The Revolving Door and Insurance Solvency Regulation

Ana-Maria Tenekedjieva

Federal Reserve Board¹

NBER SI, 20 July 2021

¹The views in this paper are solely the author's and do not reflect the views of the Board of Governors or the Federal Reserve System

Motivation

- ▶ Insurance in the U.S. is a \$8.5T industry whose solvency is heavily regulated.
- > Regulation is at the state level and is directed by an insurance commissioner.
- Some attempts to standardize financial oversight.
- However, commissioners still have a lot of personal discretion, which can lead to inconsistent regulation across states.
 - Previous studies show inconsistent regulation is inefficient. (?????)
 - Problematic because insurance firms do business across state lines and some insurers carry systemic risks.

Research Question

Potential distortion: job after term ends (revolving door).

"... Many [commissioners] consider the job an audition for a better-paying job."

Sally McCarty, former Indiana commissioner

This paper: How does the revolving door affect financial oversight in insurance?

Research Question

Potential distortion: job after term ends (revolving door).

"... Many [commissioners] consider the job an audition for a better-paying job."

Sally McCarty, former Indiana commissioner

This paper: How does the revolving door affect financial oversight in insurance?

In theory, it can lead to regulators being:

- **Less strict**: quid-pro-quo, signal interest to future employers.
- ▶ More strict: schooling hypothesis, show expertise/effort to future employers.

Empirically, which effect prevails depends on the setting.

Results Overview

Revolvers: 37% of commissioners work in insurance after their term.

What are the effects of the revolving door on insurance regulation?

- (1) Revolvers are more lenient with financial oversight.
- (2) Lenient regulation implications:
 - o For insurance-specific credit ratings and insurance demand.
 - $\Rightarrow\,$ Consumers may be overpaying for insurance up to \$27bn/yr.
 - o For bond price misreporting in the '08 financial crisis.
 - $\Rightarrow\,$ States ran by revolvers overestimated insurers' capital by 10%.
- (3) Policy implications: "cooling-off" laws:
 - o Revolvers get stricter after it becomes harder to revolve.
 - o This implies that difference driven by incentives.

Literature

Revolving door studies:

- 1. First study to link revolving door and insurance financial regulation
 - In insurance price regulation: ?
 - In fin. regulation: ????
 - ▶ In other settings: financial rating agencies (??), federal lobbyists (??), US patents (?), electricity prices (?)
- 2. Revolving door: effect in insurance opposite to effect in other fin. regulation settings
 - Revolving door distortions can lead to either more or less strict oversight depends on the institutional setting
 - In insurance: revolving door \Rightarrow LESS strict oversight
 - \blacktriangleright In other financial regulation settings: revolving door \Rightarrow MORE strict oversight
 - ▶ Potentially due to differences between state (insurance) and federal (banking, etc.) regulators (??)

Insurance regulation studies: a new source of inconsistency in insurance regulation.

- existence of regulation heterogeneity: ???
- insurers respond to financial solvency regulations by making significant changes in their balance sheets: ????????
- sources of inconsistency: ?, ?

Data on Revolvers

Employment History Summary

Employment History Summary

Employment History Summary

Government Relations Positions among Revolvers

Figure: %Revolvers working in a government relations position.

I. Revolvers are Less Strict

Institutional Background: Financial Exams

I use financial exams as a proxy for oversight strictness.

- ▶ Regulators assess each insurer's ability to pay claims *at least* once every 5 years.
- ▶ The main responsibility is on the headquarter state.

Significance of financial exams:

- ▶ For insurers: time-consuming, can result in negative outcomes.
 - **Financial restatements**: insurer must adjust its filed financial statements.
 - ▶ 30% of exams result in restatements.
- **•** <u>For commissioners</u>: significant personal discretion and importance.

1. Revolvers perform 9% fewer exams for every year they are in office.

$$\log(\mathsf{n} \; \mathsf{Exams}_{s,t} + 1) = \alpha_s + \alpha_t + \beta I_{s,t}^{POST} + \gamma X_{s,t} + \epsilon_{s,t}$$

- o n Exams_{s,t}: n exams completed in state s, year t
- o $I_{s,t}^{POST} = 1$ if commissioner in state s, year t ends up in insurance after term.
- \Rightarrow Revolvers exert lower effort.

