

Efficiency Gains from Wealth Taxation: A Theoretical Analysis

Guvenen, Kambourov, Kuruscu, Ocampo

July 22, 2021

Taxing Capital

- ▶ **Question:** What is the optimal combination of capital income (flow) and wealth (stock) taxes in the presence of rate of return heterogeneity?
- ▶ **Our earlier work:** Quantitative analysis of optimal capital income vs. wealth tax
 - Rich OLG model with bells and whistles
 - **Find:** Large efficiency and welfare gains from wealth tax
 - Robust to several extensions
- ▶ **This paper:** Theoretical analysis of optimal combination of capital income and wealth taxes
 - A plain-vanilla infinite-horizon entrepreneur-worker model
 - Establish conditions for:
 - (i) efficiency gains
 - (ii) welfare gains (by agent+overall)
 - (iii) optimal taxes

Return Heterogeneity: A Simple Example

- ▶ One-period model.
- ▶ Government taxes to finance $G = \$50$.
- ▶ Two brothers, Fredo and Mike, each with \$1000 of wealth.
- ▶ **Key heterogeneity:** investment/entrepreneurial ability.
 - (Fredo) Low ability: earns $r_f = 0\%$ net return.
 - (Mike) High ability: earns $r_m = 20\%$ net return.

Capital Income vs. Wealth Tax

		Capital income tax		Wealth tax (on book value!)	
		$a_{i,\text{after-tax}} = a_i + (1 - \tau_k)r_i a_i$		$a_{i,\text{after-tax}} = (1 - \tau_a)a_i + r_i a_i$	
		Fredo ($r_f = 0\%$)	Mike ($r_m = 20\%$)	Fredo ($r_f = 0\%$)	Mike ($r_m = 20\%$)
Wealth		\$1000	\$1000	\$1000	\$1000
Before-tax Income		0	\$200	0	\$200
		$\tau_k = 25\% (= \frac{50}{200})$		$\tau_a = 2.5\% (= \frac{50}{2000})$	
Tax liability		0	\$50 ($= 20\tau_k$)	\$25 ($= 1000\tau_a$)	\$25 ($= 1000\tau_a$)
After-tax return		0%	15% ($= \frac{200-50}{1000}$)	$-2.5\% (= \frac{0-25}{1000})$	17.5% ($= \frac{200-25}{1000}$)
After-tax wealth ratio			$1.15 (= \frac{1150}{1000})$		$1.20 (\approx \frac{1175}{975})$

- ▶ Replacing τ_k with $\tau_a \rightarrow$ reallocates capital to more productive agents (Use it or lose it) + increases dispersion in after-tax returns & wealth.
- ▶ Market value reflects future earnings, taxing it weakens use it or lose it effect.

Preview of results

1. **Efficiency Gains:** A marginal increase in the wealth tax **increases TFP iff** entrepreneurial productivity is **positively auto-correlated**.
2. **Welfare Gain by Type:** With a marginal shift from capital income to wealth tax
 - Workers gain
 - High-productivity entrepreneurs “typically” gain
 - Low-productivity entrepreneurs “typically” lose
3. **Optimal Taxes:** Utilitarian welfare maximizing taxes depend on the elasticity of output with respect to capital (α)
 - If α is sufficiently **high** $\rightarrow \tau_a^* > 0 \& \tau_k^* < 0$
 - If α is sufficiently **low** $\rightarrow \tau_a^* < 0 \& \tau_k^* > 0$
 - If α is in between $\rightarrow \tau_a^* > 0 \& \tau_k^* > 0$.

Preview of Results

Extensions

- ▶ Corporate sector with no borrowing constraint
- ▶ Rents: Return \neq marginal productivity
- ▶ Entrepreneurial effort in production
- ▶ Perpetual-youth model with stationary wealth distribution

Theoretical Model

- ▶ Two groups of infinitely-lived agents:

- homogenous workers (size L)
- heterogenous entrepreneurs (size 2)

- ▶ Workers' and entrepreneurs' preferences:

$$E_0 \sum_{t=0}^{\infty} \beta^t \log (c_t) \quad \text{where } \beta < 1.$$

- ▶ Workers:

- supply labor inelastically + consume wage income (hand-to-mouth).

