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Abstract
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1 Introduction

Taxes paid by companies are a key source of tax revenues for governments around the globe.

Among OECD countries, corporate income tax revenue in 2018 accounted for an average of 10%

of total tax revenue, ranging from 3.4% in Latvia to 25% in Colombia (Panel A in Figure I). The

importance of corporate taxation remains large, despite a generalized falling trend in tax rates

over the last four decades (Panel B in Figure I); in particular, the median corporate income tax

rate has decreased from 42% in 1980 to 25% in 2020. At the country level, corporate tax reforms

happen infrequently and thus are very persistent. In the US, for instance, only two reforms in the

corporate income tax rate have occurred in the last 40 years, in 1986 and 2018.

Figure I – Corporate Taxes in OECD Countries

(A) Corporate income tax revenue (B) Corporate income tax rate
(% of total tax revenue) (%, highest marginal rate)

Source: OECD Revenue Statistics Database. Corporate income tax revenue includes corporate income tax and
capital gains tax revenue. Data for the largest OECD countries in terms of GDP and the countries with the lowest
and the highest value in the sample.

Beyond their importance as a source of government revenue, corporate taxes have significant

economic effects on private investment, a key driver of long-run growth and short-run fluctuations.

Moreover, recent economic developments have revived the interest in corporate taxation. The most

dramatic development is the COVID-19 pandemic, which has forced governments to increase their

spending through economic relief plans and accumulate massive debts. The current policy debate

on how governments will repay these new debts—together with tax competition for foreign direct

investment, the exhaustion of monetary policy after years at the zero lower bound, and the secular

increase in business profits—has put corporate tax reforms into the spotlight. In this paper, we

ask: What are the macroeconomic effects of persistent corporate tax reforms?
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We answer this question in four steps. First, we develop a parsimonious lumpy investment

model with empirically relevant investment frictions, consisting of a fixed capital adjustment cost

(Caballero and Engel, 1999) and a wedge between the purchase and sale prices of capital that makes

investment partially irreversible (Abel and Eberly, 1996; Bertola and Caballero, 1994; Veracierto,

2002; Lanteri, 2018). Second, we formalize the relationships between three macroeconomic out-

comes: (i) capital allocation, measured by the cross-sectional dispersion of the log marginal product

of capital; (ii) capital valuation, measured by the capital-weighted marginal q; and (iii) capital dy-

namics, measured by the cumulative impulse response following an aggregate productivity shock.

Third, following Auerbach (1979) and Summers (1981), we introduce a comprehensive corporate

tax schedule and characterize the joint effects of taxes and investment frictions in shaping the

three macroeconomic outcomes. In particular, we show that investment depends exclusively on

investment frictions relative to after-tax profits. Lastly, using Chilean data, we provide sugges-

tive evidence of the theory showing the low-frequency comovement of the time-series of corporate

income taxes and the three macroeconomic outcomes and exploiting cross-sectoral data. We dis-

cover that a higher corporate income tax rate increases capital misallocation, decreases capital

valuation, and slows down capital dynamics following an aggregate productivity shock.

Qualitative predictions. Consider a firm making investment choices under idiosyncratic pro-

ductivity shocks, fixed capital adjustment costs, partial irreversibility, a constant interest rate,

and a corporate tax schedule—including a corporate income tax, a personal income tax, a capital

gains tax, and a geometric depreciation allowance. The firm chooses when and how much to invest

to maximize its present value of profits minus the adjustment costs. We characterize the invest-

ment strategy as an inaction region for the capital-productivity ratio and two points where the

capital-productivity ratio is reset after a positive or a negative adjustment. In this environment,

we show that corporate taxation affects the optimal investment policy through three channels: the

after-tax adjustment costs, the after-tax investment prices, and the after-tax discount factor.

Next, consider a continuum of ex-ante identical firms. The economy features a steady-state

cross-sectional distribution of capital-productivity ratios, which is the outcome of the investment

frictions and the corporate tax system. We establish the structural relationships that exist be-

tween three steady-state macroeconomic outcomes. The first macroeconomic outcome is capital

misallocation, defined as the cross-sectional variance of the log marginal revenue product of capital

(Hsieh and Klenow, 2009; Restuccia and Rogerson, 2013; Asker, Collard-Wexler and De Loecker,

2014; David and Venkateswaran, 2019). We show that misallocation is proportional to the variance

of capital-productivity ratios. The second macroeconomic outcome is capital valuation, defined

as the capital-weighted Tobin’s marginal q. We show that aggregate q decreases monotonically

with capital misallocation and with the aggregate capital stock, implying that aggregate Tobin’s

q is a sufficient statistic for aggregate investment and clarifying contradicting views in the litera-
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ture (Tobin, 1969; Abel, 1979; Hayashi, 1982; Abel and Eberly, 1996; Caballero and Leahy, 1996;

Philippon, 2009). The third macroeconomic outcome is capital dynamics, defined as the cumula-

tive impulse response (CIR) of aggregate capital following an unanticipated, once-and-for-all, and

small shock to all firms’ productivity (Álvarez, Le Bihan and Lippi, 2016; Baley and Blanco, 2021).

We show that, up to first order, the CIR increases with capital misallocation and irreversibility:

economies with more pervasive frictions feature more persistent economic fluctuations.

Since capital misallocation is the primary link across the different macroeconomic outcomes,

we characterize the channels through which corporate taxes and investment frictions affect mis-

allocation. We focus on the corporate income tax rate. A higher corporate income tax decreases

profitability and thus increases fixed costs relative to after-tax profits. As a result, capital misal-

location increases, aggregate q may increase or decrease (depending on the tax effects on capital

accumulation and its allocation across firms), and the CIR increases (the propagation of aggre-

gate shocks slows down). These results put forward a new policy channel: Corporate tax policy

can effectively change the size of investment frictions—technological constraints or market prices

typically considered outside the control of a policymaker—and structurally change the behavior

of aggregate capital.

Quantitative predictions. The challenge in analyzing the effects of corporate tax reforms on

the distribution of capital-productivity ratios, which in turn determines the three macro outcomes,

stems from the fact that this distribution is not directly observed. Yet, economists have available

panel data with information on the actions of adjusting firms, namely, the size of discrete capital

adjustments and the duration of completed inaction spells. We put forward a new estimation tech-

nique that maps the data into the cross-sectional moments of the capital-productivity distribution,

establishing a connection between macro outcomes and microdata.

We calibrate our model to match the average level of taxes and the relevant investment moments

during the last 40 years in Chile to assess investment frictions’ magnitude. Using the calibrated

model, we examine the elasticity of macroeconomic outcomes to the corporate income tax rate.

Then, we provide suggestive evidence for the validity of our theory using low-frequency time-

series correlations. We confirm that a higher corporate income tax rate associates with larger

misallocation and slower propagation of productivity shocks, while it is associated with lower

aggregate q. Finally, we exploit cross-sectoral data and confirm the theoretical prediction that

sectors with initially higher investment frictions, manifested in higher misallocation, suffer a larger

change in the macroeconomic outcomes after an increase in the corporate tax rate.

In summary, our framework constitutes a laboratory for assessing their interaction of corpo-

rate taxation with empirically-relevant investment frictions and for examining the macroeconomic

effects of persistent corporate tax reforms.
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Contributions to the literature. The impact of corporate tax reforms is a widely studied

topic. A vast and active literature uses detailed firm-level data to estimate the short-run invest-

ment response to tax reforms, including investment tax credits (Hall and Jorgenson, 1967; Lerche,

2019); bonus depreciation (Hassett and Hubbard, 2002; House and Shapiro, 2008; Zwick and Ma-

hon, 2017; Maffini, Xing and Devereux, 2019); dividend taxes (Ohrn, 2018; Boissel and Matray,

2019); and corporate income tax (Yagan, 2015). Thanks to this work, we have a fairly good un-

derstanding of the short-run microelasticity of investment to taxes for concrete taxes, countries,

and periods. We contribute by developing a structural investment model that is rich enough to

capture complex taxation schedules and realistic firm heterogeneity; and parsimonious enough to

characterize the long-run elasticities of macroeconomic outcomes to persistent tax reforms.

Understanding the short-run consequences of corporate tax reforms is undoubtedly important.

But most corporate tax reforms are highly persistent, as shown in Figure I, and thus demand a

long-run analysis. An early literature focused on the long-run consequences of corporate taxation,

highlighting the effects on firm valuation and aggregate investment (Summers, 1981; Abel, 1982;

Poterba and Summers, 1983; King and Fullerton, 1984; Auerbach, 1986; Auerbach and Hines,

1986; Hassett and Hubbard, 2002). Their analysis, framed in a neoclassical framework with a

representative firm, precluded the incorporation of empirical relevant investment frictions and firm

heterogeneity. Subsequent work made progress on these fronts by incorporating certain stances

of firm heterogeneity as well as convex and non-convex adjustment frictions (Gourio and Miao,

2010, 2011; Altug, Demers and Demers, 2009; Winberry, 2021; Chen, Jiang, Liu, Suárez Serrato

and Xu, 2019). We contribute by characterizing macroeconomic outcomes as a function of a few

moments of the investment rate distribution, facilitating the analysis and measurement of the

economic mechanisms that shape the effects of corporate tax reforms.

Lastly, we contribute to the literature studying the role of micro-level adjustment frictions for

economic fluctuations (see Caplin and Spulber, 1987; Caballero and Engel, 1991, 1993, for early

work). Recent theoretical work identifies a small set of observable micro-moments that capture

the role of adjustment frictions for the propagation of aggregate shocks. For instance, Álvarez,

Le Bihan and Lippi (2016) showed that in a large class of price-setting models, the cumulative

output response following a monetary shock is proportional to the the expected price duration

times the kurtosis of price changes; and Baley and Blanco (2021) showed that in models of lumpy

investment the cumulative capital response following a productivity shock is proportional to the

cross-sectional dispersion of capital-productivity ratios and the covariance of capital-productivity

ratios with the time elapsed since their last adjustment. We contribute by extending this line of

work to consider the role of corporate taxes in shaping the observable micro-moments. Addition-

ally, we show how to handle the history dependence arising from partial irreversibility. In this

way, we expand the breadth of problems that can be analyzed with this type of methodology to

include history dependence, also labeled as problems with reinjection by Álvarez and Lippi (2021).
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2 Investment With Fixed Costs and a Price Wedge

In this section, we develop a parsimonious investment model with the following features: idiosyn-

cratic productivity shocks, fixed capital adjustment costs, a wedge between the purchase price and

the sale price of capital that makes investment partially irreversible, and a constant interest rate.1

2.1 The problem of an individual firm

Time is continuous, extends forever, and it is denoted by s. The future is discounted at rate

ρ > 0. We first present the problem of an individual firm and then consider a continuum of ex

ante identical firms to characterize the aggregate behavior of the economy.

Technology and shocks. The firm produces output ys using capital ks according to a produc-

tion function with decreasing returns to scale

(1) ys = u1−α
s kαs , α < 1.

Flow profits equal πs ≡ Ays, where A is a profitability parameter. Idiosyncratic productivity us

follows a geometric Brownian motion with drift µ and volatility σ,

(2) log us = log u0 + µs+ σWs, Ws ∼ Wiener.

The capital stock, if uncontrolled, depreciates at rate ξk > 0.

Investment frictions. The firm can control its capital stock through buying and selling in-

vestment goods at prices pbuy and psell. We assume that pbuy > psell to reflect adverse selection,

specificity of capital goods, or other frictions in the market for used capital that make investment

partially irreversible (Abel and Eberly, 1996; Bertola and Caballero, 1994; Lanteri, 2018).2 For

every investment is ≡ ∆ks = ks − ks− , the firm must pay an adjustment cost proportional to its

productivity θs = θus where θ > 0 is constant and it is measured in consumption units (Caballero

and Engel, 1999).3 To simplify notation, we define the price function

(3) p (is) = pbuy
1{is>0} + psell

1{is<0}.

Investment problem. Let V (k, u) denote the value of a firm with capital stock k and produc-

tivity u. Given initial conditions (k0, u0), the firm chooses a sequence of adjustment dates {Th}∞h=1

1Our assumption of a constant interest rate is largely consistent with Koby and Wolf (2020), who show that
micro data strongly reject the price elasticities required for a strong general equilibrium feedback.

2Chen, Jiang, Liu, Suárez Serrato and Xu (2019) show that non-deductible VAT tax generated a price wedge in
China before its 2005 reform. Additionally, investment tax credits also contribute to the price wedge.

3For any stochastic process qs, we use the notation qs− ≡ limr↑s qr to denote the limit from the left.
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and investments {iTh}∞h=1, where h counts the number of adjustments, to maximize its expected

discounted stream of profits. The sequential problem is

(4) V (k0, u0) = max
{Th,iTh}∞h=1

E

[∫ ∞

0

e−ρsπs ds−
∞∑

h=1

e−ρTh (θTh + p (iTh) iTh)

]
,

subject to the production technology (1), the idiosyncratic productivity shocks (2), the investment

price function (3), and the law of motion for the capital stock

log ks = log k0 − ξks+
∑

h:Th≤s

(
1 + iTh/kT−h

)
,(5)

which describes a period’s capital as a function of its initial value k0, the physical depreciation

rate ξk, and the sum of all adjustments made at prior adjustment dates.

2.2 Capital-productivity ratios k̂

To characterize the investment decision, it is convenient to reduce the state-space and recast the

firm problem using a new state variable, the log capital-productivity ratio:

(6) k̂s ≡ log (ks/us) .

The problem admits this reformulation because the production function is homothetic and the

adjustment costs are proportional to productivity. Note that in the absence of investment fric-

tions, k̂s is a constant. With investment frictions, between any two consecutive adjustment dates

[Th−1, Th], the capital-productivity ratio k̂ follows a Brownian motion

(7) dk̂s = −ν ds+ σ dWs,

where the drift ν ≡ ξk + µ reflects the depreciation rate and productivity growth rate. At any

adjustment date Th, the log capital-productivity ratio changes by the amount

∆k̂Th = log
(

1 + iTh/kT−h

)
.(8)

Using the Principle of Optimality, Lemma 1 rewrites the sequential problem in (4) as a recur-

sive stopping-time problem. It also shows that the value of the firm equals a function of the log

capital-productivity ratio k̂ that scales with productivity, that is, V (k, u) = uv(k̂). Since ∆k̂s and

is have the same sign, we write the investment price as p(∆k̂). All proofs appear in the Appendix.
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Lemma 1. Let r ≡ ρ−µ−σ2/2 be the adjusted discount factor and let v(k̂) : R→ R be a function

of the log capital-productivity ratio equal to

(9) v(k̂) = max
τ,∆k̂

E
[∫ τ

0

Ae−rs+αk̂s ds+ e−rτ
(
−θ − p(∆k̂)(ek̂τ+∆k̂ − ek̂τ ) + v(k̂τ + ∆k̂)

) ∣∣∣k̂0 = k̂
]
.

Then the firm value equals V (k, u) = uv(k̂).

2.3 Optimal investment policy

The optimal investment policy is characterized by four numbers, K ≡ {k̂− ≤ k̂∗− ≤ k̂∗+ ≤ k+},
which correspond to the lower and upper borders of the inaction region

(10) R =
{
k̂ : k̂− < k̂ < k̂+

}
,

and two reset points k̂∗− < k̂∗+. A firm adjusts if and only if its log capital-productivity ratio falls

outside the inaction region, that is, k̂s /∈ R. Conditional on adjusting, the firm purchases capital

to bring its state up to k̂∗− when it hits the lower border k̂−, and sells capital to bring its state

down to k̂∗+ if it hits the upper border k̂+. Given R, the optimal adjustment dates are

(11) Th = inf
{
s ≥ Th−1 : k̂s /∈ R

}
with T0 = 0.

The duration of a complete inaction spell τh and the time elapsed since the last adjustment as (or

the age of the capital-productivity ratio), are given by:

τh = Th − Th−1,(12)

as = s−max {Th : Th ≤ s} .(13)

To save on notation, we write the reset points and the stopped capitals (an instant before adjust-

ment) as functions of the adjustment sign:

k̂∗(∆k̂) =




k̂∗− if ∆k̂ > 0,

k̂∗+ if ∆k̂ < 0.
(14)

k̂τ (∆k̂) = k̂∗(∆k̂)−∆k̂.(15)

Lemma 2 characterizes the value function and the optimal investment policy through the standard

sufficient optimality conditions. The firm value and the policy must satisfy: (i) the Hamilton-

Jacobi-Bellman equation in (16), which describes the evolution of the firm’s value during periods
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of inaction, (ii) the value-matching conditions in (17) and (18), which set the value of adjusting

equal to the value of not adjusting at the borders of the inaction region, and (iii) the smooth-

pasting and optimality conditions in (19) and (20), which ensure differentiability at the borders

of inaction and the two reset points.

Lemma 2. The value function v(k̂) and the optimal policy K ≡ {k̂−, k̂∗−, k̂∗+, k̂+} satisfy:

(i) In the inaction region R, v(k̂) solves the HJB equation:

rv(k̂) = Aeαk̂ − νv′(k̂) +
σ2

2
v′′(k̂).(16)

(ii) At the borders of the inaction region, v(k̂) satisfies the value-matching conditions:

v(k̂−) = v(k̂∗−) − θ − pbuy(ek̂
∗− − ek̂−),(17)

v(k̂+) = v(k̂∗+) − θ + psell(ek̂
+ − ek̂∗+).(18)

(iii) At the borders of the inaction region and the two reset states, v(k̂) satisfies the smooth-pasting

and the optimality conditions:

v′(k̂) = pbuyek̂, k̂ ∈
{
k̂−, k̂∗−

}
,(19)

v′(k̂) = psellek̂, k̂ ∈
{
k̂∗+, k̂+

}
.(20)

The optimal policy in terms of capital is recovered as {k−, k∗−, k∗+, k+} = u × exp{k̂−, k̂∗−, k∗+, k+}.

2.4 Individual Tobin’s q

Next, we express the optimal investment decision using Tobin’s q, namely, the shadow price of

installed capital. Following Abel and Eberly (1994), we identify a firm’s Tobin’s q as the marginal

valuation of an extra unit of installed capital, which is equal to

(21) q(k̂) ≡ ∂V (k, u)

∂k
= v′(k̂)e−k̂.

In contrast to its standard definition, Tobin’s q in (21) is not divided by the replacement cost of

capital (the investment price). The reason is that with partial irreversibility the price depends on

the direction of the next adjustment and thus it varies depending on the position of k̂.

Figure II describes the optimal investment policy using q(k̂). It is useful to examine the role

of each investment friction at a time. Without the fixed adjustment cost (θ = 0), a firm purchases

9



capital if q(k̂) ≥ pbuy (or k̂ ≤ k̂∗−) and sells capital if q(k̂) ≤ psell (or k̂ ≥ k̂∗+) without any delay.

When q(k̂) lies between the two prices (or the state between the two reset points), it is optimal

to remain inactive: At that productivity level, it is too expensive to purchase capital and too

cheap to sell it. This gives rise to an “inner” inaction region [k̂∗−, k̂∗+] due exclusively to partial

irreversibility. Without a price wedge (pbuy = psell), the “inner” inaction region collapses to a

unique reset point k∗; however, the fixed adjustment cost generates an “outer” inaction region

[k̂−, k̂+] that prevents firms from adjusting, even if q(k̂) lies above or below the investment price.

When both frictions are active, the policy features both the “outer” and the “inner” inaction

regions and two reset points.

Figure II – Optimal Investment Policy

Individual q(k̂)

k̂− k̂∗− k̂∗+ k̂+

pbuy

psell

outer
inaction

outer
inaction

inner
inaction

buy sell

1

Notes: The figure plots the individual q(k̂) = v′(k̂)/ek̂ and the investment policy K = {k̂−, k̂∗−, k̂∗+, k̂+}.

The interaction of the investment frictions generates two interesting features in the optimal

investment behavior. First, as argued by Caballero and Leahy (1996), individual q(k̂) is not

monotonic in k̂. Without fixed costs, q(k̂) monotonically decreases with k̂ due to decreasing

returns to scale α < 1. With fixed costs, however, firms anticipate large adjustments when

approaching the inaction thresholds. As k̂ approaches the lower threshold k̂−, firms anticipate

that a future tiny change dk̂ < 0 will trigger a large positive investment ∆k̂ > 0. The future

positive investment lowers future q(k̂) and feeds back into lower current q(k̂), bending down the

function. A reverse argument explains why q(k̂) bends up as k̂ approaches the upper threshold

k̂+. As a result, individual q(k̂) is not a sufficient statistic for individual investment, in contrast

to the postulate in Tobin (1969).

Second, optimal investment features an endogenous positive serial correlation in the sign of

adjustments. That is, it is more likely to buy capital if it was bought recently than if it was sold;

and it more likely to sell capital if it was sold recently than if it was bought. The reason behind

this correlation is that the inner inaction region generated by the price wedge widens the distance
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between the two borders of inaction but shortens the distance between each border of inaction and

its corresponding reset point. Therefore, it is more likely to reach k̂− from the nearby k̂∗− than

from the further k̂∗+. The serial correlation of the investment sign generates history dependence,

which is technically challenging. However, we show below how to handle history dependence using

distributions conditional on the last reset point.

2.5 Economy with a continuum of firms

Consider an economy populated by a continuum of ex ante identical firms that face the investment

problem from the previous section. Idiosyncratic shocks Wt are independent across firms. The

economy features stationary cross-sectional distributions of capital-productivity ratios and invest-

ment. Here we define and discuss at length these distributions, setting the stage for the results in

later sections. The analytical characterization of the macroeconomic outcomes and the mappings

to the microdata derived in Section 3 hinge completely on how we deal with partial irreversibility

when characterizing the cross-sectional behavior of the economy. Specifically, our strategy consists

on conditioning on the last reset point and using relative frequencies of upward and downward

adjustment to back out the unconditional behavior.

Distribution of firms. Let G(k̂) be the distribution of firms over their log capital-productivity

ratio and let g(k̂) be its continuous marginal density. Also, let N−, N+, and N = N−+N+ be the

frequencies of positive, negative, and non-zero adjustments in the total population, which are equal

to the mass of firms that adjust to k̂∗−, to k̂∗+, or to either point.4 The density and frequencies

solve the following system, which includes: a Kolmogorov forward equation that describes the

evolution of capital-productivity ratios inside the inaction region (excluding the two reset points)

(22) νg′(k̂) +
σ2

2
g′′(k̂) = 0, for all k̂ ∈ (k̂−, k̂+) \ {k̂∗−, k̂∗+};

three border conditions

g(k̂) = 0, for k̂ ∈ {k̂∗−, k̂∗+},(23)
∫ k̂+

k̂−
g(k̂) dk̂ = 1;(24)

4To avoid any confusion with our notation, we emphasize that the sign in the exponent of an object refers to
the last reset point, not to the sign of the adjustment.
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two resetting conditions

σ2

2
lim
k̂↓k̂−

g′(k̂)

︸ ︷︷ ︸
N−

=
σ2

2

[
lim
k̂↑k̂∗−

g′(k̂)− lim
k̂↓k̂∗−

g′(k̂)

]
,(25)

−σ
2

2
lim
k̂↑k̂+

g′(k̂)

︸ ︷︷ ︸
N+

=
σ2

2

[
lim
k̂↑k̂∗+

g′(k̂)− lim
k̂↑k̂∗+

g′(k̂)

]
,(26)

and two continuity conditions at the reset points (not reported). Condition (23) sets the mass of

firms at the inaction thresholds equal to zero. Condition (24) ensures that g is a density. Conditions

(25) and (26) relate the masses of upward and downward adjustments to the discontinuities in

the derivative of g at the reset points. In a small period of time ds, the mass N− that “exits”

the inaction region by hitting the lower threshold—equal to σ2

2
limk̂↓k̂− g

′(k̂)—must coincide with

the mass of firms that “enters” at the reset point k̂∗−—equal to the jump in g′. This argument is

analogous for N+; in fact, it is straightforward to verify that conditions (22) to (25) jointly imply

condition (26), and thus it is redundant.

As we anticipated, to handle the history dependence that manifests in the autocorrelation of

the investment sign, we define densities conditional on the last reset point. We let g−(k̂) and g+(k̂)

denote the stationary density of k̂ conditional on the last reset point being k̂∗− or k̂∗+, respectively.

In particular, g− satisfies the same KFE in (22) for all k̂ ∈ (k̂−, k̂+)\ k̂∗− (there is no entry at k̂∗+),

the border conditions (23) and (24), and continuity at k̂∗−.5 An analogous characterization applies

to g+. Panel A in Figure III plots the three densities g, g− and g+ (these are proper densities and

integrate to 1). We denote expectations computed with these distributions as E, E−, and E+.

Distributions of actions. Next, we consider the distribution over actions—adjustment size

and the duration of inaction—denoted by H(∆k̂, τ), and the distributions of actions conditional

on the last reset point : H−(∆k̂, τ) and H+(∆k̂, τ). Panel B of Figure III plots the marginal

distributions of adjustment size, H(∆k̂), H−(∆k̂), H+(∆k̂), where we have integrated out the

duration τ ; these distributions correspond to probability masses at two points ∆k̂ = k̂∗+− k̂+ < 0

and ∆k̂ = k̂∗− − k̂− > 0. We denote with bars the expectations computed with the distributions

of adjusters: E, E− and E+
.

Two observations are in place. First, the mass of upward adjustments H(k̂∗− − k̂−) is larger

than the mass of downward adjustments H(k̂∗+ − k̂+); this is because the drift shrinks capital-

productivity ratios over time prompting upward adjustments, and because partial irreversibility

penalizes downward adjustments. This asymmetry is also observed in the firms’ distribution, as g

is closer to g−. Second, the conditional masses reflect the autocorrelation in the investment sign;

5Besides the border conditions, there is one reseting condition relating the mass of adjusters to the unique
discontinuity in the derivative of g−, but it is implied by the border conditions.

12



Figure III – Unconditional and Conditional Distributions of k̂ and ∆k̂

(A) Distribution of k̂

g(k̂) g+(k̂) g−(k̂)

k̂− k̂∗− k̂∗+ k̂+
0

(B) Distribution of ∆k̂

H(∆k̂) H+(∆k̂) H−(∆k̂)

k̂∗− − k̂−k̂∗+ − k̂+

1

Notes: Panel A plots the unconditional density g(k̂) and the densities conditional on the last reset g±(k̂). Panel B

plots the unconditional distribution H(∆k̂) and the distributions conditional on the last reset H±(∆k̂).

for instance, H− > H+ at ∆k̂ > 0 means that the probability of reseting to k̂∗− is larger whenever

the last reset point was also k̂∗−. In other words, positive investments beget positive investments.

From conditional to unconditional distributions. Define the shares of upward N−/N and

downward N+/N adjustments within the population of adjusters. By Bayes’ law, the uncondi-

tional and conditional distribution of adjusters satisfy

(27) H(∆k̂, τ) =
N−
N H−(∆k̂, τ) +

N+

N H+(∆k̂, τ).

This relationship is useful to compute moments of adjusters. For example, the average duration

of inaction equals the weighted sum of the average conditional durations:

(28) E[τ ] = E
[
E[τ |∆k]

]
=
N−
N E−[τ ] +

N+

N E+
[τ ].

