

Debt as Safe Asset

Markus Brunnermeier
Princeton University

Sebastian Merkel
Princeton University

Yuliy Sannikov
Stanford University

July 2021

Motivation

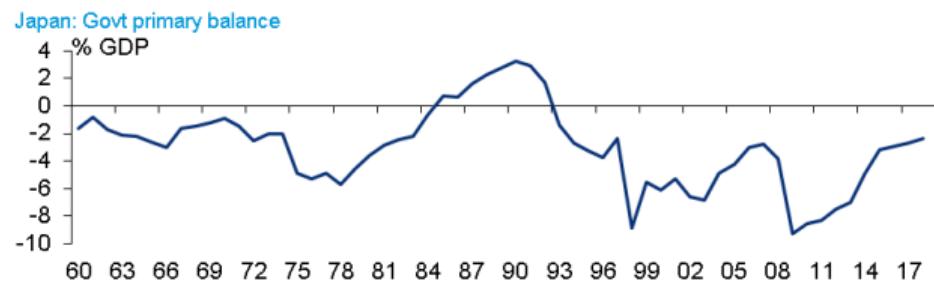
- How much government debt can the market absorb?
- Is there a debt valuation puzzle?
(valuation too large? risk premium too low?)
(Jiang, Lustig, van Nieuwerburgh, Xiaolan 2019,2020)
- This paper: safe asset nature of government debt
 - model of government debt as a *countercyclical safe asset* (negative β)
 - safe asset nature matters *qualitatively and quantitatively* for debt valuation

Valuing Government Debt – Standard Approach

- Think of representative agent holding all gov. debt
 - his cash flow is the primary surplus
 - using standard asset pricing:

$$\mathcal{B}/\mathcal{P} = \mathbb{E} [\text{PV}_r(\text{primary surplus})]$$

- ... but e.g. for Japan primary surplus was negative for 50 out of 60 years
- Can surpluses be negative forever? Yes, if $r < g$ (e.g. due to safe asset nature)



Valuing Government Debt when $r < g$

- PV formula when $r < g$ (Brunnermeier, Merkel, Sannikov 2020)

$$\mathcal{B}/\mathcal{P} = \underbrace{\mathbb{E} [\text{PV}_r(\text{primary surplus})]}_{\begin{array}{c} = -\infty \text{ if surplus} < 0 \\ \text{---} \end{array}} + \underbrace{\mathbb{E} [\text{PV}_r(\text{bubble})]}_{\begin{array}{c} = \infty \text{ if surplus} < 0 \\ \text{---} \end{array}}$$

- Alternative approach: value agents' actual portfolio strategies, then aggregate
- Discounts at higher effective rate $r^{**} > g$

$$\mathcal{B}/\mathcal{P} = \underbrace{\mathbb{E} [\text{PV}_{r^{**}}(\text{primary surplus})]}_{> -\infty} + \underbrace{\mathbb{E} [\text{PV}_{r^{**}}(\text{service flow})]}_{< \infty}$$

Note: Discount rate r^{**} = “representative agent” discount rate $\neq m$ (Reis 2020)

Outline

1 Model

- Setup
- Debt Valuation – Two Perspectives

2 Countercyclical Safe Asset and Valuation Puzzles

- Calibrated Model Solution
- Debt Valuation Puzzles

3 Safe Assets and the Stock Market

Outline

1 Model

- Setup
- Debt Valuation – Two Perspectives

2 Countercyclical Safe Asset and Valuation Puzzles

- Calibrated Model Solution
- Debt Valuation Puzzles

3 Safe Assets and the Stock Market

Model Setup

- Continuous time, infinite horizon, one consumption good
- Continuum of agents
 - operate capital subject to idiosyncratic risk, AK production technology
 - can trade capital and government bonds
 - quantitative model: add diversified equity claims
- Government
 - exogenous spending
 - taxes output
 - issues (nominal) bonds
- Financial friction: incomplete markets:
 - agents cannot trade idiosyncratic risk
 - quantitative model: must retain skin in the game
- Aggregate risk: fluctuations in volatility of idiosyncratic shocks (and capital productivity)

Model Setup – Some Formal Details

- Preferences ($i \in [0, 1]$ agent index): (quantitative model: Epstein-Zin preferences)

$$\mathbb{E} \left[\int_0^\infty e^{-\rho t} \log c_t^i dt \right]$$

- Each agent manages capital k_t^i :

