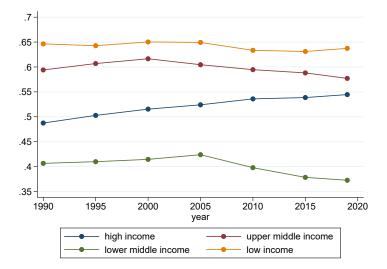
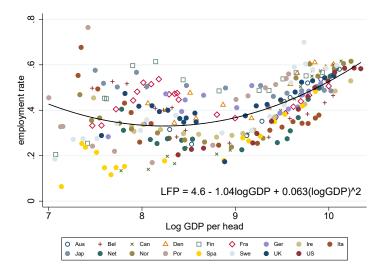
Structural transformation and U-shaped female employment

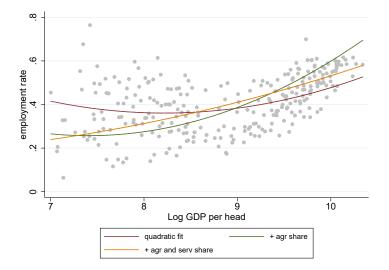

Rachel L. Ngai (LSE and CEPR) Claudia Olivetti (Dartmouth College and NBER) Barbara Petrongolo (U Oxford and CEPR)

July 2021 NBER SI Macro Perspectives

Background and motivation


- All high-income countries witnessed a rise in female employment since WW2
- But not a universal phenomenon
 - female employment has been falling during other time windows and/or in other countries
- This paper aims to understand various phases in the evolution of female employment through the lens of structural transformation
 - labour reallocation across agriculture, manufacturing and services
 - with focus on unpaid family work

Female employment around the world


Sample: women aged 25+; groups according to GNI pc. Source: WDI & ILO Total fertility rate

Female employment and economic development

Notes: 17 advanced economies, 1840-2005, age 15+. Source: Olivetti (2014).

Female employment and structural transformation

Notes: 17 advanced economies, 1840-2005, age 15+. Regressions include country and year FE. Source: Olivetti (2014).

Our approach

- Build consistent measure of female employment for the US over 1860-2010; intensive and extensive margins
 - Data on persons employed from Census; correction for unpaid family work and under-reporting
 - Information on hours per employed pre-1940 from various sources (time use surveys, census of manufacturing, state-level sources)
 - Post-1940 information on hours from US census
- Unified framework for understanding U-shaped evolution of female employment
 - modernization within agriculture: decline in family farms and rise in modern agriculture
 - structural transformation across agriculture, manufacturing and services
 - marketization within services: from home production to market services

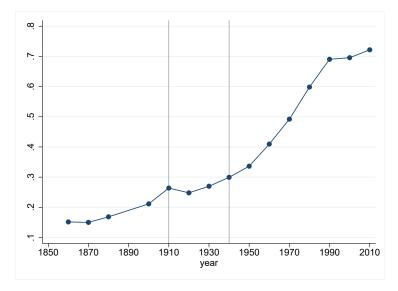
Related work

- U-shape idea has been pioneered in early work by Sinha (1965), Boserup (1970), Durand (1975), Goldin (1986)
 - based on technology adoption in agriculture, income effects, urbanization, etc.
 - Goldin (1995) shows U-shape on a cross-section of countries in 1980s
 - Goldin (1990): female participation likely decreasing from late 19th–early 20th century, based on a revision of the 1890 Census statistics so as to include undercounted occupations.
- Interplay between female employment and rise in services modeled by Lee and Wolpin (2006), Akbulut (2011), Ngai and Petrongolo (2017), Rendall (2018), Buera et al (2019)
 - framework and quantitative evaluation for recent decades

Data

Employment definition and measurement

- ILO definition of employment covers work for pay, profit or family gain in cash or kind
 - in particular it covers unpaid (contributing) family workers
 - relatives who assist without pay in a family-operated income-producing enterprises such as a farm, store, handicraft industry (Durand, 1975)
- ILO definition well established, but measurement is not consistent over time and in country-level sources
- U.S Census: pre-1940 gainful employment; measure of unpaid family work not entirely consistent post-1940
- Key difficulty: identifying unpaid family work (mostly female) when this was more widespread


