked to mark all that apply among Never, 

Yearly, Monthly, Weekly, and Daily, with separate columns for 2015 and recall for 2010 (See Table 

1). With recall data for 2010, we have in total 51,000 observations across the two years.7 

<<Table 1 here>> 

Note that this approach requires first and foremost that respondents understand what is meant 

by “predictive analytics.” While we give some examples, it also became apparent in cognitive 

testing of the survey instrument that this term was both well understood by 2015, but still a bit 

novel and “buzzword-y.” A consistent challenge for measuring emerging technologies, in fact, is 

pinning down terminology. It is important to be specific enough to capture the phenomenon of 

                                                 

6 See Bloom et al. (2019) and Buffington et al. (2017) for more details.  
7 Note that sample counts are rounded to comply with Census disclosure avoidance requirements throughout the paper. 

We use the total number of observations (~51,000) as our baseline sample, but all key results are robust to restricting 

attention to a subsample for which respondent tenure dates back to at least one year before the recall reference year. 

This has been found to reduce measurement error for the other management practices measured in the MOPS (Bloom 

et al. 2019).  
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interest while being general enough to require little cognitive processing of respondents to make 

sense of it; measuring adoption early is essential, yet trying too early can create tremendous hurdles 

to measurement (McElheran 2018, Felton et al 2021).  

We first explore the extensive margin of analytics use, regardless of frequency, as there may 

be heterogeneity in inputs (such as data quality) that remain unobserved. However, we also capture 

variation along the intensive margin with a numeric value ranging from 0 to 4 for each frequency 

category in ascending order, defaulting to the highest in cases of multiple categories.8 We lean on 

this more-continuous measure, in particular, in our instrumental variables (IV) estimation. In so 

doing, we avoid potential complications due to non-linear first-stage estimation. This also captures 

more of the variation among plants in their use of predictive analytics. 

3.2   Linking to Administrative Data 

We merge the MOPS data with the Annual Survey of Manufactures (ASM), the Census of 

Manufactures (CMF), and the Longitudinal Business Database (LBD) to bring in information on 

detailed production inputs (including capital stocks and costs of labor, materials, and energy), 

outputs (total value of shipments and value-added), age, and whether the establishment belongs to 

a multi-establishment firm.9 We restrict attention to observations with complete information on 

sales, costs of labor, material, and energy, and employment for technical and disclosure-avoidance 

reasons.  

3.3   Descriptive Statistics on Predictive Analytics Use 

Predictive analytics has widely diffused among manufacturing plants across almost all states 

(Figure 1) and industries (Figure 2), as well as among plants of different sizes and ages.10 Notably, 

much of this diffusion took place as early as 2010, with average adoption well over 70 percent 

                                                 

8 We also explore using a normalized score based on taking the average of multiple responses for a given establishment 

(see Bloom et al. 2019) and find results consistent to the top counted frequency measure. 
9 The ASM is conducted annually, except for years ending in 2 and 7, when it is included in the CMF. This allows us 

to construct a panel for all ASM/CMF variables between 2010 to 2015, which we use in our timing test to rule out 

reverse causality.  
10 Correlations between predictive analytics and plant size and age do not show striking patterns but are available upon 

request. 
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(Table 2). Among the roughly 18,000 establishments with complete data for both years,11 we 

observe a small 1.4 percent average yearly increase.12 

<<Figure 1 here>> 

<<Figure 2 here>> 

<<Table 2 here>> 

 

This high penetration and low rate of change have implications for our empirical approach (see 

Section 3). In particular, they hinder estimation of within-plant effects over time (a useful approach 

for addressing unobserved workplace heterogeneity) for two key reasons. First, focusing on 

changes in the smaller subpopulation of late adopters would distort our inference. It is widely 

believed that later adopters of new technologies tend to be those with low anticipated returns, 

disproportionately high costs of adoption, and/or lagging awareness of the technology (Griliches 

1957; David 1969; Bresnahan and Greenstein 1996). But we are interested in adoption and 

performance benefits—or the barriers thereto—for firms throughout the diffusion curve. Also, 

statistical power in the subsample of establishments that shift their predictive analytics use is 

severely limited, despite the overall size of our data set. Therefore, we rely primarily on cross-

sectional variation in our analysis, addressing selection into adoption to some degree using our IV 

estimation. Our primary approach to addressing workplace heterogeneity—both varying and time-

invariant drivers—that could bias our inference is to directly control for an unusually rich set of 

workplace characteristics. See Section 3 for more on our empirical approach. 

3.4   Measuring Workplace Complements  

IT Capital Stock 

We estimate IT capital stocks using data on capital investment in computer and peripheral data 

processing equipment from the ASM and CMF panel dating back to 2002. We use a standard 

perpetual inventory approach and industry-level deflators for hardware from the Bureau of 

                                                 

11 The rotation of the ASM sample frame in years ending with 4 and 9 limits the number of establishments that have 

complete data for both reference years. However, a core “certainty sample” of larger plants covering the majority of 

economic activity in this sector is present for both years, conditional on survival. 
12 The adoption of predictive analytics increases from 73 percent in 2010 to 80 percent by 2015.  
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Economic Analysis (BEA), imputing values for years in which they are missing and depreciating 

at the rate of 35 percent per year following Bloom et al. (2014).13 A key advantage of this measure 

is that it accounts for the overall stock of IT. If firms require time to adjust and utilize novel IT 

investment, we will be able to capture the lagged effect.14 

Skilled Labor 

We leverage information from the MOPS regarding the percentages of managers and non-

managers with bachelor’s degrees. Combined with the total number of employees (from the ASM) 

and the number of managers (from the MOPS), we calculate the weighted average of the 

percentage of employees (both managers and non-managers) with a bachelor’s degree following 

Bloom et al. (2019). This approach is similar to prior studies using education as a proxy for human 

capital (e.g., Bresnahan et al. 2002).   

Production Process Design 

To capture this historically intangible dimension of the workplace setting, we leverage a 

purpose-built measure of production process design also added to the 2015 MOPS that 

distinguishes plants with high-flow production processes (including both cellular and continuous 

flow manufacturing) from more flexible and/or innovation-focused production.15 The relationships 

between this measure and the process design characteristics described above have been validated 

for the plants in this sample (McElheran et al. 2020). 

It is worth noting that these production design characteristics are not merely “quasi-fixed,” as 

in prior work (e.g., Safizadeh et al. 1995), but are virtually time-invariant in our sample. In our 

data, the percentage of establishments transitioning into continuous-flow production process is less 

than 0.7 percent per year between 2010 and 2015. As a result, this feature is particularly useful for 

                                                 

13 Results are quite insensitive to the choice of depreciation rate. 
14 A reasonable concern here is that this measure fails to capture the effect of capitalized software (e.g., ERP 

investment), which might also play a significant role in facilitating the implementation of predictive analytics or 

otherwise boost productivity (Bessen and Righi 2019, Barth et al. 2020). To address this concern, we conduct several 

robustness tests in both the baseline performance analysis and the complementarity tests. First, we control separately 

for software and IT services expenditures from the ASM, in addition to IT capital stock. Alternatively, we use a 

measure summing up all IT investments (hardware, software, and services) instead of the IT capital stock variable. In 

both cases, our findings remain consistent. 
15 See Kiran (2019) for a detailed description of cellular manufacturing.   
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empirically identifying complementarities, as it is not subject to time-varying adjustment with 

respect to other, potentially unobserved factors (see discussions in Athey and Stern 1998, 

Cassiman and Veuglers 2006, and Hong et al. 2019). Moreover, it varies among establishments 

belonging to the same parent firm, highlighting the importance of plant-level data for our analysis. 