- output flow (net of reinvestment): $(a_t - \iota_t^i)k_t^i dt$
- output tax by government: $\tau_t a_t k_t^i dt$
- capital evolution:

$$\frac{dk_t^i}{k_t^i} = \underbrace{(\Phi(\iota_t^i) - \delta) dt}_{\text{investment and depreciation}} + \underbrace{d\Delta_t^{k,i}}_{\text{trading}} + \underbrace{\tilde{\sigma}_t d\tilde{Z}_t^i}_{\text{idio. shocks}}$$

- Government:

- budget constraint

$$\underbrace{i_t \mathcal{B}_t}_{\text{interest payments}} = \underbrace{\mathcal{P}_t (\underbrace{\tau_t a_t - g}_{=:s_t}) K_t}_{\text{prim. surpluses}} + \underbrace{\mu_t^B \mathcal{B}_t}_{\text{bond issuance}}$$

- $\tilde{\sigma}_t, a_t$ exogenous processes

Debt Valuation – Two Perspectives

① “Buy and Hold” Perspective:

$$\frac{\mathcal{B}_0}{\mathcal{P}_0} = \lim_{T \rightarrow \infty} \left(\mathbb{E} \left[\int_0^T \xi_t^i s_t K_t dt \right] + \mathbb{E} \left[\xi_T^i \frac{\mathcal{B}_T}{\mathcal{P}_T} \right] \right)$$

- valuation of strategy that buys and holds a fixed fraction of outstanding debt

Notation: ξ_t^i : agent i 's SDF, $d\xi_t^i/\xi_t^i = -r_t^f dt - \varsigma_t dZ_t - \tilde{\varsigma}_t^i d\tilde{Z}_t^i$, $\tilde{\sigma}_t^c$: idiosyncratic consumption volatility

Debt Valuation – Two Perspectives

① “Buy and Hold” Perspective:

$$\frac{\mathcal{B}_0}{\mathcal{P}_0} = \lim_{T \rightarrow \infty} \left(\mathbb{E} \left[\int_0^T \xi_t^i s_t K_t dt \right] + \mathbb{E} \left[\xi_T^i \frac{\mathcal{B}_T}{\mathcal{P}_T} \right] \right)$$

- valuation of strategy that buys and holds a fixed fraction of outstanding debt

② Dynamic Trading Perspective

$$\frac{\mathcal{B}_0}{\mathcal{P}_0} = \mathbb{E} \left[\int_0^\infty \underbrace{\left(\int \xi_t^i \eta_t^i di \right)}_{=\xi_t^{**}} s_t K_t dt \right] + \mathbb{E} \left[\int_0^\infty \underbrace{\left(\int \xi_t^i \eta_t^i di \right)}_{=\xi_t^{**}} (\tilde{\sigma}_t^c)^2 \frac{\mathcal{B}_t}{\mathcal{P}_t} dt \right]$$

- valuation of *actual cash flows from individual bond portfolios*, including trading cash flows (aggregated over all agents i to obtain total value of debt)

Notation: ξ_t^i : agent i 's SDF, $d\xi_t^i/\xi_t^i = -r_t^f dt - \varsigma_t dZ_t - \tilde{\varsigma}_t^i d\tilde{Z}_t^i$, $\tilde{\sigma}_t^c$: idiosyncratic consumption volatility

Expected Bond Return and Discount Rates (with convenience yields)

Bond valuation formula

$$\text{value of bond stock} = \mathbb{E}[PV_{\text{discount rate}}(\text{surpluses})] + \mathbb{E}[PV_{\text{discount rate}}(\text{service flow})]$$

Expected Bond Return and Discount Rates (with convenience yields)

Bond valuation formula

$$\text{value of bond stock} = \mathbb{E}[PV_{\text{discount rate}}(\text{surpluses})] + \mathbb{E}[PV_{\text{discount rate}}(\text{service flow})]$$

- **Buy and Hold Perspective** (ξ^i)

$$\text{expected bond return} = \underbrace{\rho + \mu^c - \underbrace{\left((\sigma^c)^2 + (\tilde{\sigma}^c)^2 \right)}_{\text{risk-free rate } r^f}}_{\text{discount rate}} + \text{risk premium} - \underbrace{\text{convenience yield}}_{\text{service flow}}$$

precautionary savings

Expected Bond Return and Discount Rates (with convenience yields)

Bond valuation formula

$$\text{value of bond stock} = \mathbb{E}[PV_{\text{discount rate}}(\text{surpluses})] + \mathbb{E}[PV_{\text{discount rate}}(\text{service flow})]$$

