Urban Welfare: Tourism in Barcelona

Treb Allen¹ Simon Fuchs³ Sharat Ganapati⁴ Alberto Graziano² Rocio Madera⁵ Judit Montoriol-Garriga²

¹Dartmouth College

²CaixaBank Research

³FRR Atlanta

⁴Georgetown University

⁵Southern Methodist University

NBFR SL-Real Estate/Urban July 29, 2021

The views expressed herein are those of the authors and not necessarily those of CaixaBank, the Federal Reserve Bank of Atlanta, or the Federal Reserve System.

New Generation of Urban Data

Beyond geographical disaggregation: Spending, mobility, income networks

- New opportunities:
- New challenges:

New Generation of Urban Data

Beyond geographical disaggregation: Spending, mobility, income networks

- New opportunities: Relax parametric assumptions + structural estimation in urban quantitative models
- New challenges: Incorporate spatial GE effects, measure welfare in empirical analysis

New Generation of Urban Data

Beyond geographical disaggregation: Spending, mobility, income networks

- New opportunities: Relax parametric assumptions + structural estimation in urban quantitative models
- New challenges: Incorporate spatial GE effects, measure welfare in empirical analysis

This Paper

- 1. General empirical method to estimate **heterogeneous welfare effects of urban shock**
 - Regression based: No parametric assumptions or structural estimation
 - Use theory to define welfare + incorporate heterogeneity and GE effects across space
- 2. Apply methodology to estimate welfare effect of tourism in Barcelona
 - Rich new data on expenditure and income spatial patterns
 - Causal identification from variation in vacation timing in RoW

Key Findings

1. Methodological

- Simple reduced form approach has problems (Aggr. bias + SUTVA violation)
- Our augmented reduced-form approach identifies heterogeneity + GE effects
- ... and does as well as full structural model

2. Impact of tourism

- Median resident not substantially affected by (seasonal changes in) tourism...
- ...but there is substantial heterogeneity with winners and losers
- Both heterogeneity in tourist spending and GE spillovers matter

Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Estimating Heterogeneous Price and Income Elasticities

Welfare Effects Across the City

Conclusion

- N blocks, each with resident(s) and firm(s)
- 1. Resident of n = 1, ..., N optimally chooses cons. and labor supply in i = 1, ..., N
 - Envelope theorem to optimization problems yields analytical welfare

- N blocks, each with resident(s) and firm(s)
- 1. Resident of n = 1, ..., N optimally chooses cons. and labor supply in i = 1, ..., N
 - Envelope theorem to optimization problems yields analytical welfare

$$\mathbf{d} \ln \mathbf{u} tility_n = \underbrace{\sum_{i} \mathbf{c} ommuting_{n \to i} \times \partial \ln \mathbf{w} ages_i}_{\Delta \text{Spatial Income}} - \underbrace{\sum_{i} \mathbf{s} pending_{n \to i} \times \partial \ln \mathbf{p} rices_i}_{\Delta \text{Spatial Price Index}}$$

- N blocks, each with resident(s) and firm(s)
- 1. Resident of n = 1, ..., N optimally chooses cons. and labor supply in i = 1, ..., N
 - Envelope theorem to optimization problems yields analytical welfare

$$\mathbf{d} \ln \mathbf{u}_n = \underbrace{\sum_{i} \mathbf{c}_{ni} \times \partial \ln \mathbf{w}_i}_{\Delta \text{Spatial Price Index}} - \underbrace{\sum_{i} \mathbf{s}_{ni} \times \partial \ln \mathbf{p}_i}_{\Delta \text{Spatial Price Index}}$$

- 2. Consider a demand shock $d \ln \mathbf{E}^T$ to locations i = 1, ..., N
 - Perturbation of market clearing allows to characterize short-run elasticities

