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1 Introduction
Consider the IBM Selectric, an electronic typewriter introduced in 1961 and that replaced the
traditional strikebars with a golf-ball-like element and in later versions was ‘self-correcting.’
The Selectric made typing much more productive. Secretaries and typists could produce
many more and more attractive typewritten pages. Typists who caught a mistake quickly
could correct it invisibly. Previously, they covered it with a white fluid or retyped the page
entirely.

This description only very imperfectly matches the canonical model of skill-biased techno-
logical change (Katz and Murphy 1992, Berman, Bound and Griliches 1994, Berman, Bound
and Machin 1998, Juhn 1999), or SBTC, in which technological change makes skilled or
more-educated workers more productive. The task model (Autor, Levy and Murnane 2003,
Acemoglu and Autor 2011) views technological change as task replacing. However, while
firms may have employed fewer secretaries, demand for typed documents probably rose, as
the Selectric enabled each typist to produce each page in less time.

We integrate insights from both approaches. We model occupations as combining skills,
akin to tasks in the tasks model, to produce intermediate goods. As in the SBTC model,
we allow for skill-enhancing technological change. The Selectric made typing - or ‘finger
dexterity’ - more productive. The number of typed pages produced must increase, but
whether workers deepen their typing skills or not depends on the elasticity of substitution
between skills in the specific occupation. Finger-dexterity use (typing) can decline in one
occupation (secretaries) but increase in another (economics professors).

Employment in typing-intensive occupations can increase or decrease. If the elasticity
of demand for an occupation’s output is less than one, as we believe to be generally plau-
sible, demand for this occupation falls. We embed the occupation production function in a
tractable general equilibrium model in which workers invest in skills, and jobs are heteroge-
neous with respect to how skills are used to produce output.

At the same time, we allow for shifts in product demand (possibly due to trade shocks) or
labor demand (possibly due to robots or offshoring) that indirectly alter demand for workers
with different skills. The model thus clarifies the distinction between technological changes
to how skills are combined to produce outputs and changes to demand. The model provides
us with a simple approach to measuring the relative increase in the technological productivity
of different skills, at least up to a factor of proportionality, while taking account of product
demand shifts. In effect, we develop a transparent structural model for interpreting within
and between-occupation changes in skill use that for local estimation relies only on ordinary
least squares and weighted means, using readily observable variables.
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We demonstrate the model’s usefulness by applying its insights to changes in skill use
within and between occupations from 1960 to 1983. We show that, during this period,
men moved out of routine-intensive occupations, a shift that began somewhat later among
women. This movement is familiar from Autor, Levy and Murnane (2003) and Autor and
Dorn (2013), especially in the period following the one we study. The relatively rapid
growth of finger-dexterity productivity and slow growth of abstract-skill productivity explain
between-occupation shifts, especially among women.

We also show that within-occupation shifts can dwarf those due to movement across
occupations. In the earlier period, abstract-skill use among men also grew within occupations
while routine-skill use fell. This pattern continued for men in the later period although less
dramatically. We show how complementarity and substitutability of skills with respect to
their own and other skills’ growth in productivity explain these patterns.

Our analysis uses a subset of the skills studied by Autor et al and measured in the
Dictionary of Occupational Titles, using the third edition for skill use in 1960, the original
fourth edition for 1971 and the revised fourth edition for 1983. We combine these measures
with data from the Current Population Surveys and Censuses to measure between and within-
occupation changes in skill use from 1960 to 1983.

We are not the first to look at within-occupation changes in skill use. Black and Spitz-
Oener (2010), using German data, and Deming and Noray (2020), using Burning Glass
data, track important within-occupation shifts in skill use, but for a later period. Atalay et
al. (2020), using keyword frequencies from three newspapers’ job ads over an impressively
long period, show that within-occupation changes account for most task variation over time.
However, we develop a model to help us interpret the results. Moreover, Atalay et al. are
unable to examine gender differences. Autor and Price (2013) also study a very long period
and decompose changes by gender but do not allow for within-occupation changes in skill use.
Cerina, Moro and Rendall (2020) find that polarization is primarily a female phenomenon,
but the period they study is after ours, and they argue that polarization should not be
ascribed to shifts in the importance of routine work.1

This paper can be read in two ways. Those interested solely in a better accounting of the
changes in the 1960s and 1970s can jump to the data section and then examine tables 1 and
2 and the accompanying text in the results section. We think this analysis is a contribution
in its own right. However, we are hopeful that readers will find that the model presents a
simple, versatile framework allowing for different kinds of technological shocks, and therefore
assists in thinking about not only our results but also the large literature in this area.

1ALM examine the relation between computer use and within-occupation change in task use between
the 1977 and 1991 revisions of the DOT, but do not discuss the magnitudes of these changes.
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2 A model of skill and job choice in general equilibrium

2.1 Skill acquisition and intermediate good production
Before employment, each worker chooses a vector of skills S ∈ RN

+ , where each component
Si reflects ability at task i. Once workers have acquired skills, each chooses a job J ∈ J ,
where J is the set of all jobs. If a worker with skills S is employed at job J , she produces
a quantity y((AiSi)i≤n, J) of ‘J-widgets’, where each Ai > 0 is common to all jobs and is a
measure of the general productivity of skill i. Thus, each AiSi is the ‘effective’ amount of
input i.

Our intention is to place as little structure on J and y as possible. We assume only
that J is a compact subset of a Euclidian space, that y(·, J) is a constant-returns standard
neoclassical production function2, and that y is continuous.