- **Buy and Hold Perspective (ξ^i)**

$$\text{expected bond return} = \underbrace{\rho + \mu^c - \underbrace{\left((\sigma^c)^2 + (\tilde{\sigma}^c)^2 \right)}_{\text{risk-free rate } r^f}}_{\text{discount rate}} + \text{risk premium} - \underbrace{\text{convenience yield}}_{\text{service flow}}$$

precautionary savings

- **Dynamic Trading Perspective (ξ^{**})**

$$\text{expected bond return} = \underbrace{\rho + \mu^c - (\sigma^c)^2}_{\text{"risk-free rate" } r^{f**}} + \text{risk premium} - \underbrace{\left((\tilde{\sigma}^c)^2 + \text{convenience yield} \right)}_{\text{service flow}}$$

discount rate

Note: r^{f**} is risk-free rate in “representative agent” economy that leads to same allocation

Outline

1 Model

- Setup
- Debt Valuation – Two Perspectives

2 Countercyclical Safe Asset and Valuation Puzzles

- Calibrated Model Solution
- Debt Valuation Puzzles

3 Safe Assets and the Stock Market

Quantitative Model Fit (Selected Moments)

moment symbol	description	model	data (post 1985)
$\sigma(Y)$	output volatility	0.019	0.010
$\sigma(C)$	consumption volatility	0.010	0.007
$\sigma(S/Y)$	surplus volatility	0.004	0.011
$\mathbb{E}[q^K K/Y]$	average capital-output ratio	3.206	≈ 3
$\mathbb{E}[q^B K/Y]$	average debt-output ratio	0.672	0.714
$\mathbb{E}[dr^E - dr^B]$	average equity premium	5.6%	$\approx 6.4\%$
$\frac{\mathbb{E}[dr^E - dr^B]}{\sigma(dr^E - dr^B)}$	equity sharpe ratio	0.436	≈ 0.5

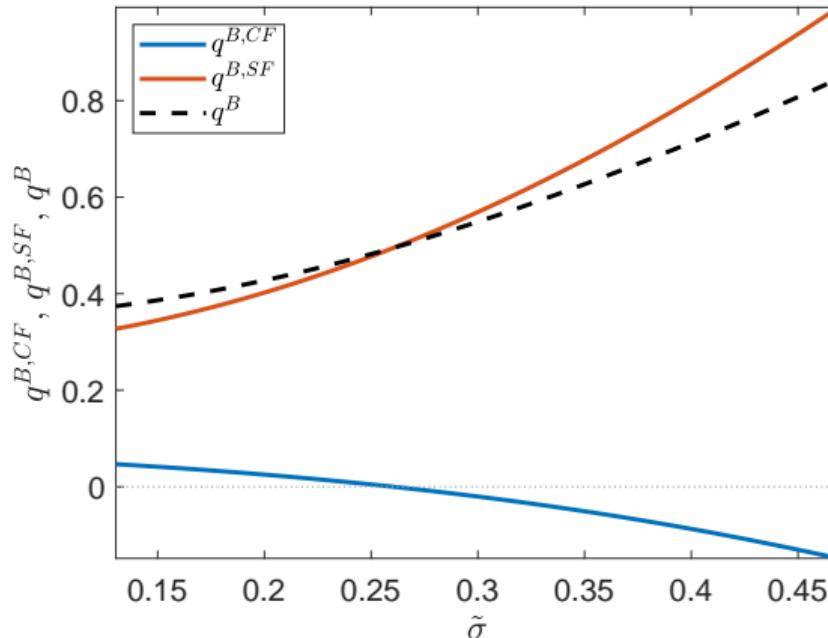
Notes: $\sigma(x)$ denotes the standard deviation of x and $\rho(x, y)$ denotes the correlation of x and y , both at a quarterly frequency. Inputs x and y are HP-filtered with smoothing parameter 1600. For $x, y \in \{Y, C\}$, we take logarithms before filtering. $\mathbb{E}[x]$ denotes expectations over the ergodic model distribution, inputs x are not HP-filtered. Y : (aggregate) output, C : consumption, S : primary surplus, q^K , q^B , dr^B , dr^E are defined as in Section 2.

Debt Valuation Puzzles

- Properties of US primary surpluses
 - average surplus ≈ 0
 - surpluses procyclical (> 0 in booms, < 0 in recessions)
- Two valuation puzzles from standard perspective of $\mathcal{B}/\mathcal{P} = \mathbb{E}[\text{PV}(\text{surpluses})]$
(Jiang, Lustig, van Nieuwerburgh, Xiaolan 2019, 2020)
 - ① “Public Debt Valuation Puzzle”
 - empirically $\mathbb{E}[\text{PV}(\text{surpluses})] < 0$, yet $\mathcal{B}/\mathcal{P} > 0$
 - our model: bubble component can close the gap
 - ② “Gov. Debt Risk Premium Puzzle”
 - debt should be positive- β asset, but markets do not price it that way
 - our model: can be rationalized by countercyclical bubble / service flow component