This approach, however, is incorrect when recovering the unconditional distribution of firms. In

that case, the shares must be rescaled by the relative durations of inaction:

g(k̂) =
N−
N

E−[τ ]

E[τ ]
g−(k̂) +

N+

N
E+

[τ ]

E[τ ]
g+(k̂) = N− E−[τ ] g−(k̂) + N+ E+

[τ ] g+(k̂),(29)

where we simplify the expression using E[τ ] = N−1, that is, the average duration of inaction equals

the inverse of the total frequency of adjusters. This implies that the duration-adjusted frequencies

also sum up to one, i.e., N− E−[τ ] +N+ E+
[τ ] = 1. Why do we need to rescale by duration? The

answer is the fundamental renewal property: The average behavior in the economy is attributable
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to firms with longer periods of inaction (who are observed less frequently). Adjusting the shares

with their relative duration corrects this observational bias. In the context of partial irreversibility,

the slowly-adjusting firms are coincidentally those that make downward adjustments.6

Illustrative example. Consider an economy in which most firms do frequent upward adjust-

ments. The durations of inaction are E[τ ] = 2, E−[τ ] = 1.5, and E+
[τ ] = 4, and the frequencies

are N = 0.5, N− = 0.4, and N+ = 0.1 (note that E[τ ] = 1/N but E±[τ ] 6= 1/N±). The shares of

upward and downward adjustments are N−/N = 0.8 and N+/N = 0.2, and the relative durations

are E−[τ ]/E[τ ] = 0.75 and E+
[τ ]/E[τ ] = 2. While only 20% of adjustments are downward, they

happen after inactions spells with twice the average duration, implying that the underlying states

k̂ generating those adjustments are occupied for longer periods of time. To account for this higher

occupancy, the implied duration-modified frequencies, N− E−[τ ] = 0.6 and N+ E+
[τ ] = 0.4, are

the appropriate weights to recover the unconditional distribution of firms as g = 0.6 g− + 0.4 g+.

3 Three macroeconomic outcomes

How do investment frictions shape aggregate capital’s allocation, valuation, and dynamics? This

section defines these macroeconomic outcomes and characterizes them in terms of moments of the

cross-sectional distribution g(k̂) and observable statistics.7

3.1 Capital allocation

Following the development literature, we define capital misallocation as the cross-sectional variance

of the log marginal revenue product of capital. In our model, all firms produce the same good and

the output price is normalized to one; thus we measure instead the variance of marginal products.

From the production function (1), the log of the marginal product of capital is collinear to a

firm’s capital-productivity ratio k̂, that is, logmpks = logα− (1− α)k̂s. Therefore, misallocation

is proportional to Var[k̂]:

(30) Var[logmpk] = (1− α)2Var[k̂].

In a frictionless environment, k̂s is constant and Var[logmpk] = 0. With frictions, however,

dispersion in the marginal product of capital arises as in Asker, Collard-Wexler and De Loecker

6See Baley and Blanco (2021) for an application of the fundamental renewal property in the context of asym-
metric fixed adjustment costs.

7We specialize investment frictions to a symmetric adjustment cost θ paid indistinctly for positive and negative
investments, and a price wedge that gives rise to partial irreversibility. We abstract from other frictions to keep
the presentation simple. However, we prove all the results for the generalized hazard model proposed by Caballero
and Engel (1999, 2007) and examined in contemporaneous work by Álvarez, Lippi and Oskolkov (2020), which
may accomodate other empirically-relevant frictions, such as random fixed costs and random opportunities for free
adjustment, as in Baley and Blanco (2021).

14



(2014). Given the collinear relationship established in (30), we will use the term misallocation

when referring to Var[k̂].

Measuring misallocation with microdata. The challenge in measuring misallocation stems

from the fact that the distribution g(k̂) is not observed. As economists, however, we have available

detailed panel data Ω = {∆k̂, τ} with information on the actions of adjusters: the size of discrete

adjustments ∆k̂ in (8) and the duration of completed inaction spells τ in (12). We present

mappings that use micro investment data Ω to recover misallocation. We proceed in two steps.

Proposition 1 recovers the parameters of the stochastic process and the two reset points through

a system of equations that involve several moments from the distribution of adjusters. Then

given the reset points, Proposition 2 recovers the population mean E[k̂] and variance Var[k̂] of

capital-productivity ratios.

Proposition 1. Let Φ(ν, σ2) ≡ log (αA/(r + αν − α2σ2/2)). The parameters of the stochastic

process for productivity (ν, σ2) and the reset points (k̂∗−, k̂∗+) are recovered from the microdata

Ω ≡ (∆k̂, τ) through the following system:

ν =
E[∆k̂]

E[τ ]
,(31)

σ2 =
E[(k̂τ + ντ)2]− E[(k̂∗)2]

E[τ ]
,(32)

k̂∗− =
1

1− α


Φ(ν, σ2) − log(pbuy) + log




1− E−
[
e−r̂τ+α(k̂τ−k̂∗+)

]

1− E−
[
p(∆k̂)
pbuy

e−r̂τ+k̂τ−k̂∗+
]




 ,(33)

k̂∗+ =
1

1− α


Φ(ν, σ2) − log(psell) + log




1− E+
[
e−r̂τ+α(k̂τ−k̂∗−)

]

1− E+
[
p(∆k̂)
psell

e−r̂τ+k̂τ−k̂∗−
]




 .(34)

Expression (31) recovers the drift from the average adjustment size times the frequency of

adjustment (the inverse of the expected duration of inaction N = E[τ ]−1); while expression (32)

recovers the volatility from the variance in adjustment size.8 Expressions (33) and (34) recover

the reset points. The first term Φ(ν, σ2) reflects the ratio of marginal product to the user cost of

capital. Through this ratio, both reset states increase with profitability A and idiosyncratic risk

σ2 and decrease with the discount r and the drift ν. The second term shows that reset points

decrease with the corresponding investment price: firms invest more the lower is the purchasing

price pbuy and disinvest less the lower is the selling price psell. Lastly, the third term shows how

investment frictions affect the reset points through their effect on the marginal profits accrued

during periods of inaction (in the numerator) and on the resale value (in the denominator).

8We obtained similar mappings from the data to the parameters in Baley and Blanco (2021) for the case without
irreversibility. Irreversibility does not change the mapping to the drift, but it changes the mapping to the volatility.
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With the reset points and parameters at hand, we proceed to recover the unconditional mean

E[k̂] and variance Var[k̂] of capital-productivity ratios k̂.

Proposition 2. Let Ω ≡ (∆k̂, τ) be a panel of observations. For each inaction spell find the

departing point k̂∗ and the ending point k̂τ using (14) and (15). Then the unconditional mean and

variance of k̂ are recovered from the microdata as follows:

E[k̂] = E

[
E

[(
k̂∗ + k̂τ

2

)(
k̂∗ − k̂τ
E[∆k̂]

)∣∣∣∣∣∆k̂
]]

+
σ2

2ν
,(35)

Var[k̂] = E

[
E

[(
(k̂∗ − E[k̂])(k̂τ − E[k̂]) +

(k̂∗ − k̂τ )2

3

)(
k̂∗ − k̂τ
E[∆k̂]

)∣∣∣∣∣∆k̂
]]

.(36)

The mapping in (35) recovers the population mean E[k̂] from the average midpoint between the

departing and the ending points of an inaction spell (k̂∗ + k̂τ )/2, where the average is computed

under a change of measure induced by the renewal weights (k̂∗ − k̂τ )/E[∆k̂]. To recover the

population mean, the renewal measure overweighs the midpoints of adjusters with longer periods

of inaction, which are more representative in the population.9 The term σ2/2ν corrects for the

accumulated drift between adjustments. Similarly, the mapping in (36) recovers the population

variance Var[k̂] from the average distance between the departing point and the mean (k̂∗−E[k̂]),

the ending point and the mean (k̂τ−E[k̂]), and the between departing and ending points (k̂∗−k̂τ )2,

again computed using the renewal distribution. In these expressions, the inner expectation is

computed with H− or H+ depending on the sign of the last adjustment, and the outer expectation

is computed with shares of upward N−/N and downward N+/N adjustment in the population.

Economic forces shaping capital misallocation. Using the law of total variance, we decom-

pose misallocation Var[k̂] into two terms that condition on the last adjustment:

(37) Var[k̂]︸ ︷︷ ︸
total

= E
[
Var[k̂|∆k̂]

]

︸ ︷︷ ︸
within

+ Var
[
E[k̂|∆k̂]

]

︸ ︷︷ ︸
between

.

The decomposition in (37) is useful to assess the relative importance of each investment friction

in generating capital misallocation. The first term is the average of the variance within each

conditional distribution g+ and g−, that is, the average of Var−[k̂] and Var+[k̂] (computed from

36 conditioning on the sign of ∆k̂ and using the conditional renewal measure as in 28). Both

investment frictions add to this dispersion. The second term reflects the distance between the

conditional means E−[k̂] and E+[k̂] (computed from 35 conditioning on the sign of ∆k̂ and using

the conditional renewal measure). This term arises exclusively from the price wedge that generates

two different means. The larger the price wedge, the further apart are the conditional means and

9Without the price wedge, the renewal weights are equal to the relative size of adjustment ∆k/E[∆k̂].
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the larger the between variance. Note that this term is zero when only fixed costs are present as

there is a unique reset point.

Figure IV illustrates the effects of each adjustment friction on the total, within, and between

variances of capital-productivity ratios. To sharpen the exposition, we assume zero drift (ν = 0)

and a symmetric price wedge (pbuy − p = p − psell). Panel A plots the stationary density g(k̂).

Panels B and C are log-log plots of misallocation against one friction, setting the other friction

either at zero or at a large value. We mark within (W), between (B), and total (T) variances.

Figure IV – Misallocation and Investment Frictions
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Notes: Panel A plots the steady-state distribution of capital-productivity ratios, normalized by their mean. Triangle

= only fixed costs; Rectangle = only price wedge; Parallelogram = both frictions. Panel B plots misallocation

against the fixed cost for a zero (orange) and a large (black) price wedge. Panel C plots misallocation against the

price wedge for a zero (blue) and a large (black) fixed cost. Variances: total (T), within (W) and between (B).

Consider only the fixed cost. The density is a triangle that concentrates at the unique reset

point and decreases linearly toward the boundaries of the inaction region. A higher fixed cost

widens the inaction region and increases misallocation in a log-log linear way (Panel B). Now

consider only the price wedge. The density is a rectangle with uniform mass between the two

reset/inaction points. In this case, a higher price wedge increases all components of misallocation

(within and between) in a log-log linear way (Panel C).

With both frictions active, the density is a parallelogram. The relationship between misallo-

cation and frictions is now flattened in the following sense. Consider the case with fixed costs and

a large price wedge. Misallocation is at a higher level but the relationship between misallocation

and the fixed cost flattens out. A higher fixed cost still widens the distance between inaction

thresholds, increasing the within variance, but simultaneously reduces the distance between the
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reset points, decreasing the between variance. These opposing forces compensate each other can-

celling the effects on misallocation (see the dotted and dashed black lines in Panel B which move

in opposite directions). Next consider the case with partial irreversibility and a large fixed cost.

Again, misallocation is at a higher level and the relationship between misallocation and the price

wedge flattens out. The between variance disappears (its log becomes very negative).

The previous analysis teaches us that the relative size of frictions affects the response of mis-

allocation to an increase of these frictions. Later in the paper, we come back to these effects to

examine the effects of corporate taxation and its interaction with investment frictions.

3.2 Capital valuation

We define capital valuation as the weighted average of individual q(k̂) in (21) with weights ω(k̂) ≡
ek̂/K̂, divided by the average investment price p ≡ E[p(∆k̂)]:

(38) q ≡ 1

p

∫ k̂+

k̂−
q(k̂)ω(k̂)g(k̂) dk̂ =

E[v′(k̂)]

pK̂
.

In contrast to the individual q(k̂), the definition of the aggregate q divides by the investment

price. Aggregate q is a measure of the average propensity to invest. Without frictions, there is

a unique investment price, and optimality implies that q = 1 always. That is, all investment

or disinvestment opportunities are immediately implemented, eliminating any possibility for q to

deviate from 1. With frictions, q may differ from one. If q > 1, the average marginal valuation of

capital is larger inside the firms than outside them, and the average propensity to invest is positive.

Characterization of aggregate q. We proceed to characterize the aggregate q in terms of

moments of k̂. But first, we define an auxiliary pricing function that extends the investment price

p(∆k̂) to the inner action region [k̂∗+, k̂∗−]. Effectively, a firm will never face such a price, but it

facilitates the computation of expected capital gains.

Let P(k̂) ∈ C2 be a twice continuously differentiable function in the domain [k̂+, k̂−] such

that: (i) to the left of the inner inaction region, it equals pbuy/p− 1; (ii) to the right of the inner

action region, it equals psell/p − 1; and (iii) inside the inner inaction region, P(k̂) sets a price

that a firm would face under a suboptimal purchase or sale of capital, which is determined by the

differentiability requirement:10

P(k̂) ≡
{
pbuy/p− 1 if k̂ ∈ [k̂−, k̂∗−],

psell/p− 1 if k̂ ∈ [k̂∗+, k̂+].
(39)

Since P(k̂) equals the deviations from the average price, it averages zero: E[P(k̂∗)] = 0.

10The exact definition of P(k̂) in the inner inaction region does not matter as firms never adjust in that region.
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With the definition of the auxiliary price-deviation function, Proposition 3 expresses the aggre-

gate q in terms of cross-sectional moments and parameters. The proof combines the HJB equation

for v′(k̂) in (16), which specifies firms’ optimal behavior, with the KFE for g(k̂) in (22), which

describes the evolution of firms through the cross-sectional distribution, into a single “master

equation”. Then we integrate the master equation to eliminate idiosyncratic noise and recover

aggregate variables.

Proposition 3. Aggregate q equals:

(40) q =
1

r

(
αAŶ

pK̂
+

(
σ2

2
− ν
)

︸ ︷︷ ︸
productivity

+ E
[

1

ds
Es
[
d(P(k̂s)ω(k̂s))

]]

︸ ︷︷ ︸
irreversibility

)
,

where aggregate productivity Ŷ /K̂ is equal, up to second order, to

(41)
Ŷ

K̂
=

E[eαk̂]

E[ek̂]
= exp

{
−(1− α)

(
E[k̂] +

α

2
Var[k̂]

)}
+ o(k̂3),

and the irreversibility term is negative, and up to first order, it is equal to

(42) E
[

1

ds
Es
[
d(P(k̂s)ω(k̂s))

]]
≈ −

Cov
[
∆k̂,P(∆k̂)

]

E[τ ]
< 0.

Economic forces shaping capital valuation. Aggregate q in (40) equals the perpetuity value

(1/r) of three terms. The first term is aggregate productivity Ŷ /K̂ equal to the average output-

productivity ratio divided by the average capital-productivity ratio11. Observe that q increases

with aggregate productivity; in turn, because of decreasing returns to scale α < 1, aggregate

productivity decreases with the average E[k̂] and the dispersion Var[k̂] of capital-productivity

ratios (see equation 41). As a consequence, aggregate q also decreases with the level and the

dispersion of k̂. Both the fixed cost and the price wedge affect q indirectly through this channel.

The second term reflects the expected change in the average capital-productivity ratio, which

takes into account the deterministic trend ν and the risk σ2. Since firms can upsize to exploit

good outcomes and can downsize to insure against bad outcomes, they are effectively risk loving

(Oi, 1961; Hartman, 1972; Abel, 1983). Thus higher idiosyncratic risk σ2 directly pushes q up.

At the same time, higher idiosyncratic risk has an indirect effect by increasing misallocation and

thus lowering the aggregate output-capital ratio in (41). The overall effect of risk on q depends

on the relative strength of these two opposing forces.

Besides the indirect effect that irreversibility plays through misallocation, it also has a direct

effect on q measured by the last term. The irreversibility term equals the expected price deviations

11Aggregate productivity differs from the average output-capital ratio E[y/k] = E[e(α−1)k̂] due to heterogeneity.
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from the average price weighted by the capital stock. Expression (42) maps it into minus the

covariance of investment ∆k̂ and price deviations P(∆k̂). This covariance is positive: firms

purchase capital at a price above the average, and sell capital at a price below the average.

Since the covariance is positive, irreversibility reduces q. Intuitively, firms anticipate histories in

which, after upsizing, negative productivity shocks force them to downsize and face the penalty of

selling cheap, together with histories in which, after downsizing, positive productivity shocks force

them to upsize and face the penalty of purchasing back capital at a higher price. To minimize

the likelihood of these “switching” situations, firms under-invest and under-disinvest, effectively

reducing capital valuation.

Individual vs. aggregate q. In Section 2.4 we showed that individual q(k̂) is a non-monotonic

function of k̂. This observation has led some economists to argue that the individual non-

monotonicity translates into aggregate non-monotonicity, discarding q as a sufficient statistic for

aggregate investment; see Philippon (2009) for a survey. Expression (40) shows that this argument

is flawed: fixed adjustment costs and partial irreversibility do not break the decreasing relation

between aggregate q and aggregate K̂. While this result appears to be counterintuitive, it is a

natural consequence of aggregating individual units’ behavior. The anticipatory effects that bend

individual q(k̂) in the vicinity of the borders of the inaction region disappear when aggregating

the cross-section, as positive and negative stances of expected changes in q(k̂) cancel each other

out in the aggregate. As a result, aggregate q is a sufficient statistic for aggregate investment.12

3.3 Capital dynamics

Following Baley and Blanco (2021), our notion of capital dynamics is the transitional dynamics

of aggregate capital following an aggregate productivity shock. Starting from the steady state, we

introduce a small, permanent, and unanticipated decrease in the (log) level of productivity of size

δ > 0 to all firms. We normalize the arrival date of the aggregate shock to s = 0, so all firms’

productivity and capital-productivity ratios change to

(43) log(u0) = log(u0−) − δ; log(k̂0) = log(k̂0−) + δ.

Panel A of Figure V plots the initial density following the δ productivity shock (black line) next

to the steady-state density g(k̂) (blue line). The new distribution displaces horizontally to the

right relative to the steady-state distribution. Our exercise consists in tracking the mean Es[k̂]

as it makes its way back to its steady-state value E[k̂]. By assuming a constant interest rate,

investment policies do not respond to changes in the distribution and they are fixed along the

12A similar aggregation result appears in Miao and Wang (2014) for the case with constant returns to scale and
iid productivity shocks. Here we show that aggregation also applies with decreasing returns to scale and random
walk productivity shocks.
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transition path. Therefore, our analysis measures the strength of the partial equilibrium response

to aggregate shocks.13

Figure V – Distribution Dynamics and Cumulative Impulse Response

(A) Cross-Sectional Density g(k̂)

steady state after δ-shock

k̂− k̂∗− k̂∗+ k̂+
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0 IRFs(δ)ds

Time

(B) Cumulative Impulse Response

IRFs(δ) = Es[k̂]− E[k̂]

1

Notes: Panel A shows the steady-state distribution g(k̂) (blue line) and the initial distribution following a produc-

tivity shock (blue line). Panel B shows the IRF(δ, s) (solid blue line) and the CIR (area).

We define the impulse-response function, denoted by IRF(δ, s), measured s periods after an

aggregate productivity shock of size δ as follows:

(44) IRF(δ, s) ≡ Es[k̂]− E[k̂],

where Es[·] denotes expectations with the time-s distribution. We define the cumulative impulse

response CIR(δ), as the area under the IRFs(δ) function across all dates s ∈ (0,∞)

(45) CIR(δ) ≡
∫ ∞

0

IRFs(δ) ds.

Panel B in Figure V plots these two objects. The solid line is the impulse-response function

IRF(δ, s), and the area underneath it is cumulative impulse response function, CIR(δ). The CIR

is a useful metric: It summarizes both the impact and the persistence of the response in one scalar,

eases the comparison across different models, and represents a “multiplier” of aggregate shocks. It

is illustrative to compare the CIR with and without adjustment frictions. Without frictions, firms

respond instantly to the aggregate shock and the CIR is zero. With frictions, the larger the CIR

the longer it takes firms to respond to the aggregate shock and the slower the transitional dynamics.

13While assuming a constant interest rate (and investment policies) along the transition is an extreme assump-
tion, Winberry (2021) shows that the interest rate response to aggregate productivity shocks is small and even
countercyclical.
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Characterization of the CIR. Next, we expresses the CIR as a function of cross-sectional

moments of k̂. The strategy is analogous to the one used for aggregate q, as we define an auxiliary

function that allow us to characterize the role of irreversibility. As a first step, we define two values

Mbuy < 0 < Msell that measure the expected cumulative deviation of the capital-productivity

ratio relative to the mean E[k̂] conditional on the last adjustment:

Mbuy ≡ (E−[k̂]− E[k̂])E−[τ ]
E[P+]

P−+
< 0,(46)

Msell ≡ (E+
[k̂]− E[k̂])E+

[τ ]
E[P−]

P+− > 0.(47)

Let us explain in detail Mbuy in (46). Upsizing firms reset their capital-productivity ratio below

the unconditional mean and, on average, remain below the mean for the duration of their inaction

spell. The average deviation accumulated during one inaction spell is then (E−[k̂] − E[k̂])E−[τ ].

Because the investment sign is serially correlated, upsizing firms remain in an upsizing phase

contributing to negative deviations for several periods; they would only leave this phase after

a series of negative shocks makes them downsize. In that case, they would enter a persistent

downsizing phase with deviations above average Msell in (47). The ratio E[P+]/P−+ exactly

reflects the average time spent in the transient upsizing phase, where E[P+] = E[τI(∆k̂ < 0)]/E[τ ]

is the unconditional probability of downsizing and P−+ = Pr[∆k̂′ < 0|∆k̂ > 0] is the probability

of downsizing conditional on being currently in an upsizing phase.

As a second step, we define an auxiliary function M(k̂) ∈ C2 that extends the cumulative

deviations to the inner inaction region. This function is identical to P(k̂) in (39), but replacing

the price deviations with the quantities Mbuy and Msell:

(48) M(k̂) =




Mbuy if k̂ ∈ [k̂−, k̂∗−]

Msell if k̂ ∈ [k̂∗+, k̂+].

Note that E[M(k̂∗)] = 0 becauseM(k̂) equals the cumulative capital deviations from the steady-

state. Using the auxiliary capital-deviation function M(k̂), Proposition 4 characterizes the CIR.

Proposition 4. The CIR of the average log capital-productivity ratio E[k̂] following a marginal

aggregate productivity shock of size δ > 0 is equal, up to first order, to

(49)
CIR(δ)

δ
=

Var[k̂]

σ2︸ ︷︷ ︸
variance

+
νCov[k̂, a]

σ2︸ ︷︷ ︸
covariance

+ E
[

1

ds
Es[d(M(k̂s)k̂s)]

]

︸ ︷︷ ︸
irreversibility

+ o(δ),
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where the variance is recovered from the microdata in (36), the covariance is recovered as

(50) Cov[k̂, a] =
1

2ν

(
Var[k̂] − E[(k̂τ − E[k̂])2τ ]

E[τ ]
+

σ2

2

E[τ ]

2
(1 + CV2

[τ ])

)
,

and the irreversibility term is equal to

(51) E
[

1

ds
Es
[
d(M(k̂s)k̂s)

]]
= −Cov[∆k̂,M(∆k̂)]

E[τ ]
> 0.

Economic forces shaping capital dynamics. According to (49), the CIR equals a linear

combination of two steady-state moments and an irreversibility term. The moments are the cross-

sectional variance of capital-productivity ratios, Var[k̂], and the covariance of capital-productivity

ratios k̂ with the time elapsed since the last adjustment, Cov[k̂, a]. These steady-state moments

are informative about transitional dynamics because aggregate shocks δ and idiosyncratic shocks

u enter symmetrically into k̂, and as a consequence, how firms respond to idiosyncratic shocks

inform how they respond to aggregate shocks. Specifically, the variance Var[k̂] reflects insensitivity

to idiosyncratic shock, while the covariance Cov[k̂, a] reflects asymmetric costs of downsizing vs.

upsizing. Our work in Baley and Blanco (2021) established the relationship between the CIR and

these two steady-state moments in environments with drift, asymmetric fixed costs, and random

opportunities of free adjustment, but without partial irreversibility.14 There, the irreversibility

term equals zero for marginal aggregate shocks δ ≈ 0.15

Let us now discuss the role of irreversibility for the CIR, which slows down the propagation of

aggregate shocks according to positive sign of (51). The irreversibility term measures the change

in cumulative deviations Msell and Mbuy due to the aggregate shock. Concretely, the aggregate

shock δ increases the probability of downward adjustments as firms need to downsize to reflect the

reduction in aggregate productivity. Due to the serial correlation of investment sign, a persistent

downsizing phase activates. Recall that, after downsizing, firms remain above the steady-state

average capital-productivity ratio. Thus after an aggregate shock, firms remain persistently above

the average, slowing down the convergence of the average Es[k̂] to its long-run value E[k̂]. Besides

this direct effect, irreversibility has an indirect effect by increasing the cross-sectional moments

Var[k̂] and Cov[k̂, a]. In the data, this indirect effect dominates. Identifying and characterizing

the irreversibility term in the CIR is one of the key contributions of our analysis, as it opens to

door to study transitional dynamics in environments with history dependence (reinjection), that

is, where the first stopping time does not fully absorb the effects of an aggregate shock.

14In Baley and Blanco (2021), we also provide expressions that CIR of higher-order moments E[k̂m].
15See Alexandrov (2021) for a characterization of the CIR for large shocks.
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CIR of functions of k̂. Our characterization of average capital dynamics in (49) can be general-

ized to consider the transitional dynamics of any continuous function f(k̂) following an aggregate

shock δ. In the generalized formula the values Mbuy and Msell behind the function M(k̂) are

appropriately redefined to track the deviations of the time-t average value of f , Et[f(k̂)], from its

steady-state value, E[f(k̂)]. This generalization could in principle be useful to study fluctuations in

capital misallocation as in Ehouarne, Kuehn and Schreindorfer (2016) and Lanteri (2018) setting

the function to f(k̂) = (k̂ − E[k̂])2; or dynamics of aggregate marginal valuation (the numerator

of aggregate q) setting f(k̂) = v′(k̂).

4 The Macroeconomic Effects of Corporate Taxes

This section introduces a comprehensive tax schedule into the firm problem and characterizes

analytically the role of corporate taxation in shaping macroeconomic outcomes. We do this in

three steps. First, we show that taxes change four parameters: profitability A, the discount factor

ρ, the fixed cots θ, and the investment prices p(∆k̂). Once we redefine these parameters, the

investment problem is identical as before. Second, we decompose the firm investment policy into

a static component, which reflects the effects of taxation through the user cost of capital, and

a dynamic component, which reflects the interaction of taxes and investment frictions. Third,

we isolate the various mechanisms at play by considering two benchmark cases: a driftless case

where irreversibility has an important role and a large-drift case where irreversibility is innocuous.

Finally, using the insights derived from these special cases, we study the general environment.