For simplicity, we assume that workers have a fixed budget for skills, which we normalize
to 1, so that for any individual ΣiSi = 1. This captures the idea that a worker can study
plumbing or philosophy, but if she chooses to spend more time on philosophy, she must spend
less time learning plumbing. We do not allow her to choose to spend more time on learning.3

A worker who anticipates holding job J will therefore

max
S≥0

y((AiSi)i≤n, J) (1)

subject to
∑

i

Si = 1. (2)

The optimal S∗(J) and y∗(J) := y((AiS
∗
i (J))i≤n, J) are given by solving the Lagrangian.

The Lagrangian’s first order condition at the optimum with respect to any Si is

Aiy
′
i(AiS

∗
i (J), J) = λ = y∗(J) (3)

where the second equality follows straightforwardly from constant returns to scale.

2y(·, J) is strictly increasing in each AiSi on Rn
++, is twice continuously differentiable, features a bordered

Hessian with non-vanishing determinant on Rn
++, is strictly quasiconcave, and y((AiSi)i≤n, J) = 0 iff AiSi =

0 for some i.
3This is without loss of generality since we can always normalize the time she chooses to spend on learning

to 1. This could affect comparative statics on total production through a labor/leisure/learning trade-off.
That said, since this only adjusts the effective number of labor units each worker provides, with a constant
returns to scale aggregate production function, it will not affect the objects of interest to us.
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How do optimal output and skills change with A? From the Envelope Theorem,

∂y∗(J)
∂Ai

= S∗i (J)y′i(AiS
∗
i (J), J) (4)

so that substituting for y′i using (3), we get

∂ ln y∗(J)
∂ lnAi

= S∗i (J). (5)

This is effectively an application of Roy’s Identity, with our skill constraint playing the role
of the budget constraint in standard utility maximization.

To speak sensibly about the effect of changes in A on S∗(J), we proceed by inspecting
y(·, J)’s i-j elasticity of substitution for any two inputs at the optimum

σJ
i,j =

∂ln
(

AiS
∗
i (J)

AjS∗
j (J)

)
∂lnAi

Aj

= 1 +
∂ ln(S∗i (J)/S∗j (J))

∂ ln(Ai/Aj)
(6)

which we can rearrange as
∂ ln(S∗i (J)/S∗j (J))

∂ ln(Ai/Aj)
= σJ

i,j − 1. (7)

Thus, if inputs i and j are gross substitutes (complements) in job J at the optimal skill
bundle, a relative increase in the productivity of skill i will cause workers to acquire relatively
more (less) of it. If all inputs are gross substitutes (complements) in job J at the optimal
skill bundle, the constraint that ∑i S

∗
i (J) = 1 further implies that ∂S∗

i (J)
∂Ai

> 0 (< 0).

2.2 Final good production and worker allocation
So far the model somewhat resembles Cavounidis and Lang (2020). We extend it by as-
suming that instead of goods of intrinsic value, workers produce inputs in a CES final good
production function

Y (q) =
[∫
J
h(J)q(J)εdJ

] 1
ε

. (8)

Here, h(J) is the relative importance of input J for final production and q(J) is the total
quantity of ‘J-widget’ used as an input. We assume h is continuous. The economy has
workers of total measure 1, and each worker acquires skills, subject to the constraint, and
may choose any job in J .

The model satisfies conditions under which the decentralized equilibrium is Pareto effi-
cient. Therefore, we solve for the equilibrium by solving the planner’s problem subject to the
skill acquisition and worker measure constraints. Efficiency implies that workers producing
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good J will all be identical and acquire skills S∗(J); therefore q(J) = y∗(J)f(J), where f(J)
is the density of workers assigned to producing widget J .

Therefore, we can write the planner’s problem as

max
f

[∫
J
h(J) [y∗(J)f(J)]ε

] 1
ε

(9)

subject to
∫
J
f(J) = 1. (10)

We can then pointwise differentiate the Lagrangian and obtain

h(J)y∗(J)εf(J)ε−1 = h(J ′)y∗(J ′)εf(J ′)ε−1, (11)

which we can write as

f(J)h(J ′)
1

1−εy∗(J ′)
ε

1−ε = f(J ′)h(J)
1

1−εy∗(J)
ε

1−ε (12)

so that we can now integrate out J ′ and using constraint (10) get

f(J) = h(J)
1

1−εy∗(J)
ε

1−ε∫
J h(J ′)

1
1−εy∗(J ′)

ε
1−ε

. (13)

2.3 Comparative statics
We consider the effect of technological progress that is broadly skill enhancing, as measured
by A, and changes in the demand for intermediate goods, as measured by h. The distinction
is imperfect. For example, the reduction in transportation costs, at least in part due to
technological change, reduced demand for some locally produced intermediate goods that
had hitherto been too expensive to import. Still we think of changes in A as capturing broad-
based technological progress such as electronic calculators rather than adding machines for
routine-cognitive skills and electric rather than manual drills for manual skills, and h as
capturing the effects of trade and, more recently, robots.

2.3.1 The effect of skill-augmenting technological change

What happens if skill i becomes more productive? Taking the derivative of (13) with respect
to Ai gives

∂f(J)
∂Ai

= ε

1− εf(J)
[
∂ ln y∗(J)
∂Ai

−
∫
J

∂ ln y∗(J ′)
∂Ai

f(J ′)
]

(14)
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or simply, using (5),

∂ ln f(J)
∂ lnAi

= ε

1− ε

[
S∗i (J)−

∫
J
S∗i (J ′)f(J ′)

]
. (15)

In other words, if and only if the elasticity of substitution among intermediate goods 1
1−ε

is
less than 1, will an increase in the productivity of skill i move workers away from jobs where
it is used more than average, and towards jobs where it is used less than average.