Humans in the Loop 

We explore a few approaches to measuring how human inputs may shape – and be shaped 

by - this particular type of automation. First, we consider two different measures of managerial 

capacity. The first relies on only one question from the first section of the MOPS: the number of 

key performance indicators (KPIs) tracked by the firm. This is a useful objective measure of how 

intensively the plant has engaged in identifying which aspects of its production process are critical 

to performance and created routines for tracking – and presumably responding to – them. One 

concern with this measure is that it is very narrow, ignoring information we have on a broader set 

of practices associated with managerial capacity to leverage objective information (e.g., Bilicka 

and Scur 2020). It is also subject to a greater degree of measurement error (Bloom et al. 2019). 

Thus, we also construct an index of all practices in the first section of the MOPS and confirm that 

they are distinct from the other “structured management” controls we separately include in most 

of our specifications.16  

To explore complementarity with the managers themselves, we rely on measures of both 

the number of managers employed at the plant (question 32 on the MOPS) and the share of total 

plant employment represented by managers. We observe this data for both 2010 and 2015. 

3.5  Sample Characteristics 

Table 2 presents key summary statistics for our sample. Despite the high prevalence of at least 

some use of predictive analytics, the intensive margin is more modest, with most plants reporting 

only annual and/or monthly use (mean frequency is 1.12). Although our sample directly captures 

the majority of economic activity in the sector, very small establishments are under-represented: 

sample mean annual sales and employment in log terms are 10.37 and 4.56, respectively, or about 

                                                 

16 This latter measure is our preferred approach, but these results are still pending disclosure avoidance review by 

Census. Thus, we present our findings using the KPIs-based measure. Our core findings are robust to either approach. 
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$32 million and 96 employees, with an average age at around 24 years old. The mean plant has 

roughly $175,000 of IT capital stock and slightly over 15 percent of workers with a bachelor's 

degree. In the pooled sample, 35 percent of plants are designed for high flow efficiency, which 

changes very little over the five years in the balanced panel. 

 

4.  EMPIRICAL STRATEGY  

4.1   Production Function Estimation 

Our empirical exploration proceeds in steps. First, we estimate the average effect of predictive 

analytics on performance. For this, we take a conventional approach to modeling the plant 

production function (Brynjolfsson and Hitt 2003; Bloom et al. 2012), estimating the log-

transformed Cobb-Douglas production function in equation (1): 

𝐿𝑜𝑔(𝑌𝑖𝑗𝑡) = 𝛽0 + 𝛽𝑃𝐴 log(𝑃𝐴𝑖𝑗𝑡) + 𝛽𝑘 log(𝐾𝑖𝑗𝑡) + 𝛽𝑙 log(𝐿𝑖𝑗𝑡) + 𝛽𝑚 log(𝑀𝑖𝑗𝑡) +  𝜇𝑋𝑖𝑗𝑡 + 𝑤𝑖𝑗𝑡 + 𝜀𝑖𝑗𝑡      (1)  

𝑌𝑖𝑗𝑡 is sales by establishment i in industry j at time t. Indexed similarly by establishment i and 

time T,  K denotes non-IT capital stocks at the beginning of the period, 𝑃𝐴 is an indicator (or 

frequency measure) for use of predictive analytics, 𝐿 is labor input, 𝑀 is expenditure on materials 

and energy inputs, and 𝑋 is a vector of above-mentioned controls. The three potential 

complements are included in X in some specifications, with process design fixed in any 

robustness tests exploring panel models. Both 𝑤𝑖𝑗𝑡—the “technical productivity”—and 𝜀𝑖𝑗𝑡—the 

“shock to productivity”—are unobservable econometrically (but 𝑤𝑖𝑗𝑡 might be observable by 

establishments). Our first coefficient of interest is 𝛽𝑃𝐴, the average relationship between 

predictive analytics and plant productivity, all else equal.  

4.2 Assessing Causality: Instrumental Variables and Timing Tests 

A standard concern with this approach is that predictive analytics use may be endogenously 

determined, biasing interpretation of 𝛽𝑃𝐴.17 Accordingly, we assess causality in two ways: with 

                                                 

17 This will happen if plants with higher expected returns to predictive analytics use will choose to adopt, upwardly 

biasing estimates of the average treatment effect. Tambe and Hitt (2012) provide a useful discussion of this common 

concern in the IT productivity literature, suggesting that such concerns may be overemphasized. System GMM and 
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instrumental variables (IV) estimation and timing tests.   

IV Strategy 

For our IV estimation, we exploit an indicator that data collection at the plant is “nudged” by 

government regulations or agencies. The motivation for this instrumentation strategy rests on the 

so-called “Porter Hypothesis” (Porter 1991; Porter and Van der Linde 1995), which argues that 

well-designed government regulations can stimulate firms to innovate and adopt new technology 

and practices. Of relevance in our setting, data collection at manufacturing facilities is often 

mandated by federal and local governments to demonstrate compliance with environmental and 

safety regulations. For instance, the Environmental Protection Agency (EPA) requires 

manufacturing firms (e.g., pulp and paper, petroleum, and chemical manufacturing) to install 

Continuous Emission Monitoring Systems (CEMS) for emissions data collection and monitoring. 

Leveraging this data in government-mandated reports requires that workers and managers are 

trained in systems and techniques for capturing, analyzing, and communicating data-driven 

conclusions. To the extent that data collection efforts, worker training, and data-driven monitoring 

practices involve sunk costs—yet may be applicable more generally—facilities exposed to such a 

statutory intervention will be more likely to gain infrastructure and systems for general data 

collection, storage, and analysis for reasons disconnected to their expected productivity benefits.18 

Not all firms will be able to translate this into improved management of their production 

processes.19 For some, however, this external “nudge” into increased investment in and awareness 

of data resources may shift practices on the margin. Moreover, significant and unexpected 

consequences of such a mechanism are not merely theoretical. The case of Alcoa Corporation in 

the late 1980s and 90s is illustrative. When Paul O’Neil took leadership of the firm, his unexpected 

                                                 

other semi-structural estimation methods (see Arellano and Bond 1991; Blundell and Bond 2000; Levinsohn and 

Petrin 2003; Ackerberg et al. 2015) have performed well in recent studies of IT productivity (e.g., Tambe and Hitt 

2012; Nagle 2019), and point to quite limited upward bias due to self-selection. Unfortunately, our two-year panel 

lacks the longer lags typically required for this estimation approach.  
18 Abundant anecdotes support the prevalence of this phenomenon. The Occupational Safety & Health 

Administration (OSHA) Recordkeeping rule can serve as another example: they require about 1.5 million employers 

in the United States to keep records of their employees’ work-related injuries and illnesses under the Occupational 

Safety and Health Act of 1970. For more details on OHSA Recordkeeping rule, see the OSHA website: 

https://www.osha.gov/recordkeeping2014/records.html.   
19 Note that plants already collecting and using data extensively may be less responsive to our instrument, which we 

discuss below. 

https://www.osha.gov/recordkeeping2014/records.html
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mandate to prioritize safety resulted in an abundance of data about accidents—but also about the 

performance and maintenance of infrastructure and workplace practices underlying those accidents. 

New data enabled new performance metrics, which were analyzed with increased frequency and 

linked to manager pay at the firm (Fortune 1991). The end result was not only improved worker 

safety but also improved productivity (Clark and Margolis 1991). 

For this to be useful as an instrument, such oversight needs to be unrelated to the productivity 

of affected plants. Historically, U.S. government regulations in the manufacturing sector have fit 

this description. For instance, the objective of EPA CEMS requirements or OSHA’s 

Recordkeeping Rule is restricted to public health and worker safety rather than plant performance. 