4.1 A comprehensive tax schedule

Following Auerbach (1979), Summers (1981) and Abel (1982), we introduce a corporate tax system

into the firm problem. It includes a corporate income tax tc, a deduction allowance ξd, a personal

income tax tp, and a capital gains tax tg.16

The firm pays the corporate income tax rate tc on its cash flow Ays net of deductions ξdks,

where ξd denotes the deduction rate. Since the physical and the legal depreciation rates differ,

we distinguish deductions from the capital stock and denote these with ds. The state space now

includes deductions V (k, u, d). The corporate income tax and deductions jointly determine the

after–tax profit rate

(52) πs = Ays − tc(Ays − ξdds) = (1− tc)Ays + tcξdds,

16This taxation schedule is also used by Poterba and Summers (1983); King and Fullerton (1984); Auerbach
(1986); Auerbach and Hines (1986); Hassett and Hubbard (2002).
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and the evolution of deductions17

log ds = log d0 − ξds+
∑

h:Th≤s

(
1 +

p(iTh)iTh + θTh
dT−h

)
.(53)

The personal income tax tp and the capital gain tax tg alter the firms’ discount factor. We

assume that equity is purchased by a representative investor with access to a riskless bond with

return ρ per unit of time. Let Ds be the dividend per share, Ps the equity price per share, and

Es = 1 the number of shares, which we normalize to unity without loss of generality. From

the investor’s perspective, dividends and bond returns are taxed at the rate tp, while capital

gains arising from changes in equity prices are taxed at the rate tg. For any dividend process,

no-arbitrage implies equal after-tax returns:

(54) (1− tp)ρ ds = (1− tg)E[dPs]

Ps
+ (1− tp)Ds

Ps
ds.

Condition (54) pins down the time-0 value of the firm, which equals the equity price:

(55) V (k0, u0, d0) = P0 =
1− tp
1− tg E0

[∫ ∞

0

e−ρ
1−tp
1−tg sDs ds

]
.

This expression says that the firm maximizes the cum-dividends market value of equity P0 using

the investor’s after-tax discount factor ρ(1− tp)/(1− tg). We follow the “tax capitalization” view

of the dividend decision and consider dividends as residuals, equal to the cash flow πs net of

investment and capital adjustment costs18

(56) Ds ds = πs ds− (θs + p(is)is)D(s = Th), D(·) ∼ Dirac.

Given the tax schedule, Lemma 3 characterizes the problem with corporate taxation. The strat-

egy consists in defining the discounted value of deductions per unit of investment td and using it

to rewrite the 3-state problem as the 1-state problem with the capital-productivity ratio solved

before in Section 2.3, under four parametric changes and an additive term that reflects deductions.

Lemma 3. Define the discounted value of deductions as

(57) td ≡ tcξd

ρ1−tp
1−tg + ξd

.

17We assume that the fixed adjustment cost are capitalized and enter into the expression for deductions. We
thank Jim Hines for helpful advice on this modelling assumption.

18In the previous sections without corporate taxes, the Modigliani-Miller theorem holds, that is, the firms’ values
and investment policies (and the implicit dividend policy) were independent of the capital structure. Introduc-
ing taxes, in principle, could break this independence (e.g., under the trade-off theory of the capital structure).
Nevertheless, following the arguments in Miller (1977), we continue working under the Modigliani-Miller paradigm.
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The firm value with taxes can be decomposed as:

(58) V (k, u, d) =
1− tp
1− tg

[
uv(k̂) + tdd

]
,

where v(k̂) solves the investment problem in Lemma 2 with the following parametric changes:

A → (1− tc)A,(59)

ρ → (1− tp)
(1− tg)ρ,(60)

θ → (1− td)θ,(61)

p(∆k̂) →
(
1− td

)
p(∆k̂).(62)

The parametric changes established in Proposition 3 highlight the different channels through

which taxes affect the firm value and optimal policy. The corporate income tax rate tc directly

affects after-tax profitability A in (59). The personal income tax rate tp and the capital gains tax

rate tg directly affect the after-tax discount factor ρ in (60). The discounted value of deductions

td affects the firm value through an income effect, as deductions increase additively the firm value

in (58), and a substitution effect, as deductions promote investment by reducing the after-tax

adjustment costs and after-tax prices in (61) and (62). Additionally, (tc, tp, tg) operate indirectly

through td. Next, we formalize the channels through which taxes affect investment through their

interaction with investment frictions.

4.2 Static and dynamic effects of corporate taxation

Proposition 5 decomposes the optimal investment policy into a static frictionless component and

a dynamic component that comprises the investment frictions. It shows that, from a firm’s per-

spective, what matters for investment decisions is the fixed cost and the price wedge relative to

after-tax profits. To simplify the notation, we define the after-tax discount r̃ and the after-tax

user cost of capital Ũ as:

r̃ ≡ 1− tp
1− tg ρ− µ−

σ2

2
,(63)

Ũ ≡ 1− tp
1− tg ρ+ ξk − σ2.(64)

In particular, the after-tax user cost Ũ is determined by the the personal income and capital gains

taxes, the discount rate, the depreciation rate, and idiosyncratic volatility. For the problem to be

well-defined, we assume r̃ > 0 and Ũ > 0.
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Proposition 5. Let K ≡ {k̂−, k̂∗−, k̂∗+, k̂+} denote the firms’ optimal investment policy. Consider

the static log capital-productivity ratio k̂ss that firms would set in the absence of the fixed costs and

the price wedge:

(65) k̂ss =
1

1− α log

(
1− tc
1− td

αA

pŨ

)
.

With the static policy k̂ss, define the effective fixed cost θ̃ (scaled by the after-tax static profits)

and the effective prices p̃sell and p̃buy (scaled by the after-tax static profit-capital ratio):

θ̃ ≡ 1− td
1− tc

θ

Aeαk̂ss
,(66)

(p̃buy, p̃sell) ≡ 1− td
1− tc

(pbuy − p, psell − p)
Ae(α−1)k̂ss

.(67)

Consider the normalized capital-productivity ratio x ≡ k̂− k̂ss. Then the optimal investment policy

can be decomposed as the sum of a static and a dynamic component

(68) K = k̂ss + X (θ̃, p̃buy, p̃sell),

where the dynamic component X ≡ {x−, x∗−, x∗+, x+} solves the following stopping problem:

V(x) = max
τ,∆x

E
[∫ τ

0

e−r̃τ (eαxs − αexs) ds(69)

+ er̃τ
(
−θ̃ + p̃(∆x)(exτ+∆x − exτ ) + V(xτ + ∆x)

) ∣∣∣x0 = x
]

dxt = −ν dt+ σ dWt,(70)

p̃(∆x) = p̃buy1{∆x>0} + p̃sell1{∆x<0}.(71)

Proposition 5 provides several insights regarding the effects of corporate taxation on invest-

ment. The static optimal policy k̂ss in (65) sets firms’ capital proportional to their current pro-

ductivity, where the proportionality constant reflects after-tax profitability (1− tc)A, the average

after-tax user cost of capital Ũ in (64), and the average after-tax investment price (1 − td)p.

Studying the effects of corporate taxes on a frictionless investment policy and its implications for

aggregate capital accumulation have been widely studied (see Summers (1981) for early work and

the vast literature that follows).

By definition, investment frictions do not affect the static choice k̂ss. In contrast, the dynamic

policy X characterized by (69), (70), and (71) takes into account the fixed cost and the price

wedge, but these frictions enter scaled by after-tax static profits or by after-tax output-capital

ratio (see the definition of effective frictions in 66 and 67). Moreover, the flow payoff in the
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dynamic problem, that is eαxs − αexs , only depends on the curvature of the profit function α.

These observations imply that taxes have effects on the the dynamic component X of the optimal

policy only through the effective investment frictions.

The fact that after-tax frictions are the key determinants for investment puts forward a novel

channel for policy intervention: Corporate tax policy can effectively change the size fixed costs—a

technological constraint typically considered outside the control of a policymaker—and the price

wedge—a market determined outcome—and thus affect the dynamic component of investment.

Proposition 6 formalizes the channels through which the corporate tax schedule shapes firm in-

vestment and signs the relationships with investment frictions.

Proposition 6. Recall td ≡ tcξd/(1−tp
1−tg ρ+ ξd) and Ũ ≡ 1−tp

1−tg ρ+ ξk − σ2. The effective fixed cost

θ̃ and effective price wedge p̃buy − p̃sell relate to the fundamental frictions as follows:

θ̃ =

(
1− td

(1− tc)A

) 1
1−α
(
pŨ
α

) α
1−α

θ,(72)

p̃buy − p̃sell =
α

Ũ
pbuy − psell

p
.(73)

If tc > 0 and Ũ > 0, corporate taxes have the following effects on the effective investment frictions:

1. The effective fixed costs θ̃ increases with tc and tg; it decreases with ξd and tp.

2. The effective price wedge p̃buy − p̃sell increases with tp and decreases with tg. It does not

change with tc or ξd as long as p = E[p(∆k̂)] is fixed.

We focus the explanation on the effects of the corporate income tax.19 We derive three lessons

from Proposition 6. First, a higher corporate income tax tc reduces profits and therefore increases

the effective fixed cost that are scaled by after-tax profits. This effect is mediated by depreciation

allowance rate, being highest when ξd = td = 0. Second, the corporate income tax tc does not

affect the effective price wedge as long as the average price p remains fixed. This is because the

profit-capital ratio (1− tc)Ae(α−1)k̂ss that divides the price wedge is invariant to tc as it also enters

the static policy k̂ss. If the average price p does change, which would only happen if the relative

shares of upward and downward adjustments react to the tax, then the effective price wedge would

change as well. However, this effect is second order and quantitatively small.

Lastly, the derivative of the effective fixed adjustment costs θ̃ with respect to the corporate

income tax tc is increasing in the the fixed cost θ. This result suggests that firms, industries, or

sectors with higher fixed costs will face relatively larger effective fixed costs when tc increases. We

will test this prediction using cross-sectoral data in Section 5.5.

19See Online Appendix for detail discussions on the effects of other taxes.
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In summary, to study the effects of corporate taxation on the macroeconomy, one can separate

the static and dynamic components. And to study the dynamic component, it suffices to assess

how corporate taxes change the effective investment frictions.

4.3 Two benchmark cases

The dynamic policy X solves a stopping time problem that closely resembles the price-setting and

investment problems with fixed costs, analyzed first by Barro (1972), Sheshinski and Weiss (1977),

Dixit (1991), but with the addition of a price wedge. Below, we leverage on this previous work

to characterize analytically the effect of taxes on individual policies and aggregate outcomes, ex-

tending previous results to the case with partial irreversibility. We consider two benchmark cases

that isolate different mechanisms at play. Specifically, we show that the relative size of frictions

matters and that the role of the price wedge crucially depends on the size of the drift.

Zero drift. We start characterizing the investment policy and the macroeconomic outcomes in

driftless environments, that is, with zero drift and a symmetric price wedge. In this case, we

demonstrate that capital misallocation Var[x] is a sufficient statistic for the role of corporate

taxation on capital valuation (q) and capital dynamics (CIR). Additionally, these driftless and

symmetric environments clearly showcase the role of irreversibility: the price wedge constitutes

an important friction as firms expect to purchase and sell capital with equal probability. As in

Figure IV, we consider three cases: only fixed cost, only price wedge, and both frictions together.

Proposition 7 characterizes these cases using a second-order approximation to the profit function.

Proposition 7. Assume ν → 0 and symmetric effective price deviations p̃buy = −p̃sell = p̃.

Without drift, the after-tax user cost of capital is U = 1−tp
1−tg ρ− σ2 and the after-tax discount factor

is r̃ = 1−tp
1−tg ρ− σ2/2. In all symmetric cases we have: E[x] = 0, E[k̂] = k̂ss and Cov[x, a] = 0.

(i) Only fixed cost: The inaction thresholds are x̄ = ±
(

6θ̃σ2

α(1−α)

)1/4

, the reset point is x∗ = 0,

and the macro outcomes are:

Var[x] =
x2

6
; q = 1− Ũ

r̃

α(1− α)

2
Var[x];

CIR(δ)

δ
=

Var[x]

σ2
.(74)

(ii) Only price wedge: The inaction thresholds and reset points coincide x∗ = ±
(

3p̃σ2

2α(1−α)

)1/3

,

and the macro outcomes are:

Var[x] =
x∗2

3
; q = 1−

(
1 +

2

α

) Ũ
r̃

α(1− α)

2
Var[x];

CIR(δ)

δ
=

(
1 +

1

σ2

)
Var[x].(75)
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(iii) Both frictions: The thresholds of the inaction region ±x and the reset points ±x∗ solve:

xx∗(x+ x∗) =
3p̃σ2

α(1− α)
; x4 − x∗4 =

3p̃σ2

α(1− α)
(x− x∗) (1 + x+ x∗) +

6θ̃σ2

α(1− α)
,(76)

and the macro outcomes are:

Var[x] =
x2 + x∗2

6
(77)

q = 1− Ũ
r̃

α(1− α)

2

(
Var[x] +

2

α

xx∗

3

)
(78)

CIR(δ)

δ
=

Var[x]

σ2
+
x∗x

3
.(79)

When only one friction is active, a marginal increase in the other friction has no effect on

the macro outcomes:

(80)
dVar[x]

dp̃

∣∣∣∣
θ̃>0, p̃=0

= 0; and
dZ

dθ̃

∣∣∣∣
θ̃=0, p̃>0

= 0, for Z ∈ {Var[x], q,CIR}.

When only one friction is active, in cases (i) and (ii), there is a positive relationship between

the corresponding effective investment friction (θ̃ or p̃) and capital misallocation Var[k̂]. This

relationship is immediate from the expressions for the inaction region and the cross-sectional

variance. In turn, higher misallocation reduces q by lowering aggregate productivity Ŷ /K̂, and

increases the CIR, slowing down the propagation of aggregate productivity shocks. If effective

frictions were of the same size, that is θ̃ = p̃, expressions (74) and (75) reveal that a price wedge

generates a higher Var[x], a lower q, and a larger CIR compared to the case with only fixed costs.

Now let us discuss case (iii) in which both frictions are present. In this case, the sufficient

statistics for q and CIR are misallocation Var[x] and the product xx∗. When x ≈ x∗ their product

is proportional to Var[x] (as in the case with only partial irreversibility). The first observation

is that the inaction region (−x, x) and the reset points {−x∗, x∗} are jointly determined by the

size of both frictions. Frictions have opposing effects on the within and between components

of misallocation, so the effect on the total misallocation is ambiguous. When the price wedge

is positive, introducing a fixed cost shrinks the distance between the two reset points, reducing

between variance. When the fixed costs is positive, introducing a price wedge generates two

different reset points, increasing the between variance. In the limits where only one friction is

active, the result in (80) teaches us that a marginal increase in the other friction has no effect on

the macro outcomes (recall our earlier discussion around Figure IV).

Large drift. Next we characterize the case with a large drift relative to idiosyncratic shocks. In

this case, we demonstrate that the price wedge is innocuous. The reason is that firms upsize by
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actively purchasing capital but downsize by letting the drift shrink its capital-productivity ratio.

Thus the purchase price p̃buy is the only relevant price. Proposition 8 shows this result.

Proposition 8. Let ν > 0 and σ2 → 0 such that ν/σ2 → ∞. Without idiosyncratic shocks, the

after-tax user cost is Ũ = 1−tp
1−tg ρ + ξk and the after-tax discount is r̃ = 1−tp

1−tg ρ − µ. The policy is

a one-sided inaction region with lower threshold x− and one reset point x∗. The cross-sectional

distribution is Uniform over [x−, x∗] with moments:

E[x] =
(x∗ + x)

12
; Var[x] =

(x∗ − x)2

12
.(81)

The policy solves the non-linear system

E[x]
√

Var[x] = − r̃θ̃√
12α(1− α)

;
E[x]

Var[x] + E[x]2
= −

(
r̃

ν
+
α + 1

2

)
,(82)

and the macro outcomes are

q = 1 −
1−tp
1−tg ρ+ ξk

1−tp
1−tg ρ− µ

(1− α)
(
E[x] +

α

2
Var[x]

)
;

CIR(δ)

δ
= 0.(83)

The case with a large drift reveals new mechanisms relative to the ones explored in the sym-

metric environments above. First, as already mentioned, the price wedge has no effect. Second,

comparing the expression for aggregate q and the CIR with large drift against the three driftless

cases in Proposition 7 we see that now the average E[x] matters (before it was zero). The non-

linear system in (82) that pins down the investment policy shows that larger effective fixed costs

θ̃ increase both the average E[x] (in absolute value) and the variance Var[x] of the normalized

capital-productivity ratios x. In fact, the first equation is an indifference curve that mediates the

trade-off between these two moments. A larger fixed cost lengthens the inaction period and firms

accumulate more drift, reducing the average capital-productivity ratio relative to a frictionless

economy. As firms anticipate a larger drift, they increase the reset point widening the distance

between x− and x∗, increasing the variance. The same system shows that the average E[x] is

negative, thus E[k̂] = k̂ss + E[x] < k̂ss. How do changes in the mean and variance—generated by

higher effective fixed costs θ̃—affect the macro outcomes? As the mean becomes more negative,

q goes up; but as the variance increases, q goes down. The overall effect depends on the relative

elasticities of these moments with respect to θ̃. Lastly, as shown in Corollary 2 of Baley and

Blanco (2021), the CIR equals zero: aggregate productivity shocks are immediately absorbed by

firms and there are no deviations from steady-state.

The benchmark cases with zero and large drift teach us two key lessons. First, the importance

of the effective price wedge (and the taxes that shape it) crucially depends on the drift. In a

driftless environment, the price wedge is an important source of misallocation; in environments
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with large drift, it is not. Second, the effect of taxes on aggregate q depend on the relative size of

the average E[x] and the variance Var[x] of centralized capital-productivity ratios. In symmetric

environments, the average is zero E[x] = 0 and thus higher misallocation always decreases q.

With a large drift, the mean is negative E[x] < 0, reflecting capital scarcity. Scarcity increases

q and could in principle dominate the misallocation effect that reduces q. Next, we consider an

intermediate case with positive drift in the range of values observed in the data.

4.4 Corporate income tax and macro outcomes

We conclude the this section exploring the macroeconomic effects of corporate taxes in a general

environment where both investment frictions are active and under parametric assumptions that are

consistent with the data. Concretely, we use the parameters in Table I which are recovered from

the Chilean microdata and described in detail in the next section. Here, the purpose is to illustrate

the response of macro outcomes to a tax change and dissect the various channels discovered in

the theoretical analysis. To simplify the exposition, we focus on the corporate income tax rate

tc and present a detailed analysis for the other taxes in the Appendix. Figure VI illustrates the

macroeconomic consequences of an increase in the corporate tax rate from 0 to 0.5.

Figure VI – Macro Outcomes for Different Corporate Income Tax Rates
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Notes: Panels A, B, and C plot capital allocation, capital valuation, and capital dynamics for various levels of the

corporate income tax rate in the range tc ∈ [0, 0.5]. The calibration follows Table I together with θ̃ = 0.0175.
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Panel A shows capital allocation, measured by the variance of capital-productivity ratios Var[k̂]

and decomposed into within and between variances following (37). In this parameterization with

a relatively large drift, fixed costs are the primary investment friction and the within variance is

almost the only source of misallocation. We observe that a higher corporate income tax distorts

the allocation of capital. As predicted by equation (73) and Propositions 7 and 8, higher tc raises

the effective fixed cost θ̃ and widens inaction regions, raising firms’ tolerance for mismatch between

their capital and their productivity and increasing the dispersion of capital-productivity ratios.

Panel B shows capital valuation, measured by the aggregate q and decomposed into a produc-

tivity and an irreversibility component according to (40). As predicted by the theory, the irre-

versibility term is negative and reduces q below the perpetuity value of productivity (and shifts q

below 1 for most levels of tc). We discover that q increases with the corporate income tax. To un-

derstand why this is the case, we follow expression (83) and plot the two margins affecting produc-

tivity Ŷ /K̂ in (41): the average, exp(−(1− α)E[x]), and the variance, exp(−(1− α)αVar[x]/2),

of centralized of capital-productivity ratios. When tc increases, firms invest less and the average

capital-productivity ratio E[k̂] falls. Scarce capital makes it more valuable and q goes up. At the

same time, the allocation of capital worsens, Var[k̂] increases (see Panel A) and q goes down. In

this parameterization, the first effect dominates and q is an increasing function of tc.

Panel C shows capital dynamics, measured by the CIR and decomposed into three terms follow-

ing (49): variance Var[k̂]/σ2, covariance νCov[k̂, a]/σ2, and irreversibility. The variance of capital-

productivity ratios reflects misallocation (see Panel A). The covariance of capital-productivity

ratios with the time elapsed since last adjustment reflects asymmetries in capital adjustment. A

positive covariance (as observed in most of the tax domain considered) means that firms with old

capital have a large desire to downsize, but they do not sell capital to avoid the penalty of the

price wedge. And the irreversibility term is positive and increases the CIR beyond the sum of

the other two terms. We find that the CIR increases with the corporate income tax, meaning

that aggregate productivity shocks propagate more slowly when taxes are high.20 The variance

and covariance terms move in opposite directions with tc: the variance increases because of higher

effective fixed costs θ̃, whereas the covariance decreases (and turns negative) because the price

wedge plays a relatively smaller role vis-à-vis the fixed costs. Overall, for this parameterization,

the first effect dominates and the CIR increases with tc.

In summary, this calibrated version of our parsimonious model (informed by the Chilean data)

suggests that a higher corporate income tax rate increases capital misallocation, increases capital

valuation (due to lower capital accumulation), and slows down the propagation of aggregate shocks.

In the next section, we provide suggestive evidence of these mechanisms using establishment-level

data from Chile.

20The CIR goes from 1.73 at tc = 0 to 1.96 at tc = 0.5.
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5 Suggestive empirical evidence

In this section, we put the theory to work. First, we describe the Chilean investment micro data

and the country-specific tax schedule used in all empirical exercises. Second, we show how to

exploit the micro data to recover the macro outcomes. To do this, we externally set the tax rates

and technology parameters to replicate the average Chilean experience in the last 40 years. Using

these parameters, we apply the mappings to recover the average macro outcomes in Chile between

1990 and 2018. Lastly, we provide suggestive evidence of the main implications of the theory

through low-frequency time-series correlations and cross-sectorial data.

5.1 Data description

Using Chilean data has several advantages to evaluate our theory. Chile is a small open economy

with an exogenous interest rate as our theory assumes. Chile does not feature a specific tax on

capital gains tg, which are taxed at the personal income tax rate tp. As these rates are identical,

the ratio (1− tp)/(1− tg) equals one and does not affect the discount factor. Finally, the corporate

income tax rate has varied in the last four decades, departing from 40% in the 1980, reaching 10%

in 1984, and increasing consistently until 20% in 2020.

Data sources. We use yearly investment data on manufacturing plants in Chile from the Annual

National Manufacturing Survey (Encuesta Nacional Industrial Anual) for the period 1980 to 2011.

To construct the capital series, we use information on depreciation rates and price deflators from

Chilean national accounts and Penn World Tables. The sample considers plants that appear in

the sample for at least 10 years (more than 60% of the sample) and have more than 10 workers.

Data on the corporate income tax comes from Vegh and Vuletin (2015), which we cross-checked

using several sources. The Data Appendix provides details.

Capital stock and investment rates. We construct the capital stock series using the perpetual

inventory method. We include structures, machinery, equipment, and vehicles. Given an initial

level of capital k0, a plant’s capital stock in year t evolves as

(84) kt = (1− ξk)kt−1 + it/(p(it)Dt),

where ξk is the physical depreciation rate, Dt is the gross fixed capital formation deflator, and

initial capital k0 is a plant’s self-reported nominal capital stock at current prices for the first year

in which it is nonnegative. Following the theory, it/Dt is the real investment in output units,

and it/(p(it)Dt) is the real investment in capital units, which considers different prices for capital

34



purchases and sales. We set a price wedge of 5%, which is an intermediate value in the literature.21

We construct gross nominal investment it with information on purchases, reforms, improvements,

and sales of fixed assets, and define the investment rate ιt as the ratio of real gross investment to

the capital stock:22

(85) ιt ≡
it/(p(it)Dt)

kt−1

.

Variable construction. For each plant and each inaction spell h, we record the change in the

capital-productivity ratio upon action ∆k̂h and the spell’s duration τh. We construct ∆k̂h with

investment rates from (85):

(86) ∆k̂h =





log (1 + ιh) if |ιh| > ι,

0 if |ιh| < ι.

The threshold ι > 0 reflects the idea that small maintenance investments should be excluded.

Following Cooper and Haltiwanger (2006), we set ι = 0.01, such that all investment rates below

1% in absolute value are considered to be part of an inaction spell. Then we define an adjustment

date Th from ∆k̂Th 6= 0 and compute a spell’s duration as the difference between two adjacent

adjustment dates: τh = Th − Th−1. Finally, we truncate the investment distribution to lie in the

range [−0.3, 1] to eliminate outliers.23

Figure VII plots the resulting cross-sectional distribution of non-zero changes of the capital-

productivity ratios ∆k̂ and completed inaction spells τ , conditional on a past positive or negative

investment. The data shows investment patterns that are consistent with partial irreversibility.

In particular, the distribution of investment conditional on a last negative investment H+(∆k) is

skewed toward the left of the distribution conditional on a last positive investment H−, meaning

that the probability of a negative investment is larger after a negative investment and vice versa.

5.2 Calibration

There are several parameters that we must calibrate externally before applying the theoretical

mappings to recover the capital behavior from the data. These parameters include taxes, the

21Ramey and Shapiro (2001) study the reallocation of capital previously operated by closing aerospace plants.
They find a discount of 0.28 cent per dollar. Lanteri, Medina and Tan (2019) set a discount of 0.07 cent per dollar
and Khan and Thomas (2013) set a discount of 0.03 cent per dollar. We set a value in between these studies. The
Appendix shows robustness exercises with respect to the price wedge. Note that only the price wedge matters for
computing investment, not the price level.

22Note that the investment rate equals ιTh ≡ iTh/kT−h
= (kTh − kT−h )/kT−h

, where kT−h
= limt↑Th kt. In contrast

to the continuous-time model, in which investment is computed as the difference in the capital stock between two
consecutive instants, in the data we compute it as the difference between two consecutive years.

23Table I in the Data Appendix presents descriptive statistics on investment rates. In particular, the inaction
rate (|ι| < 0.01) equals 40.1%.
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Figure VII – Empirical Distribution of Observable Actions
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Notes: Own calculations using establishment data from Chile. Panel A plots the distribution of non-zero changes in

capital-productivity ratios and Panel B plots the duration of inaction spells. Solid bars = conditional on departing

from k̂∗+ (last negative investment); white bars = conditional on departing from k̂∗− (last positive investment).

Sample: Firms with at least 10 years of data, truncation at [−0.3, 1], and inaction threshold of ι = 0.01.

discount factor, technological constants, and investment prices. We set these parameters to match

several average statistics from the Chilean economy in the last 40 years. The parameterization is

summarized in Table I. These values are used to produce Figure VI above.

Taxes. We set the tax schedule to match the average values in Chile between 1980 to 2018.

The personal income and capital gain tax rates are identical and equal to tp = tg = 0.471;

the corporate income tax rate (the highest marginal rate) is on average tc = 0.26. We set the

depreciation deduction rate to ξd = 0.07 to match the PDV of depreciation allowances under the

Chilean straight-line system.

