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1 Introduction

Following the seminal contributions of Bils and Klenow (2004) and Golosov and Lucas (2007)

sticky price models have recorded an impressive progress during the last decade both in the

theory, identifying what features are important for the propagation of monetary shocks, as

well as in the empirics where new micro evidence has identified the desirable properties of

theoretical models.1 But in spite of the substantive progress, the need for tractability has led

most theoretical models to abstract from the interdependence between the firms’ decisions

in price setting.

While such an abstraction can be justified in a class of general equilibrium models where

demand has constant elasticity, exploring the robustness of the model results to the presence

of strategic interactions is an important question. The question is relevant for macroeco-

nomics because absent strategic complementarities the current quantitative macro models

seem unable to produce the persistent non-neutrality of nominal shocks that is seen in the

aggregate data. The idea that strategic complementarities may contribute to amplify the

aggregate stickiness has a long tradition in macroeconomics, and was formalized by Cooper

and John (1988) in a static setup, and also surveyed by Leahy (2011). Useful explorations

can be found in the analysis of monetary shocks by Wang and Werning (2020) in a model of

oligopoly, where however the optimal timing of the firm’s decision is exogenous, and the where

the strategic interactions are industy-wide. A pioneering exploration of a set up with econ-

omy wide strategic interactions, and where the occurrence of price changes is endogenous can

be found in Klenow and Willis (2016), who numerically solve a state dependent pricing model

with strategic complementarities calibrated on US data. Analytic results for dynamic price

setting models where the timing of price changes is endogenous and that feature strategic

complementarities, do not exist. The numerical analysis of models with strategic comple-

mentarities is very valuable, but obviously poses questions of existence and uniqueness of the

1See the contributions of Klenow and Malin (2010), Nakamura and Steinsson (2010), Caballero and Engel
(1999, 2007), Midrigan (2011), Alvarez and Lippi (2014), Alvarez, Le Bihan, and Lippi (2016),Alvarez, Beraja,
Gonzalez-Rozada, and Neumeyer (2019).
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equilibrium that could (as we will show) undermine the results. Additionally there are no

characterization of the equilibrium.

This paper presents a set of analytical result that allow us to solve for the optimal firm

decisions in a dynamic environment in the presence of strategic complementarities (or substi-

tutabilities) with the decision of other firms. The key breakthrough is obtained by formally

casting the firm problem, as well as the aggregation of individual decisions, using the math-

ematical structure of Mean Field Games adapted to the case of problems with fixed costs

where the optimal individual decisions follow an sS rule. Additionally it breaks new ground

on the Mean Field Game theory by having a fully worked out equilibrium of a model with

singular stochastic control, and also in models with strategic complementarity. A notable

example of thorough study of a simplified Mean Field Game with impulse control is Bertucci

(2017). In the Mean Field Game theory the famous monotonicity condition for Lasry-Lions,

used in almost all papers in these area, corresponds to strategic substitutability, and rules

out strategic complementarity, the case of substantive interest.

Several analytic results are established. First, we consider a canonical menu cost setup

as in Golosov and Lucas (2007) extended to feature first-order strategic complementarities

on the price setting. The MFG framework also allows us to study analytically the effect of

strategic complementarity/substitutability on the firm’s optimal sS rules after the shock. In

particular, the firm objective function is to maximize expected discounted profits, net of menu

costs. The firm’s problem is to optimally decide when to pay a fixed cost and change prices,

as well as to what values to set the prices at those times. By strategic complementarity

(substitutability) we mean that the flow profit in each period depends on the firm’s own

markup and the markup of the average firm, with a positive (negative) cross derivative. We

fist analyze the simple menu cost model. For the menu cost model, we establish existence

and uniqueness of the perturbed equilibrium (as long as the strategic complementarity is

not too large) and analytically characterize the impulse response function (IRF) of output.