- N blocks, each with resident(s) and firm(s)
- 1. Resident of n = 1, ..., N optimally chooses cons. and labor supply in i = 1, ..., N
 - Envelope theorem to optimization problems yields analytical welfare

$$\mathbf{d} \ln \mathbf{u}_n = \underbrace{\sum_i \mathbf{c}_{ni} \times \partial \ln \mathbf{w}_i}_{\Delta \text{Spatial Income}} - \underbrace{\sum_i \mathbf{s}_{ni} \times \partial \ln \mathbf{p}_i}_{\Delta \text{Spatial Price Index}}$$

- 2. Consider a demand shock $d \ln \mathbf{E}^T$ to locations i = 1, ..., N
 - Perturbation of market clearing allows to characterize short-run elasticities

$$d \ln \mathbf{p} = \mathcal{D}(\mathbf{E}^{T}/\mathbf{y}) \times d \ln \mathbf{E}^{T} + \mathcal{I}(\mathbf{S}, \mathbf{C}) \times d \ln \mathbf{w}$$

$$d \ln \mathbf{w} = \mathcal{D}(\mathbf{E}^{T}/\mathbf{y}) \times (\mathbf{I} - \mathcal{I}(\mathbf{S}, \mathbf{C}))^{-1} \times d \ln \mathbf{E}^{T}$$
Direct Effect \(\times \text{rel. size}\) Indirect Effect: Spatial Multiplier

Consider an external **demand shock** E^T to a city

Consider an external **demand shock** E^T to a city \rightarrow **Income Shock**

Consider an external **demand shock** E^T to a city \rightarrow **Income Shock** \rightarrow **Demand**

Consider an external **demand shock** E^T to a city \rightarrow **Income Shock** \rightarrow **Demand** \rightarrow **Income Shock**

Consider an external demand shock E^T to a city \rightarrow Income Shock \rightarrow Demand \rightarrow Income Shock \rightarrow Demand

Evaluating the welfare effects of an urban shock requires

- Consumption share data $\mathbf{S} \equiv \{s_{ni}\}_{n=1,i=1}^{N,N}$
- Income share data $\mathbf{C} \equiv \{c_{ni}\}_{n=1,i=1}^{N,N}$
- Estimates of key elasticities: $\{\partial \ln p_i, \partial \ln w_i\}_{i=1}^N$, which requires
 - a shock d ln E^T + exogenous variation (coming up)
 - measure of heterogeneity in shock size: $\left\{E_i^T/(E_i^T+E_i^R)\right\}_{i=1}^N$
 - measure of GE spatial spillovers: *I*(S, C)

Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Estimating Heterogeneous Price and Income Elasticities

Welfare Effects Across the City

Conclusion

High Resolution Data on Urban Consumption & Income Networks

Consumption Shares

- Source: Caixabank's account & point-of-sale data (165M+ transactions pa) (~54% of total exp. (HBS)
- Locals: 1095 residential tiles × 1095 cons tiles × 20 sectors × 36 months (1/2017 12/2019)
- Tourists: 15 countries of origin \times 1095 cons tiles \times 20 sectors \times 36 months

Income Shares

- Source: Caixabank's payrolls from over 400k accounts
- Mean, total, and median income per 1095 residential census tract Comparison. INE
- Combined with mobility patterns imputed from weekday lunches

Two Stylized Facts Towards Welfare Analysis

FACT 1: Locals' spending and income are spatially determined by residence

→ Consumption and Income shares

FACT 2: Tourist spending varies across space and time

→ Identification strategy

Fact 1: Locals spending and income patterns vary by residence

Fact 1: Locals spending and income patterns vary by residence

Exp Gravity Commuting Gravity

Fact 1: Locals spending and income patterns vary by residence

Two Stylized Facts Towards Welfare Analysis

FACT 1: Locals' spending and income are spatially determined by residence

FACT 2: Tourist spending varies across space and time

→ Identification strategy

Fact 2: Tourist spending varies across space

0E/m2-0.7E/m2 1.6E/m2-2.6E/m2 3.8E/m2-6E/m2 9.4E/m2-17.4E/m2 32.3E/m2-70.3E/m2
0.7E/m2-1.6E/m2 2.6E/m2-3.8E/m2 6E/m2-9.4E/m2 17.4E/m2-32.3E/m2 70.3E/m2-21886E/m2

