Efficiency Gains from Wealth Taxation: A Theoretical Analysis

Guvenen, Kambourov, Kuruscu, Ocampo

July 22, 2021

Taxing Capital

- Question: What is the optimal combination of capital income (flow) and wealth (stock) taxes in the presence of rate of return heterogeneity?
- Our earlier work: Quantitative analysis of optimal capital income vs. wealth tax
 - Rich OLG model with bells and whistles
 - Find: Large efficiency and welfare gains from wealth tax
 - Robust to several extensions
- This paper: Theoretical analysis of optimal combination of capital income and wealth taxes
 - A plain-vanilla infinite-horizon entrepreneur-worker model
 - Establish conditions for:

(i) efficiency gains (ii) welfare gains (by agent+overall) (iii) optimal taxes

- One-period model.
- Government taxes to finance G = \$50.
- ► Two brothers, Fredo and Mike, each with \$1000 of wealth.
- **Key heterogeneity**: investment/entrepreneurial ability.
 - (Fredo) Low ability: earns $r_f = 0\%$ net return.
 - (Mike) High ability: earns $r_m = 20\%$ net return.

Capital Income vs. Wealth Tax

	Capital income tax $a_{i, ext{after-tax}} = a_i + (1 - au_k)r_ia_i$		Wealth tax (on book value!) $a_{i, ext{after-tax}} = (1 - au_a)a_i + r_i a_i$	
	Fredo (<i>r</i> _{<i>f</i>} = 0%)	Mike $(r_m = 20\%)$	Fredo (<i>rf</i> = 0%)	Mike $(r_m = 20\%)$
Wealth	\$1000	\$1000	\$1000	\$1000
Before-tax Income	0	\$200	0	\$200
	$\tau_{k} = 25\% \left(= \frac{50}{200}\right)$		$\tau_a = 2.5\% \left(= \frac{50}{2000} \right)$	
Tax liability	0	$50 (= 20 \tau_k)$	$25 (= 1000 \tau_a)$	$25 (= 1000 \tau_a)$
After-tax return	0%	$15\% \left(=\frac{200-50}{1000}\right)$	$-2.5\% \left(=\frac{0-25}{1000}\right)$	$17.5\% \left(=\frac{200-25}{1000}\right)$
After-tax wealth ratio	1.15 (= 1150/1000)		$1.20(pprox {}^{1175}\!/_{975})$	

- Replacing τ_k with $\tau_a \rightarrow$ reallocates capital to more productive agents (Use it or lose it) + increases dispersion in after-tax returns & wealth.
- Market value reflects future earnings, taxing it weakens <u>use it or lose it</u> effect.

Preview of results

- 1. **Efficiency Gains:** A marginal increase in the wealth tax increases TFP **iff** entrepreneurial productivity is **positively auto-correlated**.
- 2. Welfare Gain by Type: With a marginal shift from capital income to wealth tax
 - Workers gain
 - High-productivity entrepreneurs "typically" gain
 - Low-productivity entrepreneurs "typically" lose
- 3. **Optimal Taxes:** Utilitarian welfare maximizing taxes depend on the elasticity of output with respect to capital (α)
 - If α is sufficiently high $\longrightarrow \tau_a^* > 0 \& \tau_k^* < 0$
 - If α is sufficiently low $\longrightarrow \tau_a^* < 0 \& \tau_k^* > 0$
 - If α is in between $\longrightarrow \tau_a^* > 0 \& \tau_k^* > 0$.

Extensions

- Corporate sector with no borrowing constraint
- **•** Rents: Return \neq marginal productivity
- ► Entrepreneurial effort in production
- ▶ Perpetual-youth model with stationary wealth distribution

Theoretical Model

- Two groups of infinitely-lived agents:
 - homogenous workers (size L)
 - heterogenous entrepreneurs (size 2)
- ► Workers' and entrepreneurs' preferences:

$$E_0 \sum_{t=0}^{\infty} \beta^t \log (c_t)$$
 where $\beta < 1$.

► Workers:

supply labor inelastically + consume wage income (hand-to-mouth).