Although objections to such regulation have typically argued that they divert resources from other 

productivity-enhancing activities and investments (Gollop and Roberts 1983; Gray 1987), 

empirical evidence suggests that many well-designed regulations have had a limited negative 

impact on manufacturing competitiveness or overall performance (Jaffe et al. 1995; Lanoie et al. 

2011; Ambec et al. 2013). Nevertheless, the standard expectation is that the direct effect will work 

against a positive relationship between productivity and government mandates to collect data.  

Following these arguments, government-mandated data collection should satisfy both the 

relevance and exclusion restrictions for a valid instrument. As a practical matter, capturing this 

regulatory nudge at a sufficiently granular level is challenging. We addressed this by including 

another new question on the MOPS that captures government authority (among other decision-

makers) over what type of data is collected at the plant. About 25 percent of the plants in our 

sample report that government regulations or agencies choose (at least in part) what type of data 

they collect (see Table 2).20  

Timing  

Another threat to identifying a causal link between analytics and firm performance is the 

possibility that an unrelated productivity shock provides resources needed to invest in new 

technology or practices—not the other way around. To address this, we explore the timing of 

adoption vis-à-vis the timing of productivity changes. Leveraging annual data on inputs and output 

                                                 

20 See question 26 in MOPS 2015 questionnaire for more detail; see Table 2 for the definition and descriptive statistics. 

A similar approach is used in a related study of data-driven decision-making by Brynjolfsson and McElheran (2019).  
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from the ASM and CMF, we construct a panel from 2010 to 2016 for a large subsample of our 

data. We exploit the recall questions to place plants in three categories: those that had adopted 

predictive analytics “early” by 2010, “late” adopters (between 2010 and 2015), and “non-adopter” 

plants that had not adopted by 2015. Leaning on evidence that many (if not most) of the 

organizational practice measures in the MOPS are quasi-fixed over this period (Bloom et al. 2007), 

we extrapolate the organizational complements outside of our core sample window and estimate 

comparable yearly production functions for these differently-timed groups from 2010 to 2016.  

If predictive analytics causes better productivity, early adopters should have a performance 

premium at or near the start of our panel, compared to both late adopters and non-adopters. In the 

2010-2016 window, late adopters should outperform non-adopters. Validating this pattern in the 

data would rule out reverse causality between productivity and adoption.   

To test for this, we again rely on pooled OLS estimation with industry-year fixed-effects and 

rich organizational controls. It is worth noting here that, in addition to the limits on panel data 

estimation discussed above, the five-year gap in our two-period panel generates additional 

measurement error in this undertaking. For instance, our “late” adopters may have adopted at any 

time in the 2010-2015 window; thus we anticipate estimates will be considerably noisier in this 

analysis.  

4.3 Formal Tests of Complementarity: Correlation and Productivity Gains 

After addressing the questions of causality in the baseline performance model, we proceed with 

the two formal tests established for identifying complementarities: correlation in adoption and 

increasing returns when interacted in the performance equation (Brynjolfsson and Milgrom 2013). 

First, if complementarities exist between predictive analytics and workplace features, we 

should observe higher adoption of predictive analytics among establishments with these 

investments and practices. We test for conditional correlations with IT capital stock, educated 

workers, and high flow efficiency in both linear probability and probit models, including a rich set 

of workplace controls. These include controls for structured management practices focused on 

operations and human resources management (Bloom et al. 2019, Scur et al. 2021), general 

reliance on data in decision-making (Brynjolfsson and McElheran 2019), plant age, multi-unit 
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status, headquarters status, and production process design. 21  We also control for geographic 

differences and industry-year fixed-effects to account for any transitory industry-specific shocks. 

Correlated adoption will be buttressed by mutually reinforcing returns to predictive analytics 

and complementary workplace features. Following the empirical strategy in Athey and Stern (1998) 

and Brynjolfsson and Milgrom (2013), we explore interactions in the following production 

function equation (2): 

𝐿𝑜𝑔(𝑌𝑖𝑗𝑡) = 𝛽0 + 𝛽𝑃𝐴 log(𝑃𝐴𝑖𝑗𝑡) + 𝛽𝑐𝐶𝑖𝑗𝑡 + 𝛽𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 log(𝑃𝐴𝑖𝑗𝑡) × 𝐶𝑖𝑗𝑡 + 𝛽𝑘 log(𝐾𝑖𝑗𝑡) + 𝛽𝑙 log(𝐿𝑖𝑗𝑡) +

𝛽𝑚 log(𝑀𝑖𝑗𝑡) +  𝜇𝑋𝑖𝑗𝑡 + 𝑤𝑖𝑗𝑡 + 𝜀𝑖𝑗𝑡                                                             (2) 

All variables in equation (2) are identical to those in equation (1) except 𝐶𝑖𝑗𝑡, which denotes, 

respectively, indicators for high IT capital stock, high percentage of educated workers, and high 

flow-efficiency production. A positive and significant 𝛽𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛  term is indicative of such 

performance complementarities. The presence of significant findings in both tests is not always 

expected, as increased awareness of complementarity within a population of competing firms will 

lead to more correlated adoption but potentially lower excess productivity gains. Passing both tests 

may be taken as strong evidence of complementarity (Brynjolfsson and Milgrom 2013). 

 

5. RESULTS 

5.1 Conditional Correlation between Predictive Analytics and Workplace Performance  

Table 3 explores the average conditional correlation between predictive analytics use and plant 

productivity. Using logged sales as the dependent variable and controlling for conventional inputs 

(i.e., non-IT capital, labor, materials, and energy) and the above-mentioned establishment controls, 

we arrive at an estimate of revenue-TFP (Foster et al. 2008). All columns further include industry-

                                                 

21 These controls are motivated by prior work associating them with technology adoption and productivity. Our 

management index differs from that in Bloom et al. (2019) by excluding the data-related MOPS questions. See Dunne 

(1994) and Foster et al. (2016) for more on the relationships between plant age, technology adoption, and performance. 

See Collis et al. (2007) for discussion of multi-unit and headquarter status. See Safizadeh et al. (1996) for more on 

manufacturing process designs. The indicator for multi-unit status equals one if the plants belong to multi-unit firms. 

We access the headquarter (HQ) status of a plant from the MOPS survey data where we define the HQ indicator equal 

to one if the plant is reported to be the HQ of a firm. Please see the definition of our measure for production process 

design in Table 2 (e.g. from the MOPS 2015). This set of controls is in all fully specified models for adoption and 

performance analysis unless stated otherwise.  
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year controls at the narrow 6-digit NAICS level. For example, this distinction captures the 

difference between Folding Paperboard Box Manufacturing (NAICS 322212) and Setup 

Paperboard Box Manufacturing (322213).  

<<Table 3 here>> 

Column 1 indicates that the extensive margin of predictive analytics use is associated with a 

roughly 2.87 percent (significant at the one-percent level) higher productivity, all else equal. This 

magnitude is large, representing $918,000 greater sales at the sample mean ($32M) while holding 

many other factors constant. Column 2 adds a rich set of plant-level controls, including the 

potential complements explored below. 22  The coefficient drops significantly to around 1.45 

percent, consistent with an important role for organizational enablers that would otherwise load 

onto the returns to predictive analytics when not separately accounted for. Note that this 

specification controls for other structured management practices and top use of data-driven 

decision-making (DDD) to address concerns that unobserved management quality or style could 

be affecting our estimates (Brynjolfsson and McElheran 2019; Englemaier et al. 2019). Indeed, 

these controls also somewhat pull down the coefficient on predictive analytics use (not shown 

separately due to space limitations), pointing to the risk of omitted variable bias or potential 

additional complementarities beyond the scope of this study. Nonetheless, the coefficient remains 

both statistically significant and economically non-trivial: 1.45 percent higher productivity is 

commensurate with $464,000 higher sales, on average, in excess of any costs of implementing the 

practice. This is consistent with Hypothesis 1a. 