We show that the presence of the strategic complementarity makes the output IRF of a
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monetary shock larger at each horizon. Not only the effect is larger, but it is also convex

on the degree of strategic complementarity/substitutability. Indeed, there is a critical value

of the strength of the strategic complementarity at which the IRF becomes arbitrarily large,

and then it the equilibrium cease to exists. On the other hand, as substitutability becomes

arbitrarily large, the IRF converges to zero. Second, we consider a more general model

of price setting, including a free adjustment probability of price adjustment, the so called

Calvo plus model, proposed in Nakamura and Steinsson (2010) and solved analytically for

the case without strategic complementarity in Alvarez, Le Bihan, and Lippi (2016) and

Alvarez and Lippi (2019). This model spans the pure sS price setting model of Golosov

and Lucas (2007) to the pure time dependent Calvo (1983) price setting model. We show

that the same characterization of equilibrium extends to the Calvo plus model. We analyze

the cumulative impulse response function for the Calvo plus model. If there is no strategic

complementarity, as shown in Alvarez, Le Bihan, and Lippi (2016), the Cumulative Impulse

Response (CIR) to a monetary shocks varies by a factor of 6 as we move form the pure sS

Golosov and Lucas (2007) model to the pure time dependent model of Calvo (1983). When

we add strategic complementarity/substitutability, we show that the CIR for a Calvo plus

model is approximately proportional to CIR for the same Calvo plus model without strategic

complementarity/substitutability. The constant of proportionality depends on the strength

of the strategic complementarity/substitutability, but the it is (approximately) the same for

any Calvo plus model.

2 Mean Field Game for a Price Setting Firm

We describe first the problem of a firm, whose value function u depends on state x and

time t. The one dimensional state x represent a deviation from an ideal price, which when

uncontrolled follows a Brownian motion with variance per unit of time σ2 and no drift. The

decision maker is a firm, who seeks to minimize the discounted value of the sum of flow cost
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F and fixed cost of adjustment ψ. Additionally, at each instant, with a Poisson probability

rate ζ > 0, the firm firm can change its price without paying any cost. Let ρ > 0 be a

discount rate and let F : R2 → R be the flow return cost of the firm. The flow cost of

F (x,X) depends on the firm state x as well as given time path for a variable denote by X.

The time dependence of the firm’s problem, and in particular for the value function u arises

from the path X.

The only actions the firms takes consists on deciding stopping times {τj} denoting when to

pay a fixed cost ψ > 0 and change prices thereby changing the value of the state at t = τj from

x(τ−j ) to any desired value x(τ+
j ). Given the assumptions on F and the fixed cost, the optimal

decision rule at each time t consists on dividing the state space on a region where control

is not exercised, the inaction region, and a complementary region where control is exercised

and the state is reset by an impulse. We can describe the optimal decision rules by three

time paths x̄, x and x∗. At a given time the optimal decision rule of the firm is represented

by the interval [x(t), x̄(t)] so that if x(t) is in this interval the firm does not exercise control,

i.e. inaction is optimal, but if x(t) /∈ (x(t), x̄(t)), the firm exercises control, and changes its

price as to immediately change its state from x(t−) to x(t+) = x∗(t). Additionally, the firm

will change its price so that x(t+) = x∗(t), if t is a time where ther is a free adjustment

opportunity. We refer to x∗(t) and x̄(t) as the boundaries of the range of inaction, to x∗(t)

as the optimal return point.

The essence of a Mean Field Game is that the path of X that is taken as given by each

firm is given by the collective action the firms solving the same problem. We will let m(x, t)

be the density of x at time t generated by a collection of firms following the decision rules

given by paths x, x∗, x̄, and a given distribution of x t time t = 0. In particular, given the

path of the distribution m, we assume that X(t) is the cross sectional average of x using

density m(·, t) at each time t.

We will assume that after time T > 0, the firms value function becomes ũ, depends on x

but does not depend on time. We will allow T =∞. The thresholds x, x∗, x̄ and the coupling
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variable X map the time interval [0, T ] to the real line. The value function u and density m

map [0, T ]× R into the real line and the positive real line respectively.

A classical solution for a Mean Field Game (MFG) for initial and final conditions m0, uT

is given by functions u,m, x, x̄, x∗, X satisfying for all t ∈ [0, T ]:

0 = ut (x, t)− ρu(x, t) +
σ2

2
uxx(x, t) + F (x,X(t))

+ ζ [u(x∗(t), t)− u(x, t)] for all x ∈ [x(t), x̄(t)] (1)

0 = −mt (x, t) +
σ2

2
mxx(x, t)− ζm(x, t)

for all x ∈ [x(t), x̄(t)] and x 6= x∗(t) (2)

X(t) =

∫ x̄(t)

x(t)

xm(x, t)dx for all t ≥ 0 (3)

where x∗(t) = arg minx u(x, t). Additionally we have the boundary conditions for u for all

t ∈ [0, T ]:

ux (x̄(t), t) = ux (x(t), t) = ux (x∗(t), t) = 0 (4)

u (x̄(t), t) = u (x(t), t) = u (x∗(t), t) + ψ (5)

with terminal condition at t = T given by

u(x, T ) = uT (x) for all x (6)

The boundary conditions for m for all t ∈ [0, T ] are

0 = m (x̄(t), t) = m (x(t), t) for all (7)

1 =

∫ x̄(t)

x(t)

m(x, t)dx (8)
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with initial condition at t = 0 given by

m(x, 0) = m0(x) for all x (9)

We now comment of the interpretation and assumptions that we use for the MFG defined

above.