Theoretical Model

Entrepreneurs' technology:

$$\mathbf{y} = (\mathbf{z}\mathbf{k})^{lpha} \, \mathbf{n}^{1-lpha}$$

• $z \in \{z_l, z_h\}$, where $z_h > z_l \ge 0$ with a transition matrix

$$\mathbb{P} = \left[\begin{array}{cc} p & 1-p \\ 1-p & p \end{array} \right] \text{ with } 0$$

• Autocorrelation is critical: $\rho = 2p - 1 > 0 \leftrightarrow p > 1/2$.

Aggregate output:

$$\mathsf{Y} = \int \left(\mathsf{z} \mathsf{k} \right)^{\alpha} \mathsf{n}^{1-\alpha}$$

• Government finances exogenous expenditure G with τ_k and τ_a

• τ_a on beginning-of-period book value wealth

Financial markets:

- Collateral constraint ($\lambda \ge 1$): $k \le \lambda a$, where *a* is entrepreneur's wealth.
- ▶ Bonds are in zero net supply.

Entrepreneurs' Production Decision:

$$\Pi^{\star}(z,a) = \max_{\mathbf{k} \leq \lambda \mathbf{a},n} (z\mathbf{k})^{\alpha} n^{1-\alpha} - r\mathbf{k} - wn.$$

Solution:
$$\Pi^{\star}(z, a) = \underbrace{\pi^{\star}(z)}_{\times a} \times a$$

Excess return above r

$$\pi^* (\mathbf{z}) = \begin{cases} (MPK(\mathbf{z}) - \mathbf{r}) \, \lambda & \text{ if } MPK(\mathbf{z}) > \mathbf{r} \\ 0 & \text{ otherwise.} \end{cases}$$

• $(\lambda - 1)$ *a*: amount of external funds used by type-*z* if MPK(z) > r.

Entrepreneur's Consumption-Saving Problem

$$V(a, z) = \max_{c, a'} \log (c) + \beta \sum_{z'} \mathbb{P} (z' \mid z) V(a', z')$$

s.t.
$$\mathbf{c} + \mathbf{a}' = \underbrace{(1 - \tau_{\mathbf{a}}) \mathbf{a} + (1 - \tau_{\mathbf{k}}) (\mathbf{r} + \pi^{\star} (\mathbf{z})) \mathbf{a}}_{\text{After-tax wealth}}$$
.

► Letting
$$R_i \equiv (1 - \tau_a) + (1 - \tau_k) (r + \pi^* (z_i))$$
 for $i \in \{l, h\}$,

the savings decision (CRS + Log Utility):

 $a' = \beta R_i a \longrightarrow$ linearity allows aggregation

$$A'_{h} = \underbrace{p\beta R_{h}A_{h}}_{\text{stayers' savings}} + \underbrace{(1-p)\beta R_{l}A_{l}}_{\text{switchers' savings}}$$

$$A'_{l} = \underbrace{p\beta R_{l}A_{l}}_{l} + \underbrace{(1-p)\beta R_{h}A_{h}}_{l}$$

stayers' savings

A_l: Low type wealth

Equilibrium and Steady State

Three different equilibria can arise depending on parameter values:

- 1. "Interesting" if $\lambda < \lambda^{\star} < 2$:
 - $(\lambda 1) A_h < A_l$: low-type entrepreneurs bid down interest rate: $r = MPK(z_l)$.
 - Unique steady state with:
 - return heterogeneity, misallocation of capital, wealth tax \neq capital income tax.
 - **Empirically relevant:** $R_h > R_l$ and $\frac{\text{Debt}}{\text{GDP}} \gg 1.3$ when $\lambda = \lambda^*$.
- 2. "Uninteresting" if $\lambda \geq 2$:
 - Unique steady state with:
 - ▶ no return heterogeneity ($R_l = R_h$), no misallocation of capital ($K_h = A_h + A_l$), wealth tax \equiv capital income tax.
- 3. **Unstable** if $\lambda^* < \lambda < 2$: No steady state.