Theoretical Model

- ▶ Entrepreneurs' technology:

$$y = (zk)^\alpha n^{1-\alpha}$$

- $z \in \{z_l, z_h\}$, where $z_h > z_l \geq 0$ with a transition matrix

$$\mathbb{P} = \begin{bmatrix} p & 1-p \\ 1-p & p \end{bmatrix} \text{ with } 0 < p < 1.$$

- Autocorrelation is **critical**: $\rho = 2p - 1 > 0 \longleftrightarrow p > 1/2$.

- ▶ Aggregate output:

$$Y = \int (zk)^\alpha n^{1-\alpha}$$

- ▶ Government finances exogenous expenditure G with τ_k and τ_a

- τ_a on beginning-of-period **book value** wealth

Financial Markets & Entrepreneurs' Production Problem

Financial markets:

- ▶ Collateral constraint ($\lambda \geq 1$): $k \leq \lambda a$, where a is entrepreneur's wealth.
- ▶ Bonds are in zero net supply.

Entrepreneurs' Production Decision:

$$\Pi^*(z, a) = \max_{k \leq \lambda a, n} (zk)^\alpha n^{1-\alpha} - rk - wn.$$

Solution: $\Pi^*(z, a) = \underbrace{\pi^*(z)}_{\text{Excess return above } r} \times a$

$$\pi^*(z) = \begin{cases} (MPK(z) - r) \lambda & \text{if } MPK(z) > r \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ $(\lambda - 1)a$: amount of external funds used by type- z if $MPK(z) > r$.

Entrepreneur's Consumption-Saving Problem

$$V(a, z) = \max_{c, a'} \log(c) + \beta \sum_{z'} \mathbb{P}(z' | z) V(a', z')$$

$$\text{s.t. } c + a' = \underbrace{(1 - \tau_a) a + (1 - \tau_k) (r + \pi^*(z)) a}_{\text{After-tax wealth}}$$

► Letting $R_i \equiv (1 - \tau_a) + (1 - \tau_k) (r + \pi^*(z_i))$ for $i \in \{l, h\}$,

the savings decision (CRS + Log Utility):

$$a' = \beta R_i a \longrightarrow \text{linearity allows aggregation}$$

Evolution of Aggregates

$$A'_h = \underbrace{p\beta R_h A_h}_{\text{stayers' savings}} + \underbrace{(1-p)\beta R_l A_l}_{\text{switchers' savings}}$$

A_h : High type wealth

$$A'_l = \underbrace{p\beta R_l A_l}_{\text{stayers' savings}} + \underbrace{(1-p)\beta R_h A_h}_{\text{switchers' savings}}$$

A_l : Low type wealth

Equilibrium and Steady State

Three different equilibria can arise depending on parameter values:

1. “Interesting” if $\lambda < \lambda^* < 2$:

- $(\lambda - 1)A_h < A_l$: low-type entrepreneurs bid down interest rate: $r = \text{MPK}(z_l)$.
- **Unique steady state** with:
 - ▶ return heterogeneity, misallocation of capital, wealth tax \neq capital income tax.
- **Empirically relevant:** $R_h > R_l$ and $\frac{\text{Debt}}{\text{GDP}} \gg 1.3$ when $\lambda = \lambda^*$.

Debt-GDP

2. “Uninteresting” if $\lambda \geq 2$:

- Unique steady state with:
 - ▶ no return heterogeneity ($R_l = R_h$), no misallocation of capital ($K_h = A_h + A_l$), wealth tax \equiv capital income tax.

3. **Unstable** if $\lambda^* < \lambda < 2$: No steady state.

Unstable Eq'm

Equilibrium and Steady State

Three different types of equilibria can arise depending on parameter values:

1. “Interesting” if $\lambda < \lambda^* < 2$: \rightarrow The equilibrium

- $(\lambda - 1)A_h < A_l$: low-type entrepreneurs bid down interest rate: $r = \text{MPK}(z_l)$.
- Unique steady state with:
 - ▶ return heterogeneity, misallocation of capital, wealth tax \neq capital income tax.
- Empirically relevant: $R_h > R_l$ and $\frac{\text{Debt}}{\text{GDP}} \gg 1.3$ when $\lambda = \lambda^*$.

Debt-GDP

2. “Uninteresting” if $\lambda \geq 2$:

- Unique steady state with:
 - ▶ no return heterogeneity ($R_l = R_h$), no misallocation of capital ($K_h = A_h + A_l$), wealth tax \equiv capital income tax.