...and time ...and type of tourist \rightarrow Identification Strategy

Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Estimating Heterogeneous Price and Income Elasticities

Welfare Effects Across the City

Conclusion

Price Regressions: Average and Heterogeneous Effects

- Regress In Prices_{ist} on In Expenditure_{it} Tourists
- Amenity-adjusted Prices = $\left(\frac{1}{1-\frac{\sigma}{s}}\right)$ × gravity destination fixed effects
 - ! Negative sign means positive effect on prices (and viceversa)
- Shift-share
 - Shift: spending of tourists from country *k* in month *t* in the whole city of BCN
 - Share: spending of tourists from country k in 2017's low season (Jan-March) in each tile i

Price Regressions: Average and Heterogeneous Effects

Dependent Variable: PPML Gravity Fixed Effects (ist)

		IV - Ref: 2017 Low Season			
Independent Variables	OLS	Average	Heterogeneous	G.E.	
$\widehat{\mathbf{ln}} \widehat{E_{it}^T}$ Demand Shock E^T	0.091*** (0.010)	-0.668*** (0.223)	0.011 (0.064)	-0.037 (0.064)	
$\widehat{\ln E_{it}^T} \times E_{it}^T / y$ Heterogeneity on Direct E^T Size			-0.628*** (0.091)	-0.555*** (0.091)	
$\widehat{\ln E_{it}^{GE}}(S,C)$ Spatial GE Effects				-0.005*** (0.0005)	
Fixed-effects	$t \times s, i \times s, i \times s \times year(t), i \times s \times month(t)$				
Observations Adjusted R ² F-test = t ² (1st Stage)	526,080 0.998	526,080 0.997 30.7	524,160 0.975 30.7	524,160 0.975 30.7	

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Group Estimates Rental Rate Estimates

Inside the Price Regressions

 Δ Local vs Δ Tourist Expenditure (Aug vs Jan)

Income Regressions: Average and Heterogeneous Effects

- Regress In *Income*^{Residents} on In *CiExpenditure*^{Tourists}
- CiE is Commuting-Implied Tourist Expenditure: $\sum_i c_{ni} \ln E_{it}^T$
 - Shock at residential tile (demand \rightarrow income)
 - Theory consistent CiE Derivation
- Average → + heterogeneous direct effect → + spillovers indirect effect

Income Regressions: Average and Heterogeneous Effects

Dependent Variable: In Mean Income (nt)

		IV - Ref: 2017 Low Season				
Indpendent Variables	OLS	Average	Heterogeneous	G.E.		
$\widehat{\text{In CiE}}_{nt}$ Commuting-Implied Exposure to E^T	0.006 (0.004)	0.040** (0.018)	-0.009 (0.025)	-0.008 (0.025)		
$\widehat{\operatorname{In CiE}_{nt}} \times E^{T}/y$ Heterogeneity on Direct E^{T} Size			0.092*** (0.027)	0.094*** (0.031)		
In CiE _{nt} (S, C) Spatial GE Effects Spillovers				-0.002 (0.003)		
Fixed-effects	Location, Month, Year					
Observations Adjusted R ² F -test = t ² (1st Stage)	26472 0.888	26472 0.888 927.0	26472 0.888 927.0	26472 0.893 927.0		

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Inside the Income Regression

 Δ Income vs Δ Commuting Impl Exposure (Aug vs Jan)

Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Estimating Heterogeneous Price and Income Elasticities

Welfare Effects Across the City

Conclusion

Welfare

Welfare Formula

$$d \ln u_n = \frac{\partial \ln v_n}{\partial \ln CiE_n^T} \times d \ln E_i^T - \sum_i s_{ni} \times \frac{\partial \ln p_i}{\partial \ln E_i^T} \times d \ln E_i^T$$