Three different types of equilibria can arise depending on parameter values:

- 1. "Interesting" if $\lambda < \lambda^{\star} < 2$: \longrightarrow The equilibrium
 - $(\lambda 1)A_h < A_l$: low-type entrepreneurs bid down interest rate: $r = MPK(z_l)$.
 - Unique steady state with:
 - For the return heterogeneity, misallocation of capital, wealth tax \neq capital income tax.
 - **Empirically relevant:** $R_h > R_l$ and $\frac{\text{Debt}}{\text{GDP}} \gg 1.3$ when $\lambda = \lambda^*$.
- 2. "Uninteresting" if $\lambda \ge 2$:
 - Unique steady state with:
 - ▶ no return heterogeneity ($R_l = R_h$), no misallocation of capital ($K_h = A_h + A_l$), wealth tax = capital income tax.
- 3. **Unstable** if $\lambda^* < \lambda < 2$: No steady state.

Lemma: Aggregate output is

 $Y = (ZK)^{\alpha} L^{1-\alpha}$ (Z^{\alpha} is measured TFP)

where

$$Z = s_h z_\lambda + (1 - s_h) z_l$$
: $Z =$ Wealth-weighted productivity

Key variables:

• $s_h = \frac{A_h}{\kappa}$: wealth share of high-productivity entrepreneurs.

► $z_{\lambda} \equiv z_h + (\lambda - 1) (z_h - z_l)$: effective productivity of high-type entrepreneurs.

Use it or lose it effect increases efficiency if $s_h \uparrow (\longrightarrow Z \uparrow)$

Using the law of motion for A_l and A_h we obtain two steady state equations:

Steady State *K*

$$(1 - \tau_k) \overbrace{\alpha \mathbf{Z}^{\alpha} (\mathbf{K}/\mathbf{L})^{\alpha - 1}}^{\text{MPK}} - \tau_a = \frac{1}{\beta} - 1.$$

Steady State *Z* (depends on only τ_a !)

graph How τ_{k} disappears

$$(1 - \rho\beta\left(1 - \tau_{a}\right))\mathbf{Z}^{2} - \frac{\mathbf{z}_{l} + \mathbf{z}_{\lambda}}{2}\left(1 + \rho - 2\rho\beta\left(1 - \tau_{a}\right)\right)\mathbf{Z} + \mathbf{z}_{l}\mathbf{z}_{\lambda}\rho\left(1 - \beta\left(1 - \tau_{a}\right)\right) = 0.$$

Proposition:

For all $\tau_a < \bar{\tau}_a$ ($\longleftrightarrow \lambda < \lambda^*$), a marginal increase in τ_a increases steady state Z iff entrepreneurial productivity is autocorrelated, $\rho > 0$ (p > 1/2)

Corollary:

- **1.** Wealth concentration: $s_h \uparrow (Z \uparrow = s_h z_\lambda + (1 s_h) z_l)$
- 2. Dispersion of after-tax returns rises with τ_a :

$$\frac{dR_l}{d\tau_a} = (\text{use-it-lose-it} < 0) + (\text{G.E. effect} < 0) < \mathbf{0}$$
$$\frac{dR_h}{d\tau_a} = (\text{use-it-lose-it} > 0) + (\text{G.E. effect} < 0) > \mathbf{0}$$

$$G = \tau_k \alpha \mathbf{Y} + \tau_a \mathbf{K}.$$

Assumption: G is a constant fraction $\theta \alpha$ of aggregate output: $\mathbf{G} = \theta \alpha \mathbf{Y}$.

• In what follows, τ_k adjusts in the background when $\tau_a \uparrow$

Lemma: For all $\tau_a < \overline{\tau}_a$, a marginal increase in τ_a

- ▶ Increases capital (K), output (Y), wage (w), h-type wealth (A_h), and G iff $\rho > 0$
 - Higher $\alpha \longrightarrow$ Larger response of K, Y, w

•
$$A_l = (1 - s_h) K \downarrow \text{ iff } \alpha z_\lambda < Z \text{ and } \rho > 0.$$

Welfare gains (across steady states)

 $CE_{1,i}$ measure $(i \in \{w, l, h\})$:

- (a, i) in Benchmark economy v.s. (a, i) in Counterfactual economy with higher τ_a (lower τ_k)
- ► Welfare gains (C≻B) if

$$\frac{\log\left(1 + \mathsf{CE}_{1,i}\right)}{1 - \beta} \quad = \quad \mathsf{V}^{\mathsf{C}}\left(a, i\right) - \mathsf{V}^{\mathsf{B}}\left(a, i\right) > 0$$

independent of *a* because $V(a, i) = m_i + \frac{1}{1-\beta} \log(a) \ i \in \{i, h\}$.