So, to summarize, when elasticities of substitution are less than one both within interme-
diate good production (on average) and across intermediate goods in final good production,
an increase, for example, in AR (a technological change that makes routine skills more pro-
ductive) will

• Reduce routine use in all jobs (within).

• Shift workers to less-routine jobs (across).

2.3.2 The effect of changes in demand for intermediate goods

What about changes in h? In our setup, these will move workers around, but have no effect
on skill use within a job. A decrease in horseshoe demand merely how many people shoe
horses not how they shoe them.

To see the effect of changes in h on employment, we take the log of each side in (13) and
totally differentiate to get

d ln f(J) = 1
1− εd ln h (J) + ε

1− εd ln y∗(J)− d ln
(∫
J
h(J ′)

1
1−εy∗(J ′)

ε
1−ε

)
. (16)

For a change in h, the second term in (16) is 0 and the third term does not depend on J. A
few manipulations yield

d ln f(J) = 1
1− ε

[
d ln h (J)−

∫
J
d ln h(J ′)f(J ′)

]
. (17)

Thus, the percentage employment growth in job J is proportional to the deviation of
the percentage change in h (J) from the employment-weighted average.

2.3.3 Putting it all together

Combining (15) and (17), we have

d ln f(J) = ε

1− εΣi

([
S∗i (J)−

∫
J
S∗i (J ′)f(J ′)

]
∂ lnAi

)
+ 1

1− ε

[
d ln h (J)−

∫
J
d ln h(J ′)f(J ′)

]
(18)
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The model above distinguishes between changes that replace occupations by automating
or offshoring them (a decline in h) as when data input is imported from abroad and those in
which technology makes the skill more productive as when keypunch machines are replaced
by input at computer terminals. When h declines, the number of workers employed in
data entry in the home country falls, but any workers engaged in data input continue to
input data using the same skill set. When A increases, assuming that ε is negative and the
intermediate-good elasticity of substitution is less than 1, the workers who do data input
jobs end up being less skilled at data entry, and fewer workers are hired to do data input.

Interpreted within our model, Autor et al found that technological innovation increased
the productivity of routine tasks. Since the demand for these tasks was inelastic, the amount
of time individual workers spent on them declined as did total employment in routine-
intensive tasks. Our interpretation of the period that we study will be that the productivity
of abstract skill use did not increase as rapidly as the productivity of other skills, most no-
tably finger dexterity. This caused a shift towards abstract-skill use because the elasticity
of substitution between intermediate goods is less than one, thereby shifting employment to
abstract-intensive occupations and substitution between abstract and routine skills within oc-
cupations. Within occupations, declining relative abstract-skill productivity shifted skill use
toward greater abstract and less routine-skill use. Strikingly, within occupations increased
productivity of finger-dexterity reduced the use of both abstract and finger-dexterity skills.

We note that our model assumes ex ante identical workers. In a richer model with ex ante
heterogeneous workers, demand changes might alter how jobs are done. Intuition suggests
that workers “better at routine tasks” do jobs more routinely than other workers. In such
a world, a reduction in demand for routine-intensive outputs would shift such workers to
less-routine jobs who would then perform them more routinely than before, which is the
reverse of what we observe.

2.4 Implications for empirical work
For empirical analysis, we rewrite (18) as

ln empI,J,t

empI,J,t−1
= ε

1− εΣi

(
d lnAit

(
SiJ,t − Si,t

))
+ γI + µJ,t (19)

where empI,J is the employment level in industry I in occupation J, the empirical counterpart
of f (J) and γI is the coefficient on an industry that captures demand changes due to shifts
in industry demand. We note that this is an imperfect proxy for changes in h. It will capture
changes in demand for an occupation resulting from, for example, import competition but
will capture changes due to occupation-specific factors such as robots or outsourcing. We
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measure SiJ,t by the average of the measure in two proximate editions of the DOT. µ is a
mean-zero error term.

Since each worker’s skills sum to 1, skill use on a job sums to 1 as does mean skill use.
Therefore, (19) still applies if we add a constant term to each d lnA. We therefore rewrite
the equation as

ln empJ,t

empJ,t−1
= ε

1− εΣi

((
d lnAit − d lnAt

) (
SiJ,t − Si,t

))
+ γI + µJ,t (20)

= ε

1− εΣi

((
d lnAit − d lnAt

)
SiJ,t

)
+ γI + µJ,t (21)

: = ΣiSiJ,tβi + γI + µJ,t. (22)

Equation (22) describes a regression of the (approximate) percentage change of employ-
ment in an occupation on the skills used in that occupation and industry dummies. The
coefficients show the change in the productivity of each skill relative to the average up to
a factor of proportionality. This factor is negative if the elasticity of substitution between
intermediate goods is less than 1, which we assume. Thus, a negative coefficient means that
the productivity of that skill grew faster than the average of the skills.

Assuming an elasticity less than 1 seems natural. As Chad Jones (2011) notes in a
somewhat different context, intermediate goods are unlikely to be substitutes. As he puts
it, computers are close to essential for producing some goods. Our case is even stronger; the
outputs of secretaries, sales workers, plumbers, and truck drivers cannot easily substitute
for each other. Note that this is different from the statement that someone who works as a
secretary might be almost as productive if he worked in sales. In our model, this is quite
plausible if the underlying skills required are close.