- s_{ni} use low-season baseline averages in 2017
- c_{ni} only one cross-section available
- Predict income and price changes from January to August using 2018, 19

Income (Panel A) and Price Effects (Panel B)

Welfare Effects (January to August)

Welfare Effects (January to August)

ATE: -5% (Aggregation bias + SUTVA violation)

Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Estimating Heterogeneous Price and Income Elasticities

Welfare Effects Across the City

Conclusion

Conclusion

- Empirical method to estimate heterogeneous welfare within the city
 - If you have urban spending and income networks data
- More in the paper:
 - Housing prices regression (Idealista ∼ Spanish Zillow) Housing Reg
 - Alternative commuting shares (more aggregated, using cellphone data)
 - Comparison with quantitative spatial equilibrium model (Hat Algebra)
- Happening now:
 - Estimate EOS by sector (time-use gravity)
 - Improved income data (checking account movements rather than payroll)
 - (More) Aggregate shift: tourist inflows to the rest of Spain

Predictions highly correlated with Quantitative Model

Price Regressions Redux

Dependent Variable:	δ	R ist	
	IV - F	Ref: 2017 Ave	erage
Model:	(1)	(2)	(3)
Variables			
$\widehat{\ln E_{it}^T}$	0.011 (0.064)	2.63 (4.61)	-0.062 (0.065)
$\widehat{\ln E_{it}^T} \times E^T/y$	-0.628*** (0.091)	-0.541*** (0.179)	-0.448*** (0.102)
$\widehat{\ln E_{it}^{GE}}(S,C)$			-0.009*** (0.002)
$\widehat{\ln E_{it}^T} imes \widehat{p}_i^{DEK}$		-2.58 (4.54)	
Fixed-effects Month-Year×Sector (480) Location×Sector (21,840) Location×Sector×Year (43,680) Location×Sector×Month (262,080)	\ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \	✓ ✓ ✓
Fit statistics Observations Adjusted R ²	524,160 0.975	524,160 0.975	524,160 0.975

Standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Literature

Urban Quantitative Spatial Economics

• Ahlfeldt et al. (2015), Monte et al. (2018), Allen & Arkolakis (2016), Heblich et al. (2020)

Big Data Spatial Economics

 Athey et al. (2020), Couture (2016), Couture et al. (2020), Davis et al. (2019), Agarwal et al. (2017), Miyauchi et al. (2021), Kreindler & Miyauchi (2021)

Impact of Tourism

• Almagro & Domínguez-lino (2019), García-López et al. (2019), Faber & Gaubert (2019)

First-Order Impact of Price Shocks

• Deaton (1989), Kim & Vogel (2020), Atkin et al. (2018), Baqaee & Burstein (2021)

Small shocks in general equilibrium

Allen et al. (2020), Baqaee & Farhi (2019), Kleinman et al. (2020), Porto (2006)

Bibliography

- Agarwal, Sumit, Jensen, J. Bradford, & Monte, Ferdinando. 2017 (July). *Consumer Mobility and the Local Structure of Consumption Industries*. NBER Working Papers 23616. National Bureau of Economic Research, Inc.
- Ahlfeldt, Gabriel M., Redding, Stephen J., Sturm, Daniel M., & Wolf, Nikolaus. 2015. The Economics of Density: Evidence From the Berlin Wall. *Econometrica*, **83**(6), 2127–2189.
- Allen, Treb, & Arkolakis, Costas. 2016. Optimal City Structure. 2016 Meeting Papers 301.

Evidence from Mexico. Journal of Political Economy. 126(1), 1–73.

- Allen, Treb, Arkolakis, Costas, & Takahashi, Yuta. 2020. Universal Gravity. *Journal of Political Economy*, **128**(2), 393–433.

 Almagro, Milena, & Domínguez-lino, Tomás. 2019. Location Sorting and Endogenous Amenities: Evidence from
- Amsterdam.