▶ Utilitarian welfare CE₁ depends on population shares *n_i*'s:

$$\log\left(1+\mathsf{CE}_{1}\right)=\sum_{i}n_{i}\log\left(1+\mathsf{CE}_{1}\left(a,i\right)\right)$$

CE₁ does not account for changes in distribution of wealth.
 Alternative measure CE₂ takes into account changes in wealth levels.

Proposition:

For all $au_a < \overline{ au}_a$, a marginally higher au_a changes welfare as follows **iff** ho > 0

- Workers: Higher $CE_{1,w} > 0$
- ► High-type entrepreneurs: Higher $CE_{1,h} > 0$ iff $R_h R_l < \kappa_R (\beta, \rho)$
 - **Taking wealth accumulation into account:** $CE_{2,h} > 0$ always.
- Low-type entrepreneurs: Lower $CE_{1,l} < 0$
 - **Taking wealth accumulation into account:** $CE_{2,l} < 0$ if $\alpha z_{\lambda} < Z$.
- Lower average welfare of entrepreneurs: $CE_{1,E} < 0$.

Government chooses (τ_a, τ_k) to maximize the utilitarian social welfare CE₁ (or CE₂)

Key trade-off:

- 1. Higher wages (depends on α) v.s.
- 2. Lower (LOG) average return (higher return dispersion + negative GE effect)
 - & changes in $\{A_l, A_h\}$ if CE_2 is the objective.

Main Result 3: Optimal Taxes

Proposition: There exists a unique optimal tax combination (τ_a^*, τ_k^*) that maximizes CE₁. An interior optimum $(\tau_a^* < \overline{\tau}_a)$ is the solution to:

$$n_{\mathsf{W}}\underbrace{\xi_{\mathsf{W}}}_{Z\text{-Elasticity of Wages}(=\alpha/(1-\alpha))} + \frac{1-n_{\mathsf{W}}}{1-\beta}\underbrace{\left(\frac{\xi_{\mathsf{R}_{l}}+\xi_{\mathsf{R}_{h}}}{2}\right)}_{\mathsf{Av}, Z\text{-Elasticity of Returns}<0} = 0$$

where $\xi_x \equiv \frac{d \log x}{d \log Z}$ is the elasticity of variable x with respect to Z. Furthermore,

$$\begin{split} \tau_{a}^{\star} &\in \left[1 - \frac{1}{\beta}, 0\right) \quad \text{and} \ \tau_{k}^{\star} > \theta & \text{if} \ \alpha < \underline{\alpha} \\ \tau_{a}^{\star} &\in \left[0, \frac{\theta \left(1 - \beta\right)}{\beta \left(1 - \theta\right)}\right] \text{ and} \ \tau_{k}^{\star} \in [0, \theta] & \text{if} \ \underline{\alpha} \le \alpha \le \bar{\alpha} \\ \tau_{a}^{\star} &> \frac{\theta \left(1 - \beta\right)}{\beta \left(1 - \theta\right)} & \text{and} \ \tau_{k}^{\star} < 0 & \text{if} \ \alpha > \bar{\alpha} \end{split}$$

Extensions

- Corporate sector with no borrowing constraint
 - If $z_l < z_C < z_h$, then low-productivity agents invest in the corporate sector.
- **Rents:** Return \neq marginal productivity.
 - Introduce zero-sum return wedges so that $R_h <> R_l$.
 - **Efficiency** gains from $\tau_a \uparrow \text{if } \rho > 0$ and $R_h > R_l$.
 - Efficiency gains from $\tau_a \uparrow \text{ if } \rho < 0$ and $R_h < R_l$.
- **Entrepreneurial effort** in production:
 - With GHH preferences, aggregate entrepreneurial effort increases with wealth tax.
- Perpetual youth with permanent types:
 - We can solve the stationary distribution of agents.
 - $CE_{2,h} > CE_{1,h} > 0$ always.