Note that we must drop a skill because the skills sum to 1. Therefore, the coefficients
can be interpreted as the rate of growth of productivity of each skill relative to the excluded
skill, again up to a multiplicative factor. Together with the requirement that the sum of
the deviations from average productivity growth equals 0, this fully identifies the relative
productivity of all the skills.

Equation (22) addresses only changes in the productivity of skills and not shifts in the
demand for occupations. Our, admittedly imperfect, solution to capture changes in h is to
augment the equation with two-digit industry dummies, in line with the effect of h in (17).
Demand for occupations concentrated in industries facing import competition or declining
demand will fall even absent technological change. Controlling for industry will capture
employment losses due to import competition but not robots or outsourcing of specific occu-
pations to other countries. Fortunately, in the period we study, these sources of employment
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loss are likely to be modest.
We estimate (22) ordinary least squares. Consistent with Solon, Haider and Wooldridge

(2015) and Dickens (1990), we experimented with feasible weighted least squares and found
no evidence of important heteroskedasticity with respect to occupation size.

3 Data
Following Autor et al, our skill-use measures come from the Dictionary of Occupational Titles
(DOT). We use the third edition, issued in 1965 but compiled starting sometime after the
release of the second edition in 1949, as our measure of skill use in an occupation in 1960
although it may be centered more on the late 1950s. The 1965 DOT has not, to the best
of our knowledge, been previously used for this type of analysis. We use the fourth edition,
published in 1977 and based on data starting in 1965 for job use in 1970-72 (‘1971’). Finally,
we use the last revision of the fourth edition, based on revisions from 1977 to 1991 for skill
use in 1982-84 (‘1983’). As others have noted, the revised fourth edition is not a ‘fifth’ edition
in that many occupations were not revisited between the fourth edition and the revised 1991
edition because the revision addressed only occupations that were thought to have changed
the skills they used. Therefore, we probably underestimate the extent of within-occupation
changes in skill use between 1971 and 1983.

The DOT identifies aptitudes, temperaments, and abilities used in a job, and measures
them numerically. Observations are at the occupation-title level. Therefore, at a point
in time, differences in skill use by sex reflect only differences in employment shares across
occupation-titles.

The 1965 DOT includes the same variables of interest as the later DOT and its revi-
sion, allowing us to have consistent skill measures over time except that the earlier edition
provides a single measure of “General Education Development” while the later releases mea-
sure reasoning, mathematical, and language development separately. We experimented with
using the average or the maximum of these three to generate a single measure comparable
to the 1965 measure and checked whether this affected the correlation between the third
and fourth edition measures. The correlations were similar. Looking across groups did not
create a strong case for either. We present results in which we calculate General Education
Development in the 1977 and 1991 DOTs as the average of the reasoning, mathematical, and
language development measures. The 1965 DOT sometimes provides more than one value
of an aptitude, temperament or ability for a single job title. In such cases, we use a simple
average of the values reported.

Like Autor et al, we measure routine-cognitive skill using the variable “adaptability to
situations requiring the precise attainment of set limit, tolerances, or standards,” dexterity
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by “finger dexterity,” manual skill by “eye-hand-foot coordination,” and abstract by “General
Education Development.” We drop interactive skills from the analysis, in part for simplicity
and in part because our sense is that the explosion in the demand for social skills (Deming
2017) dates from a later period. For each census occupation, we use a weighted average
(by employment share) of the skill use in the DOT occupations comprising that census
occupation.

For consistency with our theoretical model, we depart from Autor et al and Autor and
Dorn in how we use these measures. Autor et al use the absolute value of each skill, while
Autor and Dorn focus on routine intensity defined as (RTI = ln(R) − ln(M) − ln(A)).
Instead, we first scale the absolute level of skill use by where it lies between the maximum
and minimum of that skill’s use in any occupation over our sample period. Thus, use of skill
i in occupation J is:

s̃kill
J

i = skillJi − skillmin
i

skillmax
i − skillmin

i

(23)

where skillJi is the value obtained directly from the DOT measures aggregated at the occu-
pation level, skillmin

i and skillmax
i are the minimum and maximum absolute values (at the

occupation level) for skill i in any version of the DOT. Finally, we compute the share of each
skill on the overall sum

SJ
i = s̃kill

J

i

Σks̃kill
J

k

so that our four skill measures sum to 1.
Census occupations are more highly aggregated than the DOT’s job titles. Following

Autor et al’s treatment of the 1977 DOT and the 1991 revision, we construct gender-specific
skill measures for the 1965 DOT by aggregating the DOT titles to the census occupations
separately for men and women. This accounts for the different distribution of workers by
gender across job titles within each census occupation. Following Autor et al, we use the
DOT-augmented version of April 1971 Current Population Survey for this aggregation, since
this is the only dataset with both DOT and census codes.

We use the consistent occupation system created by Dorn (2009) and the crosswalk files
provided by Autor and Dorn, linking these occupations to previous census classifications.
This gives us 212 occupations in the initial period, 265 in the intermediate period, and 329
in the later period. We create the occupation skill measures using occupation weights from
all full-time workers not living in group quarters between age 18 and 64 in the IPUMS 1960
5% sample, in the IPUMS 1970 1% State sample, and the IPUMS 1980 5% sample.