3. Unstable if $\lambda^* < \lambda < 2$: No steady state.

Unstable Eq'm

Equilibrium Values

Lemma: Aggregate output is

$$Y = (ZK)^\alpha L^{1-\alpha} \quad (Z^\alpha \text{ is measured TFP})$$

where

$$Z = s_h z_\lambda + (1 - s_h) z_l : \quad Z = \text{Wealth-weighted productivity}$$

Key variables:

- ▶ $s_h = \frac{A_h}{K}$: wealth share of **high**-productivity entrepreneurs.
- ▶ $z_\lambda \equiv z_h + (\lambda - 1)(z_h - z_l)$: effective productivity of **high**-type entrepreneurs.

Use it or lose it effect increases efficiency if $s_h \uparrow$ ($\rightarrow Z \uparrow$)

Steady State: 2 equations 2 unknowns

Using the law of motion for A_l and A_h we obtain two steady state equations:

Steady State K

$$(1 - \tau_k) \overbrace{\alpha Z^\alpha (K/L)^{\alpha-1}}^{\text{MPK}} - \tau_a = \frac{1}{\beta} - 1.$$

Steady State Z (depends on only τ_a !)

[graph](#)[How \$\tau_k\$ disappears](#)

$$(1 - \rho\beta(1 - \tau_a)) Z^2 - \frac{z_l + z_\lambda}{2} (1 + \rho - 2\rho\beta(1 - \tau_a)) Z + z_l z_\lambda \rho (1 - \beta(1 - \tau_a)) = 0.$$

Main Result 1: Efficiency Gains from Wealth Taxation

Proposition:

[Graph](#)[τ_a graph](#)

For all $\tau_a < \bar{\tau}_a$ ($\longleftrightarrow \lambda < \lambda^*$), a marginal increase in τ_a **increases steady state Z** **iff** entrepreneurial productivity is autocorrelated, $\rho > 0$ ($p > 1/2$)

Corollary:

1. Wealth concentration: $s_h \uparrow (Z \uparrow = s_h z_\lambda + (1 - s_h) z_l)$
2. Dispersion of after-tax returns rises with τ_a :

[G.E.](#)

$$\frac{dR_l}{d\tau_a} = (\text{use-it-lose-it} < 0) + (\text{G.E. effect} < 0) < 0$$

$$\frac{dR_h}{d\tau_a} = (\text{use-it-lose-it} > 0) + (\text{G.E. effect} < 0) > 0$$

Government Budget and Aggregate Variables

$$G = \tau_k \alpha Y + \tau_a K.$$

Assumption: G is a constant fraction $\theta\alpha$ of aggregate output: $G = \theta\alpha Y$.

- In what follows, τ_k adjusts in the background when $\tau_a \uparrow$

Lemma: For all $\tau_a < \bar{\tau}_a$, a marginal increase in τ_a

- **Increases** capital (K), output (Y), wage (w), h-type wealth (A_h), and G iff $\rho > 0$
 - Higher $\alpha \rightarrow$ Larger response of K, Y, w
 - $A_l = (1 - s_h) K \downarrow$ iff $\alpha z_\lambda < Z$ and $\rho > 0$.

Welfare gains (across steady states)

CE_{1,i} measure ($i \in \{w, l, h\}$):

- ▶ (a, i) in **Benchmark** economy v.s.
 (a, i) in **Counterfactual** economy with higher τ_a (lower τ_k)
- ▶ Welfare gains (**C** \succ **B**) if

$$\frac{\log(1 + \text{CE}_{1,i})}{1 - \beta} = V^C(a, i) - V^B(a, i) > 0$$

independent of a because $V(a, i) = m_i + \frac{1}{1-\beta} \log(a)$ $i \in \{i, h\}$.

- ▶ Utilitarian welfare CE_1 depends on population shares n_i 's:

$$\log(1 + \text{CE}_1) = \sum_i n_i \log(1 + \text{CE}_1(a, i))$$

- ▶ CE_1 does not account for changes in distribution of wealth.

- Alternative measure CE_2 takes into account changes in wealth levels.