Dynamic Trading Perspective Decomposition

$$\frac{\mathcal{B}_0}{\mathcal{P}_0} = \underbrace{\mathbb{E} \left[\int_0^\infty \left(\int \xi_t^i \eta_t^i di \right) s_t K_t dt \right]}_{\text{EPV(cash flow)}} + \underbrace{\mathbb{E} \left[\int_0^\infty \left(\int \xi_t^i \eta_t^i di \right) (\tilde{\sigma}_t^c)^2 \frac{\mathcal{B}_t}{\mathcal{P}_t} dt \right]}_{\text{EPV(service flow)}}$$



Outline

1 Model

- Setup
- Debt Valuation – Two Perspectives

2 Countercyclical Safe Asset and Valuation Puzzles

- Calibrated Model Solution
- Debt Valuation Puzzles

3 Safe Assets and the Stock Market

Why Does Safe Asset Property Survive in Presence of Stock Market?

- Diversified stock portfolio *free of idiosyncratic risk*
→ trading in stocks can also self-insure idiosyncratic risk
- But: *poor hedge against aggregate risk*, loses value in recessions (positive β)
- Why positive β ? (after all, r^f goes down in recessions, lowers discount rates)
 - equity are claims to capital, marginal capital holder is insider
 - insider bears idiosyncratic risk, must be compensated
 - $\tilde{\sigma}_t \uparrow \Rightarrow$ insider premium $\mathbb{E}_t[dr_t^K] - \mathbb{E}_t[dr_t^E] \uparrow \Rightarrow$ payouts to stockholders fall

Stock Market Volatility due to Flight to Safety

- “Aggregate Intertemporal Budget Constraint”:

$$\underbrace{q_t^K K_t + \mathcal{B}_t / \mathcal{P}_t}_{\text{total (net) wealth}} = \mathbb{E}_t \left[\int_t^{\infty} \frac{\int \xi_s^i \eta_s^i di}{\int \xi_t^i \eta_t^i di} C_s ds \right] \quad (*)$$

- Lucas-type models: $\mathcal{B}_t / \mathcal{P}_t = 0$ (also $C_t = Y_t$ & no idiosyncratic risk)
 - then: value of equity (Lucas tree) = PV of consumption claim
 - volatility equity values require volatile rhs of (*)

Stock Market Volatility due to Flight to Safety

- “Aggregate Intertemporal Budget Constraint”:

$$\underbrace{q_t^K K_t + \mathcal{B}_t / \mathcal{P}_t}_{\text{total (net) wealth}} = \mathbb{E}_t \left[\int_t^{\infty} \frac{\int \xi_s^i \eta_s^i di}{\int \xi_t^i \eta_t^i di} C_s ds \right] \quad (*)$$

- Lucas-type models: $\mathcal{B}_t / \mathcal{P}_t = 0$ (also $C_t = Y_t$ & no idiosyncratic risk)
 - then: value of equity (Lucas tree) = PV of consumption claim
 - volatility equity values require volatile rhs of (*)
- This model: even for constant rhs of (*), $q_t^K K_t$ can be volatile due to *flight to safety*:

$$\begin{array}{ccc} \text{increase in } \tilde{\sigma}_t & \rightarrow & \text{portfolio reallocation from capital to bonds} \\ & \rightarrow & q^K K \downarrow, \mathcal{B}/\mathcal{P} \uparrow \end{array}$$

- Does this matter quantitatively?
Yes, excess return volatility in equivalent bondless model ($s = 0$ and no bubble): 2.9%
(compared to 12.9% in ours)

Other Topics (in Paper)

① Deficit financing by “bubble mining”: Debt Laffer Curve

- max. sustainable permanent primary deficit $\approx 2\%$ of GDP
- aggregate risk (negative beta) quantitatively important

② Alternative equilibria and loss of safe asset status

- loss of safe asset status: bubble can pop – need (off-equilibrium) fiscal space to prevent
- equilibria with bubbles on private debt: same macro dynamics but worse for government budget

Conclusion

- Safe asset = good friend
 - individually: allows self-insurance through retrading
 - aggregate: appreciates in bad times (negative β)
- Asset pricing with safe assets
 - service flow term matters
(service flow $>$ convenience yield)
 - flight to safety creates
 - countercyclical safe asset valuation
 - larger stock market volatility
- Implications for government budget (in paper)
 - government can “mine the bubble” within limits (max. 2% of GDP)
 - bubble can pop: loss of safe asset status