Column 3 explores the intensive margin of predictive analytics use from Hypothesis 2. The 

coefficient on the frequency index is positive and significant at the one-percent level and 

economically meaningful. Based on its mean and standard error (see Table 1), moving from yearly 

to monthly use of predictive analytics is associated with 0.89 percent higher productivity, 

equivalent to roughly $285,000 higher sales.23 Extending this out linearly (pending disclosure 

                                                 

22  For this draft of Table 3, managerial capacity in the operations function is rolled into the “High Structured 

Management” measure, which also includes target-setting and Human Resources management. A model with these 

entering in separately is essentially unchanged and pending disclosure avoidance review. 
23 For easy interpretation, we treat the frequency of predictive analytics as continuous variable (Long and Freese 2006). 

Results from additional tests treating it as a discrete ordinal variable are largely consistent and available upon request.  
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avoidance review) would yield four times this benefit for plants at the highest frequency of use. 

We explore the robustness of these patterns to alternative measures for both the dependent and 

independent variables (see Table A1). Our findings are robust to using value-added as the output 

measure and alternative measures for the use frequency of predictive analytics.24   

<<Table 4 here>> 

5.2  Exploring Causality 

Thus far, we have explored the pooled OLS regressions without considering measurement error 

or endogeneity in plant adoption of predictive analytics. Column 4 reports instrumental variable 

estimation using government-mandated data collection as an instrument for the predictive analytics 

index.25  

The first stage of our two-stage least squares (2SLS) estimation shows that government-

mandated data collection is highly correlated with the use of predictive analytics (see also Figure 

5, below). In the second stage, the effect of predictive analytics on plant productivity remains large, 

positive, and statistically significant. This suggests a causal relationship between predictive 

analytics and performance. 

Despite standard concerns of upward bias in productivity estimation due to self-selection into 

technology use, the IV coefficient is greater than that from OLS estimation. This larger magnitude 

is consistent with downward bias in OLS, possibly attributable to errors-in-variables bias arising 

from measurement error—something that has been found in other MOPS measures (Bloom et al. 

2019). Not mutually exclusive, this pattern is also consistent with strong local treatment effects, 

whereby the subsample of workplaces that are the most receptive to the influence of the 

government mandate also experience the greatest productivity shifts. This could arise if less data-

savvy (and likewise less-productive) plants enjoy larger indirect gains from data collection in 

response to requests from regulators (the “Porter Hypothesis” mechanism). In this vein, it is worth 

re-emphasizing that estimates in columns 2-4 control for management practices that are typically 

                                                 

24 Our results are also robust to using labor productivity and estimated TFP (e.g., the conventional 4-factor TFP using 

cost of material, energy, labor, and capital stock (following, e.g., Bartelsman and Gray 1996) as alternative output 

measures. It is also robust to estimating a translog production function (see Table A2 in the appendix).  
25 Using the index for frequency of predictive analytics for the IV estimations avoids potential complications due to 

non-linear first stage estimation, and also better captures variation in plant use of predictive analytics. 
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unobserved in other studies, but strongly associated with higher productivity in this sector (Bloom 

et al. 2019; Brynjolfsson and McElheran 2019). Addressing these “intangible” workplace features 

with the rich MOPS data significantly improves our identification of the coefficients of interest.  

We further probe a causal interpretation by exploring the timing of adoption and performance 

in our panel. Figure 3 plots the coefficients for “early” and “late” indicators of predictive analytics 

use (extensive margin) in the performance model between 2010 and 2016. Consistent with a causal 

interpretation of Hypothesis 1, early adopters perform significantly better from the start of our 

panel and retain their advantage vis-a-vis non-adopters through 2016. The performance for later 

adopters is not significantly different from that of non-adopters through 2013. We know that later-

adopting plants did so in the 2010-2015 window, but not precisely when. In line with steadily 

increasing diffusion of beneficial practices or technology over time (e.g., Hall 2004), performance 

in this group begins to rise and is significantly different from non-adopters by 2014. Notably, these 

later adopters close the performance gap, becoming statistically indistinguishable from early 

adopters by 2016. The timing of these effects are inconsistent with reverse causality, further 

supporting a causal interpretation.  

<<Figure 3 here>> 

5.3 Complementarity Tests 

Results in Table 3 hint at the sensitivity of performance gains when key workplace features 

are accounted for. Here, we explore this systematically by estimating how the likelihood of 

predictive analytics adoption changes with the presence of key workplace features. 

Correlation Tests 

Figure 4 depicts correlation tests for complementarity based on a linear probability model of 

whether or not the plant uses predictive analytics (at any frequency). This estimation includes 

relatively few controls, limiting them to plant size and age, as well as six-digit industry (NAICS) 

and year indicators. This approach is useful for understanding how adoption of predictive analytics 

varies across different levels of the potential complements. Panel a) of Figure 4 indicates that 

adoption of predictive analytics is associated with IT capital stock accumulation above a certain 

threshold—only the top quintile of IT capital stock has a significant correlation with predictive 

analytics use. Panel b) shows that there is a more-continuous increasing relationship with skilled 
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labor: the likelihood of adoption rises across all quintiles of worker education. (For ease of 

interpretation, we focus on above-median worker skills in the estimations to follow.) Panel c) 

shows that the “jumbled flow” of the job shop process design is associated with a significantly 

lower (both statistically and empirically) likelihood of predictive analytics use than the other 

process design types. The other flexibility-favoring process designs have a somewhat higher (and, 

in the case of R&D facilities, noisier) correlation with predictive analytics. The strongest 

correlation is with the efficiency-oriented designs (robustness checks of our results support 

combining them to ease interpretation in the estimations that follow). Panel d) shows that greater 

managerial capacity is associated with a higher probability of using predictive analytics.  

<<Figure 4 here>> 

 

In a more saturated model, IT infrastructure, skilled workers, high flow efficiency, and 

managerial capacity are all significantly correlated with the use of predictive analytics at the one-

percent level or higher.26 Figure 5 is organized to show the estimated increase in probability 

associated with each potential complement, building from a benchmark of 20.6 percent.27 Being 

in the top 10 percent of the IT capital stock distribution (by sample year) increases the likelihood 

of predictive analytics use by 1.5 percentage points. Being in the top quartile by share of employees 

with a bachelor’s degree is associated with an additional 2.8 point increase; together they account 

for a 4.3 percentage-point greater likelihood of adoption. High flow efficiency adds 1.1 points 

more. A workplace with all three in place is 5.4 percentage points—or over 26 percent—more 

likely to use predictive analytics than a workplace without any of these reinforcing practices or 

investments. High managerial capacity has a large effect, adding another 4.6 percentage point. A 

workplace with all four workplace characteristics is 10 percentage points – or 30.6 percent more 

likely to use predictive analytics at some frequency. This is consistent with complementarity of a 

sufficiently advanced type, whereby managers are aware of mutually-reinforcing benefits and will 

seek to adopt complementary practices together.  

<<Figure 5 here>> 

                                                 

26 Regression estimates are unwieldy and omitted to conserve space but are available upon request.  
27 Based on the constant term in the unreported full linear probability regression; available upon request. 
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Performance Tests 

We next explore the extent to which organizational features help explain the heterogeneous 

returns from predictive analytics, as complementarity theory would predict. We find clear evidence 

that predictive analytics contributes far more to performance when combined with certain 

workplace complements.  