	$\log(n \; Exams_{s,t} + 1)$			
	(1)	(2)		
$I_{s,t}^{POST}$	-0.109** (0.048)	-0.087** (0.040)		
E[LHS]	2.99	2.99		
Controls	No	Yes		
FEs	s+t	s + t		
Obs.	834	829		
Adj. R ²	0.860	0.864		

1. Revolvers perform 9% fewer exams for every year they are in office.

$$\log(\mathsf{n} \; \mathsf{Exams}_{s,t} + 1) = \alpha_s + \alpha_t + \beta I_{s,t}^{\mathsf{POST}} + \gamma X_{s,t} + \epsilon_{s,t}$$

- o n $\text{Exams}_{s,t}$: n exams completed in state s, year t
- o $I_{s,t}^{POST} = 1$ if commissioner in state s, year t ends up in insurance after term.
- \Rightarrow Revolvers exert lower effort.
- 2. For a given insurer, if a revolver is in office, an early exam is less likely ...
 - by 13.6%, all risk observables equal.
 - if key risk observable deteriorate (i.e. revolvers are less sensitive to risk).
 - \Rightarrow Revolvers are not better at picking out distressed firms.

	$\log(n \; Exams_{s,t} + 1)$			
	(1)	(2)		
$I_{s,t}^{POST}$	-0.109** (0.048)	-0.087** (0.040)		
E[LHS]	2.99	2.99		
Controls	No	Yes		
FEs	s+t	s+t		
Obs.	834	829		
Adj. R ²	0.860	0.864		

1. Revolvers perform 9% fewer exams for every year they are in office.

$$\log(\mathsf{n} \; \mathsf{Exams}_{s,t} + 1) = \alpha_s + \alpha_t + \beta I_{s,t}^{POST} + \gamma X_{s,t} + \epsilon_{s,t}$$

- o n $\text{Exams}_{s,t}$: n exams completed in state s, year t
- o $I_{s,t}^{POST} = 1$ if commissioner in state s, year t ends up in insurance after term.
- \Rightarrow Revolvers exert lower effort.
- 2. For a given insurer, if a revolver is in office, an early exam is less likely ...
 - ▶ by 13.6%, all risk observables equal.
 - ▶ if key risk observable deteriorate (i.e. revolvers are less sensitive to risk).
 - \Rightarrow Revolvers are not better at picking out distressed firms.
- 3. Exam outcomes? ...

	$\log(n \; Exams_{s,t} + 1)$			
	(1)	(2)		
$I_{s,t}^{POST}$	-0.109** (0.048)	-0.087** (0.040)		
E[LHS]	2.99	2.99		
Controls	No	Yes		
FEs	s + t	s + t		
Obs.	834	829		
Adj. R ²	0.860	0.864		

Revolver Exams have Fewer Negative Outcomes

Fin. Restatement_{*i*,*t*} = $\beta I_{s,t}^{\text{POST}} + \beta_r \text{Risk Vars}_{i,t} + \gamma_x X_{i,s,t} + \alpha_s + \alpha_t + \epsilon_{i,t}$. (1)

- Fin. Restatement_{i,t} = 1, if: insurer i had to adjust its filed financial statements due to exam in year t.
- Revolver exams are 7% to 18% less likely to result in a restatement, depending on the sample.

- 1. Revolvers perform 9% fewer exams for every year they are in office
- 2. Revolvers are less likely to call for an early exam ...
 - ... by 13.6% overall.
 - ... when key risk observable deteriorate (i.e. are less sensitive to risk)
- 3. Revolver exams are 7% less likely to result in negative outcomes for insurers
 - Effect larger for early (so discretionary) exams
 - Effect larger for big insurers (potential employers)
- \Rightarrow Revolvers are less strict regulators.

II. Consequences of Less Strict Oversight

Exam Outcomes and AM Best's Financial Strength Ratings

Are exams consequential for insurers?

Look at effects of restatements on insurers' AM Best's Financial Strength Ratings (FSR) - **insurance-specific credit ratings**.

Rating events: 1) 1st rating, 2) re-evaluation (\sim annual), 3) firm exits rating universe.

For each rating event of insurer *i* in year *t*:

$$Y_{i,t} = \beta_f$$
 new fin. restatement_{i,t-1} + $\gamma_r Risk Vars_{i,t} + \gamma_x X_{i,s,t} + \alpha_s + \alpha_t + \epsilon_{i,t}$

$$Y_{i,t} = \begin{cases} \text{Change in implied default Pr of } AM \text{ Best's FSR rating,} \\ 0/1: \text{ Did insurer } i \text{ choose to no longer be rated (exit)?} \end{cases}$$

new fin. restatement_{i,t} = 1 if insurer i restated its filing because of an exam in t - 1

Exam Outcomes and AM Best's FSR: Results

 $\mathsf{Y}_{i,t} = \beta_f \text{ new fin. restatement}_{i,t-1} + \gamma_r \mathsf{Risk Vars}_{i,t} + \gamma_x \mathsf{X}_{i,s,t} + \alpha_s + \alpha_t + \epsilon_{i,t}$

	Δ Default Probability _{i,t} %		l remove I i,t	
	(1)	(2)	(3)	(4)
new fin. restatement $_{i,t}$	0.072*	0.079*	0.015*	0.015*
	(0.044)	(0.044)	(0.008)	(0.008)
E[LHS]	0.0239	0.0239	0.0236	0.0236
Fixed Effects	s + t	s × t	s + t	$5 \times t$
Observations	5,658	5,643	6,384	6,349
Adjusted R ²	0.026	0.021	0.032	0.021

• A restatement \Rightarrow implied default Pr \uparrow 7bps.

