
Partisan Fertility and Presidential Elections

Gordon Dahl UC San Diego & NBER Runjing Lu U of Alberta

William Mullins UC San Diego

July 2021

Economic optimism tracks changes in political power

Difference in Republican versus Democrat optimism about the economy

(Bloomberg Consumer Comfort Survey)

Zooming in: 2016-2021

Net share of respondents who think the economy is improving versus worsening

(CIVIQS Survey)

Research question

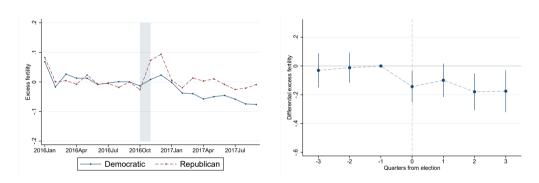
Two observations:

Large swings in the economic optimism of partisans around regime-changing
Presidential elections

Decision to have a child is a function of economic conditions

Research question: Do shifts in **political power** affect **fertility** decisions?

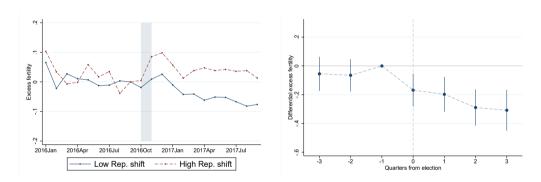
Research design


- We exploit the surprise 2016 election of Trump
 - Option markets: 12% probability of Trump victory (Langer and Lemoine, 2020)
 - Polling: 15% and 29% (New York Times & FiveThirtyEight)
- Event study design
 - Compare fertility across groups likely to favor Republican or Democrat candidates
 - Republican vs Democratic-leaning counties
 - Hispanics vs non-Hispanics

Data

Administrative data for US births from NCHS

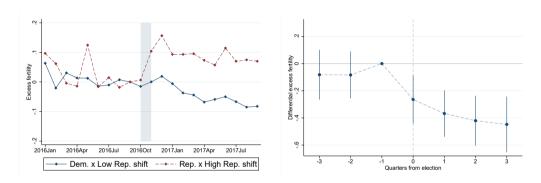
- Outcome: Excess fertility
 - Birth rate in a county or by ethnicity
 - Normalize by subtracting mean fertility by county × month-of-year (× ethnicity)
 - Quarterly frequency
- Conception timing: reported last menstrual period
 - Measured with noise: 7-day lag btwn start of last menses & ~2 week fertile period
 - Example: if start of last menses was in October, a baby could have been conceived *after* the election date of November 8 ⇒ t-1 is partially treated
 - **Upshot**: both t-1 and t are in treatment window


Fertility effects across political geographies

Rep/Dem counties classified by vote share in 2012

Magnitude: 1.1 pp increase in Rep relative to Dem annual births

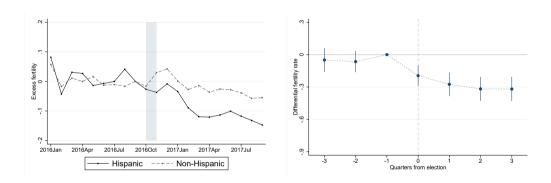
Fertility effects across political geographies



Rep/Dem counties classified by Republican shift between 2008 & 2016

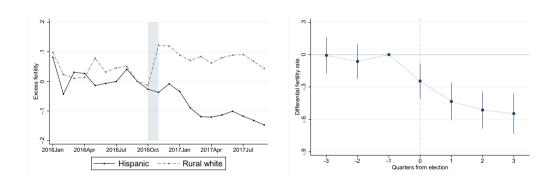
Correlation: 2012 vote share & Rep shift = 0.16

Magnitude: 1.7 pp increase in Rep relative to Dem


Fertility effects across political geographies

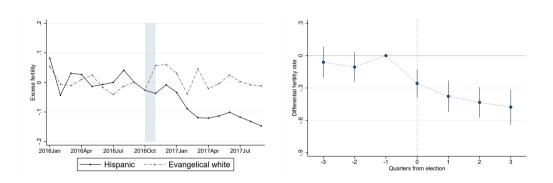
Rep/Dem counties classified by vote share × Republican shift