Despite the tremendous insights measures of these skills have provided, about six and
seven percent of workers work in jobs that purportedly make no use of manual and routine
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skill. We leave it to the reader to assess whether this is plausible.
Our data on the occupation distribution by sex come from the Census (IPUMS) and from

March (Annual Social and Economic Supplement) Current Population Surveys (CPS) and
are limited to workers age 25-64, but otherwise our sample restrictions are the same as for
the calculation of the skill weights. Since these data are well known to economists, we do
not describe them here. Our choice of which sources to use for different purposes reflects an
admittedly arbitrary trade-off between sample size and proximity of the employment data
to the timing of the DOTs. Before 1968, the CPS coded occupations in fewer than forty
categories and did not use the Census classification. Therefore, we use the 1960 1% Census
sample for our initial period. For the two later periods, we rely on the 1970 and 1980 Census
samples when we believe greater accuracy in estimating the employment cells is critical.
Thus, we use the censuses to aggregate from DOT to census occupations and when using
occupation/industry cells as observations in our regressions. Our decomposition of skill use
into within and between-occupation changes relies only on occupation and not industry and
therefore relies on larger cell. We therefore use the current occupation in the 1970-72 and
1982-84 March CPS for this purpose.

4 Results
Table 1 shows the evolution of average skill use over our period. There are four panels,
one for each skill. Within each panel, we show the mean and standard deviation of skill
use for all workers, for men, and for women. In contrast with Autor et al and Autor and
Prince (2013), we find that the use of routine-cognitive skills declined in the earlier period.
The difference is that we use the DOT 3rd edition to measure skill use in the earlier period.
This decrease is much less pronounced among women than among men, which is consistent
with the relative direction of changes in Autor and Price. Consistent with earlier work, the
use of abstract skills increased in the earlier period. Our results suggest that this change
was solely among men. In contrast with earlier work, we find a decrease in finger dexterity
(routine manual), but an increase in (nonroutine) manual, but with noticeable differences in
the patterns between men and women.

In the later period, which corresponds most closely to the 1970-80 change in Autor et
al and Autor and Price, we find a decline in the use of routine (cognitive) skills and an
increase in abstract-skill use, as did the earlier papers, but that these changes are much
more pronounced among women. Finally, overall the changes in manual and finger dexterity
reverse the signs of the changes in the earlier period although, again the pattern is somewhat
different between men and women.

We treat the results for manual and finger dexterity with some caution. The correlation
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between the measures in the 3rd and 4th editions of the DOT are somewhat low, only .46 for
finger dexterity and nonroutine manual compared with .68 for abstract and .63 for routine.
While it is certainly possible that the 1960s saw dramatic change in the importance of the
two manual skills in a way that changed their ranking of importance across occupations, it
is also possible that, despite defining the skills similarly, the two editions measured them
differently.

4.1 Within-cccupation changes are important (sometimes)
Table 2 decomposes skill-use changes into within and across-occupation changes using the
following decomposition:

Skille,t − Skille−1,t−1 = (Skille−1,t − Skille−1,t−1)︸ ︷︷ ︸
∆ across

+ (Skille,t − Skille−1,t)︸ ︷︷ ︸
∆ within

(24)

where e indicates the DOT edition, and t indicates the period considered. Thus, ∆ within
shows how much the use of each skill would have changed had the occupations in which,
for example, males worked been the same in 1960 and 1971. In parallel, ∆ across shows
how much skill use would have changed had skill use in each occupation remained constant
between 1960 and 1971 and only the occupations where workers were employed shifted. This
latter measure corresponds to what has typically been presented in the literature, largely
because of the limitations of the DOT. Black and Spitz-Oener (2007) which uses German
data on a later period is an exception.

Thus, between 1960 and 1971 routine-skill use declined by .037. This decline was entirely
(-.034) within occupation, with a trivial portion (-.003) due to occupation shifts. In contrast,
in the case of women, the absence of any noticeable decline in routine-skill use in this period
was not the result of within and between changes offsetting each other. Instead, we observe
that each was essentially unchanged.

We begin by looking at across-occupation changes since these are akin to what the liter-
ature most frequently measures. We remind the reader than any differences from the prior
literature may reflect our use of different editions of the DOT and/or our somewhat differ-
ent use of the skill measures. In the early period, all across-occupation changes seem quite
modest with the largest change for abstract-skill use. Still this change amounts to only 0.06
standard deviations. In contrast, in the later period across-occupation changes are much
more important. The .022 increase in abstract-skill use corresponds to roughly one-eighth
of a standard deviation and the corresponding declines in manual and routine-skill use to
declines of .10 and .05 standard deviations.4

4We use the standard deviation in the base year, 1960 or 1971, in all cases.
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Perhaps the most important message of table 2 is that between-occupation shifts miss a
great deal of the action. In the earlier period, we observe, at most, very modest shifts in skill
use across occupations, but there are large within-occupation changes; within occupation,
routine-skill use declines by more than one-fifth of a standard deviation, offset by increases
in abstract-skill and manual-skill use of .23 and .27 standard deviations.

There are also notable differences between men and women in the skill shifts, which, in
the early period, are much larger for men, particularly when we focus on within-occupation
shifts. With the exception of a .2 standard deviation increase in manual-skill use within
occupations, all of the shifts experienced by women are small. In contrast, during this
period, men increased their abstract-skill use by almost .4 standard deviations, of which
over 80% was within occupation. Similarly, their routine-skill use declined by about .3
standard deviations, almost all of which occurred within occupation. Their manual-skill use
increased within occupation by about .3 standard deviations, more than offsetting a small
between-occupation decrease. Final, within-occupation changes account for more than 80%
of their .4 standard deviation decrease in the use of finger dexterity.