[CE₂ Details](#)

Main Result 2: Welfare gains by type

Proposition:

For all $\tau_a < \bar{\tau}_a$, a marginally higher τ_a changes welfare as follows **iff** $\rho > 0$

- ▶ Workers: Higher $CE_{1,w} > 0$
- ▶ High-type entrepreneurs: Higher $CE_{1,h} > 0$ **iff** $R_h - R_l < \kappa_R(\beta, \rho)$
 - Taking wealth accumulation into account: $CE_{2,h} > 0$ always.
- ▶ Low-type entrepreneurs: Lower $CE_{1,l} < 0$
 - Taking wealth accumulation into account: $CE_{2,l} < 0$ if $\alpha z_\lambda < Z$.
- ▶ Lower average welfare of entrepreneurs: $CE_{1,E} < 0$.

κ_R

Optimal Taxation

Government chooses (τ_a, τ_k) to maximize the utilitarian social welfare CE_1 (or CE_2)

Key trade-off:

1. Higher wages (depends on α) v.s.
2. Lower (LOG) average return (higher return dispersion + negative GE effect)
 - & changes in $\{A_l, A_h\}$ if CE_2 is the objective.

Main Result 3: Optimal Taxes

[Graph](#)[α thresholds](#)

Proposition: There exists a unique optimal tax combination (τ_a^*, τ_k^*) that maximizes CE_1 . An interior optimum $(\tau_a^* < \bar{\tau}_a)$ is the solution to:

$$n_w \underbrace{\xi_w}_{Z\text{-Elasticity of Wages} (= \alpha/(1-\alpha))} + \frac{1-n_w}{1-\beta} \underbrace{\left(\frac{\xi_{R_l} + \xi_{R_h}}{2} \right)}_{\text{Av. } Z\text{-Elasticity of Returns} < 0} = 0$$

where $\xi_x \equiv \frac{d \log x}{d \log Z}$ is the elasticity of variable x with respect to Z . Furthermore,

$$\tau_a^* \in \left[1 - \frac{1}{\beta}, 0 \right] \text{ and } \tau_k^* > \theta \quad \text{if } \alpha < \underline{\alpha}$$

$$\tau_a^* \in \left[0, \frac{\theta(1-\beta)}{\beta(1-\theta)} \right] \text{ and } \tau_k^* \in [0, \theta] \quad \text{if } \underline{\alpha} \leq \alpha \leq \bar{\alpha}$$

$$\tau_a^* > \frac{\theta(1-\beta)}{\beta(1-\theta)} \text{ and } \tau_k^* < 0 \quad \text{if } \alpha > \bar{\alpha}$$

Extensions

- ▶ **Corporate sector** with no borrowing constraint
 - If $z_l < z_c < z_h$, then low-productivity agents invest in the corporate sector.
- ▶ **Rents**: Return \neq marginal productivity.
 - Introduce **zero-sum return wedges** so that $R_h <> R_l$.
 - Efficiency gains from $\tau_a \uparrow$ if $\rho > 0$ **and** $R_h > R_l$.
 - Efficiency gains from $\tau_a \uparrow$ if $\rho < 0$ **and** $R_h < R_l$.
- ▶ **Entrepreneurial effort** in production:
 - With GHH preferences, **aggregate entrepreneurial effort increases** with wealth tax.
- ▶ Perpetual youth with permanent types:
 - We can solve the **stationary distribution** of agents.
 - $CE_{2,h} > CE_{1,h} > 0$ always.

Conclusions

Increasing τ_a :

- ▶ **Reallocates capital:** less productive \rightarrow more productive agents.
This reallocation increases
 - TFP, output, and wages;
 - dispersion in returns and wealth **iff $\rho > 0$** .
- ▶ Workers gain
- ▶ Entrepreneurs: High-productivity gain*, low-productivity lose*.

Optimal tax combination: depends on elasticity of output with respect to capital.

Full draft coming soon!

Thanks!

Extra

1. Can there be a steady state with $(\lambda - 1)A_h > A_l$? **NO.** In that case $R_h = R_l$,

$$\frac{A'_h}{A'_l} = \frac{pA_h + (1-p)A_l}{(1-p)A_h + pA_l} = \frac{A_h}{A_l},$$

which implies that $A_h = A_l$. But then $(\lambda - 1)A_h > A_l$ is violated since $\lambda < 2$.