 Athey Susan Ferguson Billy Gentzkow Matthew & Schmidt Tobias 2020, Experienced Segregation
- Athey, Susan, Ferguson, Billy, Gentzkow, Matthew, & Schmidt, Tobias. 2020. Experienced Segregation.

 Atkin, David, Faber, Benjamin, & Gonzalez-Navarro, Marco. 2018. Retail Globalization and Household Welfare:
- Baqaee, David, & Burstein, Ariel. 2021 (May). Welfare and Output with Income Effects and Demand Instability.

 Working Paper 28754. National Bureau of Economic Research.
- Baqaee, David Rezza, & Farhi, Emmanuel. 2019. The Macroeconomic Impact of Microeconomic Shocks: Beyond Hulten's Theorem. *Econometrica*, **87**(4), 1155–1203.
- Couture, Victor. 2016. Valuing the Consumption Benefits of Urban Density.
 Couture, Victor, Dingel, Jonathan, Green, Allison, & Handbury, Jessie. 2020. Quantifying Social Interactions
 Using Smartphone Data.
- Davis, Donald R., Dingel, Jonathan I., Monras, Joan, & Morales, Eduardo. 2019. How Segregated Is Urban

Commuting Implied Exposure Derivation

Disposable income is given by

$$v_n = \sum_{i=1}^N w_i \ell_{ni}$$

• Totally differentiating and applying the envelope result from above, we obtain,

$$\mathrm{d} \ln v_n = \sum_{i=1}^N c_{ni} \mathrm{d} \ln w_i$$

Impact of tourist expenditure shock,

$$\mathrm{d} \ln \mathbf{v}_n = \sum_{i=1}^N \mathbf{c}_{ni} \frac{\mathrm{d} \ln \mathbf{w}_i}{\mathrm{d} \ln \mathbf{E}^T} \mathrm{d} \ln \mathbf{E}^T \qquad \ln \mathrm{CiE}_{ntm}^T = \sum_i \mathbf{c}_{ni} \times \ln \mathbf{E}_{itm}^T$$

Tourism as an Urban Shock

- Large part of the economy
 - 7% of world exports
 - 330 million jobs
 - Spain: 11% of GDP

Tourism as an Urban Shock

- Large part of the economy
 - 7% of world exports
 - 330 million jobs
 - Spain: 11% of GDP
- Growing, especially in cities
 - BCN: 25% secular ↑ in past 5 yrs
 - BCN: 200% seasonal ↑ within year

Tourism as an Urban Shock

- Large part of the economy
 - 7% of world exports
 - 330 million jobs
 - Spain: 11% of GDP
- Growing, especially in cities
 - BCN: 25% secular ↑ in past 5 yrs
 - BCN: 200% seasonal ↑ within year
- Unequal
 - Impact & Exposure
 - Welfare?

Shift-Share Instrument: Derivations

ullet Representative tourist for group $oldsymbol{g}$ has preferences,

$$u_g = rac{E_g^T}{G\left(ilde{oldsymbol{
ho}}
ight)}$$

- Roy's identity gives expenditure shares
- Changes in tourist expenditure are:

$$d extbf{X}_i^T = \sum_g extbf{s}_{gi} d extbf{E}_g^T + \sum_g extbf{s}_{gi} d extbf{b}_{gi} + \sum_g extbf{s}_{gi} d extbf{p}_i$$

Taking it to the data,

$$\Delta E_{imt}^T = \underbrace{\sum_g s_{gi} imes \Delta E_{gt}^T}_{ ext{Group Composition}} + \epsilon_{imt}^T$$

• where $\epsilon_{imt}^{T} = \sum_{g} \mathsf{s}_{gi} db_{gi} + \sum_{g} \mathsf{s}_{gi} dp_{i}$

Distance Coefficient for Gravity by Sector

Source: CXBK Payment Processing (2019)