The results are presented in Figure 6. The y-axis indicates the magnitude of the coefficients 

and the x-axis labels indicate the categories for each complement (e.g., predictive analytics with 

high IT capital stock and then without high IT capital stock). Confidence intervals (at 95%) are 

plotted to indicate statistical significance. All three interaction terms are positive and significant, 

consistent with strong complementarity. Notably, with high levels of IT capital, a significant share 

of educated employees, flow-efficient manufacturing processes, or high managerial capacity the 

effects of predictive analytics are around 4.1 percent, 2.9 percent, 3.1 percent, and 2.2 percent 

respectively (see regression results in Table 4). Significance of the differences between the 

interacted terms and main effects is also reported in Figure 6. Strikingly, the marginal effects of 

predictive analytics are never statistically different from zero, unless they are combined with these 

other tangible and intangible workplace characteristics.  

<<Figure 6 here>> 

<<Table 4 here>> 

While our findings are visually more-intuitive using indicators for high levels of each 

complement, they largely hold for continuous measures, as well. As shown in Table A4, 

interactions between predictive analytics use (extensive margin) and continuous measures of the 

four complement are economically and statistically significant, excepting the IT capital measure.  

Consistent with the patterns in Figure 4, complementarities here are only found at quite high levels 

of IT capital accumulation. The interaction at the mean is not statistically different from zero (see 

column 1). In column 2of Table A4, a higher percentage of workers with bachelor’s degrees shows 

a positive interaction at the mean with predictive analytics use that is significant at the 5% level. 

In column 3, increasing managerial capacity, measured by higher numbers of key performance 
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indicators (KPIs) also reinforces returns to predictive analytics, even at lower levels of intensity.28   

A natural question at this point is whether any of these complements are more important than 

others. The overlapping confidence intervals in Figure 4 suggest that they are not.  

Not presented in the table are the results of three-way (or more) interactions between these 

distinct measures. This is because we do not find any statistically significant three-way interactions. 

One possibility is that they are actually different measures of a single underlying system of 

workplace practices. We investigate this through a principal component analysis and interact this 

principal component with predictive analytics use in the performance test.29 The results remain 

consistent, suggesting that we are, indeed, picking up this integrated system of practices, the linear 

combination of which drives much of the variation we observe. 

Overall, these findings not only provide evidence in support of complementarities, but they 

provide clear boundary conditions on the phenomenon and practical guidance for managers of 

organizations considering these practices.  

5.4  Humans and the Future of Work 

In a set of results that are still pending disclosure avoidance review by the Census Bureau, we 

explore interactions between predictive analytics and the jobs occupied by managers. Just because 

managerial capacity is mutually reinforcing with predictive analytics, it does not necessariy follow 

that the number of humans doing those jobs is also complementary. Specifc coefficients will be 

available in soon-forthcoming revision. In the meantime, qualitatively, we find that predictive 

anlaytics use is positive and significantly correlated with both the number of managers and the 

managerial share of total employment at the plant. However, when we look at change over time, 

we find that the share of mangerial labor does not change significantly in response to predictive 

anlaytics use. Instead, the total number of managers increases, consistent with a labor-

augmentation outcome, on net. Even if individual managers are made more productive by 

automation (creating opportunities to reduce the total number), rising productivity leads to a net 

gain in overal managerial employment. This is in sharp contrast to the findings for managerial 

                                                 

28 Results for ordered categories of flow efficiency and for our broader measure of managerial capacity are pending 

disclosure avoidance review, but the qualitative patterns are quite consistent.  
29 We extract a key principle component from the four complements and interact it with predictive analytics (without 

the other measures) and find a significant interaction between the two. Results pending disclosure avoidance review.  
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labor due to physical automation (Dixon et al. 2019), and suggests that fears of the “Robopacalypse” 

provide an incomplete view into the future of work. 

6. Conclusion 

There has been explosive growth in digital information and an accompanying increase in 

business expenditure on data and analytics. Although compelling anecdotal and small-sample 

evidence exists that predictive analytics is associated with improved performance in some settings, 

stories of unrealized potential also abound, and evidence outside of specific applications remains 

lacking. In this paper, we explore the productivity effects of predictive analytics by analyzing its 

use in over 30,000 plants while controlling for a long list of potentially confounding variables. We 

assess causality in two ways and explore the role of complementary workplace investments in 

tangible and intangible infrastructure and management practices.  

We were able to do this by working with the U.S. Census Bureau to field a purpose-designed 

survey for a representative sample of the U.S. manufacturing sector. This sector has historically 

been a leading adopter of frontier technologies, continues to be so (Zolas et al. 2020), and is one 

of the longest-standing contexts for economic research. Thus, our inferences are likely applicable 

to a large distribution of firms that also have increasingly well-understood economic dynamics 

(e.g., Decker et al. 2020).  

In our sample, we find that plants have extensively adopted predictive analytics. Those plants 

reporting use of predictive analytics show 1 percent to 3 percent higher productivity on average, 

which is worth roughly $464,000 to over $918,000 in increased sales for the average plant. We 

find clear evidence that the higher performance is caused by the use of predictive analytics and is 

not merely a spurious correlation. Specifically, our quasi-experimental evidence finds higher 

performance for plants where government mandates exogenously increase the use of predictive 

analytics, and our timing analysis finds that predictive analytics precedes performance gains— 

but not vice-versa.    

Most importantly, we identify four key complements that can explain why some firms reap 

large gains from predictive analytics while others see no benefit. Predictive analytics generate 

large payoffs when combined with IT capital investment, educated workers, flow-efficient 

production processes, or managerial capacity for responding to data-driven insights -  but not when 

they are implemented without at least one of these complements. Establishments are more likely 
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to adopt predictive analytics with the presence of these complements and enjoy significantly higher 

productivity, post adoption. In fact, the higher performance effects of predictive analytics depend 

crucially on having in place at least one element of what appears to be an integrated latent system 

of workplace practices.  

Our study is not without limitations. Notably, we do not observe other benefits that may accrue 

to analytics use but not show up in productivity estimates, such as innovation or improved 

administration at headquarters, which could spill over to other establishments within the firm. This 

may be particularly relevant for flexibility-focused plants that undertake product and process 

innovation activities: these can harm multi-factor productivity—as it is traditionally measured—

at the plant in question, yet support survival and performance of the parent firm. Also, we do not 

explore the relationship of predictive analytics to survival, which if positive, would argue for our 

estimates being a lower bound on these benefits, including for workplaces lacking the right 

complements. Finally, our setting is restricted to the manufacturing sector. This has desirable 

attributes for data availability and well-understood approaches to measuring performance, but may 

limit generalizability to services or other settings where automated analysis of data might require 

different coordinated inputs.  

These caveats aside, direct evidence from over 30,000 plants indicates that predictive analytics 

causes significant productivity increases, but only when combined with the right complementary 

practices. Predictive analyltics use is widespread, but performance gains are not for reasons that 

are both well-understood and persistent and due to novel contingencies we present here. These 

findings contribute to prior work concerning complementarity in the organization and provide a 

foundation for practical insights into the mechanisms by which predictive analytics can better 

provide business value. 
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Figure 1. Adoption of Predictive Analytics by State  

(US Manufacturing in 2010) 

 
Notes: Reported statistics in the legend are the average adoption of predictive analytics across U.S. states, based on 

the baseline sample in 2010. This sample consists of establishments in 2015 MOPS samples (with 2010 recall) that 

can be merged with the Annual Survey of Manufactures (ASM), Census of Manufactures (CMF), and the Longitudinal 

Business Database (LBD), excluding administrative records, non-tabbed observations, and plants with negative value-

added. Please see the data section for more details about the sample selection criterion. Darker color indicates a higher 

average adoption among the establishments within a particular state. The adoption patterns by states are similar to this 

figure if either balanced or baseline 2015 data are used.  
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Figure 2. Adoption of Predictive Analytics by Industry  

(US Manufacturing by 2010) 

 

Notes: Reported statistics are based on the baseline sample for the adoption of predictive analytics in 2010. The 

average adoption rate is shown on the Y-axis. The 3-digit NAICS codes are shown in the X-axis and the corresponding 

industry definitions are listed in the table below. Darker color indicates higher average adoption for a particular 

industry. The rankings across industries for PA adoption are similar to the figure above if either balanced or baseline 

2015 data are used. Detailed statistics are available upon request. 