2. Can there be a steady state with $(\lambda - 1)A_h < A_l$? If the answer is yes, then we are already focusing on that SS and that SS implies that $\lambda < \lambda^*$.
3. If $(\lambda - 1)A_h > A_l$ in the transition, then $A_h > A_l$ since $\lambda < 2$ and

$$\frac{A'_h}{A'_l} = \frac{pA_h + (1-p)A_l}{(1-p)A_h + pA_l} < \frac{A_h}{A_l}.$$

Then at some point, we will have $(\lambda - 1)A_h < A_l$ and we will be in the heterogenous-return case. If this converges to a steady state, it is the one with $\lambda < \lambda^*$.

Is λ^* too restrictive?

[Back to Eq.](#)

Debt-to-output ratio when $\lambda = \lambda^*$ computed as $(\lambda^* - 1)A_h/\gamma$.

Is λ^* too restrictive?

[Back to Eq.](#)

Figure 1: Conditions for Steady State with Heterogeneous Returns

$z_l = 0, z_h = 2, \tau_k = 25\%, \text{ and } \alpha = 0.4.$

Debt-to-output ratio when $\lambda = \lambda^*$ computed as $(\lambda^* - 1)A_h/Y$

Figure 2: Conditions for Steady State with Heterogeneous Returns

$z_l = 0, z_h = 2, \tau_k = 25\%, \text{ and } \alpha = 0.4.$

Debt-to-output ratio with $\tau_a = 0$ (benchmark) computed as $(\lambda^* - 1)A_h/Y$

Steady State: 2 equations 2 unknowns

[Back to ss](#)[Back to Eff.](#)

SteadyState K:
$$(1 - \tau_a) + (1 - \tau_k) \underbrace{\alpha Z^\alpha (K/L)^{\alpha-1}}_{\text{Marginal Product } K} = \frac{1}{\beta}$$

Steady State R:

$$R_i = (1 - \tau_a) + (1 - \tau_k) \underbrace{\alpha (ZK/L)^{\alpha-1}}_{\text{Marginal Product } ZK} z_i \quad \text{Equilibrium R}$$

$$R_i = (1 - \tau_a) + (1 - \tau_k) \alpha Z^\alpha (K/L)^{\alpha-1} \frac{z_i}{Z} \quad \text{Change to MPK}$$

$$R_i = (1 - \tau_a) + \left(\frac{1}{\beta} - (1 - \tau_a) \right) \frac{z_i}{Z} \quad \text{Steady State}$$

Key: Steady state K adjusts to maintain constant (after-tax) MPK:

$$(1 - \tau_k) \text{ MPK} = \frac{1}{\beta} - (1 - \tau_a)$$

As in NGM τ_k affects level of K but not long run (after-tax) MPK $(1/\beta - 1 + \tau_a)$.

CE_{2,i} measure ($i \in \{w, l, h\}$):

- ▶ Evaluate welfare gain at average wealth levels for each economy.
- ▶ (A_i^B, i) in the **B**enchmark economy v.s. (A_i^C, i) in the **C**ounterfactual economy.
- ▶ Welfare gains (**C** > **B**) if

$$\frac{\log(1 + \text{CE}_{2,i})}{1 - \beta} = V^C(A_i^C, i) - V^B(A_i^B, i) > 0 \quad i \in \{w, l, h\}$$

Return Dispersion for Welfare Gains of High-Type Entrepreneurs

Back to CE₁

Return dispersion $R_h - R_l$:

[Back to \$\alpha\$ -thresholds](#)

α -thresholds for Optimal Wealth Taxes

[Back to opt. tax](#)

$z_l = 0, z_h = 2, \lambda = 1.3, \text{ and } \theta = 25\%.$

Alt. Parameters

$R_h - R_l$

Opt. Tax and Welfare Gains

α -thresholds for Optimal Wealth Taxes

[Back to opt. tax](#)

$$z_l = 0.5, z_h = 1.5, \lambda = 1.2, \text{ and } \theta = 25\%.$$

Optimal Wealth Taxes and Welfare Gain

[α-thresholds](#)[Back to opt. tax](#)

$$z_l = 0, z_h = 2, \theta = 25\%, \text{ and } \lambda = 1.3.$$

Optimal Wealth Taxes

[Back to opt. tax](#)

Existence and Uniqueness of Steady State (when $p > 0.5$)

Back to ss

What happens to Z if $\tau_a \uparrow$?

Back to eff. gain

$$\frac{dh(x)}{d\tau_a} = (2p - 1)(x - z_l)(x - z_\lambda) < 0 \text{ iff } p > 0.5 \text{ and } z_l < x < z_\lambda$$