Unpaid family work 1990-2019

Importance of Unpaid Family Work

 Measure of employment: female employment and structural transformation

- Comparison of female employment, gender gaps, structural transformation and productivity across time and countries:
 - Productivity: GDP includes value-added of family business
 Pre-mature de-industrialization in developing countries
- Unpaid family work v.s. home production (treated differently in time-use and GDP)
 - skills and networks
 - income-generating, female bargaining power in the family
 - gender norms (Boserup 1970, Alesina Giuliano and Nunn 2013)

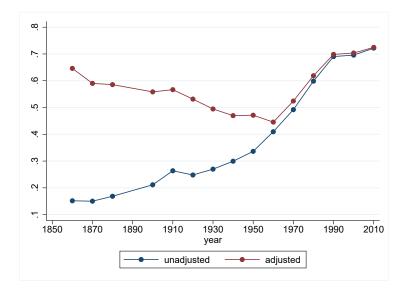
Female employment in the US Census

Notes: Women aged 18-64. Men

Unpaid family work in agriculture

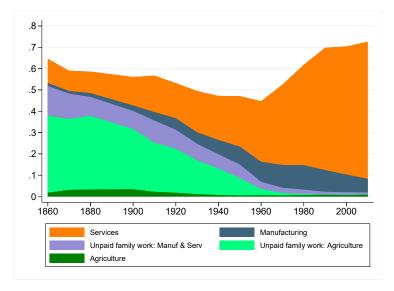
Ruggles (2015): importance of family enterprise in 19th century, through to mid-20th century. Family economies

- "production was carried out by families";
- 1890, about 40% of US population lived on farm; "all family members that were old enough contributed to farm production."
- Nonfarm family business: shoemakers, tailors, boarding etc.


Undercount of women in agriculture (Smuts, 1960)

- about 4m white married women on farm
 - census reported about 23k in agricultural occupations.
- ▶ 1950: about 14% population on farm
 - nearly 200k as unpaid family labourers

Ruggles (2015) adjustment for unpaid work


- Assign to labour force women on farms, whose head of household is farmer, whether or not they report an occupation
- Method extended to non-farm families in which the head is self employed

(Adjusted) female employment in the US Census

Notes: Women aged 18-64.

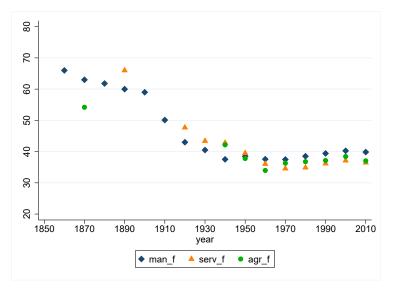
Sectoral composition of female employment

Women aged 18-64. Ruggles (2015) adjustment.

Hours

- Bodycount only captures extensive margin of employment.
- But intensive margin highly relevant as hours per employed vary widely over time and across genders and sectors
- Weekly hours fell substantially for all non-farm employees (Costa, 2000)
 - 1880s: 10 hours per day, 6 days a week;
 - 1940: 8 hours per day, 5 days a week
 - ▶ Post 1940: further reductions via paid holidays, etc.
- Unpaid hours on family farm shorter than paid hours in agriculture (Surveys of farmers; Time-use studies).
 - 1870: Farm labourers worked 10-14h per day, 6 days a week; 44/40 weeks a year for men/women
 - 1920s: Housewives on farm spent 10h per week in unpaid agricultural work; up to 15h in spring/summer

Hours: Sources


Historical Statistics of the United States, 1860-1930

- Drawing from: Census of Manufacturers, Weeks Report, Aldrich Report, series produced by E Jones, A Rees and J Owen (Whaples, 1990)
- good coverage for manufacturing; by gender from 1914
- Historical Labor Statistics Project, 1874-WWI (University of California)
 - reports published by 20+ State Bureaus that gathered sectoral labor statistics
 - cover all 3 sectors, but very thin on agriculture
 - micro data, 13.4k men and 5.2k women in total, 1890-1894
- Women Working project, 20s and 30s (Harvard University Library's Open Collections Program)