Conclusions

Increasing τ_a :

- ► Reallocates capital: less productive → more productive agents. This reallocation increases
 - TFP, output, and wages;
 - dispersion in returns and wealth iff $\rho > 0$.
- Workers gain
- Entrepreneurs: High-productivity gain*, low-productivity lose*.

Optimal tax combination: depends on elasticity of output with respect to capital.

Full draft coming soon!

Thanks!

Unstable equilibrium

1. Can there be a steady state with $(\lambda - 1) A_h > A_l$? **NO.** In that case $R_h = R_l$,

$$\frac{A'_h}{A'_l} = \frac{pA_h + (1-p)A_l}{(1-p)A_h + pA_l} = \frac{A_h}{A_l}$$

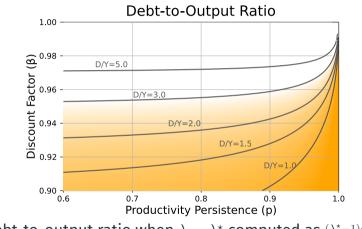
which implies that $A_h = A_l$. But then $(\lambda - 1) A_h > A_l$ is violated since $\lambda < 2$.

- 2. Can there be a steady state with $(\lambda 1) A_h < A_l$? If the answer is yes, then we are already focusing on that SS and that SS implies that $\lambda < \lambda^*$.
- 3. If $(\lambda 1) A_h > A_l$ in the transition, then $A_h > A_l$ since $\lambda < 2$ and

$$\frac{A'_h}{A'_l} = \frac{pA_h + (1-p)A_l}{(1-p)A_h + pA_l} < \frac{A_h}{A_l}.$$

Then at some point, we will have $(\lambda - 1) A_h < A_l$ and we will be in the heterogenous-return case. If this converges to a a steady state, it is the one with $\lambda < \lambda^*$.

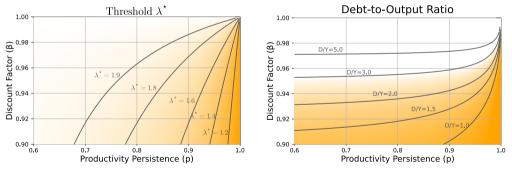
Is λ^* too restrictive?



Debt-to-output ratio when $\lambda = \lambda^*$ computed as $(\lambda^*-1)A_h/Y$.

Back to Eq.

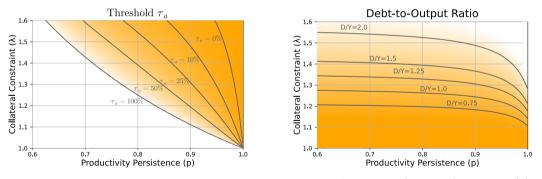
Figure 1: Conditions for Steady State with Heterogeneous Returns



Debt-to-output ratio when $\lambda = \lambda^*$ computed as $(\lambda^* - 1)A_h/Y$

Bound on τ_a

Figure 2: Conditions for Steady State with Heterogeneous Returns



Debt-to-output ratio with $\tau_a = 0$ (benchmark) computed as $(\lambda^* - 1)A_h/Y$

Steady State: 2 equations 2 unknowns

SteadyState *K*:
$$(1 - \tau_a) + (1 - \tau_k) \overbrace{\alpha Z^{\alpha} (K/L)^{\alpha - 1}}^{\text{Marginal Product } K} = \frac{1}{\beta}$$

Steady State R:

$$R_{i} = (1 - \tau_{a}) + (1 - \tau_{k}) \alpha Z^{\alpha} (K/L)^{\alpha - 1} z_{i}$$
Equilibrium R
$$R_{i} = (1 - \tau_{a}) + (1 - \tau_{k}) \alpha Z^{\alpha} (K/L)^{\alpha - 1} \frac{z_{i}}{Z}$$
Change to MPK
$$R_{i} = (1 - \tau_{a}) + \left(\frac{1}{\beta} - (1 - \tau_{a})\right) \frac{z_{i}}{Z}$$
Steady State