Externally-calibrated parameters. One period equals one year. We set the real interest rate

to 5.8% (ρ = 0.058) to match the average lending nominal rate minus realized inflation. The

productivity growth rate is set to 3.3% (µ = 0.033) to match the average GDP growth rate.

The returns-to-scale parameter is set to α = 0.72 to match an elasticity of output to capital

of 0.3 taking into account labor and decreasing returns to scale.24 We set investment prices to

pbuy = 2 and psell = 1.91 to match an average aggregate output-capital ratio of Ŷ /K̂ = 0.36 and

an irreversibility wedge of 5% as above.

24To set this parameter, we consider a generalized production function that includes labor l as a frictionless input,

y = u1−ηα̃ (kα̃l1−α̃
)η

. Static maximization over labor implies y ∝ k
ηα̃

1−(1−α̃)η . Assuming standard parameters in the
literature, η = 0.90 and α̃ = 0.3, the implied value for the output-capital elasticity is α = (ηα̃)/(1−(1−α̃)η) = 0.72.
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Estimated parameters. Using the mappings from data to the parameters of the productivity

process in (31) and (32), we recover a drift of ν = 0.086 and a volatility of σ2 = 0.036. Together

with the productivity growth rate, the value for the drift ν implies a physical depreciation rate of

ξk = ν−µ = 0.053. Given these values, the implied after-tax discount is r̃ = ρ−µ−σ2/2 = 0.007

and the after-tax user cost is Ũ = ρ+ ξk − σ2 = 0.075.

Table I – Parameterization

Taxes Technology Productivity

τp τg τ c ξd µ α ρ pbuy psell ν σ2

0.471 0.471 0.260 0.070 0.033 0.720 0.058 2.000 1.910 0.086 0.036

Notes: Baseline parameterization of the model. Average tax rates in Chile in the period
1980-2018. Other parameters are set externally or recovered from the microdata through
the lens of the theory, see text for details.

5.3 Average capital behavior

The first empirical assesses the nature and magnitude of investment frictions and the role of

the various components in shaping the average macro outcomes (misallocation, irreversibility,

productivity, etc.). This exercise uses the average levels of taxes during the sample period. Table

II shows the average outcomes recovered from the data through the lens of the theory.

We begin by examining the investment policy. We recover reset capitals from (33) and (34).

The reset capital after positive investments is k̂∗− = 4.24 and the reset capital after negative

investments is k̂∗+ = 4.60. Their difference, k̂∗+− k̂∗− = 0.36, is explained by the exogenous price

wedge log(pbuy/psell) = 0.16 and the endogenous behavior of firms reflected in the PDV of the

capital-productivity ratio, which is equal to 0.19 and computed as a residual. Next, we recover

the average macro outcomes during the sample period.

Using (35) and (36), we estimate an average misallocation of Var[k̂] = 0.068, where 76% comes

from within-dispersion and 24% comes from between-dispersion (driven by the price wedge). As

expected, the relative importance of the price wedge diminishes in environments with drift. We

use (40) to recover an average q = 1.009, which is not far from its frictionless value. We back out

its productivity component 1.028 from (41) and its irreversibility component -0.02 from (42). As

predicted by the theory, irreversibility decreases q. Lastly, using (49), we recover an average of

CIR = 2.76, meaning that a 1% decrease in aggregate productivity generates a total deviation of

aggregate capital above its steady-state value of 2.7%. Thus the average multiplier of aggregate

productivity shocks is 2.7. We decompose the CIR into its three components: variance 1.88 from

(36), covariance 0.70 from (50), and irreversibility 0.18 from (51). As predicted by the theory,

the CIR’s irreversibility term is positive; however, it is quantitatively small and most of its effects
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operate indirectly by increasing the steady-state moments (specifically, the price wedge generates

a positive covariance of capital-productivity ratios with age, Cov[k̂, a], which would otherwise be

negative without it).

Table II – Aggregate Capital Behaviour: 1980-2011

Partial Irreversibility Capital Allocation

Reset capital after negative investment (k̂∗+) 4.592 Variance 0.068

Reset capital after positive investment (k̂∗−) 4.236 Within 0.052

Difference in reset capitals (k̂∗+ − k̂∗−) 0.356 Between 0.016
Exogenous price wedge 0.164 Mean 4.258
PDV of capital-productivity ratio 0.191

Capital Valuation Capital Dynamics

Tobins q 1.009 CIR 2.762
Productivity 1.028 Variance 1.885
Irreversibility -0.020 Covariance 0.702

Irreversibility 0.176

Notes: Own calculations using establishment-level data from Chile. Uses externally-
calibrated parameters described in Table I.

Let us compare the values for the macro outcomes reported in Table II—recovered directly

from the microdata mappings assuming a corporate tax rate of tc = 0.26—with the corresponding

values in Figure VI in Section 4.4—obtained by simulating the model. All values in the data are

consistently larger than those produced by the model. The reason for this discrepancy is that

the parsimonious model (with a symmetric fixed cost) cannot reproduce the large variance of

capital-productivity ratios Var[k̂] and the large covariance of capital-productivity ratios and their

age Cov[k̂, a] recovered from the data. In fact, we calibrated the effective fixed cost θ̃ = 0.0175 to

strike a balance between the two moments in the data.

In previous work (Baley and Blanco, 2021), we demonstrated that the symmetric fixed cost

model is unable to replicate the empirical values of these two moments and showed how it should

be augmented in order to match them. Introducing a time-dependent component in adjustment,

such as random opportunities for free adjustment, increases the variance Var[k̂]. Introducing

asymmetric fixed costs that depend on the adjustment sign increases the covariance Cov[k̂, a] (the

price wedge already pushes the variance up, but it is not quantitatively enough). Augmenting

the model in these two directions is straightforward and necessary to conduct a fully-fledged

quantitative analysis. Nevertheless, we have opted to keep the model as simple as possible to

facilitate its exposition and to highlight the key mechanisms at work in the cleanest way.
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5.4 Low-frequency time-series correlations

The second exercise aims to provide suggestive evidence of the correlations between capital misal-

location, valuation, and dynamics obtained in Section 4.4. We see this exercise as proof of concept

that the endogenous objects move in the direction implied by the theory. We compute 5-year

moving averages of the time-series of the Chilean corporate income tax rate and the data-implied

time-series of the three macro outcomes. Figure VIII plots the results.

We confirm that an increase in the corporate income tax (Panel A) is associated with an increase

in misallocation (Panel B) and an increase in the CIR (Panel D), meaning that the propagation

speed of aggregate productivity shocks has slowed down. The correlation with the aggregate q

(Panel C) is more nuanced. Recall that q is driven by both scarcity and misallocation, which

operate in opposing directions. Moreover, q is a forward-looking variable and thus it responds to

expectations of future taxes, while here we assume constant taxes.

Figure VIII – Time series of corporate income tax and long-run outcomes
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Notes: 5-year moving averages of (A) corporate income tax rate, (B) cross-sectional variance of capital-productivity

ratios (×100), (C) aggregate q (minus 1 × 100), and (D) CIR.
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5.5 Cross-sectoral heterogeneity

When exploiting time variation, there is the concern that other trends could be driving the corre-

lations. Some of these trends may include the decline in interest rates, the rise of market power,

the use of intangible capital, or other trends specific to the Chilean context. To alleviate some

of these concerns, the third exercise exploits heterogeneity across industries, in the spirit of the

empirical analysis in House and Shapiro (2008) and Zwick and Mahon (2017).

According to Proposition 6, the derivative of the effective fixed cost θ̃ with respect to the

corporate income tax tc is increasing in the underlying fixed cost θ. Thus the theory predicts

that industries with larger fixed costs (and therefore larger misallocation) should be more affected

by a change in taxation. To test this prediction, we consider 8 industries within the Chilean

manufacturing sector. We split the sample period into two regimes: a low-tax regime (period 0)

going from 1991 to 2001, and a high-tax regime (period 0) going from 2002 to 2011. For each

industry, we compute the initial level of misallocation Var[k̂]0 and consider it a proxy for the

pervasiveness of investment frictions in that sector. Then, we compute the changes in the macro

outcomes between the two tax regimes. Figure IX plots the results.

We discover that industries with higher misallocation suffer a larger increase in misallocation

and in the CIR, confirming the predictions from the theory. In contrast, industries with higher

misallocation suffer a larger decrease in q. This suggests (as in the time-series exercise) that the

scarcity effect dominates.

Figure IX – Sectorial variation in the macro response to a permanent increase in tc
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Notes: Panels A, B, and C plot the change in the macro outcomes between two periods against the initial level

of misallocation Var[k̂]0. Each dot corresponds to a manufacturing industry: Non-metallic mineral, machinery,

textile, basic metal, chemistry, paper, and food.
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6 Conclusions

We develop a novel methodology for evaluating the effects of corporate tax reforms, highlight-

ing the interaction with investment frictions and the interconnectedness between macroeconomic

outcomes.

References

Abel, A. B. (1979). Investment and the Value of Capital. 65, Dissertations-G.

— (1982). Dynamic effects of permanent and temporary tax policies in aq model of investment.
Journal of Monetary Economics, 9 (3), 353–373.

— (1983). Optimal investment under uncertainty. The American Economic Review, 73 (1), 228–
233.

— and Eberly, J. C. (1994). A unified model of investment under uncertainty. American Eco-
nomic Review, 84 (5), 1369.

— and — (1996). Optimal investment with costly reversibility. The Review of Economic Studies,
63 (4), 581–593.

Alexandrov, A. (2021). The Effects of Trend Inflation on Aggregate Dynamics and Monetary
Stabilization. Tech. rep., University of Bonn and University of Mannheim, Germany.

Altug, S., Demers, F. S. and Demers, M. (2009). The investment tax credit and irreversible
investment. Journal of Macroeconomics, 31 (4), 509–522.
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A Supplementary Appendix

A.1 Auxiliary Theorems

Auxiliary Theorem 1. Let X be a (sub)martingale on the filtered space (Ω,P,F) and let τ be a stopping time.
If ({Xt}t, τ) is a well-defined stopping process, then

(A.1) E[Xτ ](≥) = E[X0].

This is the Optional Sampling Theorem (OST), see Theorem 4.4 in Stokey (2009) for the proof.

Auxiliary Theorem 2. Let g be a real valued function of a Brownian motion xt, F the ergodic distribution of x,

and τ a stopping time. Assume that
∫
g(x) dF (x) = limT→∞ T−1

∫ T
0
g(xt) dt for all initial x0 and a constant reset

state xτ = x∗. The following relationship holds:

(A.2) E
[∫ τ

0

g(xt) dt
∣∣∣x0 = x∗

]

︸ ︷︷ ︸
occupancy measure

=

∫
g(x) dF (x)

︸ ︷︷ ︸
steady-state mass

E
[
τ
∣∣∣x0 = x∗

]
.

︸ ︷︷ ︸
proportionality constant

Proof. This result establishes the equivalence between the steady-state distribution and the occupancy measure.
The occupancy measure (LHS) is the average time an agent’s state spends at a given value. It is proportional to the
stationary mass of agents at that particular state (RHS), with a proportionality constant equal to the expected time
between adjustments. For example, if g(x) = xm, then E

[∫ τ
0
xmt dt|x0 = x∗

]
= E[xm]E[τ |x0 = x∗]. For notation

clarity, we use E[·] = E[·|x0 = x∗]. See Appendix B.2 for the proof and Stokey (2009) for more details.

A.2 Proof of Lemmas 1, 2, and 3

The proof has 3 steps. First, we derive the sufficient conditions that characterize the optimal value function
V (k, u, d) and the policy (k−, k∗−, k∗+, k+). Second, to reduce the dimensionality of the state space, we guess that

V can be separated as V (k, u, d) = uv(k̂) + tdd, where v(k̂) is a function of the log capital-to-productivity ratio

k̂ ≡ log(k/u) and td is the PDV of depreciation deductions. The corresponding policy is (k̂−, k̂∗−, k̂∗+, k̂+). Third,
we verify the guess by showing that the sufficient conditions for V are equivalent to those satisfied by v. Lastly, we
express the optimal policy as a system of equations in fundamental parameters.

To simplify the notation, we denote the state evaluated at the lower border of inaction as S− ≡ (k−, u, d)
and evaluated after a positive adjustment as S∗− ≡

(
k∗−, u, d+ pbuy∆k

)
, where ∆k = k∗− − k−. Analogously,

we denote the state evaluated at the upper border of inaction as S− ≡ (k−, u, d) and evaluated after a negative
adjustment as S∗+ ≡

(
k∗+, u, d+ psell∆k

)
, where ∆k = k∗+ − k+.

Step 1: Characterize the value function V (k, u, d). Recall the recursive problem in (4). Substituting output
(1), after-tax profits (52), and adjustment costs θs = θus we obtain

V (k0, u0, d0) = max
{Th, iTh}

∞
h=1

E
[∫ ∞

0

e−ρ
1−tp
1−tg s[(1− tc)Au1−α

s kαs + tcξdds] ds(A.3)

−
∞∑

h=1

e−ρ
1−tp
1−tg Th (θuTh + p (iTh) iTh)

]

Using the principle of optimality, we write the problem recursively as a stopping-time problem with initial conditions
(k0, u0, d0) = (k, u, d):

V (k, u, d) = max
τ, ∆kτ

E
[∫ τ

0

e−ρ
1−tp
1−tg s[(1− tc)Au1−α

s kαs + tcξdds] ds(A.4)

+ e−ρ
1−tp
1−tg τ (−θuτ − p(∆kτ )∆kτ + V (kτ + ∆kτ , uτ , dτ + p̃(∆kτ )∆kτ ))

]
.

The optimal policy (k−, k∗−, k∗+, k+) satisfies the system of sufficient conditions (A.5) to (A.15).
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1. In the interior of the inaction region, i.e., k ∈ (k−, k+), V (S) solves the HJB equation:

ρ
1− tp
1− tg V (S) = u(1− tc)A

(
k

u

)α
+ tcξdd− ξkk∂V (S)

∂k
− ξdd∂V (S)

∂d
(A.5)

+

(
µ+

σ2

2

)
u
∂V (S)

∂u
+

(σu)2

2

∂2V (S)

∂u2
.

2. The value matching conditions for all (u, d), that equalize the value of adjusting to the value of inaction at
the borders of the inaction region {k−, k+}:

V (S∗−) − pbuy∆k − θu = V (S−),(A.6)

V (S∗+) − psell∆k − θu = V (S+).(A.7)

3. The two optimality conditions for the reset capitals {k∗−, k∗+}:

∂V (S∗−)

∂k
=

[
1− ∂V (S∗−)

∂d

]
pbuy,(A.8)

∂V (S∗+)

∂k
=

[
1− ∂V (S∗+)

∂d

]
psell.(A.9)

4. The six smooth pasting conditions:

∂V (S−)

∂k
=

[
1− ∂V (S−)

∂d

]
pbuy,(A.10)

∂V (S+)

∂k
=

[
1− ∂V (S+)

∂d

]
psell,(A.11)

∂V (S∗−)

∂u
= θ +

∂V (S−)

∂u
,(A.12)

∂V (S∗−)

∂u
= θ +

∂V (S−)

∂u
,(A.13)

∂V (S∗+)

∂d
=

∂V (S+)

∂d
.(A.14)

∂V (S∗+)

∂d
=

∂V (S+)

∂d
.(A.15)

For additional details about the sufficiency of HJB equations, value matching, optimality and smooth pasting con-
ditions, see Oksendal (2007) and Baley and Blanco (2019).

Step 2: Guess of separable value function. We guess a separable value function:

(A.16) V (S) = uv(k̂) + tdd,

where the function v(k̂) is defined as

(A.17) v(k̂) ≡ max
τ,∆k̂

E
[∫ τ

0

(1− tc)Ae−r̃s+αk̂s ds+ e−r̃τ
(
−θ − p(∆k̂)(ek̂τ+∆k̂ − ek̂τ ) + v(k̂τ + ∆k̂)

)]
.

and the new parameters are defined as

(A.18) td ≡ tcξd

ρ 1−tp
1−tg + ξd

; r̃ ≡ ρ1− tp
1− tg − µ− σ

2/2; ν ≡ µ+ ξk.

The value function v(k̂) and the optimal policy {k̂−, k̂∗−, k̂∗+, k̂+} satisfy the following three conditions:
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(i) In the interior of the inaction region, v(k̂) solves the HJB equation:

r̃v(k̂) = Aeαk̂ − νv′(k̂) +
σ2

2
v′′(k̂).(A.19)

(ii) At the borders of the inaction region, v(k̂) satisfies the value-matching conditions:

v(k̂−) = v(k̂∗−) − θ + (1− td)pbuy(ek̂
− − ek̂∗−),(A.20)

v(k̂+) = v(k̂∗+) − θ + (1− td)psell(ek̂+ − ek̂∗+).(A.21)

(iii) At the borders of the inaction region and the two reset states, v(k̂) satisfies the smooth-pasting and the
optimality conditions:

v′(k̂) = (1− td)pbuyek̂, k̂ ∈
{
k̂−, k̂∗−

}
,(A.22)

v′(k̂) = (1− td)psellek̂, k̂ ∈
{
k̂∗+, k̂+

}
.(A.23)

Step 3: Verify the guess. We verify that the guess in (A.16) and (A.17) is correct by showing the equivalence
between the sufficient conditions of V , (A.5) to (A.15), and the sufficient conditions of v, (A.19) to (A.23). Given
our guess, the following relationships between the derivatives of V and the derivatives of v hold:

∂V (S)

∂u
= v(k̂)− v′(k̂),(A.24)

∂2V (S)

∂u2
= −v

′(k̂)

u
+
v′′(k̂)

u
,(A.25)

∂V (S)

∂k
=

u

k
v′(k̂),(A.26)

∂V (S)

∂d
= td.(A.27)

Verify HJB. We start with the HJB by substituting the guess into (A.5)

ρ
1− tp
1− tg

(
uv(k̂) + tdd

)
= u(1− tc)Aeαk̂ + tcξdd− ξkku

k
v′(k̂)− tdξdd

+

(
µ+

σ2

2

)
u(v(k̂)− v′(k̂)) +

σ2u2

2

(
v′′(k̂)

u
− v′(k̂)

u

)
.

Using the definition of td to cancel the term tcξdd on both sides, and rearranging we obtain:

(
ρ

1− tp
1− tg − µ−

σ2

2

)
uv(k̂) = u(1− tc)Aeαk̂ − (µ+ ξk)uv′(k̂) +

σ2

2
uv′′(k̂).

Using the new parameters ν ≡ µ+ ξk and r̃ ≡ ρ 1−tp
1−tg − µ− σ2/2, and cancelling u, we obtain the HJB in (A.19):

r̃v(k̂) = (1− tc)Aeαk̂ − νv′(k̂) +
σ2

2
v′′(k̂).

Verify value matching. We verify the value matching conditions by substituting the guess into (A.6) and (A.7).

uv(k̂∗−) + td(d+ ∆k) − pbuy∆k − θu = uv(k̂−) + tdd,

uv(k̂∗+) + td(d+ ∆k) − psell∆k − θu = uv(k̂−) + tdd.

Writing positive investment as ∆k = u(e∆k̂−k̂− − ek̂−), negative investment as ∆k = u(e∆k̂−k̂+ − ek̂+), cancelling

4



tdd, dividing both sides by u, we obtain (A.20) and (A.21):25

v(k̂∗−)− (1− td)pbuy(e∆k̂−k̂− − ek̂−)− θ = v(k̂−),

v(k̂∗+)− (1− td)psell(e∆k̂−k̂+ − ek̂+)− θ = v(k̂−).

Verify optimality and smooth pasting. We verify the optimality conditions and the smooth pasting conditions
for capital by substituting the guess into (A.8), (A.9), (A.10) and (A.11)

u

k
v′(k̂∗−) = (1− td)pbuy ⇐⇒ v′(k̂∗−) = ek̂

∗−
(1− td)pbuy,

u

k
v′(k̂∗−) = (1− td)psell ⇐⇒ v′(k̂∗−) = ek̂

∗+
(1− td)psell,

u

k
v′(k̂−) = (1− td)pbuy ⇐⇒ v′(k̂−) = ek̂

−
(1− td)pbuy,

u

k
v′(k̂+) = (1− td)psell ⇐⇒ v′(k̂−) = ek̂

+

(1− td)psell.

which are equal to the expressions in (A.22) and (A.23). To verify the smooth-pasting for idiosyncratic productivity,
we substitute the guess into (A.12) and (A.13) and then substitute (A.22) and (A.23) to rewrite v′(·) in terms of
prices, which yields the conditions in (A.20) and (A.21):

v(k̂∗−) = θ + v(k̂−) + (1− td)pbuy(ek̂
∗−−k̂−)

v(k̂∗+) = θ + v(k̂+) + (1− td)psell(ek̂∗+−k̂+)

Finally, the smooth pasting conditions for deductions (A.14) and (A.15) are trivially satisfied given the linearity of
the guess. We conclude that the guess is correct.

A.3 Cross-sectional distributions

Let g(k̂) be the cross-sectional distribution of k̂. It satisfies a Kolmogorov forward equation with its boundary
conditions.

Without partial irreversibility.

Λ(k̂)g(k̂) = νg′(k̂) +
σ2

2
g′′(k̂), ∀k̂ ∈ (k̂−, k̂+)/{k̂∗}(A.28)

g(k̂±) = 0(A.29)
∫ k̂+

k̂−
g(k̂) dk̂ = 1,(A.30)

g(k̂) ∈ C,C1({k̂∗}),C2({k̂∗})(A.31)

With partial irreversibility.

Λ(k̂)g(k̂) = νg′(k̂) +
σ2

2
g′′(k̂), ∀k̂ ∈ (k̂−, k̂+)/{k̂∗−, k̂∗+}(A.32)

g(k̂±) = 0(A.33)
∫ k̂+

k̂−
g(k̂) dk̂ = 1,(A.34)

g(k̂) ∈ C,C1({k̂∗−, k̂∗+}),C2({k̂∗−, k̂∗+})(A.35)

25To express investment in terms of k̂, we start from the expression ∆k̂ = log (1 + ∆k/kτ ), which yields

∆k = e∆k̂kτ − kτ ; multiply and divide by uτ and substitute the definition of k̂ to get: ∆k = uτe
∆k̂+k̂τ − ek̂τ . Then

we use k̂τ = k̂+ or k̂τ = k̂− accordingly.
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A.4 Proof of Proposition 1

This proposition expresses the parameters of the stochastic process (ν, σ2) as functions of the data. The proof
follows the strategy in Baley and Blanco (2021), but taking into account the two reset points arising from partial

irreversibility. Let k̂s follow a Brownian motion with drift ν and volatility σ and two reset states k̂∗− < k̂∗+, where
k̂∗− = k̂∗(∆k̂ > 0) and k̂∗+ = k̂∗(∆k̂ < 0).

A.4.1 Drift

Evaluating the law of motion k̂s = k̂∗(∆k̂)− νt+ σWt at a stopping time s = τ ,

(A.36) k̂τ − k̂∗(∆k̂) + ντ = σWτ .

Since the stopped capital depends on the adjustment sign, we take conditional using the distribution of adjusters
H(∆k̂, τ):

(A.37) E
[
k̂τ

∣∣∣∆k̂
]
− k̂∗(∆k̂) + νE

[
τ
∣∣∣∆k̂

]
= 0.

Taking expectation again with H and using the law of iterating expectation, we obtain

E
[
E
[
k̂τ

∣∣∣∆k̂
]]

︸ ︷︷ ︸
E[k̂∗(∆k̂)] − E[∆k̂]

− E
[
k̂∗(∆k̂)

]
+ ν E

[
E
[
τ
∣∣∣∆k̂

]]

︸ ︷︷ ︸
E[τ ]

= 0(A.38)

To compute the first term, we substitute the relationship between stopped capital, reset state and adjustment size,
k̂τ = k̂∗(∆k̂)−∆k̂, and then use the Markovian property of adjustments:

(A.39) E
[
E
[
k̂τ

∣∣∣∆k̂
]]

= E
[
E
[
k̂∗(∆k̂′)

∣∣∣∆k̂
]]
− E

[
E
[
∆k̂′

∣∣∣∆k̂
]]

= E
[
k̂∗(∆k̂)

]
− E[∆k̂]

To compute the second term, we use the law of iterated expectations and obtain:

(A.40) E
[
E
[
τ ′
∣∣∣∆k̂

]]
= E [τ ]

Substituting (A.39) and (A.40) into (A.38) and rearranging, we obtain the result

(A.41) ν =
E[∆k̂]

E[τ ]
.

A.4.2 Idiosyncratic volatility

Let Ys ≡ (k̂s + νs)2. Applying Itō’s lemma to Ys,

(A.42) dYs = 2(k̂s + νs)(dk̂s + ν ds) + (dk̂s)
2 = 2(k̂s + νs)σ dWs + σ2 ds

We integrate both sides from 0 to τ and take conditional expectations with respect to the initial condition k̂0 =
k̂∗(∆k̂), which is a function of ∆k. Then, we use the OST to set the martingale to zero, E[

∫ τ
0

(k̂s + νs) dWs] = 0,
and obtain:

(A.43) E
[
Yτ (∆k)− Y0

∣∣∣∆k̂
]

= 2σE
[∫ τ

0

(k̂s + νs) dWs

∣∣∣∆k
]

+ σ2E
[∫ τ

0

1 ds
∣∣∣∆k

]
= σ2E[τ |∆k]

Substituting Yτ ≡ (k̂τ (∆k) + ντ)2 and Y0 ≡ k̂∗(∆k̂)2, and taking expectations again to average across positive and
negative adjustments, we get:

(A.44) E
[
E
[
(k̂τ (∆k̂′) + ντ ′)2|∆k̂

]]
− E

[
k̂∗(∆k̂′)2

∣∣∣∆k
]

= σ2E
[
E
[
τ ′
∣∣∣∆k

]]
.
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By the Markovian property of ∆k and τ , the previous expression simplifies to:

(A.45) E[(k̂τ (∆k̂) + ντ)2]− E[k̂∗(∆k̂)2] = σ2E[τ ]

Rearranging, we obtain the mapping to σ2:

(A.46) σ2 =
E[(k̂τ (∆k̂) + ντ)2]− E[k̂∗(∆k̂)2]

E[τ ]
.

A.4.3 Reset states

To characterize the reset states as a function of the data, we first apply the envelope theorem.

Envelope theorem. Start from the recursive definition of v(k̂) in (9) for an arbitrary initial condition k̂0 and

evaluate it at the optimal policy (τ∗, k̂∗)

(A.47) v(k̂0) = E

[∫ τ∗

0

Ae−rs+αk̂s ds + e−rτ
∗
(
−θ − p(∆k̂)(ek̂

∗ − ek̂τ∗ ) + v(k̂∗)
)]

Substitute the evolution of log capital-to-productivity ratios k̂s = k̂0 − νs + σWs and take the derivative with

respect to the initial state k̂0 (note that the terms −θ − p(∆k̂)ek̂
∗

+ v(k̂∗) are independent of k̂0) to get

v′(k̂0) = E

[∫ τ∗

0

dAe−rs+α(k̂0−νs+σWs)

dk̂0

ds + p(∆k̂)e−rτ
∗ dek̂0−ντ

∗+σWτ∗

dk̂0

]
(A.48)

= E

[∫ τ∗

0

αAe−rs+αk̂s ds + p(∆k̂)e−rτ
∗+k̂τ∗

]

In the second line apply the envelope condition for arbitrary choice sets (Milgrom and Segal, 2002) to ignore the
derivative of the optimal policies with respect to the initial condition.