4,000+ studies, but little info on men

1940–: US Census

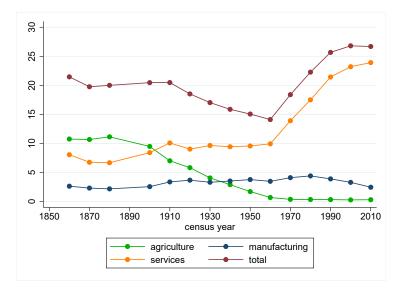
Female hours (per employed person)

Men

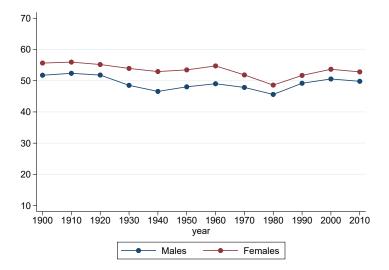
Hours: Further elaborations

Services

- Interpolate 1890-1920;
 - impose same trend as manufacturing pre-1920


Agriculture

 Assume constant 1860-1890 (Kendrick 1961, Barger 1955). Interpolate afterwards.


Unpaid work in family farms

 Purcell Act Time-Diary Studies of Homemakers: Housewives on farm spent 10h per week in unpaid agricultural work; up to 15h in spring/summer

Female hours (extensive & intensive margins)

Total work (Home + Market)

Men and women aged 18-64. Source: Ramey and Francis (2009)

Summary of historical evidence

- U-shaped female employment and structural transformation
 - decline associated with declining agriculture
 - rise associated with rising services
- Important role of unpaid family work during 19th century
- Women over-represented in both family farms and service sector
- Total work rather stable for men and women
 - dominant margin of substitution is across different sectors of work: agriculture (paid and unpaid), manufacturing, services and home production

Model

The model economy: Building blocks

- Households derive utility from consumption of agriculture, manufacturing and service output
 - gross complements in utility
 - subsistence requirement on agricultural consumption
- ▶ 3 market sectors: agriculture, manufacturing, services
 - productivity growth: agr , man > serv
 - female intensity: serv > agr, man
- **Family farm** and **home production** sector:
 - Family farms produce close substitutes to market agriculture, sold to the market;
 - \rightarrow labour input is part of employment.
 - Home production produces close substitutes to market services; for own use.
 - Both have slower productivity growth than corresponding market sectors.

Market firms

Production function for the representative market firm:

$$Y_j = A_j N_j, \quad N_j = \left[\xi_j I_{fj}^{rac{\eta-1}{\eta}} + (1-\xi_j) I_{mj}^{rac{\eta-1}{\eta}}
ight]^{rac{\eta}{\eta-1}}; \quad j=a,m,s$$

A_j is sector-specific productivity, growing at γ_j
 ξ_j is sector-specific gender weight, capturing comparative advantages

Competitive labour markets and perfect mobility:

$$w \equiv rac{w_f}{w_m} = rac{\xi_j}{1-\xi_j} \left(rac{I_{mj}}{I_{fj}}
ight)^{1/\eta}; \quad j=a,m,s$$

Households (I)

Utility has 3 consumption arguments: agr, man, serv

$$U(c_{\tilde{a}}, c_{m}, c_{\tilde{s}}) = \left[\omega_{a} \left(c_{\tilde{a}} - \bar{c}\right)^{\frac{\varepsilon - 1}{\varepsilon}} + \omega_{m} c_{m}^{\frac{\varepsilon - 1}{\varepsilon}} + \omega_{s} c_{\tilde{s}}^{\frac{\varepsilon - 1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon - 1}}$$

where $\varepsilon < 1$ (poor substitutes) and \bar{c} is subsistence consumption.