Commuting Gravity Estimates

Dependent Variables:	commuters	log(commuters+1)	log(commuters)	transactions	log(transactions+1)	log(transactions)
		Cell Phone			Lunchtime	
	(4)	(0)	(0)		(5)	(4)
Model:	(1) Poisson	(2) OLS	(3) OLS	(4) Poisson	(5) OLS	(6) OLS
<i>Variables</i> Idist	-4.48*** (0.107)	-1.51*** (0.037)	-1.17*** (0.054)	-1.53*** (0.028)	-0.134*** (0.002)	-0.411*** (0.012)
Fixed-effects Origin Destination Origin (CT) Destination (CT)	√	√	✓	4	4	<i>\(\lambda \)</i>
Fit statistics Observations Pseudo R ²	24,025 0.798	24,025 0.117	2,162 0.193	1,051,159 0.598	1,216,609 0.343	42,086 0.091

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Housing Price Regressions

Dependent Variables:	-	Н	PRICE			F	RENT	
	IV - Ref: 20	017 Average	IV - Ref: 20	17 Low Season	IV - Ref: 20	17 Average	IV - Ref: 20	17 Low Season
Model	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Variables $\widehat{\log E_{it}^T}$	0.059*** (0.016)	0.028*** (0.005)	0.059*** (0.016)	0.028*** (0.005)	0.043*** (0.013)	0.008* (0.005)	0.044*** (0.013)	0.009* (0.005)
Fixed-effects i (108) i×month (1,296) i×year (216)	√ √	✓ ✓	√	✓ ✓	√ √	√ √	√	√ √
Fit statistics Observations Adjusted R ²	2,592 0.983	2,592 0.993	2,592 0.983	2,592 0.993	2,592 0.933	2,592 0.952	2,592 0.933	2,592 0.952

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Income Data: Comparison with Administrative Data

Income Distribution across Barcelona

Mean Income

1039.61 - 1260.88	1421.98 - 1486.94	1585.91 – 1623.15	1705.59 - 1767.53	1956.66 - 2132.63
1260.88 - 1352.46	1486.94 - 1541.06	1623.15 - 1662.96	1767.53 – 1859.12	2132.63 - 2396.31
1352.46 - 1421.98	1541.06 - 1585.91	1662.96 - 1705.59	1859.12 - 1956.66	2396.31 - 11806.33

Local Spending Distribution across Barcelona

Shift Share: First Stage

Price Regressions: Raw vs 2SLS

Fit of Gravity Specification

Expenditure Gravity Regressions

Dependent Variables:	Bilateral	Bilateral Spending		log(Bilateral Spending+1)		log(Bilateral Spending)		
Model:	(1) Poisson	(2) Poisson	(3) OLS	(4) OLS	(5) OLS	(6) OLS		
Variables log(travel time)	-2.17*** (0.003)	-2.17*** (0.003)	-1.37*** (0.0009)	-1.37*** (0.0009)	-1.36*** (0.001)	-1.36*** (0.001)		
Fixed-effects Origin (CT) Destination (CT) Origin (CT)×YEARMONTH Destination (CT)×YEARMONTH	√ ✓	√	√ ✓	√	√ ✓	√		
Fit statistics Observations Pseudo R ²	43,204,320 0.781	43,125,480 0.788	43,204,320 0.127	43,204,320 0.130	6,566,622 0.120	6,566,622 0.126		

 $Heterosked a sticity-robust\ standard\text{-}errors\ in\ parentheses$

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Is tourism good for the locals (on average)?

Can aggregate to welfare using a simplified version of welfare results

$$\frac{d \ln \bar{u}}{\partial \ln E^T} = \frac{\partial \ln \bar{v}}{\partial \ln E_i^T} - \frac{\partial \ln \bar{p}_s}{\partial \ln E_i^T}$$

- Results
 - Income elasticity: .04
 - Consumption Price Index elasticity: [.1,.175]
 - House Price elasticity: .06
 - Welfare elasticity: [-.1,-.04]
 - $\bullet\,$ Average increase between February and July $\approx 50 \text{pc}$
 - Implies net welfare deterioration of 5pc