Because there are two reset points, at this step we must condition on the appropriate initial condition to
evaluate (A.48). If the last reset point is k̂0 = k̂∗− (there was a capital purchase), then we use the optimality

condition v′(k̂∗−) = pbuyek̂
∗

in the LHS to get:

(A.49) pbuyek̂
∗

= E−
[∫ τ∗

0

αAe−rs+αk̂s ds + p(∆k̂)e−rτ
∗+k̂τ∗

]
.

Analogously, if the last reset point is k̂0 = k̂∗+ (there was a capital sale), then we use the optimality condition

v′(k̂∗+) = psellek̂
∗

in the LHS to get:

psellek̂
∗+

= E+

[∫ τ∗

0

αAe−rs+αk̂s ds + p(∆k̂) e−rτ
∗+k̂τ∗

]
.(A.50)

Reset state without partial irreversibility. We depart from the optimality condition

(A.51) pek̂
∗

= E
[∫ τ

0

αAe−rs+αk̂s ds+ pe−rτ+k̂τ
∣∣∣k̂0 = k̂∗

]

Now we write the RHS as a function of observable data. Define Ys = e−rs+αk̂s and apply Ito’s lemma:

(A.52) dYs = Ys

(
−r ds+ α dk̂s +

α2

2
dk̂2

s

)
=

(
α2σ2

2
− r − αν

)
Ys ds+ ασYs dBs.

Let φ ≡ r + αν − α2σ2/2. Integrating both sides from 0 to τ , taking expectations conditional on adjustment, i.e.,

with respect to the initial condition k̂0 = k̂∗, and using the OST to set the expectation of martingales to zero, we
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obtain:

E
[∫ τ

0

dYs ds

]
= −φE

[∫ τ

0

Ys ds

]
+ ασ E

[∫ τ

0

Ys dWs

]

︸ ︷︷ ︸
=0

.(A.53)

Since Yτ = e−rτ+αk̂τ = e−rτ+α(k̂∗−∆k̂) and Y0 = eαk̂
∗

(A.54) E [Yτ − Y0 ] = −φE
[∫ τ

0

e−rs+αk̂s ds

]
⇐⇒ eαk̂

∗ 1− E[e−rτ−α∆k̂]

φ
= E

[∫ τ

0

Ys ds

]
.

Since k̂τ = k̂∗ −∆k̂

(A.55) E
[
pe−rτ+k̂τ |k̂0 = k̂∗

]
= pek̂

∗
E
[
e−rτ−∆k̂|k̂0 = k̂∗

]
.

From equations (A.51) to (A.55),

pek̂
∗

= E
[∫ τ

0

αAe−rs+αk̂s ds+ pe−rτ+k̂τ |k̂0 = k̂∗
]

= αAeαk̂
∗ 1− E[e−rτ−α∆k̂]

φ
+ pek̂

∗
E
[
e−rτ−∆k̂

]
(A.56)

Operating from the previous equation

k̂∗ =
1

1− α


log

(
αA

r + αν − α2σ2/2

)
− log(p) + log


1− E[e−rτ−α∆k̂]

1− E
[
e−rτ−∆k̂

]




(A.57)

Finally, letting Φ ≡ log
(
αA
φ

)
= log

(
αA

(r+αν−α2σ2/2)

)
, we obtain the result

(A.58) k̂∗ =
1

1− α


Φ− log(p) + log


1− E[e−rτ−α∆k̂]

1− E
[
e−rτ−∆k̂

]




 .

Reset states with partial irreversibility. We follow similar steps but taking into account that adjustments
happen at two different reset points. Consider the optimality condition of a firm that has sold capital at price psell

and resetting to k̂∗+

psellek̂
∗+

= αAE+
[∫ τ

0

e−rs+αk̂s ds

]
+ E+

[
p(∆k̂)e−rτ+k̂τ

]
(A.59)

psellek̂
∗+

= eΦeαk̂
∗+
(

1− E+
[e−rτ+α(k̂τ−k̂∗+)]

)
+ psellek̂

∗+
E+

[
p(∆k̂)

psell
e−rτ+k̂τ−k̂∗+

]

e(1−α)k̂∗+ =
eΦ

psell

1− E+
[e−rτ+α(k̂τ−k̂∗+)]

1− E+
[
p(∆k̂)
psell

e−rτ+k̂τ−k̂∗+
]

Taking logs, we obtain the reset point for negative investments:

(A.60) k̂∗+ =
1

1− α


Φ− log(psell) + log


 1− E+

[e−rτ+α(k̂τ−k̂∗+)]

1− E+
[
p(∆k̂)
psell

e−rτ+k̂τ−k̂∗+
]





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With analogous steps we obtain the reset point for positive investments:

k̂∗− =
1

1− α


Φ− log(pbuy) +

1− E−[e−rτ+α(k̂τ−k̂∗−)]

1− E−
[
p(∆k̂)
pbuy

e−rτ+(k̂τ−k̂∗−)
]


(A.61)
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A.5 Proof of Proposition 2

This proposition expresses the cross-sectional moments of k̂ and joint moments of (k̂, a) as functions of the data.
The proof follows the strategy in Baley and Blanco (2021), but taking into account the two reset points arising
from partial irreversibility.

A.5.1 Moments of k̂.

We apply Itō’s lemma to k̂ns for n ≥ 2:

(A.62) dk̂n+1
s = −ν(n+ 1)k̂ns ds + σ(n+ 1)k̂ns ds +

σ2n(n+ 1)

2
k̂n−1
s ds.

We integrate this expression from 0 to τ and take conditional expectations with respect to the initial condition
k̂0 = k̂∗, which is a function of ∆k:

(A.63) E±
[
k̂n+1
τ − (k̂∗)n+1

]
= −ν(n+ 1)E±

[∫ τ

0

k̂ns ds

]
+
σ2n(n+ 1)

2
E±
[∫ τ

0

k̂n−1
s ds

]
.

Next, take law of iterated expectation to average E− and E+
, divide both sides by E[τ ], and then use Auxiliary

Theorem 2 to recover steady-state moments using the occupancy measure:

E
[
k̂n+1
τ − (k̂∗)n+1

]

E[τ ]
= −ν(n+ 1)

E
[∫ τ

0
k̂ns ds

]

E[τ ]
+
σ2n(n+ 1)

2

E
[∫ τ

0
k̂n−1
s ds

]

E[τ ]
(A.64)

= −ν(n+ 1)E[k̂n] +
σ2n(n+ 1)

2
E[k̂n−1].(A.65)

Solving for E[k̂n] and substituting ν = E[∆k̂]/E[τ ]:

(A.66) E[k̂n] =
1

n+ 1

E
[
(k̂∗)n+1 − k̂n+1

τ

]

E[∆k̂]
+
σ2n

2ν
E[k̂n−1]

Applying similar steps as before, we compute the centered moments:

(A.67) E[(k̂ − E[k̂])n] =
1

n+ 1

E[(k̂∗ − E[k̂])n+1]− E
[
(k̂τ − E[k̂])n+1

]

E[∆k̂]
+
σ2n

2ν
E[(k̂ − E[k̂])n−1].

Mean of k̂. Evaluate expression (A.66) at n = 1 and use the formula for the drift (A.41) to obtain:

(A.68) E[k̂] =
E
[
(k̂∗)2 − k̂2

τ

]

2E[∆k̂]
+
σ2

2ν
.

Without a price wedge (only fixed costs), there is a unique reset point k̂∗. Factorize the quadratic difference

(k̂∗)2 − k̂2
τ and substitute ∆k̂ = k̂∗ − k̂τ to obtain:

E[k̂] =
E
[
(k̂∗ + k̂τ )(k̂∗ − k̂τ )

]

2E[∆k̂]
+
σ2

2ν
= E

[
k̂∗ + k̂τ

2

(
∆k

E[∆k̂]

)]
+
σ2

2ν
.(A.69)
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Conditional means:

E−[k̂] = E−
[
k̂∗− + k̂τ

2

(
∆k

E−[∆k̂]

)]
+

σ2

2

E−[τ ]

E−[∆k̂]
(A.70)

E+[k̂] = E+

[
k̂∗+ + k̂τ

2

(
∆k

E+
[∆k̂]

)]
+

σ2

2

E+
[τ ]

E+
[∆k̂]

(A.71)

Variance of k̂. To compute the variance of k̂, we evaluate expression for centered moments (A.67) at n = 2:

(A.72) Var[k̂] =
E[(k̂∗ − E[k̂])3]− E

[
(k̂τ − E[k̂])3

]

3E[∆k̂]

Without a price wedge (only fixed costs), there is a unique reset point k̂∗ and we can simplify the previous expression.

Inside the first term, add and subtract k̂τ and substitute ∆k̂ = k̂∗ − k̂τ . Expand the cubic polynomials, cancel
terms, and rearrange:

Var[k̂] =
E[(k̂τ − E[k̂] + ∆k̂)3 − (k̂τ − E[k̂])3]

3E[∆k̂]

=
E[(k̂τ − E[k̂])3 + 3(k̂τ − E[k̂])2∆k̂ + 3(k̂τ − E[k̂])∆k̂2 + ∆k̂3 − (k̂τ − E[k̂])3]

3E[∆k̂]

=
E[(k̂τ − E[k̂])2∆k̂ + (k̂τ − E[k̂])∆k̂2]

E[∆k̂]
+

E[∆k̂3]

3E[∆k̂]

=
E[∆k̂(k̂τ − E[k̂])(k̂∗ − E[k̂]) + ∆k̂(k̂∗ − k̂τ )2/3]

E[∆k̂]

= E

[(
(k̂τ − E[k̂])(k̂∗ − E[k̂]) +

(k̂∗ − k̂τ )2

3

)(
∆k̂

E[∆k̂]

)]
.

A.5.2 Joint moments of (k̂, a).

To compute the joint moments of k̂ and its age a, we consider the function Ys = (k̂s − E[k̂])n+1s. Applying Itō’s
lemma, we obtain:

dYs = (k̂s − E[k̂])n ds − νn(k̂s − E[k̂])n−1s ds + σn(k̂s − E[k̂])n−1sdWs(A.73)

+
σ2

2
n(n− 1)(k̂s − E[k̂])n−2sds.

We integrate this expression from 0 to τ and take conditional expectations with respect to the initial condition
k̂0 = k̂∗, which is a function of ∆k.

(A.74)
E
[
(k̂τ − E[k̂])n+1τ

]

E[τ ]
= E[(k̂ − E[k̂])n+1]− ν(n+ 1)E[(k̂ − E[k̂])na] +

σ2

2
n(n+ 1)E[(k̂ − E[k̂])n−1a]

Rearranging:

(A.75) E[(k̂ − E[k̂])na] =
1

ν(n+ 1)

[
E[(k̂ − E[k̂])n+1]− E[(k̂τ − E[k̂])n+1τ ]

E[τ ]
+
σ2

2
nE[(k̂ − E[k̂])n−1a]

]

Finally, to compute the covariance between (k̂, a), we evaluate expression (A.75) at n = 1 to obtain

(A.76) Cov[k̂, a] =
1

2ν

(
Var[k̂]− E[(k̂τ − E[k̂])2τ ]

E[τ ]
+
σ2

2

E[τ ]

2
(1 + CV2[τ ])

)
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A.6 Proof of Proposition 3

Proposition 3 characterizes the aggregate Tobin’s q as a function of the aggregate output-to-capital ratio Ŷ /K̂ and
the expected capital gains. Let us depart from the definition of aggregate Tobin’s q in (38)

(A.77) q ≡ 1

p

∫ k̂+

k̂−
ω(k̂)

v′(k̂)

ek̂
dG(k̂) =

E[v′(k̂)]

pK̂
.

We characterize the numerator,

(A.78) E[v′(k̂)] =

∫ k̂+

k̂−
v′(k̂)g(k̂) dk̂,

by combining the HJB equation for v′(k̂) and the KFE for g(k̂) into a single “master equation”.

A.6.1 Without partial irreversibility

The value v′(k) satisfies the following conditions:

rv′(k̂) = αAeαk̂ − νv′′(k̂) +
σ2

2
v′′′(k̂) + Λ(k̂)

[
pek̂ − v′(k̂)

]
,∀k̂ ∈ (k̂−, k̂+)(A.79)

v′(k̂) = pek̂, for k̂ ∈ {k̂−, k̂∗, k̂+},(A.80)

v′(k̂) ∈ C,C1(A.81)

and g(k̂) satisfies a KFE and boundary conditions in (A.28) to (A.31). From equation (A.28), we solve for the

adjustment hazard Λ(k̂) = (νg′(k̂) + (σ2/2)g′′(k̂)/g(k̂); then substitute the hazard into (A.79), multiply both sides

by g(k̂), and join common terms, to obtain the Master equation that is valid for all k̂ ∈ (k̂−, k̂+)/{k̂∗}:

rv′(k̂)g(k̂) = αAeαk̂g(k̂)− νv′′(k̂)g(k̂) +
σ2

2
v′′′(k̂)g(k̂) +

[
νg′(k̂) +

σ2

2
g′′(k̂)

] [
pek̂ − v′(k̂)

]
(A.82)

= αAeαk̂g(k̂)− ν
(
v′(k̂)g(k̂)

)′
+
σ2

2

(
v′′(k̂)g(k̂)− v′(k̂)g′(k̂)

)′
+ pek̂

[
νg′(k̂) +

σ2

2
g′′(k̂)

]
.

Next, we integrate both sides in the interval [k̂−, k̂+].

r

∫ k̂+

k̂−
v′(k̂)g(k̂) dk̂

︸ ︷︷ ︸
qpK̂

= αA

∫ k̂+

k̂−
eαk̂g(k̂) dk̂

︸ ︷︷ ︸
Ŷ

− ν

∫ k̂+

k̂−

(
v′(k̂)g(k̂)

)′
dk̂

︸ ︷︷ ︸
T1

(A.83)

+
σ2

2

∫ k̂+

k̂−

(
v′′(k̂)g(k̂)− v′(k̂)g′(k̂)

)′
dk̂

︸ ︷︷ ︸
T2

+ p

[
ν

∫ k̂+

k̂−
ek̂g′(k̂) dk̂

︸ ︷︷ ︸
T3

+
σ2

2

∫ k̂+

k̂−
ek̂g′′(k̂) dk̂

︸ ︷︷ ︸
T4

]
.

In the LHS, we recognize aggregate q. In the first term of the RHS, we recognize the average output-to-productivity
ratio in (41). The remaining terms, labelled T1, T2, T3 and T4, are computed following a common strategy: split

the domain into two regions, [k̂−, k̂+] = [k̂−, k̂∗] ∪ [k̂∗, k̂∗+]; integrate by parts if needed; use the border conditions
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g(k̂±) = 0 in (A.29); and use continuity conditions for g in (A.31) and for v′ in (A.81).

T1 =

∫ k̂+

k̂−

(
v′(k̂)g(k̂)

)′
dk̂ = v′(k̂)g(k̂)

∣∣∣
k̂∗

k̂−︸ ︷︷ ︸
v′(k̂∗)g(k̂∗)

+ v′(k̂)g(k̂)
∣∣∣
k̂+

k̂∗︸ ︷︷ ︸
−v′(k̂∗)g(k̂∗)

= 0.(A.84)

T3 =

∫ k̂+

k̂−
ek̂g′(k̂) dk̂ = ek̂g(k̂)

∣∣∣
k̂∗

k̂−︸ ︷︷ ︸
ek̂∗g(k̂∗)

+ ek̂g(k̂)
∣∣∣
k̂+

k̂∗︸ ︷︷ ︸
−ek̂∗g(k̂∗)

−
∫ k̂+

k̂−
ek̂g(k̂) dk̂ = −K̂.(A.85)

T4 =

∫ k̂+

k̂−
ek̂g′′(k̂) dk̂ = ek̂g′(k̂)

∣∣∣
k̂∗

k̂−
+ ek̂g′(k̂)

∣∣∣
k̂+

k̂∗
− T3.(A.86)

T2 =

∫ k̂+

k̂−

(
v′′(k̂)g(k̂)− v′(k̂)g′(k̂)

)′
dk̂ = v′′(k̂)g(k̂)

∣∣∣
k̂∗

k̂−︸ ︷︷ ︸
v′′(k̂∗)g(k̂∗)

+ v′′(k̂)g(k̂)
∣∣∣
k̂+

k̂∗︸ ︷︷ ︸
−v′′(k̂∗)g(k̂∗)

(A.87)

−
[
v′(k̂)g′(k̂)

∣∣∣
k̂∗

k̂−
+ v′(k̂)g′(k̂)

∣∣∣
k̂+

k̂∗

]

= −p
[
ek̂
∗
g′(k̂∗) − ek̂−g′(k̂−) + ek̂

+

g′(k̂+) − ek̂∗g′(k̂∗)
]

= −p(T3 + T4).

Substituting equations (A.84) to (A.86) into (A.83):

rqpK̂ = αAŶ − σ2

2
p(T3 + T4) + p

[
νT3 +

σ2

2
T4

]
= αAŶ + pK̂

(
σ2

2
− ν
)
.

Dividing both sides by pK̂ we obtain the result:

(A.88) q =
1

r

[
αAŶ

pK̂
+

σ2

2
− ν
]
.

A.6.2 With partial irreversibility

The proof follows the same steps as without partial irreversibility, but using the auxiliary pricing function P(k̂).

Auxiliary pricing function P(k̂). We propose the following auxiliary price-deviation function P(k̂) ∈ C2 that
satisfies all the requirements and is a member of the polynomial family:

P(k̂) ≡





pbuy/p− 1 if k̂ ∈ [k̂−, k̂∗−]
(psell−pbuy)

p

∑5
i=0 Pi

(
k̂−k̂∗−
k̂∗+−k̂∗−

)i
if k̂ ∈ (k̂∗−, k̂∗+)

psell/p− 1 if k̂ ∈ [k̂∗+, k̂+]

(A.89)

with coefficients P0 = pbuy−p
psell−pbuy ,P1 = P2 = 0,P3 = 10,P4 = −15, and P5 = 6.

The function is twice continuously differentiable in the domain (k̂−, k̂+)/{k̂∗−, k̂∗+}. We need to check that

it is twice continuously differentiable at the two reset points {k̂∗−, k̂∗+}. We need to find the solution of Pi that
satisfies the following conditions:
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• At the lower reset point, k̂∗−, the function must satisfy:

P(k̂∗−) =

5∑

i=0

Pi(k̂∗− − k̂∗−)i = pbuy/p− 1,(A.90)

P ′(k̂∗−) =

5∑

i=1

Pii(k̂∗− − k̂∗−)i−1 = 0,(A.91)

P ′′(k̂∗−) =

5∑

i=2

Pii(i− 1)(k̂∗− − k̂∗−)i−2 = 0(A.92)

From the first three equations, we confirm the values for P0,P1 and P2 that make P(k̂) twice continuously

differentiable at k̂∗−:

P0 = pbuy, 1× P1 = 0, 2× 1× P2 = 0.(A.93)

• At the upper reset point, k̂∗+, the function must satisfy:

P(k̂∗+) =

5∑

i=0

Pi(k̂∗+ − k̂∗−)i = psell/p− 1,(A.94)

P ′(k̂∗+) =

5∑

i=1

Pii(k̂∗+ − k̂∗−)i−1 = 0,(A.95)

P ′′(k̂∗+) =

5∑

i=2

Pii(i− 1)(k̂∗+ − k̂∗−)i−2 = 0.(A.96)

To simplify the notation, we define the irreversibility wedge ω as the length of the inner inaction region, i.e.,
ω ≡ k̂∗+ − k̂∗− > 0. With this definition, we can write the last three equations as

b3ω
3 + b4ω

4 + b5ω
5 = (psell − pbuy)/p(A.97)

b33ω2 + b44ω3 + b55ω4 = 0(A.98)

b36ω1 + b412ω2 + b520ω3 = 0(A.99)

and we can write it with matrices as

(A.100)




ω3 ω4 ω5

3ω2 4ω3 5ω4

6ω1 12ω2 20ω3





b3
b4
b5


 =

psell − pbuy

p




1
0
0




If we take the first rows and multiply by −31/ω and sum to the second row, and we take the first rows and
multiply by −61/ω2 and sum to the second row, we have

(A.101)



ω3 ω4 ω5

0 ω3 2ω4

0 6ω2 14ω3





b3
b4
b5


 =

psell − pbuy

p




1
−3/ω
−6/ω2


 .

The solution to this system is given by

b4 =
−3p

sell−pbuy

ω 14ω3 + 6p
sell−pbuy
ω2 2ω4

ω6[14− 12]
=
(
psell − pbuy

) −3× 14 + 12

ω42
=
−15

ω4

(
psell − pbuy

)
(A.102)

b5 =
−6p

sell−pbuy

ω2 ω3 + 3p
sell−pbuy

ω 6ω2

ω6[14− 12]
= (psell − pbuy)

−6 + 18

ω52
=

6

ω5

(
psell − pbuy

)
(A.103)

b3 =
psell − pbuy

ω3
− b4ω − b5ω2 =

psell − pbuy

ω3
[1 + 15− 6] =

10

ω3

(
psell − pbuy

)
.(A.104)
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The auxiliary pricing function P(k̂) satisfies the following conditions:

1. P(k̂) ∈ C0, C1, C2.

2. P(k̂) is decreasing for all k̂ ∈ (k̂∗−, k̂∗+).

3. P(k̂) is concave then convex for all k̂ ∈ (k̂∗−, k̂∗+).

To show the other two properties, we simplify notation and let x ≡ k̂−k̂∗−
k̂∗+−k̂∗−

. We find the signs of the first and

second derivatives:

dP(k̂)

dk̂
∝ (psell − pbuy)(10× 3× x2 − 15× 4× x3 + 6× 5× x4)(A.105)

∝ −30x2 + 60x− 30

= −x2 + 2x− 1 = (x− 1)(−x+ 1) < 0 ∀x
d2P(k̂)

dk̂2
∝ (psell − pbuy)(10× 3× 2× x− 15× 4× 3× x2 + 6× 5× 4× x3)(A.106)

∝ −30× 4x2 + 60× 3x− 30× 2

∝ −2x2 + 3x− 1

= −2(x− 1)(x− 1/2) =

{
< 0 if x < 1/2
≥ 0 if x ≥ 1/2

Characterization of q with irreversibility. Inside the inaction region, k̂ ∈ (k̂−, k̂+), the value v′(k) satisfies
the following conditions:

rv′(k̂) = αAeαk̂ − νv′′(k̂) +
σ2

2
v′′′(k̂) +





Λ(k̂)
[
pbuyek̂ − v′(k̂)

]
if k̂ ∈ [k̂−, k̂∗−)

0 if k̂ ∈ [k̂∗−, k̂∗+]

Λ(k̂)
[
psellek̂ − v′(k̂)

]
if k̂ ∈ (k̂∗+, k̂+]

(A.107)

v′(k̂) = pbuyek̂, for k̂ ∈ {k̂−, k̂∗−},(A.108)

v′(k̂) = psellek̂, for k̂ ∈ {k̂∗+, k̂+},(A.109)

v′(k̂) ∈ C,C1.(A.110)

Since Λ(k̂) = 0 between the two reset points, [k̂∗−, k̂∗+], the HBJ can be written compactly as

rv′(k̂) = αAeαk̂ − νv′′(k̂) +
σ2

2
v′′′(k̂) + Λ(k̂)

[
P(k̂)ek̂ − v′(k̂)

]
, ∀k̂ ∈ (k̂−, k̂+)(A.111)

v′(k̂) = P(k̂)ek̂, for k̂ ∈ {k̂−, k̂∗−, k̂∗+, k̂+}.(A.112)

where P(k̂) is defined in (A.89). In turn, the g(k̂) satisfies the KFE and boundary conditions in (A.32) to (A.35).

From equation (A.32), we solve for the adjustment hazard Λ(k̂), substitute it into (A.111), and obtain the Master

Equation that is valid for all k̂ ∈ (k̂−, k̂+)/{k̂∗−, k̂∗+}. Integrating:

rqK̂ = αAŶ − ν

∫ k̂+

k̂−

(
v′(k̂)g(k̂)

)′
dk̂

︸ ︷︷ ︸
T1

+
σ2

2

∫ k̂+

k̂−

(
v′′(k̂)g(k̂)− v′(k̂)g′(k̂)

)′
dk̂

︸ ︷︷ ︸
T2

(A.113)

+ ν

∫ k̂+

k̂−
P(k̂)ek̂g′(k̂) dk̂

︸ ︷︷ ︸
T3

+
σ2

2

∫ k̂+

k̂−
P(k̂)ek̂g′′(k̂) dk̂

︸ ︷︷ ︸
T4

In this case, to compute the terms T1, T2, T3, T4, we must split the domain into three regions, [k̂−, k̂+] = [k̂−, k̂∗−)∪
[k̂∗−, k̂∗+] ∪ (k̂∗, k̂∗+]; integrate by parts when needed; use the border conditions g(k̂±) = 0 in (A.33); and use
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continuity conditions for g in (A.35) and for v′ in (A.110).

T1 =

∫ k̂+

k̂−

(
v′(k̂)g(k̂)

)′
dk̂ = v′(k̂)g(k̂)

∣∣∣
k̂∗−

k̂−︸ ︷︷ ︸
v′(k̂∗−)g(k̂∗−)

+ v′(k̂)g(k̂)
∣∣∣
k̂∗+

k̂∗−︸ ︷︷ ︸
v′(k̂∗+)g(k̂∗+)−v′(k̂∗−)g(k̂∗−)

+ v′(k̂)g(k̂)
∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
−v′(k̂∗+)g(k̂∗+)

= 0.

(A.114)

T2 =

∫ k̂+

k̂−

(
v′′(k̂)g(k̂)− v′(k̂)g′(k̂)

)′
dk̂

(A.115)

=

[
v′′(k̂)g(k̂)

∣∣∣
k̂∗−

k̂−
+ v′′(k̂)g(k̂)

∣∣∣
k̂∗+

k̂∗−
+ v′′(k̂)g(k̂)

∣∣∣
k̂+

k̂∗+

]

︸ ︷︷ ︸
= 0

−
[
v′(k̂)g′(k̂)

∣∣∣
k̂∗−

k̂−
+ v′(k̂)g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ v′(k̂)g′(k̂)

∣∣∣
k̂+

k̂∗+

]

= −
[
P(k̂)ek̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ P(k̂)ek̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ P(k̂)ek̂g′(k̂)

∣∣∣
k̂+

k̂∗+

]

T3 =

∫ k̂+

k̂−
P(k̂)ek̂g′(k̂) dk̂ = P(k̂)ek̂g(k̂)

∣∣∣
k̂∗−

k̂−
+ P(k̂)ek̂g(k̂)

∣∣∣
k̂∗+

k̂∗−
+ P(k̂)ek̂g(k̂)

∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
= 0

(A.116)

−
∫ k̂∗−

k̂−
ek̂
[
P(k̂) + P ′(k̂)

]
g(k̂) dk̂ = −E

[
ek̂
(
P(k̂) + P ′(k̂)

)]
.