Services: produced at home or purchased from the market:

$$c_{ ilde{ extsf{s}}} = \left[\psi c_{h}^{rac{\sigma-1}{\sigma}} + (1-\psi) \, c_{s}^{rac{\sigma-1}{\sigma}}
ight]^{rac{\sigma}{\sigma-1}}$$

where $\sigma > 1$ (good substitutes)

Agricultural goods: purchased from market or family farms:

$$c_{\tilde{a}} = \left[\psi_{n}c_{n}^{\frac{\sigma_{n}-1}{\sigma_{n}}} + (1-\psi_{n})c_{a}^{\frac{\sigma_{n}-1}{\sigma_{n}}}\right]^{\frac{\sigma_{n}}{\sigma_{n}-1}}$$

where $\sigma_n > 1$ (good substitutes)

Households (II)

- Allocate time to market firms, family farms and home production.
- Technology in family farm and home production:

$$y_j = A_j N_j, \quad N_j = \left[\xi_j I_{fj}^{\frac{n-1}{\eta}} + (1-\xi_j) I_{mj}^{\frac{n-1}{\eta}}\right]^{\frac{\eta}{\eta-1}}; j = n, h$$

Budget constraint:

$$\sum_{i=a,n,m,s} p_i c_i \le w_m (L_m - I_{mh} - I_{mn}) + w_f (L_f - I_{fh} - I_{fn}) + p_n y_n$$

where home production is for own use while family farm output is sold at market price p_n .

Assumptions

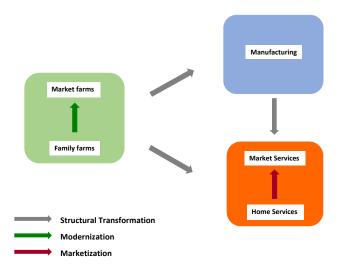
- ► ILO definition of employment, for each gender g: = $l_{gn} + l_{ga} + l_{gm} + l_{gs}$
- Comparative advantages:
 - $\xi_n > \xi_a$: family farms more intensive in female labour
 - ξ_s, ξ_h > ξ_a, ξ_m : service production more intensive in female labour than agriculture and manufacturing.
- Uneven productivity growth
 - γ_a > γ_n, γ_s > γ_h : productivity growth in market firms benefits from economies of scale
 - ▶ \(\gamma_a > \gamma_s\): productivity growth is faster in agriculture than services

Labour reallocation

Modernization.

As output of market agriculture and family farms are good substitutes, faster productivity growth in market agriculture reallocates labour from family to market agriculture

Structural transformation.


Faster productivity growth in agriculture reallocates labour from agriculture to services:

- Baumol effect through consumption complementarity
- Income effect through the subsistence term

Marketization.

As home and market services are good substitutes, faster productivity growth in market services reallocates labour from home to market services

Labour reallocation

Stage 1: Fall in agriculture and female employm.

19th century, large agricultural sector

- ► structural transformation $(\gamma_{\tilde{a}} > \gamma_{\tilde{s}}, \bar{c} > 0)$ \rightarrow agriculture shrinks and services expand
- ► modernization drives decline of family sector compositional change (γ_a > γ_n) → even faster productivity growth in overall agriculture, stronger ST
- marketization weak ($\gamma_s \gamma_h > 0$ but small),
- \blacktriangleright ST dominates marketization \rightarrow home services expand and total employment falls
- Female employment falls via decline in family farms and expansion in home services.
- Bring manufacturing into the picture: stronger female trends

Stage 2: Rise in services and female employment

Starting mid-20th century, overall agriculture sector is small

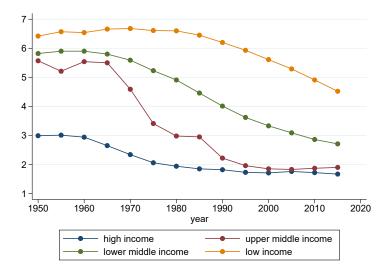
- modernization nearly complete;
- structural transformation is weaker
- ► marketization dominates ST → home service falls and total employment rises
- Female employment rises via decline in home services and expansion of market services
- Bring manufacturing into the picture (γ_m > γ_s): ST implies labor reallocation from manufacturing into services; stronger female trends.
- Due to gender specialization, gender neutral shock such as uneven productivity growth has gender-biased consequences

Equilibrium Allocation

- Endogenous variables:
 - Gender time allocation into each of five sectors
 - Output prices in agriculture (family and market farms), manufacturing, market services.
 - Gender wage ratio
- The system of equilibrium equations can be reduced to two equations solving for female home share I_{fh}/L_f and gender wage ratio w
- Female employment is $1 I_{fh}/L_f$.