Interpretation of the Flow cost. For the price setting model we interpret the flow cost F

as the deviation from the static maximum profit for the firm, which depends on the deviation

form the optimal price of the firm x as well as on the price charged by the rest of the firms

X. Under this interpretation, during the times where the firm does not change its prices,

the deviation of the firms ideal price evolves as a drift-less Brownian motion with variance

per unit of time given by σ2. Hence, F (·, X) has a minimum around the static maximizing

x, given X. Our leading example for the function F is the case of a quadratic function of

(x,X), which without loss of generality can be written as:

F (x,X) = B (x+ θX)2 with B > 0 (10)

In this case the static profits will be maximized by setting x = −θX. Thus, absent of adjust-

ment cost the minimum cost is achieved by setting x = −θX, so if θ < 0 the firms strategies

exhibit strategic complementarity, and if θ > 0 they exhibit strategic substitutability. In

term of the notions used for MFGs, letting mi be an arbitrary measure and Xi ≡
∫
xdmi,

the definition of monotonicity applied to the period return F (x,X) = B(x+ θX)2 is that for

any two m1 6= m2 must satisfy the following inequality

0 <

∫ (
B(x+ θX1)2 −B(x+ θX1)2

)
(dm1(x)− dm2(x)) = 2Bθ(X1 −X2)2

Hence, the monotonicity condition in MFGs corresponds to θ > 0, or strategic substitutabil-

ity.
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Connected inaction region. We will assume throughout that the inaction region is con-

nected, i.e. given by a single interval, namely [x(t), x̄(t)]. In principle, the inaction region

could be a union of such intervals. For stationary case one can show that this is not the case,

but in the MFG the argument is more involved. This is a moot point when we analyze the

perturbation, since we explore variations of the problem nearby the stationary solution.

Boundary conditions for HBJ equation. The boundary conditions for the HBJ in

equation (4) are typically referred to as “smooth pasting and “optimal return point”, and

the ones in equation (5) are referred as “value matching”. They are a consequence of our

assumption that for each t the value function u(·, t) is once differentiable for all x, and twice

differentiable in the range of inaction. In particular, for any x outside the range of inaction,

the value function must satisfy u(x, t) = u(x∗(t), t) + ψ. Thus, the boundary conditions

imposed above assume that u(·, t) is once differentiable everywhere in x. This includes the so

called “value matching” and “smooth pasting” conditions. Finally, the optimal return point

is required since x∗(t) achieves a minimum of u(·, t).

An alternative to the classical formulation of the HBJ in equation (1) and equation (4)-

equation (5) is to write the following variational inequalities:

ρu(x, t) = (11)

min

{
ut (x, t) +

σ2

2
uxx(x, t) + F (x,X(t)) + ζ

(
min
x′

u(x′, t)− u(x, t)
)
, ρ
(
ψ + min

x′
u(x′, t)

)}

which must hold for all t ∈ [0, T ] and for all x. We can define x∗(t) = arg minx u(x, t). Note

that this formulation does not assume that u(·, t) is once differentiable, nor that range of

inaction is given by a single interval.

Boundary conditions for KF equation. Under the assumption that the range of in-

action is given by a single interval, then there should be zero mass everywhere else, so

m(x, t) = 0 for all x /∈ [x(t), x̄(t)]. Then, assuming continuity of m(·, t) for all x we ob-
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tain the boundary condition in equation (7). This is the condition to be expected at the

boundaries of the range of inaction, since they are “exit” points, so that the density cannot

accumulate there. Likewise, the Kolmogorov forward equation should not hold at x = x∗(t)

since this is an “entry” point, i.e. a point where the flux of density that exits from x = x(t)

and x̄(t) is entering. The integral condition in equation (8) states that for every t, the func-

tion m(·, t) is a density and hence integrates to one, i.e mass is preserved. Finally, while we

are not writing it, we require that m(x, t) ≥ 0 for all x, t.