T4 =

∫ k̂+

k̂−
P(k̂)ek̂g′′(k̂) dk̂ = P(k̂)ek̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ P(k̂)ek̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ P(k̂)ek̂g′(k̂)

∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
T2

(A.117)

−
[∫ k̂+

k̂∗+

(
P(k̂) + P ′(k̂)

)
ek̂g′(k̂) dk̂ +

∫ k̂∗+

k̂∗−

(
P(k̂) + P ′(k̂)

)
ek̂g′(k̂) dk̂ +

∫ k̂∗−

k̂−
ek̂
(
P(k̂) + P ′(k̂)

)
g′(k̂) dk̂

]

= −T2 − T3 −
∫ k̂+

k̂−
P ′(k̂)ek̂g′(k̂) dk̂

= −T2 − T3 −


P
′(k̂)ek̂g(k̂)

∣∣∣
k̂∗−

k̂−
+ P ′(k̂)ek̂g(k̂)

∣∣∣
k̂∗+

k̂∗−
+ P ′(k̂)ek̂g(k̂)

∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
= 0

−
∫ k̂+

k̂−
ek̂
[
P ′(k̂) + P ′′(k̂)g(k̂)

]
dk̂




= −T2 − T3 + E
[
ek̂
(
P ′(k̂) + P ′′(k̂)

)]

Substituting (A.114) to (A.117) into (A.113)

rqK̂ = αAŶ + νT3 +
σ2

2
(T2 + T4)(A.118)

= αAŶ + νT3 −
σ2

2

(
T3 − E

[
ek̂
(
P ′(k̂) + P ′′(k̂)

)])

= αAŶ +

(
σ2

2
− ν
)
E
[
ek̂
(
P(k̂) + P ′(k̂)

)]
+

σ2

2
E
[
ek̂
(
P ′(k̂) + P ′′(k̂)

)]
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Dividing both sides by K̂ = E[ek̂] and defining the weights ω(k̂) = ek̂/K̂ we obtain the result:

q =
1

r

[
αAŶ

pK̂
+

(
σ2

2
− ν
)
E
[
ω(k̂)

(
P(k̂) + P ′(k̂)

)]
+

σ2

2
E
[
ω(k̂)

(
P ′(k̂) + P ′′(k̂)

)]]
(A.119)

A.6.3 Aggregate productivity

Finally, we approximate the aggregate productivity term. Using a second-order Taylor expansion, we obtain:

(A.120)
Ŷ

K̂
=

E[eαk̂]

E[ek̂]
= exp

{
−(1− α)

(
E[k̂] +

α

2
Var[k̂]

)}
+ o(2).
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A.7 Proof of Proposition 4

Proposition 4 characterizes the CIR as a function of cross-sectional steady-state moments. Let g(k̂) be the capital-

productivity steady-state distribution and gt(k̂) the distribution t-periods after an aggregate productivity shock of

size δ > 0, with g0(k̂) = g(k̂ − δ). Let f(k̂) be a continuous function of k̂. Define the cumulative impulse response
of the function f as follows:

CIR(f, δ) ≡
∫ ∞

0

∫ k̂+

k̂−
f(k̂)

[
gs(k̂)− g(k̂)

]
dk̂ ds.(A.121)

Note that in the main text we take f(k̂) = k̂.

Strategy. The proof has four steps. Step 1 we express the CIR as the integral of a value function m(k̂) and

g′(k̂). Step 2 characterizes the terminal value of the value function. Step 3 constructs the master equation. Step 4
characterizes the CIR as a function of steady-state moments.

First order approximation. Start from the definition fo the CIR, (1) operates over the integral; (2) uses

conditional expectation, where gs(k̂|k̂0)dk̂ is the probability of the state k̂ at time s with initial condition k̂0; (3)
uses the definition of the initial condition; (4) and (5) apply Fubini’s theorem and the definition of limit of an
integral; (7) applies a Taylor approximation over δ.

CIR(f, δ) =

∫ ∞

0

∫ k̂+

k̂−
f(k̂)

(
gs(k̂)− g(k̂)

)
dk̂ ds

=(1)

∫ ∞

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂) dk̂ ds

=(2)

∫ ∞

0

∫ k̂+

k̂−

[∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0)g0(k̂0) dk̂0

]
dk̂ ds

=(3)

∫ ∞

0

∫ k̂+

k̂−

[∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0)g(k̂0 − δ) dk̂0

]
dk̂ ds

=(4)

∫ k̂+

k̂−

[∫ ∞

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds

]
g(k̂0 − δ) dk̂0

=(5)

∫ k̂+

k̂−




lim
T→∞

∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds

︸ ︷︷ ︸
≡ mT (k̂)



g(k̂0 − δ) dk̂0

=(6)

∫ k̂+

k̂−
lim
T→∞

mT (k̂)g(k̂ − δ) dk̂

=(7) −δ
∫ k̂+

k̂−
lim
T→∞

mT (k̂)g′(k̂) dk̂ + o(δ2)

where we define

(A.122) mT (k̂) ≡
∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds

A.7.1 Without partial irreversibility

Without partial irreversibility there is one investment price p and one reset state k̂∗.
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Step 1: Up to first order, the CIR equals:

(A.123) CIR(f, δ) = −δ
∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂ + o(δ2),

where the function m(k̂) ∈ C, C1 satisfies the following HJB and border conditions:

0 = f(k̂)− E[f(k̂)]− νm′(k̂) +
σ2

2
m′′(k̂) + Λ(k̂)(m(k̂∗)−m(k̂)),(A.124)

0 = m(k̂∗)−m(k̂±),(A.125)

0 =

∫ k̂+

k̂−
m(k̂)g(k̂) dk̂.(A.126)

1. Show that limT→∞mT (k̂) = m(k̂) for all k̂.

See Baley and Blanco (2021).

2. We show that
∫ k̂+
k̂−

mT (k̂)g(k̂) dk̂ = 0.

Substitute the definition of mT (k̂) in the integral. In the following equalities, (1) and (2) use Fubini’s

theorem and Bayes’ theorem; (3) uses the fact that g(k̂) is the steady-state distribution; (4) solves the first
and second integrals.

∫ k̂+

k̂−
mT (k̂)g(k̂) dk̂ =

∫ k̂+

k̂−

[∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0) dk̂ ds

]
g(k̂) dk̂0(A.127)

=(1)

∫ T

0

∫ k̂+

k̂−

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
gs(k̂|k̂0)g(k̂) dk̂ dk̂0 ds

=(2)

∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)[∫ k̂+

k̂−
gs(k̂|k̂0)g(k̂) dk̂0

]
dk̂ ds

=(3)

∫ T

0

∫ k̂+

k̂−

(
f(k̂)− E[f(k̂)]

)
g(k̂) dk̂ ds =(4) 0.

3. Show that
∫ k̂+
k̂−

m(k̂)g(k̂) dk̂ = 0.

Write m(k̂) = limT→∞mT (k̂) inside the integral, pull the limit outside the integral, and use the previous
result in (A.127) to get:

(A.128)

∫ k̂+

k̂−
m(k̂)g(k̂) dk̂ =

∫ k̂+

k̂−
lim
T→∞

mT (k̂)g(k̂) dk̂ = lim
T→∞

∫ k̂+

k̂−
mT (k̂)g(k̂) dk̂ = 0

4. HJB and border conditions for mT (k̂).

The function mT (k̂) satisfies the following HBJ with border conditions:

0 = f(k̂)− E[f(k̂)]− dmT (k̂)

dT − ν dmT (k̂)

dk̂
+
σ2

2

d2mT (k̂)

dk̂2
+ Λ(k̂)(mT (k̂∗)−mT (k̂))

0 = mT (k̂∗)−mT (k̂±)

0 =

∫ k̂+

k̂−
mT (k̂)g(k̂) dk̂

5. HJB and border conditions for m(k̂).

Taking the limit to T → ∞, and using point-wise convergence of mT (k̂), we have the result.
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Step 2: We characterize the terminal value m(k̂∗) = −Cov[a, f(k̂)] .

Proof of Step 2. Observe that m(k̂) satisfies the following recursive representation

(A.129) m(k̂) = E
[∫ τ

0

(f(k̂s)− E[f(k̂)]) ds+m(k̂∗)

∣∣∣∣ k̂0 = k̂

]
.

Define the following auxiliary function

(A.130) z(k̂|ϕ) = E
[∫ τ

0

eϕs(f(k̂s)− E[f(k̂)]) ds+ eϕτm(k̂∗)

∣∣∣∣ k̂0 = k̂

]
.

and note that z(k̂|0) = m(k̂). The auxiliary function z(k̂|ϕ) satisfies the following HBJ and border condition

−ϕz(k̂|ϕ) + Λ(k̂)
(
z(k̂|ϕ)−m(k̂)

)
= f(k̂))− E[f(k̂)]− ν ∂z(k̂|ϕ)

∂k̂
+
σ2

2

∂2z(k̂|ϕ)

∂k̂2
,(A.131)

z(k̂±, ϕ) = m(k̂∗).(A.132)

Since z(k̂|0) = m(k̂), (A.128) implies that
∫ k̂+
k̂−

z(k̂|0)g(k̂) dk̂ =
∫ k̂+
k̂−

m(k̂)g(k̂) dk̂ = 0. Taking the derivative with
respect to ϕ in (A.131), we have that

(Λ(k̂)− ϕ)
∂z(k̂|ϕ)

∂ϕ
− z(k̂|ϕ) = −ν ∂

2z(k̂, ϕ)

∂k̂∂ϕ
+
σ2

2

∂3z(k̂|ϕ)

∂k̂2∂ϕ
,(A.133)

∂z(k̂±|ϕ)

∂ϕ
= m(k̂∗).(A.134)

Using the Schwarz’s theorem to exchange partial derivatives, evaluating at ϕ = 0, and using z(k̂|0) = m(k̂)

Λ(k̂)
∂z(k̂|0)

∂ϕ
−m(k̂) = −ν ∂

∂k̂

(
∂z(k̂|0)

∂ϕ

)
+
σ2

2

∂2

∂k̂2

(
∂z(k̂|0)

∂ϕ

)
,(A.135)

∂z(k̂±|0)

∂ϕ
= m(k̂∗).(A.136)

Evaluating (A.129) at k̂∗, and using the occupancy measure, we write the previous equation as:

(A.137)
∂z(k̂∗|0)

∂ϕ
= E

[∫ τ

0

m(k̂s) ds
∣∣∣k0 = k̂∗

]
= E[τ ]E[m(k̂)] = 0

At the same time, we have that

(A.138)
∂z(k̂∗|0)

∂ϕ
= E

[∫ τ

0

s
(
f(k̂s)− E

[
f(k̂)

])
ds+ τm(k̂∗)

∣∣∣∣ k̂0 = k̂∗
]
,

Together (A.137) and (A.138) imply:

(A.139) 0 = E
[∫ τ

0

s
(
f(k̂s)− E

[
f(k̂)

])
ds

∣∣∣∣ k̂0 = k̂

]
+ E

[
τ | k̂0 = k̂

]
m(k̂∗).

Solving for mk̂∗ :

(A.140) m(k̂∗) = −
E
[∫ τ

0
s
(
f(k̂s)− E

[
f(k̂)

])
ds
∣∣∣ k̂0 = k̂

]

E
[
τ | k̂0 = k̂

] .

Thus we find the terminal value:

(A.141) m(k̂∗) = −E[a(f(k̂)− E[f(k̂)])] = −Cov[a, f(k̂)].
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A.7.2 With partial irreversibility

Step 1: Up to first order, the CIR equals:

(A.142) CIR(f, δ) = −δ
∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂ + o(δ2)

where the function m(k̂) ∈ C, C1 satisfies the following HJB and border conditions:

0 = f(k̂)− E[f(k̂)]− νm′(k̂) +
σ2

2
m′′(k̂) + Λ(k̂)(M(k̂∗)−m(k̂)),(A.143)

0 = M(k̂∗)−m(k̂±),(A.144)

0 =

∫ k̂+

k̂−
m(k̂)g(k̂) dk̂.(A.145)

Proof of Step 1. Following the same steps as in the case without irreversibility, we obtain:

CIR(f, δ) = −δ
∫ k̂+

k̂−
lim
T→∞

mT (k̂)g′(k̂) dk̂ + o(δ2).(A.146)

1. Show that limT→∞mT (k̂) = m(k̂) for all k̂.

Let {Ti}N(T )
i=0 be the adjustment dates between 0 and T for all i = 1, 2, . . . , N(T ) − 1 and T0 = 0 and

TN(T ) = T . Then, we can write mT (k̂) as

(A.147) mT (k̂) = E



N(T )∑

i=1

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
∣∣∣∣∣∣
k̂0 = k̂




Taking the limit T → ∞, we obtain the following equalities: (1) divides the sum; (2) uses the indicator
function to write the finite sum; (3) uses the fact that

E
[

lim
T→∞

I(N(T ) ≥ i+ 1)
∣∣∣ k̂0 = k̂

]
= 1,∀i;

(4) uses the fact that E
[∑∞

i=1

∫ Ti
Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds
∣∣∣ k̂0 = k̂

]
is an independent of T .

limT→∞mT (k̂)

(A.148)

= E


 lim
T→∞

N(T )∑

i=1

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣∣
k̂0 = k̂




=(1) E


 lim
T→∞

N(T )−1∑

i=1

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds+ lim

T→∞

∫ T

N(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣∣
k̂0 = k̂




=(2) E

[
lim
T→∞

∞∑

i=1

I(N(T ) ≥ i+ 1)

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds+ lim

T→∞

∫ T

N(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂0 = k̂

]

=(3) E

[ ∞∑

i=1

∫ Ti

Ti−1

(
f(k̂s)− E[f(k̂)]

)
ds+ lim

T→∞

∫ T

N(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂0 = k̂

]

=(4) E

[
lim
T→∞

∫ T

τmax{N(T )−1,0}

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂0 = k̂

]
+ terms independent of T
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2. Show that E
[

limT→∞
∫ T
N(T )−1

(
f(k̂s)− E[f(k̂)]

)
ds
∣∣∣ k̂0 = k̂

]
is independent of k̂ and T . Let us define

(A.149) V(k̂∗±, T ) = E

[∫ T

τmax{N(T )−1,0}

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂τ−max{N(T )−1,0}
= k̂∗±

]
.

Let P+
N (k̂) = E

[
E[k̂τ−N

≥ k̂∗+
∣∣∣ k̂0 = k̂

]
and P−N (k̂) = E

[
E[k̂τ−N

≤ k̂∗−
∣∣∣ k̂0 = k̂

]
. Then, we using conditional

expectation, we can write

= E

[
lim
T→∞

∫ T

τmax{N(T )−1,0}

(
f(k̂s)− E[f(k̂)]

)
ds

∣∣∣∣∣ k̂0 = k̂

]
,

=(1) E
[

lim
T→∞

V(k̂∗+, T ) lim
T→∞

P+
max{N (T )−1,0}(k̂0) + lim

T→∞
V(k̂∗−, T ) lim

T→∞
P−max{N (T )−1,0}(k̂0)

∣∣∣ k̂0 = k̂
]
,

=(2) lim
T→∞

V(k̂∗+, T )P+,∞ + lim
T→∞

V(k̂∗−, T )P−,∞,

=(3) V∞(k̂∗+)P+,∞ + V∞(k̂∗−)P−,∞.

Here, in step (1) we use law of iterated expectation. Step (2) comes from convergence of discrete Markov

chains (see chapter 11 of Stokey (1989)). To show this claim, define PN (k̂) =
[
P−N (k̂);P+

N (k̂)
]
∈ R2×1, then

(A.150) PN (k̂) = PTPN−1(k̂),

where P = [P−1 (k̂∗−), 1 − P+
1 (k̂∗−); 1 − P−1 (k̂∗+);P+

1 (k̂∗+)] ∈ R2×2 is a 2 × 2 transition probability where

the rows are the transition probability. Under the assumption that P−1 (k̂∗−), P+
1 (k̂∗+) ∈ (0, 1), we that that

(A.151) lim
N→∞

PN (k̂) = lim
N→∞

PN−1P1(k̂) = [P−∞;P+∞].

where the last equality comes from theorem 11.1 of Stokey (1989). So, limT→∞ P+
max{N (T )−1,0}(k̂0) is

independent of T and k̂0. See Baley and Blanco (2021) and ? for the convergence of limT→∞ V(k̂∗±, T ) =

V∞(k̂∗±).

3. Show that
∫ k̂+
k̂−

mT (k̂)g(k̂) dk̂ = 0.

Using the property that Λ(k̂) = 0 for all k̂ ∈ (k̂∗−, k̂∗+), we can write in a simple form the HJB and border

conditions satisfied by mT (k̂):

0 = f(k̂)− E[f(k̂)]− dmT (k̂)

dT − ν dmT (k̂)

dk̂
+
σ2

2

d2mT (k̂)

dk̂2
+ Λ(k̂)(MT (k̂)−mT (k̂))(A.152)

0 = MT (k̂∗±)−mT (k̂±),(A.153)

0 =

∫ k̂+

k̂−
mT (k̂)g(k̂) dk̂.(A.154)

Taking the limit to T → ∞ and using point-wise convergence of mT (k̂), we have the result.

Up to first order, the CIR is equal to:

(A.155)
CIR(f, δ)

δ
= Cov

[
f(k̂),

k̂

σ2

]
− ν

σ2
E
[
M̃(k̂) + k̂M̃′(k̂)

]
+

1

2
E
[
2M̃′(k̂) + k̂M̃′′(k̂)

]
+ o(δ)

where the function M̃(k̂) is defined as

M̃(k̂) =





m(k̂∗−) if k̂ ∈ [k̂−, k̂∗−]

(m(k̂∗+)−m(k̂∗−))
∑5
i=0Mi

(
k̂−k̂∗−
k̂∗+−k̂∗−

)i
if k̂ ∈ (k̂∗−, k̂∗+)

m(k̂∗+) if k̂ ∈ [k̂∗+, k̂+]

(A.156)
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withM0 = m(k̂∗+)

m(k̂∗−)−m(k̂∗+)
,M1 =M2 = 0,M3 = 10,M4 = −15, andM5 = 6; and the two values m(k̂∗−),m(k̂∗+)

that measure the expected cumulative deviation of the capital-productivity ratio relative to the steady-state average
E[k̂] conditional on the sign of the last adjustment:

m(k̂∗−) = −Cov
[
f(k̂), a

]
+

E[τI(k̂τ ≥ k̂∗+)]

E[τ ]

(
E−[f(k̂)]− E[f(k̂)]

)
E−[τ ]

1− P−− .(A.157)

m(k̂∗+) = −Cov
[
f(k̂), a

]
+

E[τI(k̂τ ≤ k̂∗−)]

E[τ ]

(
E+[f(k̂)]− E[f(k̂)]

)
E+[τ ]

1− P++
.(A.158)

Step 2: We characterize the continuation value in HBJ of m(k̂). Define the following objects

E±[f(k̂)] ≡
E
[∫ τ

0
f(k̂s) ds

∣∣∣ k̂0 = k̂∗±
]

E
[
τ | k̂0 = k̂∗±

] ,(A.159)

P±+ ≡ E
[
1{k̂τ≥k̂∗+}

∣∣∣ k̂0 = k̂∗±
]
.(A.160)

where E±[f(k̂)] is the mean f(k) conditional of a positive or negative last investment and P±+ is the probability
of a negative investment after a positive or negative investment. Then

m(k̂∗−) = −Cov
[
f(k̂), a

]
+

E[τI(k̂τ ≥ k̂∗+)]

E[τ ]

(
E−[f(k̂)]− E[f(k̂)]

)
E−[τ ]

1− P−− ,

m(k̂∗+) = −Cov
[
f(k̂), a

]
+

E[τI(k̂τ ≤ k̂∗−)]

E[τ ]

(
E+[f(k̂)]− E[f(k̂)]

)
E+[τ ]

1− P++
.(A.161)

Observe that M(f, k̂) satisfies the following recursive representation

M(k̂) = E
[∫ τ

0

(
f(k̂s)− E

[
f(k̂)

])
ds+M(k̂)

∣∣∣∣ k̂0 = k̂

]
.(A.162)

Define an auxiliary function z(k̂|ϕ) as follows:

z(k̂|ϕ) ≡ E
[∫ τ

0

eϕs
(
f(k̂s)− E[f(k̂)]

)
ds+ eϕτM(k̂)

∣∣∣∣ k̂0 = k̂

]
.(A.163)

and note the relationship: z(k̂|0) =M(k̂), z(·|ϕ) ∈ C, C1 for all ϕ, and

−ϕz(k̂|ϕ) + Λ(k̂)
(
z(k̂|ϕ)− vf∗(k̂)

)
= f(k̂))− E[f(k̂)]− νz′(k̂|ϕ) +

σ2

2
z′′(k̂|ϕ),(A.164)

z(k̂±|ϕ) = m(k̂∗).(A.165)

Since z(k̂|0) =M(k̂), then we have
∫ k̂+
k̂−

z(k̂|0)g(k̂) dk̂ =
∫ k̂+
k̂−
M(k̂)g(k̂) dk̂ = 0. Taking the derivative with respect

to ϕ in (A.164), we have that

(Λ(k̂)− ϕ)
∂z(k̂|ϕ)

∂ϕ
− z(k̂|ϕ) = −ν ∂

2z(k̂|ϕ)

∂k̂∂ϕ
+
σ2

2

∂3z(k̂|ϕ)

∂k̂2∂ϕ
,(A.166)

∂z(k̂±, ϕ)

∂ϕ
= m(k̂∗).(A.167)
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Using the Schwarz’s theorem to exchange partial derivatives and evaluating at ϕ = 0:

Λ(k̂)
∂z(k̂, ϕ)

∂ϕ

∣∣∣∣∣
ϕ=0

−m(k̂) = −ν
∂
∂
∂z(k̂,ϕ)
∂ϕ

∣∣∣
ϕ=0

∂ϕ

∂k̂
+
σ2

2

∂2 ∂z(k̂,ϕ)
∂ϕ

∣∣∣
ϕ=0

∂k̂2
,(A.168)

∂z(k̂, ϕ)

∂ϕ

∣∣∣∣∣
ϕ=0

= m(k̂∗).(A.169)

From the previous equation, using the occupancy measure and the renewal distribution, we have that

R− ∂z(k̂
∗−|0)
∂ϕ +R+ ∂z(k̂∗+,ϕ)

∂ϕ

∣∣∣
ϕ=0

E[τ ]
=
R−E

[∫ τ
0
m(k̂s)ds|k0 = k̂∗−

]
+R+E

[∫ τ
0
m(k̂s)ds|k0 = k̂∗+

]

E[τ ]
,

= E[m(k̂)],

= 0.(A.170)

Therefore, R− ∂z(k̂∗−,ϕ)
∂ϕ

∣∣∣
ϕ=0

+R+ ∂z(k̂∗+,ϕ)
∂ϕ

∣∣∣
ϕ=0

= 0 and

0 =
R− ∂z(k̂∗−,ϕ)

∂ϕ

∣∣∣
ϕ=0

+R+ ∂z(k̂∗+,ϕ)
∂ϕ

∣∣∣
ϕ=0

E[τ ]
,

=
R−E

[∫ τ
0
s
(
f(k̂s)− E

[
f(k̂)

])
ds+ τm(k̂∗)

∣∣∣ k̂0 = k̂∗+
]

+R+E
[∫ τ

0
s
(
f(k̂s)− E

[
f(k̂)

])
ds+ τm(k̂∗)

∣∣∣ k̂0 = k̂∗−
]

E[τ ]
,

= E
[
a
(
f(k̂)− E[f(k̂)]

)]
+
R−E−[τvf∗(k̂τ )] +R+E+[τvf∗(k̂τ )]

E[τ ]
,

= Cov
[
a, f(k̂)

]
+
R−E−[τvf∗(k̂τ )] +R+E+[τvf∗(k̂τ )]

E[τ ]
,

= Cov
[
a, f(k̂)

]
+
R−E−[τ

(
vf (k̂∗+)I(k̂τ ≥ k̂∗+) + vf (k̂∗−)

(
1− I(k̂τ ≥ k̂∗+)

))
]

E[τ ]
. . .

+
R+E+[τ

(
vf (k̂∗+)I(k̂τ ≥ k̂∗+) + vf (k̂∗−)

(
1− I(k̂τ ≥ k̂∗+)

))
]

E[τ ]

= Cov
[
a, f(k̂)

]
+ vf (k̂∗−) + (vf (k̂∗+)− vf (k̂∗−))

E[τI(k̂τ ≥ k̂∗+)]

E[τ ]

(A.171)

To characterize vf (k̂∗+)− vf (k̂∗−), observe that

(A.172) vf (k̂∗−) =
(
E−[f(k̂)]− E[f(k̂)]

)
E−[τ ] + (1− P−−)vf (k̂∗+) + P−−vf (k̂∗−)

where E−[f(k̂)] is the expected k̂ conditional of a positive investment. Thus,

(A.173) − (vf (k̂∗+)− vf (k̂∗−)) =

(
E−[f(k̂)]− E[f(k̂)]

)
E−[τ ]

1− P−−

From (A.171) and (A.173), we have that

vf (k̂∗−) = −Cov
[
f(k̂), a

]
+

E[τI(k̂τ ≥ k̂∗+)]

E[τ ]

(
E−[f(k̂)]− E[f(k̂)]

)
E−[τ ]

1− P−− .(A.174)
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With similar steps as before, it is easy to show that

vf (k̂∗+) = −Cov
[
f(k̂), a

]
+

E[τI(k̂τ ≤ k̂∗−)]

E[τ ]

C+
(
E+[f(k̂)]− E[f(k̂)]

)
E+[τ ]

1− P++
.(A.175)

Step 3: In this step we show
(A.176)

−
∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂ = δ

[
Cov

[
f(k̂),

k̂

σ2

]
− ν

σ2
E

[
vf∗∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
+

1

2
E

[
2

dvf∗∗(k̂)

dk̂
+ k̂

d2vf∗∗(k̂)

dk̂2

]]
+o(δ2)

Using (A.32) to get Λ(k) =
νg′(k̂)+σ2

2 g
′′(k̂)

g(k̂)
and using equation (A.143)

(A.177)
νg′(k̂) + σ2

2 g
′′(k̂)

g(k̂)
M(k̂) = f(k̂)− E[f(k̂)]− νM′(k̂) +

σ2

2
M′′(k̂) +

νg′(k̂) + σ2

2 g
′′(k̂)

g(k̂)
vf∗∗(k̂).

Multiplying by g(k̂)k̂ and taking the integral between k̂− and k̂+

0 = E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− νT1 +

σ2

2
T2 + νT3 +

σ2

2
T4(A.178)

T1 =

∫ k̂+

k̂−
k̂
[
M′(k̂)g(k̂) +M(k̂)g′(k̂)

]
dk̂(A.179)

T2 =

∫ k̂+

k̂−
k̂
[
M′′(k̂)g(k̂)−M(k̂)g′′(k̂)

]
dk̂(A.180)

T3 =

∫ k̂+

k̂−
vf∗∗(k̂)k̂g′(k̂) dk̂(A.181)

T4 =

∫ k̂+

k̂−
vf∗∗(k̂)k̂g′′(k̂) dk̂.(A.182)

Next, we compute each of the terms Tj , for j ∈ {1, 2, 3, 4}.