Comparison with Household Budget Survey

COICOP (2D)	COICOP (2D)	Local	Spanish Tourists	Foreign Tourists	Total	Survey (INE)	Survey Adj (INE)
11	Food/Beverages	32.82 (24.72)	1.32 (5.04)	4.51 (5.10)	38.66	12.96	23.82
21	Alc Beverages	1.97 (1.48)	0.07 (0.28)	0.60 (0.68)	2.64	0.71	1.31
31	Clothing	11.58 (8.72)	1.94 (7.39)	12.00 (13.55)	25.51	3.39	6.23
41	Housing/Utilities	2.81 (2.12)	0.78 (3.00)	0.59 (0.67)	4.19	5.33	9.80
51	Furnishings	10.03 (7.55)	3.32 (12.67)	2.01 (2.27)	15.35	0.88	1.62
61	Health	10.76 (8.10)	1.94 (7.40)	1.82 (2.06)	14.52	2.24	4.12
71	Vehicle Purchase	3.14 (2.36)	0.18 (0.67)	0.32 (0.36)	3.63	3.78	6.95
72	Personal Transp	7.27 (5.47)	2.06 (7.89)	0.70 (0.79)	10.03	6.38	11.73
73	Transp Services	10.13 (7.63)	6.52 (24.90)	9.61 (10.85)	26.26	1.90	3.49
81	Communications	0.30 (0.23)	0.02 (0.09)	0.08 (0.09)	0.40	0.33	0.61
91	Audio-visual	5.06 (3.81)	0.57 (2.17)	1.78 (2.01)	7.40	0.58	1.07
93	Recreational	2.62 (1.97)	0.27 (1.03)	1.21 (1.37)	4.09	1.43	2.63
94	Cultural Services	4.29 (3.23)	0.62 (2.38)	2.79 (3.15)	7.70	0.57	1.05
95	Books, etc	1.64 (1.23)	0.22 (0.85)	0.53 (0.60)	2.39	1.30	2.39
101	Education	1.11 (0.84)	0.10 (0.39)	0.61 (0.69)	1.82	0.77	1.41
111	Restaurants	17.73(13.35)	3.79 (14.46)	19.04 (21.50)	40.56	7.83	14.39
112	Hotels	1.13 (0.85)	1.49 (5.69)	23.12 (26.11)	25.75	1.21	2.22
121	Personal Care	4.84 (3.64)	0.32 (1.23)	0.97 (1.10)	6.14	2.53	4.65
123	Other	2.49 (1.88)	0.36 (1.37)	5.69 (6.42)	8.54	0.32	0.59
Total		131.72 (100)	25.88 (100)	87.97 (100)	245.58	54.4	100

Hat Algebra

• Market Clearing Condition

$$\hat{y}_{is} = \pi_{is}^{local} \sum_{n=1}^{N} \left(\pi_{is}^{n} \hat{\mathbf{s}}_{nis} \hat{\mathbf{v}}_{n} \right) + \pi_{is}^{group} \sum_{g=1}^{G} \left(\pi_{is}^{g} \hat{\mathbf{s}}_{gis} \hat{\mathbf{E}}_{g}^{T} \right)$$

Labor Market Clearing

$$\sum_{s} \frac{\beta_{s} \mathbf{y}_{is}}{\sum_{s'} \beta_{s} \mathbf{y}_{is'}} \hat{\mathbf{y}}_{is} = \sum_{n=1}^{N} \frac{\mathbf{w}_{i} \ell_{ni}}{\sum_{n'=1}^{N} \mathbf{w}_{i} \ell_{n'i}} (\hat{\mathbf{w}}_{ni})^{\theta} \hat{T}_{n} \hat{\mathbf{W}}_{n}^{1-\theta}$$

Disposable Income

$$\hat{\mathbf{v}}_{n} = \sum_{i=1}^{N} \frac{I_{ni} w_{i}}{\sum_{i'=1}^{N} I_{ni'} w_{i'}} (\hat{w}_{ni})^{\theta} \hat{T}_{n} \hat{W}_{n}^{1-\theta}$$