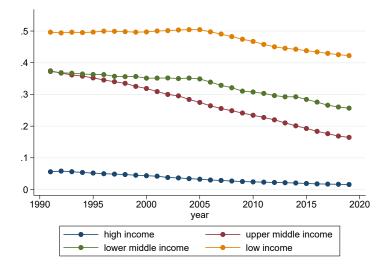
Equilibrium Conditions

Key findings


- In cross-country data, female employment declines at early stages of development, and then rises again

 in sync with decline in agriculture and rise in services
- Build a measure of female employment during 1860-2010 in the US; U-shape.
- Develop unified framework to explain these trends
 - Declining part of U-shape: faster productivity growth in agriculture implies shrinking agriculture, especially family farms, and declining female employment
 - Rising part of the U-shape:

slower productivity growth in services (especially home services) implies rising services and declining home production, accompanied by rise in female employment


Additional slides

Total fertility rate

Live births per woman; groups according to GNI pc. Source: UN (back)

Unpaid family workers as % of employment

Notes: groups according to GNI pc. Source: WDI & ILO. (back)

Transformation of US Families

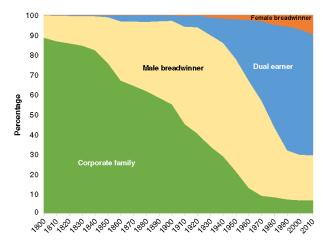
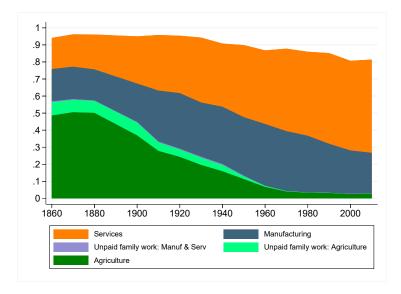
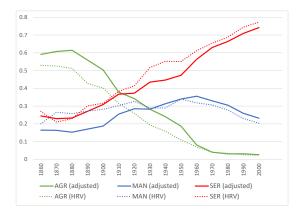



Figure: Reprint from Ruggles (2015) Figure 4

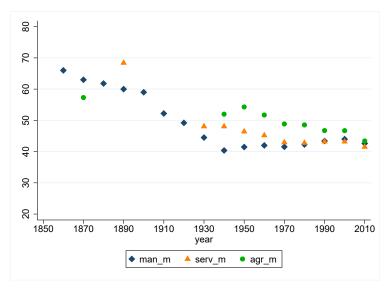
Notes: US couples aged 18-64. Source: Ruggles (2020). back

Sectoral composition of male employment

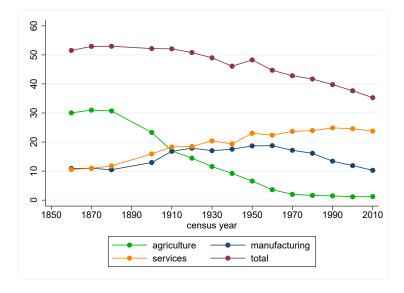
Notes: men aged 18-64. Ruggles (2015) adjustment. back


Male employment in the US Census

Notes: Men aged 18-64. back



Structural Transformation



Herrendorf, Rogerson and Valentinyi U.S. employment shares: 1840-1920, Historical Statistics – Lebergott (1966) and Weiss (1986, 1987), incomplete record of unpaid family workers, especially for women 1929-2008, BEA – exclude unpaid family workers. Back

Male hours (per employed person)

Male hours (extensive & intensive margins)

Modernization

Optimality condition and market clearing imply

$$\frac{p_n}{p_a} = \frac{\psi_n}{1 - \psi_n} \left(\frac{Y_a}{Y_n}\right)^{(1/\sigma_n)}$$