T1 =

∫ k̂+

k̂−
k̂
[
M′(k̂)g(k̂) +M(k̂)g′(k̂)

]
dk̂(A.183)

=

∫ k̂+

k̂−
k̂
(
M(k̂)g(k̂)

)′
dk̂

= k̂M′(k̂)g(k̂)
∣∣∣
k̂∗−

k̂−
+ k̂M′(k̂)g(k̂)

∣∣∣
k̂∗+

k̂∗−
+ k̂M′(k̂)g(k̂)

∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
=0

−
∫ k̂+

k̂−
M′(k̂)g(k̂) dk̂ = 0
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T2 =

∫ k̂+

k̂−
k̂
[
M′′(k̂)g(k̂)−M(k̂)g′′(k̂)

]
dk̂

=

∫ k̂∗−

k̂−
k̂

d
[
M′(k̂)g(k̂)−M(k̂)g′(k̂)

]

dk̂
dk̂ +

∫ k̂∗+

k̂∗−
k̂
d
[
M′(k̂)g(k̂)−M(k̂)dg(k̂)

dk̂

]

dk̂
dk̂ +

∫ k̂+

k̂∗+
k̂

d
[
M′(k̂)g(k̂)−M(k̂)g′(k̂)

]

dk̂
dk̂

= k̂

[
dm(k̂)

dk̂
g(k̂)−m(k̂)g′(k̂)

]∣∣∣∣∣

k̂∗−

k̂−

+ k̂

[
dm(k̂)

dk̂
g(k̂)−m(k̂)g′(k̂)

]∣∣∣∣∣

k̂∗+

k̂∗−

+ k̂

[
dm(k̂)

dk̂
g(k̂)−m(k̂)g′(k̂)

]∣∣∣∣∣

k̂+

k̂∗+

· · · −
[∫ k̂∗−

k̂−

[
dm(k̂)

dk̂
g(k̂)−m(k̂)g′(k̂)

]
d k̂ +

∫ k̂∗+

k̂∗−

[
dm(k̂)

dk̂
g(k̂)−m(k̂)g′(k̂)

]
d k̂ +

∫ k̂+

k̂∗+

[
dm(k̂)

dk̂
g(k̂)−m(k̂)g′(k̂)

]
d k̂

]

= k̂
dm(k̂)

dk̂
g(k̂)

∣∣∣∣∣

k̂+

k̂−

+ k̂
dm(k̂)

dk̂
g(k̂)

∣∣∣∣∣

k̂∗+

k̂∗−

+ k̂
dm(k̂)

dk̂
g(k̂)

∣∣∣∣∣

k̂+

k̂∗+︸ ︷︷ ︸
=0

−
[
m(k̂)k̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ m(k̂)k̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ m(k̂)k̂g′(k̂)

∣∣∣
k̂−

k̂∗−

]

· · · −
[∫ k̂+

k̂−

dm(k̂)

dk̂
g(k̂) d k̂ −

∫ k̂+

k̂−
m(k̂)g′(k̂)dk̂

]

= −


vf (k̂)k̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ vf (k̂)k̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ vf (k̂)k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂+

k̂∗+


−

∫ k̂+

k̂−

dm(k̂)

dk̂
g(k̂) d k̂ +

∫ k̂+

k̂−
m(k̂)

dg(k̂)

dk̂
d k̂

= −


vf (k̂)k̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ vf (k̂)k̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ vf (k̂)k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂+

k̂∗+


+

∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂

−


m(k̂)g(k̂)

∣∣∣
k̂∗−

k̂−
+ m(k̂)g(k̂)

∣∣∣
k̂∗+

k̂∗−
+ m(k̂)g(k̂)

∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
=0

−
∫ k̂+

k̂−
m(k̂)g′(k̂) dk̂




= −


vf (k̂)k̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ vf (k̂)k̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ vf (k̂)k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂+

k̂∗+


+ 2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂.

(A.184)

The term T3 is equal to

T3 =

∫ k̂+

k̂−
k̂vf∗(k̂)g′(k̂) dk̂

=(1)

∫ k̂∗−

k̂−
k̂vf∗(k̂)g′(k̂) dk̂ +

∫ k̂∗+

k̂∗−
k̂vf∗(k̂)g′(k̂) dk̂ +

∫ k̂+

k̂∗+
k̂vf∗(k̂)g′(k̂) dk̂

=(2)


v

f∗(k̂)k̂g(k̂)
∣∣∣
k̂∗−

k̂−
+ vf∗(k̂)k̂g(k̂)

∣∣∣
k̂∗+

k̂∗−
+ vf∗(k̂)k̂g(k̂)

∣∣∣
k̂+

k̂∗+︸ ︷︷ ︸
=0

−
∫ k̂+

k̂−

[
vf∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
g(k̂) dk̂




=(3) −E
[
vf∗∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
(A.185)

Step (1) divide the integration domain in the discontinuity points. Step (2) uses continuity of vf∗(k̂) and g(k̂),
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together with the boundaries conditions of g(k̂±) = 0. Finally, T4 is equal to

T4 =

∫ k̂+

k̂−
k̂vf∗(k̂)

d2g(k̂)

dk̂2
dk̂

=

∫ k̂∗−

k̂−
k̂vf∗(k̂)

d2g(k̂)

dk̂2
dk̂ +

∫ k̂∗+

k̂∗−
k̂vf∗(k̂)

d2g(k̂)

dk̂2
dk̂ +

∫ k̂+

k̂∗+
k̂vf∗(k̂)

d2g(k̂)

dk̂2
dk̂

= vf∗(k̂)k̂
dg(k̂)

dk̂

∣∣∣∣∣

k̂∗−

k̂−

+ vf∗(k̂)k̂
dg(k̂)

dk̂

∣∣∣∣∣

k̂∗+

k̂∗−

+ vf∗(k̂)k̂
dg(k̂)

dk̂

∣∣∣∣∣

k̂+

k̂∗+

−
∫ k̂+

k̂−

[
vf∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
dg(k̂)

dk̂
dk̂

= vf∗(k̂)k̂
dg(k̂)

dk̂

∣∣∣∣∣

k̂∗−

k̂−

+ vf∗(k̂)k̂
dg(k̂)

dk̂

∣∣∣∣∣

k̂∗+

k̂∗−

+ vf∗(k̂)k̂
dg(k̂)

dk̂

∣∣∣∣∣

k̂+

k̂∗+

· · · −
[
vf∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
k̂g(k̂)

∣∣∣∣∣

k̂∗−

k̂−

−
[
vf∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
k̂g(k̂)

∣∣∣∣∣

k̂∗+

k̂∗−

−
[
vf∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
k̂g(k̂)

∣∣∣∣∣

k̂+

k̂∗+︸ ︷︷ ︸
=0

· · ·+
∫ k̂+

k̂−

[
2

dvf∗∗(k̂)

dk̂
+ k̂

d2vf∗∗(k̂)

dk̂2

]
g(k̂) dk̂

= vf∗(k̂)k̂
dg(k̂)

dk̂

∣∣∣∣∣

k̂∗−

k̂−

+ vf∗(k̂)k̂
dg(k̂)

dk̂

∣∣∣∣∣

k̂∗+

k̂∗−

+ vf∗(k̂)k̂
dg(k̂)

dk̂

∣∣∣∣∣

k̂+

k̂∗+

+ E

[
2

dvf∗∗(k̂)

dk̂
+ k̂

d2vf∗∗(k̂)

dk̂2

]
(A.186)

From equations (A.182) to (A.186)

0 = E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− νT1 +

σ2

2
T2 + νT3 +

σ2

2
T4

= E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
− ν0 +

σ2

2


−


vf (k̂)k̂g′(k̂)

∣∣∣
k̂∗−

k̂−
+ vf (k̂)k̂g′(k̂)

∣∣∣
k̂∗+

k̂∗−
+ vf (k̂)k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂+

k̂∗+


+ 2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂


+

· · · − νE
[
vf∗∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
+
σ2

2


vf∗(k̂)k̂

dg(k̂)

dk̂

∣∣∣∣∣

k̂∗−

k̂−

+ vf∗(k̂)k̂
dg(k̂)

dk̂

∣∣∣∣∣

k̂∗+

k̂∗−

+ vf∗(k̂)k̂
dg(k̂)

dk̂

∣∣∣∣∣

k̂+

k̂∗+

+ E

[
2

dvf∗∗(k̂)

dk̂
+ k̂

d2vf∗∗(k̂)

dk̂2

]


= E
[
f(k̂)k̂

]
− E

[
k̂
]
E
[
f(k̂)

]
+ σ2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂ − νE

[
vf∗∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
+
σ2

2
E

[
2

dvf∗∗(k̂)

dk̂
+ k̂

d2vf∗∗(k̂)

dk̂2

]

= Cov
[
f(k̂), k̂

]
+ σ2

∫ k̂+

k̂−
m(k̂)g′(k̂) d k̂ − νE

[
vf∗∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
+
σ2

2
E

[
2

dvf∗∗(k̂)

dk̂
+ k̂

d2vf∗∗(k̂)

dk̂2

]
.

(A.187)

Therefore, we obtain:

(A.188)
CIR(f, δ)

δ
= Cov

[
f(k̂),

k̂

σ2

]
− ν

σ2
E

[
vf∗∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
+

1

2
E

[
2

dvf∗∗(k̂)

dk̂
+ k̂

d2vf∗∗(k̂)

dk̂2

]
+ o(δ)

Step 4: Finally, we express the CIR in a convenient way. Until now we have that

(A.189)
CIR(f, δ)

δ
= Cov

[
f(k̂),

k̂

σ2

]
− ν

σ2
E

[
vf∗∗(k̂) + k̂

dvf∗∗(k̂)

dk̂

]
+

1

2
E

[
2

dvf∗∗(k̂)

dk̂
+ k̂

d2vf∗∗(k̂)

dk̂2

]
+ o(δ)
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where

vf∗(k̂) =





v(k̂∗−) if k̂− ≤ k̂ ≤ k̂∗−

(v(k̂∗+)− v(k̂∗−))
∑5
i=0 Pi

(
k̂−k̂∗−
k̂∗+−k̂∗−

)i
if k̂∗− < k̂ < k̂∗+

v(k̂∗+) if k̂∗+ ≤ k̂ ≤ k̂+

(A.190)

vf (k̂∗−) = −Cov
[
f(k̂), a

]
+

E[τI(k̂τ ≥ k̂∗+)]

E[τ ]

(
E−[f(k̂)]− E[f(k̂)]

)
E−[τ ]

1− P−− .(A.191)

vf (k̂∗+) = −Cov
[
f(k̂), a

]
+

E[τI(k̂τ ≤ k̂∗−)]

E[τ ]

(
E+[f(k̂)]− E[f(k̂)]

)
E+[τ ]

1− P++
.(A.192)

with P0 = v(k̂∗+)

v(k̂∗−)−v(k̂∗+)
, P1 = P2 = 0, P3 = 10, P4 = −15, and P5 = 6. given this expressions, we can re-express

vf (k̂) = −Cov
[
f(k̂), a

]
+ ṽf (k̂).(A.193)

ṽf∗(k̂) =





ṽf (k̂∗−) if k̂− ≤ k̂ ≤ k̂∗−

(ṽf (k̂∗+)− ṽf (k̂∗−))
∑5
i=0 Pi

(
k̂−k̂∗−
k̂∗+−k̂∗−

)i
if k̂∗− < k̂ < k̂∗+

ṽf (k̂∗+) if k̂∗+ ≤ k̂ ≤ k̂+

(A.194)

ṽf (k̂∗−) =
E[τI(k̂τ ≥ k̂∗+)]

E[τ ]

(
E−[f(k̂)]− E[f(k̂)]

)
E−[τ ]

1− P−− .(A.195)

ṽf (k̂∗+) =
E[τI(k̂τ ≤ k̂∗−)]

E[τ ]

(
E+[f(k̂)]− E[f(k̂)]

)
E+[τ ]

1− P++
.(A.196)

With this transformation, we have that

(A.197)
CIR(f, δ)

δ
= Cov

[
f(k̂),

k̂ + νa

σ2

]
− ν

σ2
E

[
ṽf (k̂) + k̂

dṽf (k̂)

dk̂

]
+

1

2
E

[
2

dṽf (k̂)

dk̂
+ k̂

d2ṽf (k̂)

dk̂2

]

If we apply Ito’s lemma to k̂ṽf (k̂) , we have that

(A.198) Es[d(k̂sṽ
f (k̂s))] =

[
−ν
[
ṽf (k̂s) + k̂t

dṽf (k̂s)

dk̂

]
+
σ2

2
E

[
2

dṽf (k̂s)

dk̂
+ k̂s

d2ṽf (k̂s)

dk̂2

]]
ds

Therefore

(A.199)
CIR(f, δ)

δ
= Cov

[
f(k̂),

k̂ + νa

σ2

]
+ E

[
Ek̂0 [d(k̂0ṽ

f (k̂0))]

ds

]
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A.8 Proof of Proposition 5

This proposition splits the investment problem into static and dynamic components. Then substitutes the para-
metric changes introduced by taxation and redefines the investment frictions in terms of after-tax profits.

A.8.1 Flow profits with user cost of capital

Depart from the sufficient optimality conditions (HJB, value matching, optimality and smooth pasting) established
in Lemma 2:

rv(k̂) = Aeαk̂ − νv′(k̂) +
σ2

2
v′′(k̂), k̂ ∈ (k̂−, k̂+),(A.200)

v(k̂−) = v(k̂∗−) − θ + pbuy(ek̂
− − ek̂∗−),(A.201)

v(k̂+) = v(k̂∗+) − θ + psell(ek̂
+ − ek̂∗+),(A.202)

v′(k̂) = pbuyek̂, k̂ ∈
{
k̂−, k̂∗−

}
,(A.203)

v′(k̂) = psellek̂, k̂ ∈
{
k̂∗+, k̂+

}
.(A.204)

Define the auxiliary function:

(A.205) W(k̂) ≡ v(k̂)− pek̂
A

=⇒ v(k̂) = AW(k̂) + pek̂.

Substitute the new expression for v(k̂) in (A.205) into both sides of (A.200):

(A.206) rAW(k̂) + rpek̂ = Aeαk̂ − νAW ′(k̂)− νpek̂ +
σ2

2
AW ′′(k̂) +

σ2

2
pek̂.

Divide by A, join terms with pek̂, and rearrange, to obtain:

(A.207) rW(k̂) = eαk̂ −
(
r + ν − σ2

2

)
p

A
ek̂

︸ ︷︷ ︸
Π(k̂)

− νW ′(k̂) +
σ2

2
W ′′(k̂),

where flow profits including the user cost are defined as:

(A.208) Π(k̂) ≡ eαk̂ −
(
r + ν − σ2

2

)
p

A
ek̂.

Substitute the auxiliary function into the value matching conditions (A.201) to (A.202) and simplify:

W(k̂−) = W(k̂∗−) − θ

A
+

(pbuy − p)
A

(ek̂
− − ek̂∗−)(A.209)

W(k̂+) = W(k̂∗+) − θ

A
+

(pbuy − p)
A

(ek̂
+ − ek̂∗−)

Substitute the auxiliary function into the smooth pasting and optimality conditions (A.203) to (A.204) and simplify:

W ′(k̂) =
(pbuy − p)

A
ek̂, k̂ ∈

{
k̂−, k̂∗−

}
,(A.210)

W ′(k̂) =
(psell − p)

A
ek̂, k̂ ∈

{
k̂∗+, k̂+

}
.

Summarizing, the optimality conditions satisfied by W(k̂) are: (A.207), (A.208), (A.209), and (A.210).
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A.8.2 Static component

Define the static policy k̂ss as the capital-productivity ratio that maximizes Π(k̂) in (A.208):

(A.211) k̂ss =
1

1− α log

(
αA

p(r + ν − σ2/2)

)
=

1

1− α log

(
αA

p(ρ+ ξk − σ2)

)
,

where in the second equality we have substituted r = ρ−µ−σ2/2. Next, do an infinite-order Taylor approximation

of flow profits around the static policy k̂ss, denoting the n-th derivative with Πn(·):

(A.212) Π(k̂) =(1)
∞∑

n=0

Πn(k̂ss)

n!
(k̂−k̂ss)n =(2) eαk̂

ss
∞∑

n=0

(αn − α)

n!
(k̂−k̂ss)n =(3) eαk̂

ss
(
eα(k̂−k̂ss) − αe(k̂−k̂ss)

)
.

where equality (2) substitutes the derivatives of flow profits evaluated at the static policy

(A.213) Πn(k̂ss) = αneαk̂ −
(
r + ν − σ2

2

)
p

A
ek̂
∣∣∣∣
k̂=k̂ss

= eαk̂
ss

(αn − α);

and equality (3) applies the definition of the exponential function f(z) = ez =
∑∞
n=0 z

n/n! evaluated at the points

z = α(k̂ − k̂ss) and z = (k̂ − k̂ss). Thus we obtain the following expression for flow profits:

(A.214) Π(k̂) = eαk̂
ss
(
eα(k̂−k̂ss) − αe(k̂−k̂ss)

)
.

A.8.3 Dynamic component

Consider the normalized capital-productivity ratios x = k̂ − k̂ss. Its dynamics are given by dxs = dk̂s = −ν ds+
σ dWs. Using the normalized ratios x, the auxiliary function W(k̂) in (A.205), and the static policy k̂ss in (A.211),
define the function V(x), the flow profits Π(x), and the dynamic policy X as follows:

V(x) ≡ W(x+ k̂ss)

eαk̂ss
,(A.215)

π(x) ≡ Π(x+ k̂ss)

eαk̂ss
= eαx − αex,(A.216)

X ≡ (x−, x∗−, x∗+, x+) = (k̂− − k̂ss, k̂∗− − k̂ss, k̂∗+ − k̂ss, k̂+ − k̂ss).(A.217)

Rewrite the optimality conditions (A.207), (A.208), (A.209), and (A.210) using V(x), π(x), and X as follows:

rV(x) = π(x) − νV ′(x) +
σ2

2
V ′′(x), x ∈ (x−, x+),(A.218)

V(x−) = V(x∗−) − θ

Aeαk̂ss
+

pbuy − p
Ae(α−1)k̂ss

(ex
− − ex∗−),

V(x+) = V(x∗+) − θ

Aeαk̂ss
+

psell − p
Ae(α−1)k̂ss

(ex
+ − ex∗+),

V ′(x) =
pbuy − p
Ae(α−1)k̂ss

ex, x ∈
{
x−, x∗−

}
,

V ′(x) =
psell − p
Ae(α−1)k̂ss

ex, x ∈
{
x+, x∗+

}
.

A.8.4 Adding corporate taxes

Substitute the parametric changes that incorporate corporate taxation in the problem:

(A.219) A→ (1− tc)A, ρ→
(

1− tp
1− tg

)
ρ, p(∆k̂)→ (1− td)p(∆k̂), θ → (1− td)θ,
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into the static policy:

(A.220) k̂ss =
1

1− α log

(
1− tc
1− td

αA

pŨ

)

where Ũ ≡ 1−tp
1−tg ρ + ξk − σ2 is the after-tax user cost of capital. Then, define the effective fixed cost θ̃, which is

scaled by after-tax profits; the effective price wedge (p̃buy, p̃sell), which is scaled by after-tax output-capital ratio;
and the effective discount factor r̃ as follows:

θ̃ ≡ 1− td
1− tc

θ

Aeαk̂ss
,(A.221)

(p̃buy, p̃sell) ≡ 1− td
1− tc

(pbuy − p, psell − p)
Ae(α−1)k̂ss

,(A.222)

r̃ ≡
(

1− tp
1− tg

)
ρ− µ− σ2

2
.(A.223)

Using these definitions, convert the system in (A.218) simplifies to the final expressions:

r̃V(x) = eαx − αex − νV ′(x) +
σ2

2
V ′′(x), x ∈ (x−, x+),(A.224)

V(x−) = h(x∗−) − θ̃ + p̃buy(ex
− − ex∗−),

V(x+) = h(x∗+) − θ̃ + p̃sell(ex
+ − ex∗+),

V ′(x) = p̃buyex, x ∈
{
x−, x∗−

}
,

V ′(x) = p̃sellex, x ∈
{
x+, x∗+

}
.

The previous system solves the stopping problem:

V(x) = max
τ,∆x

E
[∫ τ

0

e−r̃τ (eαxs − αexs) ds(A.225)

+ er̃τ
(
−θ̃ + p̃(∆x)(exτ+∆x − exτ ) + V(xτ + ∆x)

) ∣∣∣x0 = x
]

p̃(∆x) = p̃buy
1{∆x>0} + p̃sell

1{∆x<0}.(A.226)
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A.9 Proof of Proposition 6

This proposition expresses the effective investment frictions in terms of fundamental parameters and taxes. Then
it computes the derivatives of after-tax frictions with respect to taxes.

A.9.1 Effective frictions

Let Ũ ≡ (1−tp)
(1−tg)ρ+ ξk − σ2 be the after-tax user cost of capital. Substitute the static policy in (65), given by

(A.227) k̂ss =
1

1− α log

(
1− tc
1− td

αA

pŨ
,

)

into the after-tax static profits and into the after-tax profit-capital ratio:

(1− tc)Aeαk̂ss = (1− tc)A
(

1− tc
1− td

αA

pŨ

) α
1−α

=

(
(1− tc)A
(1− td)α

) 1
1−α

(
α

pŨ

) α
1−α

(A.228)

(1− tc)
(1− td)Ae

(α−1)k̂ss =
(1− tc)
(1− td)A

(
1− tc
1− td

αA

pŨ

)α−1
1−α

=
(1− tc)
(1− td)A

(1− td)pŨ
(1− tc)αA =

pŨ
α
.(A.229)

Therefore, the scaled investment frictons are equal to:

θ̃ ≡ 1− td
1− tc

θ

Aeαk̂ss
=

(
(1− td)α
(1− tc)A

) 1
1−α

(
pŨ
α

) α
1−α

(1− td)θ =

(
(1− td)

(1− tc)A

) 1
1−α

(
pŨ
α

) α
1−α

θ,(A.230)

p̃buy − p̃sell ≡ 1− td
1− tc

(pbuy − p, psell − p)
Ae(α−1)k̂ss

=
α

Ũ
pbuy − psell

p
.(A.231)

A.9.2 Derivatives of frictions wrt. taxes

Now we compute the derivatives with respect to taxes T. Assume tc > 0, Ũ > 0 and p fixed. To correctly isolate
the tax effects, we define the following parameters:

(A.232) tρ ≡ 1− tp
1− tg , ξ̃d ≡ ξd

tρρ+ ξd
, td = tcξ̃d.

To ease the computations, we sign the tax effects on the log of θ̃:

(A.233) log θ̃ =
1

1− α log

(
1− tcξd

tρρ+ ξd

)
− 1

1− α log(1− tc)A+
α

1− α logR+
α

1− α log
( p
α

)
+ log θ.

• Effects of taxes on the effective fixed cost in (A.230).

∂ log θ̃

∂tc
=

1

(1− α)(1− tc)

[
1− ξd(1− tc)

tρρ+ ξd(1− tc)

]
> 0,

∂ log θ̃

∂ξd
=

1

1− α

[
1− tc

tρρ+ ξd(1− tc) −
1

tρρ+ ξd

]
< 0,

∂ log θ̃

∂tp
= − 1

1− α
ρ

1− tg
[

1

tρρ+ ξd(1− tc) −
1

tρρ+ ξd
+

1

R

]
< 0,

∂ log θ̃

∂tg
=

1

1− α
ρ(1− tp)
(1− tg)2

[
1

tρρ+ ξd(1− tc) −
1

tρρ+ ξd
+

1

R

]
> 0.
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• Effects of taxes on the effective price wedge in (A.231)

∂(p̃buy − p̃sell)

∂tc
= 0,

∂(p̃buy − p̃sell)

∂ξd
= 0,

∂(p̃buy − p̃sell)

∂tp
=

α

pR3

ρ

1− tg (pbuy − psell) > 0,

∂(p̃buy − p̃sell)

∂tg
= − α

pR3

ρ(1− tp)
(1− tg)2

(pbuy − psell) < 0.
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A.10 Proof of Proposition 7

This proposition computes the optimal investment policy and the macro outcomes for driftless symmetric models.
Assume ν → 0 (symmetry stochastic process) and p̃buy = −p̃sell = p̃. Since optimal dynamic policies X are
symmetric in all the following cases, then E[x] = 0 and Cov[x, a] = 0. We characterize the case with both frictions
active. It nests the solution for only fixed costs (setting x∗ = 0) and only price wedge (setting x∗ = x).

A.10.1 Sufficient optimality conditions

The solution is characterized by a symmetric inaction region with borders ±x and two reset points ±x∗ that satisfy
the following system of equations:

r̃V(x) = eαx − αex +
σ2

2
V ′′(x), ∀x ∈ (−x, x),(A.234)

V(−x) = V(−x∗) − p̃(e−x
∗ − e−x)− θ̃,(A.235)

V(x) = V(x∗) − p̃(ex − ex∗) − θ̃,(A.236)

V ′(x) = p̃ex, x ∈ {−x,−x∗} ,(A.237)

V ′(x) = −p̃ex, x ∈ {x, x∗} .(A.238)

A.10.2 Optimal policy

Assume p̃ and θ̃ are small. A second order Taylor approximation of the flow profits π(x) = eαx − αex in (A.216)
around the (frictionless) point x = 0 yields:

(A.239) π(x) = π(0) + π′(0)x+
π′′(0)

2
x2 = 1− α+

α2 − α
2

x2 = (1− α)− α(1− α)

2
x2.

For the characterization, we ignore the constant term. Next, a first order approximation of the exponential function
ex = 1 + x yields ex − ex∗ = x− x∗ and e−x

∗ − e−x = x− x∗. Under these approximations, we write the system of
equations as:

r̃V(x) = −α(1− α)

2
x2 +

σ2

2
V ′′(x), ∀x ∈ (−x, x),(A.240)

V(−x) = V(−x∗) − p̃(x− x∗)− θ̃,(A.241)

V(x) = V(x∗) − p̃(x− x∗)− θ̃,(A.242)

V ′(x) = p̃(1 + x), x ∈ {−x,−x∗} ,(A.243)

V ′(x) = −p̃(1 + x), x ∈ {x, x∗} .(A.244)

Since the problem is symmetric, we only work with the positive domain and use equations (A.240), (A.242), and
(A.244). Next, we derive two conditions that pin down the optimal policy by approximating the value function
and its derivatives. We denote the nth derivative with Vn(x) for n > 2.

To derive the first condition, we approximate the value function with a 4th order Taylor expansion around
x = 0, noting that odd derivatives evaluated at zero are equal to zero by symmetry:

(A.245) V(x) = V(0) +
V ′′(0)

2!
x2 +

V4(0)

4!
x4.