Parameterization

Parameter	Value	Comment
$eta_{ t s}$	0.65 ∀s	labor share of income
$\sigma_{ t s}$	4 ∀s	elasticity of substitution (within sectors)
η	1.5	elasticity of substitution (between sectors)
θ	1.5	labor dispersion (1 $-\epsilon$)
γ	[0, 0, 0, 0]	consumption spillovers

Data Requirements

Data	Description	Comment
I_{ni}	Commuting Flows	Lunch Expenditures
x_{nis}	Base Local Expenditures	
x_{gis}	Base Tourist Expenditures	
$oldsymbol{\mathcal{X}_{gis}}{\hat{E}_{i}^{T}}$	Change in Tourist Expenditures	Difference from Jan to July
Vn	Worker Incomes	

Roy's Identity for Labor Supply

• Income maximization problem:

$$v_n = \max_{\{\ell_i\}} \sum_{i=1}^N w_i \ell_i$$
 s.t. $H_n\left(\ell_n\right) = T_n$

• Maximand is the income function $y(w_n, T_n)$ and envelope theorem implies,

$$rac{\partial oldsymbol{y}(\cdot)}{\partial oldsymbol{w}_i} = \ell_i$$

- Dual is cost minimization problem, where minimand is $h\left(oldsymbol{w}_{n}, \overline{Y}
 ight)$
- Differentiating we obtain,

$$\frac{\partial y(\cdot)}{\partial W_i} = -\frac{\frac{\partial h(w_n, y(w_n, T_n))}{\partial w_i}}{\frac{\partial h(w_n, y(w_n, T_n))}{\partial v}}$$

Derivation of Welfare Formula

 Assuming both homothetic demand and a homothetic income maximization problem allows us to write the indirect utility function as,

$$u_n = \frac{T_n J(\boldsymbol{w}_n)}{G(\boldsymbol{p}_n)}$$

Totally differentiating,

$$\frac{\mathrm{d}u_n}{u_n} = \sum_{i=1}^{N} \frac{1}{J(\boldsymbol{w}_n)} \frac{\partial \left(J(\boldsymbol{w}_n)\right)}{\partial w_i} w_i \frac{\mathrm{d}w_i}{w_i} + \sum_{i=1}^{N} G\left(\boldsymbol{p}_n\right) \frac{\partial \left(1/G\left(\boldsymbol{p}_n\right)\right)}{\partial p_{ni}} p_{ni} \frac{\mathrm{d}p_{ni}}{p_{ni}}$$

 Applying Roy's identity for the income maximization and consumption problem from above,

$$\frac{\mathrm{d}u_n}{u_n} = \sum_{i=1}^N \frac{\ell_i}{v_n} w_i \frac{\mathrm{d}w_i}{w_i} - \sum_{i=1}^N \frac{q_{ni}}{v_n} p_{ni} \frac{\mathrm{d}p_{ni}}{p_{ni}}$$

Price Regressions: Group Estimates

Dependent Variables:	δ^{R}_{ist}	$\delta_{\it ist}^{T.Dom}$	$\delta_{\it ist}^{\it T.For}$	δ^{R}_{ist}	$\delta_{ist}^{T.Dom}$	$\delta_{i ext{st}}^{ ext{T.For}}$
		OLS		IV - R	ef: 2017 Ave	erage
Model:	(1)	(2)	(3)	(4)	(5)	(6)
$Variables$ In E_{it}^{T}	0.091*** (0.003)	0.485*** (0.005)	0.454*** (0.004)	-0.576*** (0.034)	-0.277*** (0.077)	0.029 (0.056)
Fixed-effects Month-Year×Sector (480) Location×Sector (21,920) Location×Sector×Year (43,840) Location×Sector×Month (263,040)	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	✓ ✓ ✓	√ √ √
Fit statistics Observations Adjusted R ²	526,080 0.994	526,080 0.991	526,080 0.994	526,080 0.993	526,080 0.99	526,080 0.993

Normal standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1