• Expenditure shares $E_{an} = p_a Y_a / p_n Y_n$:

$$E_{an} = \left(\frac{A_a}{A_n}\right)^{\sigma_n - 1} \left[\left(\frac{\xi_n}{\xi_a}\right)^{\frac{\eta}{\eta - 1}} \left(\frac{I_n}{I_a}\right)^{\frac{1}{\eta - 1}} \right]^{\sigma_n - 1} \left(\frac{1 - \psi_n}{\psi_n}\right)^{\sigma_n},$$

where $I_j = \frac{w_f L_{fj}}{w_f L_{fj} + w_m L_{mj}}$ is female income share Labour shares

$$\frac{I_{fa}}{I_{fn}} = \left(\frac{A_a}{A_n}\right)^{\sigma_n - 1} \left(\frac{\xi_a}{\xi_n}\right)^{\sigma_n - 1} \left(\frac{I_n}{I_a}\right)^{\frac{\sigma_n - \eta}{\eta - 1}} \left(\frac{1 - \psi_n}{\psi_n}\right)^{\sigma_n}$$

Marketization

Expenditure shares

$$E_{sh} = \left(\frac{A_s}{A_h}\right)^{\sigma-1} \left[\left(\frac{\xi_h}{\xi_s}\right)^{\frac{\eta}{\eta-1}} \left(\frac{I_h}{I_s}\right)^{\frac{1}{\eta-1}} \right]^{\sigma-1} \left(\frac{1-\psi}{\psi}\right)^{\sigma}$$

Labour shares

$$\frac{l_{fs}}{l_{fh}} = \left(\frac{A_s}{A_h}\right)^{\sigma-1} \left(\frac{\xi_s}{\xi_h}\right)^{\sigma-1} \left(\frac{l_h}{l_s}\right)^{\frac{\sigma-\eta}{\eta-1}} \left(\frac{1-\psi}{\psi}\right)^{\sigma}$$

Back

Structural transformation

Manufacturing vs Services

$$E_{ms} = \left(\frac{A_m}{A_s}\right)^{\varepsilon-1} \left[\left(\frac{\xi_s}{\xi_m}\right)^{\frac{\eta}{\eta-1}} \left(\frac{I_m}{I_s}\right)^{\frac{1}{\eta-1}} \right]^{1-\varepsilon} \left(\frac{1}{E_{sh}}+1\right)^{\frac{\sigma-\varepsilon}{\sigma-1}} B_{ms}$$

Agriculture vs Services

$$E_{as} = \frac{1}{1 - \frac{\tilde{c}}{c_{\tilde{a}}}} \left(\frac{A_a}{A_s}\right)^{\varepsilon - 1} \left[\left(\frac{\xi_s}{\xi_a}\right)^{\frac{\eta}{\eta - 1}} \left(\frac{I_a}{I_s}\right)^{\frac{1}{\eta - 1}} \right]^{1 - \varepsilon} \frac{\left(\frac{1}{E_{sh}} + 1\right)^{\frac{\sigma - \varepsilon}{\sigma - 1}}}{M^{\varepsilon} \left(\frac{1}{E_{an}} + 1\right)^{\frac{\sigma - \varepsilon}{\sigma_n - 1}}} B_{as}$$

where M reflects modernization within agriculture and B_{ij} are combinations of preference parameters for goods i and j

Female employment and the gender wage ratio

 Demand equation: budget constraint and demand for goods/services

$$\frac{I_{fh}}{L_{f}} = \frac{I_{h}\left(w\right)\left(1 - \frac{\rho\left(w\right)\bar{c}}{L_{m} + wL_{f}}\right)}{I\left(w\right)\sum_{i=\tilde{a},m,s,h}E_{ih}\left(w\right)}; \qquad \rho\left(w\right) \equiv \frac{p_{\tilde{a}}}{w_{m}},$$

 Supply equation: female time constraint and optimal input ratios

$$\frac{I_{fh}}{L_{f}} = \frac{I_{h}(w)}{\sum_{j=a,m,s,h,n} I_{j}(w) E_{jh}(w)}$$

Equilibrium gender wage ratio w solves:

$$I(w)\sum_{i=\tilde{a},m,s,h}E_{ih}(w) = \left[1 - \frac{\rho(w)\bar{c}}{L_m + wL_f}\right]\left[\sum_{\forall j}I_j(w)E_{jh}\right]$$