Partisan Fertility and Presidential Elections

Gordon Dahl
UC San Diego & NBER

Runjing Lu
U of Alberta

William Mullins
UC San Diego

July 2021
Economic optimism tracks changes in political power

Difference in Republican versus Democrat optimism about the economy

(Bloomberg Consumer Comfort Survey)
Net share of respondents who think the economy is improving versus worsening

(CIVIQS Survey)
Research question

Two observations:

- Large swings in the economic optimism of partisans around regime-changing Presidential elections
- Decision to have a child is a function of economic conditions

Research question: Do shifts in political power affect fertility decisions?
Research design

- We exploit the **surprise 2016 election** of Trump
 - Option markets: 12% probability of Trump victory (Langer and Lemoine, 2020)
 - Polling: 15% and 29% (New York Times & FiveThirtyEight)

- **Event study** design
 - Compare fertility across groups likely to favor Republican or Democrat candidates
 - Republican vs Democratic-leaning counties
 - Hispanics vs non-Hispanics
Data

Administrative data for US births from NCHS

- **Outcome:** *Excess fertility*
 - Birth rate in a county or by ethnicity
 - Normalize by subtracting mean fertility by county × month-of-year (× ethnicity)
 - Quarterly frequency

- **Conception timing:** reported last menstrual period
 - Measured with noise: 7-day lag between start of last menses & ~2 week fertile period
 - Example: if start of last menses was in October, a baby could have been conceived *after* the election date of November 8 ⇒ t-1 is partially treated
 - **Upshot:** both $t-1$ and t are in treatment window
Fertility effects across political geographies

Rep/Dem counties classified by vote share in 2012

Magnitude: 1.1 pp increase in Rep relative to Dem annual births
Fertility effects across political geographies

Rep/Dem counties classified by Republican shift between 2008 & 2016

Correlation: 2012 vote share & Rep shift = 0.16
Magnitude: 1.7 pp increase in Rep relative to Dem
Fertility effects across political geographies

Rep/Dem counties classified by vote share × Republican shift

Magnitude: 2.6 pp increase in Rep relative to Dem
Fertility effects between ethnic groups (within counties)

Hispanics vs non-Hispanics

Magnitude: 1.7 pp decrease in Hisp relative to non-Hisp annual births
Comparing Hispanic fertility with whites in rural counties

Hispanics vs whites in rural counties

Magnitude: 2.8 pp decrease in Hisp births relative to whites in rural counties
Comparing Hispanic fertility with whites in evangelical counties

Hispanics vs **whites in evangelical counties**

Magnitude: 2.5 pp decrease in Hisp births relative to whites in *evangelical* counties
Switching to Trump campaign visits 2015-2016

- So far: Presidential elections
- Now: supportive evidence from campaign visits and relative Hispanic fertility
- Benefit: multiple locations and timings
- Dynamic DID (Abraham & Sun, 2020): eventually visited counties as controls
Trump campaign visits 2015-2016

Magnitude: Relative decrease in Hispanic fertility by 1.5% of mean (months -1 to +5)
Conclusion

Political polarization & declining fertility are 2 fundamental social challenges

- First paper to causally link partisanship to fertility choices

Estimated partisan fertility effects: a difference of 1.1 - 2.8 pp in annual births

- Effects persist for the 2 years for which we have data
- Comparable to fertility effects of unemployment & cash transfers

Other elections:

- Obama (2008): no effects, but confounded by Great Recession
Table 1: 2016 Presidential Election and Fertility

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dem. vs Rep.</td>
<td>High vs low shift</td>
<td>Vote share shift</td>
<td>Hisp. vs non-Hisp.</td>
<td>Hisp. vs rural white</td>
<td>Hisp. vs evan. white</td>
</tr>
<tr>
<td>Treat_{3}</td>
<td>-0.031 (0.061)</td>
<td>-0.055 (0.094)</td>
<td>-0.082 (0.094)</td>
<td>-0.050 (0.057)</td>
<td>-0.007 (0.086)</td>
<td>-0.061 (0.073)</td>
</tr>
<tr>
<td>Treat_{2}</td>
<td>-0.012 (0.053)</td>
<td>-0.065 (0.088)</td>
<td>-0.084 (0.088)</td>
<td>-0.065 (0.050)</td>
<td>-0.062 (0.082)</td>
<td>-0.106 (0.069)</td>
</tr>
<tr>
<td>Treat_{0}</td>
<td>-0.144** (0.056)</td>
<td>-0.168*** (0.091)</td>
<td>-0.264*** (0.091)</td>
<td>-0.196*** (0.049)</td>
<td>-0.245*** (0.083)</td>
<td>-0.258*** (0.067)</td>
</tr>
<tr>
<td>Treat_{1}</td>
<td>-0.099* (0.059)</td>
<td>-0.198*** (0.087)</td>
<td>-0.368*** (0.087)</td>
<td>-0.272*** (0.056)</td>
<td>-0.434*** (0.089)</td>
<td>-0.377*** (0.074)</td>
</tr>
<tr>
<td>Treat_{2}</td>
<td>-0.179*** (0.066)</td>
<td>-0.289*** (0.093)</td>
<td>-0.421*** (0.093)</td>
<td>-0.314*** (0.056)</td>
<td>-0.513*** (0.088)</td>
<td>-0.433*** (0.072)</td>
</tr>
<tr>
<td>Treat_{3}</td>
<td>-0.175** (0.075)</td>
<td>-0.308*** (0.105)</td>
<td>-0.448*** (0.105)</td>
<td>-0.315*** (0.058)</td>
<td>-0.546*** (0.096)</td>
<td>-0.477*** (0.083)</td>
</tr>
<tr>
<td>Sum Treat (0 to 3)</td>
<td>-0.597 0.005</td>
<td>-0.964 0.000</td>
<td>-1.501 0.000</td>
<td>-1.097 0.000</td>
<td>-1.739 0.000</td>
<td>-1.545 0.000</td>
</tr>
<tr>
<td>p value</td>
<td>0.005</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Observations</td>
<td>19,691</td>
<td>19,691</td>
<td>11,438</td>
<td>39,620</td>
<td>30,947</td>
<td>29,694</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.424</td>
<td>0.425</td>
<td>0.446</td>
<td>0.270</td>
<td>0.260</td>
<td>0.270</td>
</tr>
<tr>
<td>County FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Quarter event FE</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N clusters (counties)</td>
<td>2,813</td>
<td>2,813</td>
<td>1,634</td>
<td>2,830</td>
<td>2,830</td>
<td>2,830</td>
</tr>
</tbody>
</table>

Note: This table reports the estimates depicted in panels A2 to C2 in both Figures 2 and 3. The dependent variable is the excess fertility rate. Columns (1) to (3) report interactions between quarters and a Democratic-leaning indicator from equation 1. Column (1) compares counties with above-median versus below-median Democrat vote shares in the 2012 Presidential election; column (2) counties with above-median versus below-median change in Republican vote shares between the 2008 and 2016 Presidential elections; column (3) counties with both below-median Democrat vote shares and above-median Republican shifts versus counties where both measures are the opposite. Columns (4) to (6) use within county variation, reporting interactions between quarters and an indicator for Hispanic ethnicity from equation 2. Column (4) compares Hispanics versus non-Hispanics; column (5) versus non-Hispanic whites living in rural counties; column (6) versus non-Hispanic whites living in counties with above-median evangelical share. The omitted quarter is -1 (July-September of 2016). Standard errors are clustered by county. *** 1%, ** 5%, * 10% significance level.