The table tells a notably different story about the later period. While all of the changes
in skill use remain large and between .1 and .2 standard deviations, when we do not separate
the results by gender, they are all smaller than in the early period by this metric. Most
of the change in abstract and manual-skill use is between occupations. In fact, the within-
occupation change in manual-skill use is negligible. However, within-occupation shifts are
the more important source of changes in abstract and finger-dexterity use.

But, as in the earlier period, there are important differences in the changes we observe
among men and women. The overall changes are consistently much larger for women than for
men. They range from .2 to over .3 among women compared with at most .14 standard de-
viations among men. The changes that we do observe also reflect across-occupation changes
more for men than they do for women. Perhaps, the most striking aspect of the later period
are the very large within-occupation shifts for women which amount to .32 (dexterity), .22
(routine), .15 (abstract), and .11 (manual) standard deviations. The sign reversal between
the across and within shifts in the use of finger dexterity, while not ruled out by our model,
is somewhat surprising.

Our analysis would be misleading if within-occupation changes reflected shifts in the
distribution of more disaggregated occupations within an occupation. The problem does not
arise for the aggregation of DOT occupations to census occupations. We have only a single
crosswalk for this aggregation so that the relative weight of legal and medical secretaries in the
census occupation does not change over time. The problem arises if, for example, secretaries
who work for litigators and those who work for bond lawyers use different skills, if one grows
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faster than the other, and if the shift in the relative importance of the more disaggregated
occupations affects the skills the various DOT editions report for legal secretaries.

4.2 Relative skill-productivity growth matters (sometimes)
Recall that estimating (22) and imposing that the coefficients sum to 0 allows us to identify
the relative growth of skill productivity.5 We augment the equation with two-digit industry
dummies to capture product demand changes. Table 3 shows the results of this exercise.

Perhaps the most striking result is that rapid relative growth of the productivity of
finger dexterity among women as reflected in its negative coefficient. This is consistent with
the importance of the IBM Selectric typewriter discussed in the introduction and the early
versions of word processors that appeared towards the end of this period.

Recall that the coefficients in the table measure the relative growth rate of the produc-
tivity of the skills multiplied by ε/ (1− ε) . Assuming that the elasticity of substitution is
less than one, 0 > ε/ (1− ε) > −1, we can bound the difference relative to the average in
the annualized rate of growth over the twelve years by the coefficient divided by twelve. The
implied growth rate of the relative productivity of finger dexterity is large, at least about
8% per year among women in both periods, although the 95% confidence intervals include
differences of less than 4% per year.

The second striking result is the difference between our early and later periods. In
the early period differences in the growth of skill productivity play little role in explaining
employment changes. For men, we cannot reject that all skills grew at the same rate.
While we can reject this hypothesis for women, the differences explain little of the between-
occupation differences in employment growth. Using the Shapley-Owen decomposition, we
find that the skill composition of occupations accounts for only about 15% of the explained
sum of squares or about 2% of the total variance.

The later period is very different. The coefficients on skills are highly significant. More-
over, they account for a notable proportion of the explained sum of squares, 46% among
women although less so (18%) among men. When we recognize that we have many more
industry dummies than skills, it is apparent that we probably noticeably underestimate the

5To reduce problems of measurement error, we restrict the sample to occupation/industry combinations
comprising at least .0001% of employment in each year included in the pair and at least an average of .0002%
over the two years. We impose this requirement separately for men and women so that an occupation might,
for example, be included in the regression for men but not for women. The second requirement ensures that
we do not drop an occupation that saw a modest change in employment that caused it to cross the .01%
threshold. Nevertheless, many of the employment changes we observe remain implausible. We winsorize the
data fairly severely at the 20th and 80th percentiles. Winsorizing at the 10th and 90th percentiles gives
results with a similar interpretation but that are generally larger in absolute value and much more imprecise.
Finally, we average our skill-use measures from the two editions (or the revision) corresponding to the pair
of years in our analysis.
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relative importance of the skills measure.6 For both men and women we cannot reject that
routine and manual skill productivity grew at the same rate as the average of the skills. How-
ever, in both cases we see evidence of faster growth of the productivity of finger dexterity
and slower growth of abstract skills.

4.3 Slow growth of abstract productivity and faster growth of
other skills (mostly) explains the within shifts

To understand what our model says about within-occupation skill shifts, we take a linear
expansion of Si (J) with respect to relative changes in skill productivities:

dSJ
i = Σk

dSJ
i

d lnAk

d lnAk (25)

and integrate over all jobs

∫
J∈J

dSi (J) dJ = Σk

(
d lnAk

∫
J∈J

dSi (Jj)
d lnAk

dJ

)
. (26)

We can replace the left-hand-side of (26) with the within estimates in Table 2 and d lnAi

with the estimates in Table 3. In addition, we know from (5)

dSi (J)
d lnAk

= ∂2 ln y∗(J)
∂ lnAi∂ lnAk

= dSk (J)
d lnAi

(27)

and since ΣkSk = 1, that

Σk
dSJ

k

d lnAi

= 0. (28)

Therefore, after substituting and normalizing with respect to an arbitrary skill n, we
have

withini = Σk 6=n
dSi

d lnAk

(d lnAk − d lnAn) . (29)

If we assume that the derivatives do not change over time, we have six equations for
men and six unknowns after imposing symmetry, and similarly for women. Unfortunately,
one of the six equations is redundant. This is not a generic problem. If we had three skills
rather than four, we would have three derivatives and four equations of which one would be
redundant, giving us a unique solution. If we had three sets of changes and four skills, the
problem would be overidentified.