• A restatement \Rightarrow Pr insurer no longer rated \uparrow 63%.

AM Best confirmed that fin. restatements trigger automatic rating review

Implications of Revolvers' Leniency on Consumer Demand for Insurance

Lenient exams lead to inflated AM Best's FSRs:

- ▶ Bad exam outcomes (restatements) lower AM Best ratings
- ▶ ... but revolvers force fewer restatements.
- ⇒ Market/Consumers are potentially less informed about insurers' risks.

Quantifying drop in demand due to restatements:

- ► I find after restatements insurance premiums (sales) drop.
- **Estimation**: due to revolver leniency consumers overpay up to \$27B a year.

Bond Price Misreporting in the '08 Crisis

Sen and Sharma (2021):

- 1. Show U.S. life insurers used internal valuation models to over-report the value of corporate bonds they held during the financial crisis.
- 2. Estimate each state's misreporting level in 2008.
- 3. Show more supervision can help curb misreporting.

This paper: Misreporting was higher in states lead by revolvers leading up to the crisis.

$$\underbrace{\mathsf{Misreporting}_{s,2008}}_{\text{from SS'20}} = \alpha + \beta \ \overline{I}_{s,2008-t}^{POST} + \underbrace{\gamma_s \ \mathsf{Supervision}_{s,2008} + \gamma_x \ X_s}_{\text{as in SS'20}} + \epsilon_s$$

Bond Price Misreporting and Revolvers

 $\mathsf{Misreporting}_{s,2008} = \alpha + \beta \ \overline{I}_{s,2008-t}^{POST} + \gamma_s \ \mathsf{Supervision}_{s,2008} + \gamma_x \ X_s + \epsilon_s$ from SS'20 as in SS'20 •. ٠ misreporting_{s,2008} (1)(2)(3) state level misreporting (2008): bps 200 $I_{s,t-i:t}^{POST}$ 73.055** 82.614*** 59.546* (29.476)(28.464)(32.572).... E[LHS] 98.81 98.81 98.81 Period t - i to t2000 to 2008 2005 to 2008 2007 to 2008 100 Controls Yes Yes Yes 39 38 Observations 40 Adjusted R² 0.314 0.183 0.258 0

state has any post-term revolvers 2005-2008?

Yes

No

Bond Price Misreporting and Insurers' Capitalization in 2008

Revolvers' lenient regulation associated with more misreporting in 2008:

- SS'20: Misreporting allowed insurers to overstate their capital by \$9-\$18 bn, or by 30% of the reported capitalization.
- A revolver ⇒ ↑ average state misreporting by a third of the baseline effect, and is very economically significant.
- For context, some insurers were under significant strain during the crisis and several applied for TARP aid.

III. Policy Implications

Policy Implications: "Cooling-off" Laws

• "Cooling-off" laws are a common way to curb the revolving door.

- > The laws set a period, when regulators can't represent regulated firms.
 - $\rightarrow\,$ Such laws make revolvers less valuable for employers, especially if their job is based on connections (e.g. VP of Government Relations).
- Are the laws effective?
 - $\rightarrow\,$ Depends on if revolvers' act different because of incentives or selection only.

Do "Cooling-off" Laws Lead to Stricter Regulation?

Do revolvers change behavior after changes to state revolving doors laws?

- > 2000 to 2017: 12 states had changes in "cooling-off" laws.
- ▶ The changes affected all state employees, and were not targeting commissioners.
- If the laws are effective (i.e. commissioners respond to incentives), when laws gets tougher, revolvers will become stricter.
 - ► Test in a DiD setting: $Y = I_{s,t}^{POST} + I_{s,t}^{\Delta LAW} + I_{s,t}^{POST} \times I_{s,t}^{\Delta LAW} + X + \epsilon$
 - ► $I_{s,t}^{\Delta LAW}$ shock indicator: law was passed in state s before year t.

After law changes: Revolvers' n exams \uparrow and Pr(bad exam outcome|revolver) \uparrow

Implies cooling-off laws are effective tool in this setting

Conclusion

- I find that revolvers are less strict regulators, which negatively affect market transparency.
- Insurers have only one regulator, but can sell insurance in all states, so lenient regulation of one state can affect the consumers in the rest of the country.
- COVID put significant strain on the liabilities of life insurers, some of which are systemically important institutions.
- Results here are likely a lower bound, since I focused on supervision, and commissioners also have discretion in rule-making.