NAICS 3 Industry Definition NAICS 3 Industry Definition 

311 Food Manufacturing 326 Plastics and Rubber Products 

312 Beverage and Tobacco Product 327 Nonmetallic Mineral Product 

313 Textile Mills 331 Primary Metal 

314 Textile Product Mills 332 Fabricated Metal Product 

315 Apparel Manufacturing 333 Machinery 

316 Leather and Applied Product 334 Computer and Electronic Product 

321 Wood Product 335 
Electrical Equipment, Appliance, and 

Component 

322 Paper 336 Transportation Equipment 

323 Printing and Related Support Activities 337 Furniture and Related Product 

324 Petroleum and Coal Products 339 Miscellaneous Manufacturing 

325 Chemical   
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Figure 3. Performance Effects for Early vs. Late Adopters of Predictive Analytics over Time 

 

Notes: Estimates based on a pooled OLS model with a specification identical to the baseline model in column 2 Table 

3. For this test, we construct an ASM and CMF panel, where we have annual data on most of the key inputs (excepting 

the managerial-related variables from the 2015 MOPS) and sales from 2010 to 2016. We group establishments that 

adopted predictive analytics by 2010 (“Early Adopters”), establishments that adopted predictive analytics between 

2010 and 2015 (“Late Adopters”), and the remaining non-adopters by 2015 (the omitted category) using the 2015 

MOPS data. These indicators are then interacted with year dummies to explore the differences in sales over time (using 

non-adopters as the baseline group). Histogram bars (and values on the Y-axis) represent the marginal effect of 

predictive analytics adoption between 2010 and 2016. Standard errors of the coefficients are plotted on the histogram 

bars. Detailed regression coefficients are omitted due to space limitations but available upon request. 
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Figure 4. Conditional Correlations between Predictive Analytics and Potential Complements 

 

Notes: Estimates based on the baseline sample from the pooled OLS regressions controlling for plant size, plant age, 

and industry (6-digit NAICS) and year fixed-effects. The dependent variable is an indicator of predictive analytics use 

(any frequency). Histogram bars (and values on the Y-axis) represent differences in the likelihood of adopting 

predictive analytics compared to the first, “base” group indicated on the X-axis. For panel (d), the base group currently 

consists of plants that report tracking no key performance indicators (KPIs) on question 2 of the MOPS. “Low”, 

“Medium”, and “High” categories are comprised of plants that track 1-2, 3-9, and 10 or more KPIs, respectively. 

Categories based on a broader definition of “managerial capacity” yield a consistent pattern (pending disclosure 

review). Quintiles are used in accordance with US Census disclosure avoidance practices and for consistency across 

figures. Standard errors for coefficients are plotted on the histogram bars with darker lines. Detailed regression 

coefficients are available upon request. 
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Figure 5. Organizational Complements to Predictive Analytics (Correlation Test) 

 
Notes: Correlates of predictive analytics use based on linear probability estimation in the baseline pooled sample. The 

graph depicts estimated additive marginal contributions based on a single specification that includes High IT Capital 

Stock, High Skilled Workers, High Flow Efficiency, and High Managerial Capacity. Average Adoption takes the 

constant term as the benchmark adoption rate. High IT K is an indicator for plants in the top tenth percentile of the IT 

capital stock distribution. High Skilled Workers is an indicator for plants in the top quartile by percentage of employees 

with a bachelors’ degree. High Flow Efficiency is an indicator for plants whose production process is best 

characterized as either continuous flow or cellular manufacturing. High Managerial Capacity is currently an indicator 

for plants that intensively track key performance indicators at the plant (10 or more), though results are consistent for 

a broader measure of managerial capacity (pending disclosure review). All four coefficients are significant at the 1% 

level or higher. Additional controls include industry-year fixed effects (6-digit NAICS level), as well as plant-level 

employment in log terms; logged non-IT capital stock; an index of other structured management practices; having top 

data-driven decision-making practices (DDD); age; an indicator that government regulations or agencies influenced 

what type of data is collected at the plant; multi-unit status; and headquarters status. Robust standard errors are 

clustered at the firm level. Findings are robust to binary (e.g., probit) estimation models. Detailed regression 

coefficients are omitted due to space limitations but available upon request. 
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Figure 6. Effects of Predictive Analytics with and without Potential Complements on Performance 

 

Notes: Estimates based on a pooled OLS model with a specification similar to the baseline model in column 2 table 3 

using the baseline sample. For performance tests of complementarity, we add interactions between the indicator for 

the adoption of predictive analytics and each potential complement, including includes High IT Capital Stock, High 

Skilled Workers, High Flow Efficiency, and High Managerial Capacity, respectively. Also note that results are 

consistent for a broader measure of managerial capacity (pending disclosure review). The coefficients for an indicator 

of predictive analytics use and the interaction term identify the differential effects of adopting predictive analytics on 

sales, conditional on the presence of each complement. Histogram bars (and values on the Y-axis) present the marginal 

effect of predictive analytics adoption for plants with and without the presence of each complement. Additional 

interactions (2-way or 3-way “bundles” of complements) do not provide additional identifying variation (not shown). 

Error bars indicate confidence intervals at the 95% level. Full results, including coefficients on key controls, are 

available upon request. 
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Table 1. Predictive Analytics Question in MOPS 

Q29: How frequently does this establishment typically reply on predictive analytics (statistical models that 

provide forecasts in areas such as demand, production, or human resources)? Mark all that apply  

 2010 2015 

Daily   

Weekly   

Monthly   

Yearly   

Never   

Source: This table is captured from the questionnaire for the 2015 MOPS section C question 29. The PDF version of 

the questionnaire for 2015 MOPS can be downloaded at the U.S. Census website: 

https://www2.census.gov/programs-surveys/mops/technical-documentation/questionnaires/ma-

10002_15_final_3-2-16.pdf.  

  

https://www2.census.gov/programs-surveys/mops/technical-documentation/questionnaires/ma-10002_15_final_3-2-16.pdf
https://www2.census.gov/programs-surveys/mops/technical-documentation/questionnaires/ma-10002_15_final_3-2-16.pdf
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Table 2. Summary Statistics (Key Variables) 

Variable Definition 

Pooled 

Sample  

2010 

(Recall) 

2015 

(Report) 

Mean 
(S.D.) 

PA Use 
Indicator for plants that use predictive analytics 

at any frequency 

0.74 

(0.44) 

0.73 

(0.44) 

0.80 

(0.40) 

PA Use Frequency 

An index for frequency of predictive analytics 

use based on the highest reported value (e.g. 

Yearly=1, Monthly=2, Weekly=3, and/or 

Daily=4) 

1.12 

(1.06) 

1.09 

(1.05) 

1.27 

(1.12) 

Log Sales 
Logged total value of plant shipments 

($Thousands) 

10.37 

(1.52) 

10.68 

(1.39) 

10.86 

(1.37) 

Log L Logged number of plant employees  
4.56 

(1.17) 

4.79 

(1.09) 

4.88 

(1.09) 

Log (Non-IT) K 

Accumulated and depreciated capital investment 

in non-IT equipment and structures in log terms 

($Thousands) 

9.26 

(1.47) 

9.38 

(1.58) 

9.36 

(1.61) 

Log IT K IT capital stock in log ($Thousands) 
5.16 

(2.41) 

5.58 

(2.25) 

5.62 

(2.18) 

Skilled Workers 
Percentage of employees (managers and non-

managers) with a bachelor’s degree 

0.15 

(0.14) 

0.15 

(0.13) 

0.16 

(0.14) 

Production Process 

Design  

(High Flow 

Efficiency) 

Indicator for facilities with a production process 

designed for high flow efficiency (i.e. cellular or 

continuous-flow production process) as captured 

by question 44 of the 2015 MOPS. 