Marginal Draduct 7/

Key: Steady state K adjusts to maintain constant (after-tax) MPK:

$$(1 - \tau_k) \operatorname{MPK} = \frac{1}{\beta} - (1 - \tau_a)$$

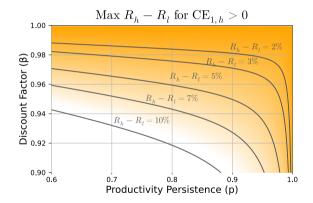
As in NGM τ_k affects level of K but not long run (after-tax) MPK $(1/\beta - 1 + \tau_a)$.

$\mathsf{CE}_{2,i}$ measure $(i \in \{w, l, h\})$:

- Evaluate welfare gain at average wealth levels for each economy.
- (A_i^{B}, i) in the Benchmark economy v.s. (A_i^{C}, i) in the Counterfactual economy.
- ► Welfare gains (C>B) if

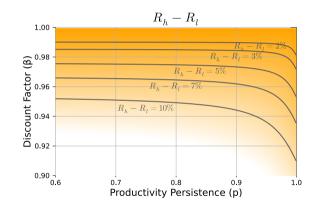
$$\frac{\log\left(1+\mathsf{CE}_{2,i}\right)}{1-\beta} = \mathsf{V}^{\mathsf{C}}\left(\mathsf{A}_{i}^{\mathsf{C}},i\right) - \mathsf{V}^{\mathsf{B}}\left(\mathsf{A}_{i}^{\mathsf{B}},i\right) > 0 \qquad i \in \{\mathsf{w},\mathsf{l},\mathsf{h}\}$$

Return Dispersion for Welfare Gains of High-Type Entrepreneurs

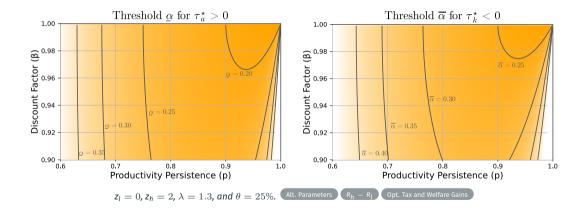


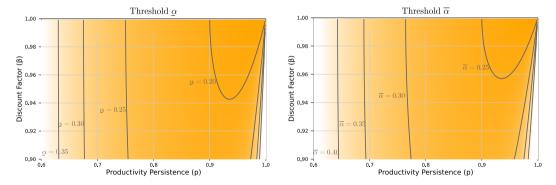
Back to CE₁

Return dispersion $R_h - R_l$:



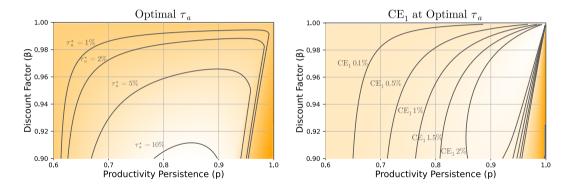
α -thresholds for Optimal Wealth Taxes





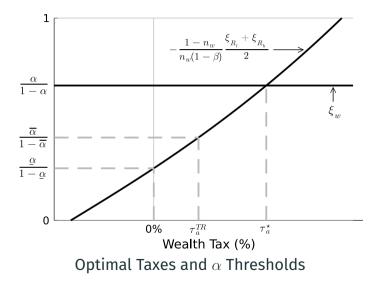
 $z_l = 0.5, z_h = 1.5, \lambda = 1.2, \text{ and } \theta = 25\%.$

Optimal Wealth Taxes and Welfare Gain

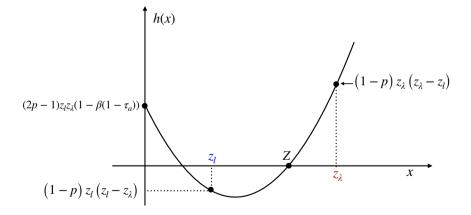


 $z_l = 0, z_h = 2, \theta = 25\%$, and $\lambda = 1.3$.

Optimal Wealth Taxes



Back to opt. tax



What happens to Z if $\tau_a \uparrow$?