The second derivative of (A.240) evaluated at zero equals:

r̃V ′′(0) = −α(1− α) +
σ2

2
V4(0).(A.246)

Taking the limit r̃ → 0 in the previous expression, we find V4(0):

V4(0) =
2α(1− α)

σ2
.(A.247)
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Substitute the approximation to V(x) into the value matching condition in (A.241) and simplify:

V(x) = V(x∗) − p̃(x− x∗)− θ̃

V(0) +
V ′′(0)

2
x2 +

V4(0)

24
x4 = V(0) +

V ′′(0)

2
x∗2 +

V4(0)

24
x∗4 − p̃(x− x∗)− θ̃

V ′′(0)

2
(x2 − x∗2) +

α(1− α)

12σ2
(x4 − x∗4) = − p̃(x− x∗)− θ̃

V ′′(0)

2
(x2 − x∗2) +

α(1− α)

12σ2
(x2 + x∗2)(x2 − x∗2) = − p̃(x− x∗)− θ̃

V ′′(0) +
α(1− α)

6σ2
(x2 + x∗2) = − 2

(
p̃(x− x∗) + θ̃

(x2 − x∗2)

)

To derive a second condition, we approximate the first derivative of the value function with a 3rd order Taylor
approximation, noting that odd derivatives evaluated at zero are zero by symmetry:

V ′(x) =
V ′′(0)

1!
x+
V4(0)

3!
x3(A.248)

Evaluating at x and x∗ and substituting the expression for the fourth derivative:

−p̃(1 + x) = V ′′(0)x+
α(1− α)

3σ2
x3; −p̃(1 + x∗) = V ′′(0)x∗ +

α(1− α)

3σ2
x∗3.(A.249)

Taking the difference between the two previous conditions and subtracting θ̃

−p̃(x− x∗) = V ′′(0)(x− x∗) +
α(1− α)

3σ2
(x3 − x∗3)(A.250)

and solving for V ′′(0):

−V
′′(0)

2
=
p̃

2
+
α(1− α)

6σ2
(x2 + x∗2 + xx∗)(A.251)

Back into optimality:

−p̃(1 + x∗) =

[
−p̃− α(1− α)

3σ2
(x2 + x∗2 + xx∗)

]
x∗ +

α(1− α)

3σ2
x∗3(A.252)

−p̃ =
α(1− α)

3σ2

[
x∗2 − (x2 + x∗2 + xx∗)

]
x∗(A.253)

3p̃σ2

α(1− α)
= xx∗(x+ x∗)(A.254)

Check this

xx∗(x+ x∗) =
3σ2p̃

α(1− α)
(A.255)

x4 − x∗4 = xx∗(x+ x∗)(x− x∗) (1 + x+ x∗) +
6σ2θ̃

α(1− α)
(A.256)

The optimal policy nests the two extreme cases:

1. With only a fixed cost, p̃ = 0 and x∗ = 0. The first condition is irrelevant and the second condition pins
down the optimal policy:

(A.257) x4 =
6σ2θ̃

α(1− α)
=⇒ x =

(
6σ2θ̃

α(1− α)

)1/4

.

2. With only a price wedge, θ̃ = 0 and x∗ = x∗ = x. The second condition is irrelevant and the first condition
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pins down the optimal policy:

(A.258) 2x∗3 =
3σ2p̃

α(1− α)
=⇒ x∗ =

(
3σ2p̃

2α(1− α)

)1/3

.

A.10.3 Cross-sectional and renewal distributions and adjustment probabilities

Cross-sectional distribution. The stationary density g(x) solves the KFE with border, continuity, and reinjec-
tion (exit mass equals entry mass) conditions:

0 =
σ2

2
g′′(x),(A.259)

g(x) = g(−x) = 0,(A.260)
∫ x

−x
g(x) dx = 1,(A.261)

lim
x↓−x∗

g(x) = lim
x↑−x∗

g(x), lim
x↓x∗

g(x) = lim
x↑x∗

g(x),(A.262)

lim
x↓−x

g′(x) = lim
x↑−x∗

g′(x)− lim
x↓−x∗

g′(x), lim
x↑x

g′(x) = lim
x↓x∗

g′(x)− lim
x↑x∗

g′(x).(A.263)

Solving for g(x), we obtain a linear function:

(A.264) g′′(x) = 0, g′(x) = A, g(x) = Ax+B.

We split the state-space into three segments [−x,−x∗] ∪ [−x∗, x∗] ∪ [x∗, x] and consider three different functions
gk(x) = Akx+Bk for j = 1, 2, 3, one for each segment. Evaluating at the border conditions, we obtain relationships
for (A1, B1) and (A3, B3):

−A1x+B1 = 0

A3x+B3 = 0

}
=⇒ x = B1/A1 = −B3/A3.(A.265)

Evaluating at the reinjection conditions, we obtain A2:

A1 = A1 −A2

A3 = A3 −A2

}
=⇒ A2 = 0.(A.266)

Evaluating at the continuity conditions, using A2 = 0 we obtain for (A1, B1) and (A3, B3):

B2 = −A1x
∗ +B1

B2 = A3x
∗ +B3

}
=⇒ x∗ =

B1 −B2

A1
=
B2 −B3

A3
.(A.267)

Finally, we use the fact that the density integrates to one:

1 =

∫ −x∗

−x
(A1x+B1) dx+

∫ x∗

−x∗
B2 dx+

∫ x

x∗
(A3x+B3) dx(A.268)

=

(
A1

x2

2
+B1x

) ∣∣∣
−x∗

−x
+B2x

∣∣∣
x∗

−x∗
+

(
A3

x2

2
+B3x

) ∣∣∣
x

x∗

= A1

(
x∗2 − x2

2

)
+B1 (x− x∗) + 2B2x

∗ +A3

(
x2 − x∗2

2

)
+B3(x− x∗)

= (A3 −A1)

(
x2 − x∗2

2

)
+ 2B2x

∗ + (B1 +B3)(x− x∗).
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Substituting B1 = xA1 and B3 = −xA3 from (A.265) into the previous expression:

1 = (A3 −A1)

(
x2 − x∗2

2

)
+ 2B2x

∗ − x (A3 −A1) (x− x∗)(A.269)

= (A3 −A1) (x− x∗)
[
x+ x∗

2
− x
]

+ 2B2x
∗

= (A3 −A1)
(x− x∗)2

2
+ 2B2x

∗.

Therefore, the cross-sectional density is equal to:

g(x) =
1

x2 − x∗2





x+ x for x ∈ [−x,−x∗]
x− x∗ for x ∈ [−x∗, x∗]
x− x for x ∈ [x∗, x].

(A.270)

Renewal probabilities and relative shares. The renewal probabilities (the mass of adjusters from each reset
point) are equal to:

N− =
σ2

2
lim
x↓−x

g′(x) =
σ2

2
A1 =

σ2

2

1

(x2 − x∗2)
(A.271)

N+ = −σ
2

2
lim
x↑x

g′(x) = −σ
2

2
A3 =

σ2

2

1

(x2 − x∗2)
.(A.272)

The shares of total, upward, and downward adjustment are:

N = N− +N+ =
σ2

(x2 − x∗2)
(A.273)

N−
N =

1

2
;

N+

N =
1

2
.(A.274)

Probability of negative adjustment. Let P+(x) ≡ Pr[∆x < 0|x] denote the probability of doing a negative
adjustment (after hitting the upper bound) conditional on the state x. It solves the HJB with border conditions:

0 = P+′′(x); P+(x) = 1; P+(−x) = 0(A.275)

Solving for P+(x) = Ax+B and evaluating at the border conditions:

Ax+B = 1

−Ax+B = 0

}
=⇒ A = 1/2x

B = 1/2

}
=⇒ P+(x) =

x+ x

2x
=

1

2
+

x

2x
.(A.276)

The unconditional probability of a negative adjustment is:

(A.277) E[P+] =
1

2
+

1

2x
E[x] =

1

2
.

The probability of a negative adjustment conditional on the last adjusting being positive (a switch in adjustment
sign) equals:

(A.278) P+(−x∗) ≡ Pr[∆x < 0| − x∗] =
x− x∗

2x
.

Probability of positive adjustment. Let P−(x) ≡ Pr[∆x > 0|x] denote the probability of doing a positive
adjustment (after hitting the lower bound) conditional on the state x. It solves the HJB with border conditions:

0 = P−′′(x); P−(−x) = 1; P−(x) = 0.(A.279)
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Solving for P−(x) = Ax+B and evaluating at the border conditions:

−Ax+B = 1

Ax+B = 0

}
A = −1/2x

B = 1/2

}
P−(x) =

x− x
2x

=
1

2
− x

2x
.(A.280)

The unconditional probability of a positive adjustment is:

(A.281) E[P−] =
1

2
− 1

2x
E[x] =

1

2
.

The probability of a positive adjustment conditional on the last adjusting being negative (a switch in adjustment
sign) equals:

(A.282) P−(x∗) ≡ Pr[∆x > 0|x∗] =
x− x∗

2x
.

A.10.4 Expected duration of inaction

Let T (x) ≡ E[τ |x]. It solves the HJB with border conditions:

(A.283) 0 = 1 +
σ2

2
T ′′(x), T (x) = T (−x) = 0.

Solving for T (x):

(A.284) T ′′(x) = − 2

σ2
, T ′(x) = − 2

σ2
x+A, T (x) = −x

2

σ2
+Ax+B.

Evaluating at the border conditions, we obtain values for A and B:

−x
2

σ2
+Ax+B = 0

−x
2

σ2
−Ax+B = 0





=⇒
2Ax = 0

−2x2

σ2
+ 2B = 0



 =⇒

A = 0

B =
x2

σ2



 =⇒ T (x) =

x2 − x2

σ2
.(A.285)

The expected duration of inaction given the current state E[τ |x], the expected duration of a complete inaction

spell conditional on the last reset point (E+
[τ ],E−[τ ]), and the unconditional expected duration of inaction E[τ ]

are given by:

E[τ |x] =
x2 − x2

σ2
,(A.286)

E+
[τ ] = E−[τ ] =

x2 − x∗2
σ2

,(A.287)

E[τ ] =
N+

N E+
[τ ] +

N−
N E−[τ ] =

x2 − x∗2
σ2

,(A.288)

where the shares of upward and downward adjustment are identical: N+/N = N−/N = 1/2.

A.10.5 Cross-sectional means

Let m(x) ≡ E
[∫ τ

0
xs ds|x0 = x

]
. It solves the HJB with border conditions:

(A.289) 0 = x+
σ2

2
m′′(x), m(x) = m(−x) = 0.

Solving for m(x):

(A.290) m′′(x) = − 2

σ2
x, m′(x) = −x

2

σ2
+A, m(x) = − x3

3σ2
+Ax+B.
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Evaluating at the border conditions, we obtain values for A and B:

− x3

3σ2
+Ax+B = 0

x3

3σ2
−Ax+B = 0





=⇒ A =
x2

3σ2

B = 0



 =⇒ m(x) =

x2x− x3

3σ2
=
x

3

x2 − x2

σ2
=
x

3
E[τ |x](A.291)

Unconditional means. Using the occupancy measure, we obtain the means conditional on the last rest point:

(A.292) E−[x] =
m(−x∗)
E−[τ ]

= −x
∗

3
; E+

[x] =
m(x∗)

E+
[τ ]

=
x∗

3
,

where E−[τ ] = E[τ | − x∗] and E+
[τ ] = E[τ |x∗].

Unconditional mean. By symmetry, E[x] = 0. To show this formally, we use the conditional means and the
renewal distribution:

(A.293) E[x] =
N+

N E+
[x] +

N−
N E−[x] =

1

2

(
x∗

3

)
+

1

2

(−x∗
3

)
= 0.

A.10.6 Cross-sectional variances

Unconditional variance. Since E[x] = 0, then Var[x] = E[x2]. Using the cross-sectional distribution, the second
moment equals:

Var[x] =

∫ x

−x
x2g(x) dx(A.294)

=
1

(x2 − x∗2)

[∫ −x∗

−x
x2(x+ x) dx + (x− x∗)

∫ x∗

−x∗
x2 dx +

∫ x

x∗
x2(x− x) dx

]

=
1

(x2 − x∗2)

[(
x3x

3
+
x4

4

) ∣∣∣
−x∗

−x
+ (x− x∗)x

3

3

∣∣∣
x∗

−x∗
+

(
x3x

3
− x4

4

) ∣∣∣
x

x∗

]

=
1

(x2 − x∗2)

[
−x∗3x

3
+
x∗4

4
+
x∗4

3
− x4

4
+ (x− x∗)x

∗3 + x∗3

3
+
x4

3
− x4

4
− x∗3x

3
+
x∗4

4

]

=
1

(x2 − x∗2)

(
x4 − x∗4

6

)
=

1

(x2 − x∗2)

(
(x2 − x∗2)(x2 + x∗2)

6

)

=
x2 + x∗2

6

Conditional variance. Let m2(x) ≡ E
[∫ τ

0
x2
s ds|x0 = x

]
. It solves the HJB with borders:

(A.295) 0 = x2 +
σ2

2
m′′(x), m2(x) = m2(−x) = 0.

Solving for m2(x):

(A.296) m′′2(x) = −2x2

σ2
, m′2(x) = −2x3

3σ2
+A, m(x) = − x4

6σ2
+Ax+B.

Evaluating at the border conditions, we obtain values for A and B:

− x4

6σ2
+Ax+B = 0

− x4

6σ2
−Ax+B = 0





=⇒
A = 0

B =
x4

6σ2



 =⇒ m2(x) =

x4 − x4

6σ2
=
x2 + x2

6
E[τ |x].(A.297)
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Using the occupancy measure, the second moments conditional on the last rest point are:

(A.298) E+
[x2] =

m2(x∗)

E[τ |x∗] =
x2 + x∗2

6
; E−[x2] =

m2(−x∗)
E[τ | − x∗] =

x2 + x∗2

6
.

Finally, by definition of the variance, we have that:

Var+
[x] = E+

[x2]− (E+
[x])2 =

x2 + x∗2

6
− x∗2

9
(A.299)

Var−[x] = E−[x2]− (E−[x])2 =
x2 + x∗2

6
− x∗2

9
(A.300)

where the conditional means are computed in (A.292).

Variance decomposition. According to the law of total variance:

(A.301) Var[x]︸ ︷︷ ︸
total

= E[Var[x|∆x]]︸ ︷︷ ︸
within

+ Var[E[x|∆x]]︸ ︷︷ ︸
between

.

The within variance is computed as:

E[Var[x|∆x]] =
N+

N
E+

[τ ]

E[τ ]
Var+[x] +

N−
N

E−[τ ]

E[τ ]
Var−[x](A.302)

= 2

(
1

2

)
(1)

(
x2 + x∗2

6
− x∗2

9

)
=
x2 + x∗2

6
− x∗2

9
.

The between variance is computed as:

Var[E[x|∆x]] =
N+

N
E+

[τ ]

E[τ ]
(E+[x]− E[x])2 +

N−
N

E−[τ ]

E[τ ]
(E−[x]− E[x])2(A.303)

=
1

2
(1)

(
x∗

3

)2

+
1

2
(1)

(
−x
∗

3

)2

=
x∗2

9
.

In the benchmark cases we decompose the total variance as:

(A.304) Var[x] =





x2

6︸︷︷︸
total

=
x2

6︸︷︷︸
within

+ 0︸︷︷︸
between

if p̃ = 0

x2

3︸︷︷︸
total

=
2x2

9︸︷︷︸
within

+
x2

9︸︷︷︸
between

if θ̃ = 0.

A.10.7 Aggregate q.

From (40) and (42) aggregate q with taxes and without drift equals:

(A.305) q =
1

r̃

[
1− tc
1− td

αAŶ

pK̂
+

σ2

2
−

Cov
[
∆k̂,P(∆k̂)

]

E[τ ]

]
.

We first compute the aggregate productivity term and the irreversibility terms.

Aggregate productivity. The numbers refer to the steps below. In equality (1) we start from the approximation

of Ŷ /K̂; in equality (2) we substitute E[k̂] = k̂ss+E[x] = 1
1−α log

(
1−tc
1−td

αA
pŨ

)
+E[x] and Var[k̂] = Var[x]; in equality

(3) we simplify, in equality (4) we do a Taylor approximation to the exponential function, and in equality (5) we
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substitute E[x] = 0:

Ŷ

K̂
=(1) exp

{
−(1− α)

(
E[k̂] +

α

2
Var[k̂]

)}

=(2) exp

{
−(1− α)

(
1

1− α log

(
1− tc
1− td

αA

pŨ

)
+ E[x] +

α

2
Var[x]

)}

=(3) pŨ
αA

1− td
1− tc exp

{
−(1− α)E[x]− α(1− α)

2
Var[x]

}

=(4) pŨ
αA

1− td
1− tc

(
1− (1− α)E[x]− α(1− α)

2
Var[x]

)

=(5) pŨ
αA

1− td
1− tc

(
1− α(1− α)

2
Var[x]

)
.(A.306)

Irreversibility term. The numerator in the irreversibility term equals the covariance of adjustment size and the
auxiliary pricing function P(∆x) defined in (A.89). We compute this term using conditioning on the last reset
point and then averaging with the conditional renewal distribution:

Cov [∆x,P(∆x)] = E [∆xP(∆x)]− E [∆x]E [P(∆x)]

=
1

2

(
E− [∆xP(∆x)] + E+

[∆xP(∆x)]
)

=
1

2

(
(x− x∗)

(
pbuy

p
− 1

)
+ (x∗ − x)

(
psell

p
− 1

))

=
(x− x∗)

2

[
pbuy − psell

p

]

= (x− x∗) Ũ
α
p̃.

In the last line we use the relationship between effective and fundamental price wedge in (A.231) and the assumption
of a symmetric wedge:

(A.307)
pbuy − psell

p
=
Ũ
α

(p̃buy − p̃sell) =
2Ũ p̃
α

.

The denominator of the irreversibility term is the expected duration of inaction in (A.288): E[τ ] = (x2 − x∗2)/σ2.
Therefore, the irreversibility term for aggregate q equals:

(A.308) − Cov [∆x,P(∆x)]

E[τ ]
= − (x− x∗)Ũ p̃

α

σ2

x2 − x∗2 = −Ũ
α

p̃σ2

x+ x∗
= −xx

∗

3
Ũ(1− α) < 0.

where the last equality uses the first condition for the optimal policy in (A.255). Finally, substituting the aggregate
productivity term (A.306) and the irreversibility term (A.308) into the expression for q (without drift), simplifying,
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and using the driftless aftertax user cost Ũ = ρ̃− σ2 and the driftless after-tax discount r̃ = ρ̃− σ2/2:

q =
1

r̃

[
1− tc
1− td

αA

p

Ŷ

K̂
+
σ2

2
− xx∗

3
Ũ(1− α)

]

=
1

r̃

[
1− tc
1− td

αA

p

1− td
1− tc

pŨ
αA

(
1 − α(1− α)

2
Var[x]

)
+
σ2

2
− xx∗

3
Ũ(1− α)

]

=
1

r̃

[
Ũ
(

1 − α(1− α)

2
Var[x]

)
+
σ2

2
− xx∗

3
Ũ(1− α)

]

=
Ũ + σ2/2

r̃
− Ũ

r̃

α(1− α)

2
Var[x]− xx∗

3r̃
Ũ(1− α)

= 1 − Ũ
r̃

α(1− α)

2

[
Var[x] +

2

α

xx∗

3

]
.

In the benchmark cases:

(A.309) q =





1 − Ũ
r̃
α(1−α)

2 Var[x] if p̃ = 0,

1 − Ũ
r̃
α(1−α)

2

(
1 + 2

α

)
Var[x] if θ̃ = 0,

where for the case θ̃ = 0 we note that Var[x] = x∗2/3.

A.10.8 CIR

From (49) and (51), the CIR without drift equals:

(A.310)
CIR(δ)

δ
=

Var[x]

σ2
− Cov[∆k̂,M(∆k̂)]

E[τ ]
+ o(δ).

Cumulative deviations. Recall the values for the unconditional probabilities of a negative and a positive ad-
justment E[P+] = E[P−] = 1/2 in (A.277) and (A.281), and the conditional probabilities of switching adjustment
sign P+(−x∗) = P−(x∗) = (x − x∗)/2x in (A.278) and (A.282). Substituting these probabilities, the conditional
means E−[x] = −x∗/3 and E−[x] = x∗/3 in (A.292), and the conditional durations E−[τ ] = E+[τ ] = (x2 − x∗2)/σ2

in (A.287) into the definition of cumulative deviations Mbuy in (46) and Msell in (47) yields:

Mbuy = E[P−]
1

P+(−x∗) (E−[x]− E[x])E−[τ ] =
1

2

(
2x

x− x∗
)(
−x
∗

3
− 0

)
x2 − x∗2

σ2
= −x

∗x(x+ x∗)

3σ2
,(A.311)

Msell = E[P+]
1

P−(x∗)
(E+[x]− E[x])E+[τ ] =

1

2

(
2x

x− x∗
)(

x∗

3
− 0

)
x2 − x∗2

σ2
=

x∗x(x+ x∗)

3σ2
.(A.312)

Irreversibility term. The irreversibility term for the CIR equals the covariance of the adjustment size and
the auxiliary capital-deviation deviation function M(∆x) defined in (48). Recall x∗ = x − ∆x for ∆x < 0 and
−x∗ = −x−∆x for ∆x > 0 and by symmetry E [∆x] = 0. The numerator of the irreversibility term equals:

Cov[∆x,M(∆x)] = E [∆xM(∆x)]− E [∆x]E [M(∆x)]

=
1

2

[
E− [∆xM(∆x)] + E+

[∆xM(∆x)]
]

=
1

2

[
(x− x∗)Mbuy + (x∗ − x)Msell

]
= (x− x∗)Mbuy,

= −(x− x∗)x
∗x(x+ x∗)

3σ2
= −x

∗x

3

(
x2 − x∗2

σ2

)

= −x
∗x

3
E[τ ].
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Therefore, the irreversibility term of the CIR equals:

(A.313) − Cov[∆x,M(∆x)]

E[τ ]
=

x∗x

3
> 0.

Finally, substituting the expression for the cross-sectional variance in (A.294) and the irreversibility term in (A.313)
into the CIR yields:

CIR(δ)

δ
=

x2 + x∗2

6σ2
+

x∗x

3
+ o(δ).(A.314)

In the benchmark cases:

(A.315) CIR =





x2

6σ2 + o(δ) if p̃ = 0,

(1+σ2)x∗2

3σ2 + o(δ) if θ̃ = 0,
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A.11 Proof of Proposition 8

This proposition computes the optimal investment policy and the macro outcomes for models with very large drift
relative to idiosyncratic costs. Assume ν → ∞. If ν → ∞ then economy converges to an economy with ν > 0
and σ → 0 since idiosyncratic shocks are small relative to the drift—see Álvarez, Beraja, Gonzalez-Rozada and
Neumeyer (2018) for details in the context of price-setting. The firm investment problem is given by:

V(x) = max
τ,∆x

E
[∫ τ

0

e−r̃τ (xαs − αxs) ds+ e−r̃τ
(
−θ̃ + V(xτ )

) ∣∣∣x0 = x

]
,(A.316)

dxs = −νxs ds.(A.317)

A.11.1 Sufficient optimality conditions

This problem was studied by Sheshinski and Weiss (1977). They show that the optimal policy consists of a one-
sided inaction region with lower threshold x− and a reset point x∗. Since there are no idiosyncratic shock, there is
no mass above x∗ and the cross-sectional distribution is uniform in the range [x−, x∗].

Let h(x) ≡ xα−αx. Following Sheshinski and Weiss (1977), the optimal policy satisfies the following conditions
(in our notation):

h(x∗) − h(x−) = r̃θ̃,(A.318)
∫ ex

∗

ex−
h′(x) x

r̃
ν dx = 0.(A.319)

The first optimality condition equals:

eαx
∗ − αex∗ = r̃θ̃ + eαx

− − αex− .(A.320)

The second optimality condition equals:

(A.321)

∫ ex
∗

ex−
α(xα−1 − 1)x

r̃
ν dx =

xr̃/ν + α+

r̃/ν + α+
− xr̃/ν + 1

r/ν + 1

∣∣∣∣
ex
∗

ex−
= 0,

or equivalently:

(A.322)
e(r̃/ν+α)x∗ − e(r̃/ν+α)x−

r/ν + α
=

e(r̃/ν+1)x∗ − e(r̃/ν+1)x−

r/ν + 1
.

A.11.2 Optimal investment policy

Next we approximate the decision problem. As in (A.239), we do a second-order Taylor approximation of the flow

profits π(x) = eαx − αex around x = 0: π(x) = (1 − α) − α(1−α)
2 x2. Applying this approximation to the first

optimality condition in (A.320) yields:

x∗2 − x−2
= − 2r̃θ̃

α(1− α)
.(A.323)

Since the cross-sectional distribution is uniform in the range [x−, x∗], it has the following moments:

(A.324) Var[x] =
(x∗ − x−)2

12
; E[x] =

x∗ + x−

2
.

Thus we can write the first optimality condition in (A.323) as:

(A.325) E[x]
√
Var[x] = − r̃θ̃

2
√

3α(1− α)
.
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Next, consider a third-order approximation to the following exponential function:

(A.326)
eβx

β
= 1 + x+

β

2
x2 +

β2

6
x2.

Apply this approximation to both sides of the second optimality condition, using β ∈ {r̃/ν + α, r̃/ν + 1}, and
rearrange to obtain:

[
(r̃/ν + α)− (r̃/ν + 1)

2

]
(x∗2 − x−2

) +

[
(r̃/ν + α)2 − (r̃/ν + 1)2

6

]
(x∗3 − x−3

) = 0(A.327)

(x∗ + x−)

2
+

(2r̃/ν + α+ 1)

6
((x∗ + x−)2 − x∗x−) = 0.(A.328)

Note the following relationship:

(A.329) − x∗x− =
(x∗ − x−)2 − (x∗ + x−)2

4

Substituting back this expression into (A.328) and also E[x] = (x∗ + x−)/2 we get:

E[x] +
(2r̃/ν + α+ 1)

6

(
(x∗ + x−)2 +

(x∗ − x−)2 − (x∗ + x−)2

4

)
= 0(A.330)

6E[x] + (2r̃/ν + α+ 1)

(
3(x∗ + x−)2 + (x∗ − x−)2

4

)
= 0(A.331)

E[x] = −
(
r̃

ν
+
α+ 1

2

)
E[x2].(A.332)

Therefore, together with (A.324), the optimal policy (x−, x∗) is characterized by the following 2 × 2 non-linear
system:

E[x]
√

Var[x] = − r̃θ̃√
12α(1− α)

;
E[x]

Var[x] + E[x]2
= −

(
r̃

ν
+
α+ 1

2

)
.(A.333)

A.11.3 Macro outcomes

(i) Misallocation. The cross-sectional variance is the variance of a uniform distribution in the range [x−, x∗]:

(A.334) Var[x] =
(x∗ − x−)2

12
.

(ii) Aggregate q. Let ρ̃ ≡ ρ(1− tp)/(1− tg). Without idiosyncratic shocks, the after-tax user cost is Ũ = ρ̃+ ξk

and the after-tax discount is r̃ = ρ̃− µ and simplifying:

q =
1− tc
1− td

αA

pr̃

Ŷ

K̂
− ν

r̃

=
1− tc
1− td

αA

pr̃

1− td
1− tc

pŨ
αA

(
1 − (1− α)E[x] − α(1− α)

2
Var[x]

)
− ν

r̃

= 1 − ρ̃+ ξk

ρ̃− µ (1− α)
(
E[x] +

α

2
Var[x]

)

(iii) CIR: From Corollary 2 in Baley and Blanco (2021):

(A.335)
CIR(δ)

δ
= 0.
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