0.35 

(0.48) 

0.38 

(0.48) 

0.41 

(0.49) 

Managerial Capacity 

(Operations) 

Indicator for monitoring 10 or more key 

performance indicators (KPIs) (question 2 on the 

MOPS 2015). 

0.44 

(0.50) 

0.37 

(0.48) 

0.56 

(0.50) 

MU Indicator for plants belonging to multi-unit firms 
0.73 

(0.45) 

0.78 

(0.41) 

0.81 

(0.40) 

HQ 
Indicator for establishments reported as 

headquarters (HQ) or co-located with HQ 

0.47 

(0.50) 

0.43 

(0.50) 

0.41 

(0.049) 

Plant age  
Age of establishment. Truncated for plants born 

before 1976. 

24.47 

(12.89) 

24.20 

(11.31) 

29.20 

(11.31) 

Government Mandate 

Indicator that government regulations or agencies 

chose, at least in part, what type of data is 

collected at the plant  

0.25 

(0.43) 
N/A N/A 

Structured 

Management 

Varies by specification. For most analyses, this is 

an index or sub-indices of the structured 

management practices in section A of the MOPS, 

excluding questions 2 and 6 (used elsewhere).   

0.63 

(0.17) 

0.60 

(0.16) 

0.68 

(0.15) 

DDD 

Indicator for plants with high Data-Driven 

Decision-making following Brynjolfsson and 

McElheran (2019) based on high levels of KPI 

monitoring (Q2), use of short and long-term 

targets (Q6), and questions 24 and 25 on the 

availability and use of data in decision making. 

0.27 

(0.44) 

0.19 

(0.39) 

0.38 

(0.49) 

Number of 

Observations 
 

~51,000 

(Baseline) 

~18,000 

(Balanced) 

Notes: Unweighted statistics based on the baseline and balanced samples from MOPS 2015 data; standard deviations 

in parentheses. 
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Table 3.  Average Effects of Predictive Analytics on Plant Performance  

Models 

(1) (2) (3) (4) 

OLS  

(Basic) 

OLS 

(Full) 

OLS 

(Frequency) 

IV 

(2SLS) 

Dependent Variables Log Sales 

PA Use  
0.0287*** 

(0.0049) 

0.0145*** 

(0.0049) 
  

PA Use Frequency  

 
  

0.0089*** 

(0.0021) 

0.0509*** 

(0.0160) 

Log IT K  
0.0227*** 

(0.0014) 

0.0227*** 

(0.0014) 

0.0226*** 

(0.0014) 

Skilled Workers  
0.2068*** 

(0.0177) 

0.2063*** 

(0.0177) 

0.1928*** 

(0.0181) 

High Flow Efficiency  
0.0407*** 

(0.0052) 

0.0406*** 

(0.0052) 

0.0385*** 

(0.0053) 

High Structured Mgmt.  
0.0283*** 

(0.0054) 

0.0273*** 

(0.0054) 

0.0165** 

(0.0069) 

Log L 
0.4052*** 

(0.0065) 

0.3821*** 

(0.0063) 

0.3820*** 

(0.0063) 

0.3800*** 

(0.0063) 

Log (Non-IT) K  
0.0614*** 

(0.0031) 

0.0616*** 

(0.0029) 

0.0615*** 

(0.0029) 

0.0607*** 

(0.0029) 

MU  
0.0322*** 

(0.0061) 

0.0296*** 

(0.0060) 

0.0295*** 

(0.0060) 

0.0239*** 

(0.0063) 

HQ  
-0.0732*** 

(0.0055) 

-0.0815*** 

(0.0055) 

-0.0809*** 

(0.0055) 

-0.0739*** 

(0.0059) 

Mandated Data Collection 

(First Stage)  
   

0.3219*** 

(0.0166) 

Under-identification Test    287.9 

Weak-identification Test     1028 

Industry x Year Fixed 

Effects 
Y Y Y Y 

R-Squared 0.9313 0.9327 0.9327 0.8794 

Number of Observations ~51,000 
Notes: Estimates based on the pooled OLS models controlling industry (6-digit NAICS) and year fixed-effects using 

the baseline sample. The dependent variable is logged sales. Column 1 controls for key production inputs while column 

2 adds controls for IT capital stock, percentage of employees with a bachelors’ degree, an indicator for high flow 

efficiency production process design, high structured management (defined as having top quartile structured 

management practices), and an indicator for data-driven decision-making practices. Column 3 examines the effect of 

predictive analytics measuring in frequency with all controls. Lastly, column 4 employs IV estimation to address the 

potential endogeneity of the adoption of predictive analytics. Mandated Data Collection is used as the IV for predictive 

analytics adoption. Unreported controls for all columns include logged cost of material and energy, and plant age. 

Robust standard errors clustered at the firm level. * p<0.10, ** p<0.05, *** p<0.01. 
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Table 4. Organizational Complements to Predictive Analytics (Performance Test) 

Model 

(1) (2) (3) (4) 

IT Capital 

Stock 

Skilled 

Workers 

Flow-

Efficient 

Production 

Managerial 

Capacity 

Dependent Variable Log Sales 

PA Use 
0.0075 

(0.0051) 

0.0051 

(0.0054) 

0.0010 

(0.0058) 

0.0010 

(0.0059) 

High IT K 
0.1103*** 

(0.0171) 
  

 

PA × High IT K 
0.0333* 

(0.0185) 
  

 

High Skilled Workers  
0.0371*** 

(0.0101) 
 

 

PA × High Skilled Workers  
0.0228** 

(0.0114) 
 

 

High Flow Efficiency    
0.0158* 

(0.0088) 

 

PA × High Flow Efficiency   
0.0306*** 

(0.0094) 

 

High Managerial Capacity 

 
   

0.0021  

(0.0087) 

PA × High Managerial 

Capacity 
   

0.0210** 

(0.0097) 

Joint Tests  
0.0407** 

(0.0182) 

0.0287*** 

(0.0106) 

0.0309*** 

(0.0081) 

0.0220*** 

(0.0080) 

Other Controls Y Y Y Y 

Industry x Year Controls Y Y Y Y 

R-Squared 0.9326 0.9327 0.9328 0.9339 

Number of Observations ~51,000 

Notes: Estimates based on pooled OLS models controlling industry (6-digit NAICS) and year fixed-effects using the 

baseline sample. The dependent variable is logged sales. High IT K is an indicator for plants in the top tenth percentile 

of IT capital stock. High Skill is an indicator for plants in the top quartile for the percentage of employees with a 

bachelors’ degree. High Flow Efficiency is an indicator for plants whose production process is best characterized as 

either continuous flow or cellular manufacturing. High Managerial Capacity is currently an indicator for plants that 

intensively track key performance indicators at the plant (10 or more), though results are consistent for a broader 

measure of managerial capacity (pending disclosure review). Columns 1-4 interact the indicator of predictive analytics 

use with each of the potential complements while controlling for other production inputs and other potential 

complements. Joint tests calculate the combined effect of predictive analytics use, the complement of interest, and 

their interacted effect (using Lincom in Stata 16). Unreported controls for all columns include logged total number of 

employees, logged non-IT capital stock, logged cost of material and energy, plant age, high structured management 

(defined as being in the top quartile of the structured management index), indicators for data-driven-decision making 

practices, and indicators for belonging to a multi-unit firm or being co-located with headquarters. Robust standard 

errors clustered at the firm level. * p<0.10, ** p<0.05, *** p<0.01.