Magnitude: 2.6 pp increase in Rep relative to Dem


Fertility effects between ethnic groups (within counties)

Hispanics vs non-Hispanics

Magnitude: 1.7 pp decrease in Hisp relative to non-Hisp annual births

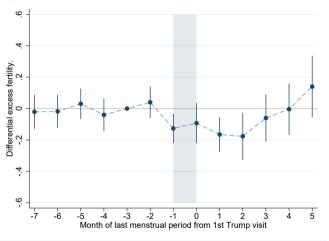

Comparing Hispanic fertility with whites in rural counties

Hispanics vs whites in rural counties

Magnitude: 2.8 pp decrease in Hisp births relative to whites in *rural* counties

Comparing Hispanic fertility with whites in evangelical counties

Hispanics vs whites in evangelical counties


Magnitude: 2.5 pp decrease in Hisp births relative to whites in evangelical counties

Switching to Trump campaign visits 2015-2016

- So far: Presidential elections
- Now: supportive evidence from campaign visits and relative Hispanic fertility

- Benefit: multiple locations and timings
- Dynamic DID (Abraham & Sun, 2020): eventually visited counties as controls

Trump campaign visits 2015-2016

Magnitude: Relative decrease in **Hispanic** fertility by 1.5% of mean (months -1 to +5)

Conclusion

Political polarization & declining fertility are 2 fundamental social challenges

• First paper to causally link partisanship to fertility choices

Estimated partisan fertility effects: a difference of 1.1 - 2.8 pp in annual births

- Effects persist for the 2 years for which we have data
- Comparable to fertility effects of unemployment & cash transfers

Other elections:

- Bush (2000): fertility effects for Dem/Rep & high/low evangelical counties
- Obama (2008): no effects, but confounded by Great Recession

Table 1: 2016 Presidential Election and Fertility

	(1)	(2)	(3)	(4)	(5)	(6)
	Dem. vs	High vs low	Vote share	Hisp. vs	Hisp. vs	Hisp. vs
	Rep.	Rep. shift	\times shift	non-Hisp.	rural white	evan. white
Thank	-0.031	-0.055	-0.082	-0.050	-0.007	-0.061
$Treat_{-3}$						
_	(0.061)	(0.060)	(0.094)	(0.057)	(0.086)	(0.073)
$Treat_{-2}$	-0.012	-0.065	-0.084	-0.065	-0.062	-0.106
	(0.053)	(0.057)	(0.088)	(0.050)	(0.082)	(0.069)
$Treat_0$	-0.144**	-0.168***	-0.264***	-0.196***	-0.245***	-0.258***
	(0.056)	(0.058)	(0.091)	(0.049)	(0.083)	(0.067)
$Treat_1$	-0.099*	-0.198***	-0.368***	-0.272***	-0.434***	-0.377***
	(0.059)	(0.062)	(0.087)	(0.056)	(0.089)	(0.074)
$Treat_2$	-0.179***	-0.289***	-0.421***	-0.314***	-0.513***	-0.433***
-	(0.066)	(0.064)	(0.093)	(0.056)	(0.088)	(0.072)
$Treat_3$	-0.175**	-0.308***	-0.448***	-0.315***	-0.546***	-0.477***
	(0.075)	(0.073)	(0.105)	(0.058)	(0.096)	(0.083)
Sum Treat (0 to 3)	597	964	-1.501	-1.097	-1.739	-1.545
p value	0.005	0.000	0.000	0.000	0.000	0.000
Observations	19,691	19,691	11,438	39,620	30,947	29,694
R-squared	0.424	0.425	0.446	0.270	0.260	0.270
County FE	Y	Y	Y	Y	Y	Y
Quarter event FE	Y	Y	Y	Y	Y	Y
N clusters (counties)	2,813	2,813	1,634	2,830	2,830	2,830