6Intuitively, while asymptotically a coefficient on a variable with no effect on the dependent variable has
an expected value of 0, in finite samples it has a non-zero value with probability 1 and therefore contributes
to explaining the variance of the dependent variable.
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For illustrative purposes, we impose that there is no substitutability between manual and
abstract skill. With this restriction, in theory the derivatives are just identified. However,
since the within-occupation changes are estimated with error and the equations only a first-
order approximation, the system has no solutions. We choose the parameter estimates that
minimize the sum of the squared differences between the calculated within change and the
predicted within change.

The derivatives, dSi/d lnAk, capture a concept analogous to p and q complementarity
and substitutability. If the derivative is positive, the reduction in the cost of skill k in-
creases the use of skill i. We refer to this case as A-complementarity. Note that unlike
p-complementarity, a skill may be A-complementary or A-substitutable with itself.

Recall that in table 3 we estimate ε/ (1− ε) ∗ d lnAi. So, with a change of sign, the
coefficients represent lower bounds on the absolute values of the skill-productivity changes,
and using these coefficients gives upper bounds on the derivatives. Consequently, we focus
on the signs of the relations rather than their precise magnitude.

Although the precise values of the estimated derivatives differ between men and women,
their interpretation is broadly similar. All skills are, on average, A-substitutes for themselves,
but the derivative is about an order of magnitude greater for routine skill than for finger
dexterity or manual skill and noticeably larger for abstract than for routine skill. Routine and
all other skills are A-complements, again averaged across occupations, while finger dexterity
is an A-substitute for both abstract and manual.

Table 4 shows how the change in the productivity of each skill accounts for the overall
within-occupation shift in skill use. It also compares the prediction of the model with the
data. Not surprisingly, given the imprecision of the skill growth estimates for men in the
earlier period, the model does much better for women than for men. For women the largest
gaps are for the shifts in the use of finger dexterity, which we over-predict in the earlier
period and under-predict in the later period. For men, we greatly under-predict the growth
of abstract-skill use in the early period and under-predict it in the later period.

The large shift from routine to abstract-skill use among men in the early period is ac-
counted for by the slow growth of abstract-skill productivity and the somewhat above-average
growth of routine-skill productivity, which the effect of the very rapid growth in the produc-
tivity of finger dexterity partially offsets.

Similarly, among women in the later period, the large decline in routine-skill use and the
offsetting increases in abstract-skill and finger-dexterity use are driven by the slow growth
of abstract-skill productivity that is not fully offset by the rapid growth of the productivity
of finger dexterity.
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5 Summary and conclusion
We make two contributions. First, at a purely empirical level, we provide new evidence
on changes in skill use in the 1960s and 1970s. We show that in the 1960s, such changes
were important but were particularly important for men and were much more pronounced
within than between occupations. In contrast, in the 1970s, skill use shifted both within and
between occupations and changes were particularly pronounced among women.

Second, we develop a simple model that reconciles or combines two approaches to tech-
nological change, the SBTC and task-based literatures, by modeling technological change
as increasing the productivity of individual skills such as finger dexterity rather than, for
example, college-educated workers. While our model also allows us to account for techno-
logical change that replaces occupations, we focus on detecting changes in skill productivity;
we capture changing demand for occupations only through changes in industry demand.

We use the insights from the model to measure the pattern of skill-productivity growth
needed to explain the employment shifts that we observe. For women in the 1960s, we find
that differences in the productivity growth of skills account for very little of the employment
changes that we observe. In contrast, in the 1970s they account for almost half of the
explained difference among women and a quarter among men.

Our empirical results suggest that if a skill’s productivity increases, use of that skill within
an occupation generally decreases. Thus, skills generally are A-substitutes for themselves.
Abstract and routine skills are A-complements as are finger dexterity and routine skills.
Among women in the later period, the very slow growth of abstract-skill productivity shifted
skill use within occupations away from routine-skill use and towards abstract-skill use. The
rapid growth of the productivity of finger dexterity, which shifted skill use towards routine
and away from finger dexterity, only partially offset the decline in routine-skill use..

We hope and believe that we have demonstrated that our simple model provides a useful
framework for understanding changes in skill use both between and within occupations.
Obviously, readers must make that judgment for themselves.
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Table 1: Skills use levels by year

Routine skills Abstract skills
1959 1971 1983 1959 1971 1983

All
Mean 0.313 0.276 0.242 0.299 0.342 0.377
Std. Dev. (0.163) (0.198) (0.185) (0.147) (0.179) (0.182)
Males
Mean 0.318 0.271 0.248 0.294 0.353 0.379
Std. Dev. (0.158) (0.192) (0.181) (0.152) (0.181) (0.185)
Females
Mean 0.298 0.288 0.233 0.314 0.317 0.375
Std. Dev. (0.178) (0.209) (0.190) (0.131) (0.171) (0.175)

Manual skills Finger dexterity skills
1959 1971 1983 1959 1971 1983

All
Mean 0.084 0.097 0.083 0.304 0.285 0.298
Std. Dev. (0.062) (0.110) (0.105) (0.069) (0.080) (0.088)
Males
Mean 0.093 0.109 0.103 0.295 0.267 0.270
Std. Dev. (0.060) (0.115) (0.113) (0.065) (0.064) (0.064)
Females
Mean 0.059 0.070 0.049 0.329 0.325 0.343
Std. Dev. (0.059) (0.091) (0.079) (0.075) (0.096) (0.101)