49 

 

Appendix 

Figure A1a Correlations between Predictive Analytics and Plant Size  

 

Notes: Estimates based on the baseline sample from a pooled OLS regression controlling industry (6-digit NAICS) 

and year fixed-effects. The dependent variables are the adoption of predictive analytics. The values on the Y-axis are 

the calculated coefficients of each size quintile (based on logged total employment). The numbers of quintiles are 

presented on the horizontal axis. Quintiles are used to conform with US Census disclosure avoidance guidelines and 

consistency across figures. 

 

Figure A1b Correlations between Predictive Analytics and Plant Age 

 

Notes: Estimates based on the baseline sample from a pooled OLS regression controlling plant size, industry (6-digit 

NAICS) and year fixed-effects. The dependent variables are the adoption of overall predictive analytics. The values 

on Y-axis are the coefficients of each age quintile. Our sample covers plants from one-year-old to over 40 years old. 

The numbers of age groups are presented on the horizontal axis. Age quintiles are used for the US Census disclosure 

avoidance practice and consistency across figures. 
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Table A1. Average Effects of Predictive Analytics on Plant Performance (Robustness) 

Models 

(1) (2) (3) 

OLS 

OLS 

PA Frequency 

(Average) 

IV 

PA Frequency 

(Average) 

Dependent Variables Log Value Added Log Sales 

PA Use  
0.0223** 

(0.0091) 
  

Average PA Use Frequency   
0.0023** 

(0.0006) 

0.0167*** 

(0.0053) 

Log IT K 
0.0491*** 

(0.0026) 

0.0228*** 

(0.0014) 

0.0228*** 

(0.0014) 

Skilled Workers 
0.4670*** 

(0.0351) 

0.2076*** 

(0.0177) 

0.1978*** 

(0.0178) 

High Flow Efficiency 
0.0786*** 

(0.0107) 

0.0408*** 

(0.0052) 

0.0392*** 

(0.0052) 

High Structured Mgmt. 
0.0534*** 

(0.0109) 

0.0269*** 

(0.0054) 

0.0108 

(0.0082) 

Log L 
0.7796*** 

(0.0081) 

0.3820*** 

(0.0063) 

0.3793*** 

(0.0063) 

Log (non-IT) K 
0.1242*** 

(0.0051) 

0.0615*** 

(0.0029) 

0.0609*** 

(0.0028) 

MU 
0.0962*** 

(0.0112) 

0.0297*** 

(0.0060) 

0.0238*** 

(0.0064) 

HQ  
-0.1519*** 

(0.0107) 

-0.0810*** 

(0.0055) 

-0.0726*** 

(0.0061) 

Mandated Data Collection 

(First Stage)  
  

0.9802*** 

(0.0650) 

Under-identification Test 

Statistic 
  186.7 

Weak-identification test 

statistic 
  611.3 

Other controls Y Y Y 

Industry x Year Fixed Effects Y Y Y 

R-Squared 0.7395 0.9327 0.8783 

Number of Observations ~51,000 

Notes: Estimates based on the pooled OLS models controlling industry (6-digit NAICS) and year fixed-effects using 

the baseline sample. The dependent variable for column 1 is the logged value-added. The dependent variable for 

columns 2 and 3 is logged sales. PA Use Frequency (Average) is an alternative measure for the frequency of predictive 

analytics adoption using the average of the multiple choices in question 29 of MOPS 2015 (instead of top counted). 

Unreported controls for column 1 include plant age and an indicator for data-driven-decision making practices. 

Unreported controls for columns 2 and 3 include logged cost of material and energy, plant age, an indicator for data-

driven-decision making practices. Robust standard errors clustered at the firm level. * p<0.10, ** p<0.05, *** p<0.01. 
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Table A2. Average Effects of Predictive Analytics on Plant Performance (Additional Robustness) 

Models 
(1) (2) (3) 

OLS OLS Translog 

Dependent Variables 
Log Sales Per 

Employee 
Log TFP Log Sales 

PA Use  
0.0123*** 

(0.0047) 

0.0089* 

(0.0048) 

0.0167*** 

(0.0052) 

High IT K 
0.1366*** 

(0.0086) 

0.1090*** 

(0.0085) 

0.1046*** 

(0.0145) 

High Skilled Workers 
0.0530*** 

(0.0050) 

0.0614*** 

(0.0051) 

0.0572*** 

(0.0053) 

High Structured Mgmt. 
0.0238*** 

(0.0053) 

0.0203*** 

(0.0053) 

0.0290*** 

(0.0054) 

Log L 
-0.0443*** 

(0.0031) 
 

0.3820*** 

(0.0063) 

Log (non-IT) K Per Employee 
0.1116*** 

(0.0036) 
  

Log (non-IT) K   
0.0869*** 

(0.0035) 

MU 
0.0219*** 

(0.0058) 

0.0136*** 

(0.0064) 

0.0508*** 

(0.0081) 

    

Other controls Y Y Y 

Industry x Year Fixed Effects Y Y Y 

R-Squared 0.8231 0.1972 0.9370 

Number of Observations ~51,000 

Notes: Estimates based on the pooled OLS models controlling industry (6-digit NAICS) and year fixed-effects using the 

baseline sample. The dependent variable for column 1 is the logged sales per employee. The dependent variable for 

columns 2 and 3 are logged total factor productivity (TFP) and logged sales respectively. High IT K is an indicator for 

plants with the top tenth percentile of IT capital stock. High Skilled Workers is an indicator for plants with the top quartile 

of the percentage of employees with a bachelors’ degree. High Structured Management is an indicator for plants with top 

quartile structured management practices index. Unreported controls for all columns include plant age, indicators for data-

driven-decision making practices other than KPI tracking, and an indicator for plants reported as Headquarters (HQ) or 

co-located with HQ. Additional unreported controls for column 3 include logged cost of material and energy. Robust 

standard errors clustered at the firm level. * p<0.10, ** p<0.05, *** p<0.01. 
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Table A4. Organizational Complements to Predictive Analytics (Continuous Measures) 

Model  

(1) (2) (3) 

IT Capital 

Stock 

Skilled 

Workers 

Managerial 

Capacity 

Dependent Variable Log Sales   

PA Use  
0.0073 

(0.0122) 

-0.0046 

(0.0067) 

-0.0273** 

(0.0139) 

PA × Log IT K 
0.0001 

(0.0022) 
  

PA × Skilled Workers  
0.0869** 

(0.0351) 
 

PA × Managerial Capacity   
0.0490** 

(0.0179) 

Other controls Y Y Y 

Industry x Year Fixed Effects Y Y Y 

Adjusted R-Squared 0.9337 0.9328 0.9339 

Number of Observations ~51,000 

Notes: Estimates based on pooled OLS models controlling industry (6-digit NAICS) and year fixed-effects using the 

baseline sample. The dependent variable is logged sales. Log IT K is the logged IT capital stock. Educated Workers 

is the percentage of employees with a bachelors’ degree. Managerial Capacity is currently a categorical variable based 

on question 2 in the 2015 MOPS survey, though results are consistent for a broader measure of managerial capacity 

(pending disclosure review). Columns 1-3 interact the indicator of adoption of predictive analytics with each of the 

potential complements while controlling for all inputs and other potential complements. Unreported controls for all 

columns include logged total number of employees, log non-IT capital stock, logged cost of material and energy, plant 

age, indicators for having top DDD-related practices (DDD) other than KPI tracking, structured management (i.e., an 

index calculated based on the first 16 questions of the MOPS, excluding question 2 for KPI tracking and question 6 

for target setting), plant type, multi-unit status, and headquarters status. Robust standard errors clustered at the firm 

level. * p<0.10, ** p<0.05, *** p<0.01. 

 
 

 