Notes: Estimates use the occupation distributions from the 1960 Census, the March 1970-72 and 1982-
84 Current Population Surveys. The skills used in each occupation are taken from the third, fourth and
revised fourth editions of the Dictionary of Occupational Titles. DOT occupations are aggregated to census
occupations using the April 1971 Current Population Survey.
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Table 2: Within- and across-occupation components

Routine skills Abstract skills Manual skills Fingdex skills
60-71 71-83 60-71 71-83 60-71 71-83 60-71 71-83

All -0.037 -0.034 0.043 0.035 0.013 -0.014 -0.019 0.013
∆ within -0.034 -0.024 0.034 0.013 0.017 -0.003 -0.017 0.014
∆ across -0.003 -0.010 0.009 0.022 -0.004 -0.011 -0.002 -0.001
Std. Dev. (0.163) (0.198) (0.147) (0.179) (0.062) (0.110) (0.069) (0.080)
Males -0.047 -0.023 0.059 0.026 0.016 -0.006 -0.028 0.003
∆ within -0.043 -0.014 0.048 0.007 0.019 0.000 -0.024 0.006
∆ across -0.004 -0.009 0.012 0.019 -0.003 -0.006 -0.004 -0.004
Std. Dev. (0.158) (0.192) (0.152) (0.181) (0.060) (0.115) (0.065) (0.064)
Females -0.010 -0.055 0.003 0.058 0.011 -0.021 -0.004 0.019
∆ within -0.009 -0.047 -0.004 0.026 0.012 -0.010 0.001 0.031
∆ across -0.001 -0.008 0.007 0.032 -0.001 -0.011 -0.005 -0.012
Std. Dev. (0.178) (0.209) (0.130) (0.171) (0.059) (0.091) (0.075) (0.096)

Notes: This table decomposes the change in the use of each of four skills into the change that would have
been observed if the occupation distribution had been the same at the end of the period as at the beginning
of the period (∆ within) and what would have been observed if the skill use were always the skill use
at the end of the period but the occupation distribution had changed. Fingdex refers to finger dexterity.
Estimates use the occupation distributions from the 1960 Census, the March 1970-72 and 1982-84 Current
Population Surveys. The skills used in each occupation come from the decennial censuses. DOT occupations
are aggregated to census occupations using the April 1971 Current Population Survey. Standard deviation
in the base years in parenthesis.
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Table 3: Skill Productivity Growth Relative to Average

(1) (2) (3) (4)
women 60-70 women 70-80 men 60-70 men 70-80

Routine -0.152 0.021 -0.073 -0.045
(0.146) (0.171) (0.158) (0.103)

Abstract 0.264 0.909 0.294 0.417
(0.149) (0.192) (0.187) (0.123)

Manual 0.817 0.090 0.080 0.150
(0.364) (0.398) (0.302) (0.150)

Finger dexterity -0.929 -1.019 -0.300 -0.523
(0.294) (0.280) (0.321) (0.207)

r2 0.17 0.16 0.15 0.12
proportion due to skills 0.15 0.46 0.07 0.18
N 2980 4448 4853 7013
p(all skill coefs=0) 0.010 0.000 0.377 0.005
p(routine=manual=finger dext.) 0.014 0.006 0.779 0.101

Notes: Standard errors in parentheses. Estimates are transformed from regression of change in log employ-
ment in an occupation/industry cell on average skill (routine, manual, finger dexterity) use in that cell over
the period and imposing that the mean deviation from mean skill growth for all four skills is 0. Proportion
due to skills is the proportion of the R-squared attributable to the three skills in the regression using the
Shapley-Owen decomposition.
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Table 4: Decomposition of Within-Occupation Changes in Skill Use

Men 1960-1971
Predicted Skill-Use Change

Source of Change Routine Abstract Manual Finger Dexterity
Routine -0.051 0.019 0.010 0.021
Abstract -0.076 0.044 0.032
Manual -0.011 0.008 0.003
Finger Dexterity 0.087 -0.033 -0.012 -0.042
Total Predicted -0.052 0.031 0.007 0.014
Data -0.043 0.048 0.019 -0.024

Men 1971-1983
Predicted Skill-Use Change

Source of Change Routine Abstract Manual Finger Dexterity
Routine -0.031 0.012 0.006 0.013
Abstract -0.108 0.063 0.045
Manual -0.022 0.016 0.006
Finger Dexterity 0.151 -0.057 -0.021 -0.073
Total Predicted -0.010 0.018 0.001 -0.009
Data -0.014 0.007 0.000 0.006

Women 1960-1971
Predicted Skill-Use Change

Source of Change Routine Abstract Manual Finger Dexterity
Routine -0.049 0.028 0.004 0.018
Abstract -0.049 0.030 0.019
Manual -0.020 0.014 0.006
Finger Dexterity 0.108 -0.066 -0.007 -0.035
Total Predicted -0.011 -0.007 0.010 0.008
Data -0.009 -0.004 0.012 0.001

Women 1971-1983
Predicted Skill-Use Change

Source of Change Routine Abstract Manual Finger Dexterity
Routine 0.007 -0.004 -0.001 -0.002
Abstract -0.168 0.104 0.064
Manual -0.002 0.002 0.001
Finger Dexterity 0.118 -0.072 -0.008 -0.038
Total Predicted -0.046 0.028 -0.007 0.024
Data -0.047 0.026 -0.010 0.031

Notes: Each entry is the predicted change in the within-occupation use of the column skill due to changes
in the productivity of the row skill. Total predicted is the sum of the four values above. It can be compared
with Data.
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