Differentiating the mass preservation condition equation (8) with respect to time, and

using the p.d.e. equation (2) for m we obtain:

0 = −ζ +
σ2

2

[
mx (x̄(t), t)−m+

x (x∗(t), t) +m−x (x∗(t), t)−mx (x(t), t)
]

(12)

where m+
x and m−x are the right and left derivatives of mx(·, t).

No mass points. We have written the evolution of the cross sectional distribution under

the assumption that it has no mass point for all times t ≥ 0. This will follow if the initial

distribution m0 has no mass points, and if the equilibrium decision rules are such the dis-

tribution m(·, t) will not have mass points for all t ≥ 0. This, in turns, requires that the

support of m0 is inside [x(0), x̄(0)], or that
∫ x̄(0)

x(0)
m0(x)dx = 1. Note that this last condition

can only be verified after we solve for an equilibrium. We will return to this issue below.

Steady State: Initial and Final Conditions. We describe the stationary version of

the MFG. Let x̄ss, xss and x∗ss be three time-invariant thresholds, and let ũ and m̃ be two
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time-invariant function with domain in [xss, x̄ss] solving:

0 = −ρũ(x) +
σ2

2
ũxx(x) + F (x,Xss) + ζ (ũ(x∗ss)− ũ(x)) for all x ∈ [xss, x̄ss] (13)

0 =
σ2

2
m̃xx(x)− ζm̃(x) for all x ∈ [xss, x̄ss], x 6= x∗ss (14)

Xss =

∫ x̄ss

xss

x m̃(x)dx (15)

with boundary conditions:

ũx (x̄ss) = ũx (xss) = ũx (x∗ss) = 0 (16)

ũ (x̄ss) = ũ (xss) = ũ (x∗ss) + ψ (17)

0 = m̃(xss) = m̃(x̄ss) (18)

If ζ = 0, the stationary distribution m̃ given by a triangular tent-map:

m̃(x) =


2

x̄ss−xss
− (x− x∗ss) 2

(x̄ss−xss)(x̄ss−x∗ss)
for x ∈ [x∗ss, x̄ss]

2
x̄ss−xss

+ (x− xss) 2
(x̄ss−xss)(x∗ss−xss)

for x ∈ [xss, x
∗
ss]

(19)

When ζ > 0 we have the stationary distribution m̃ given by

m̃(x) =


L1e

`x + L2e
−`x for x ∈ [0, x̄ss]

L1e
−`x + L2e

`x for x ∈ [−x̄ss, 0]

and m̃(x) = m̃(−x) for x ∈ [−x̄ss, 0], and where the constant `, L2 and L1 satisfy

` =

√
2ζ

σ2
, L1e

`x̄ss + L2e
−`x̄ss = 0 , and

1

2
= L1

e`x̄ss − 1

`
+ L2

e−`x̄ss − 1

−`
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Our benchmark case of F (x,X) = B(x+ θX)2 we have that

Xss = x∗ss = 0 and x̄ss = −xss.

Note that the steady state is independent of the value of θ. In this case the solution for ũ can

be obtained, up to an implicit equation in (ρ+ζ)/σ2, a feature that we explore in Lemma 10.

For future reference we notice that in steady state there are two simple informative

statistics of the distribution of price changes, When the firm decides to exercise control

it changes x by changing prices. Thus, the distribution of price changes is the same as

the distribution of adjustment of x. In the stationary case this distribution is extremely

simple, it is given by a binomial distribution with two equal values, price increases equal to

∆p = x∗ss−xss and price increases equal to ∆p = x∗ss−x̄ss. We can summarize this distribution

by its variance, i.e. V ar(∆p). The other interesting statistics is the average number of price

changes per unit of time, which we denote as N(∆p). We have V ar(∆p)N(∆p) = σ2.

V ar(∆p) = (x̄ss − x∗ss)
2 and N(∆p) =

σ2

(x̄ss − x∗ss)
2 (20)

Uniqueness of the stationary state. Here we argue that if θ 6= −1 then the stationary

solution displayed above is unique. On the other hand, if θ = −1, then any number Xss

corresponds to a steady state.

To see this, first notice that in the static game, i.e. the case where ρ → ∞ and ψ = 0,

we have that the best response is x∗ = arg minxB(x + θX)2 so x∗ = −θX. Then requiring

that x∗ = X we get that X = −θX, from which we obtain the desired result.

Now we argue that the result for the static game also holds for the stationary state. For

this, define w ≡ x+ θXss. Then the HBJ becomes:

(ρ+ ζ)û(w) = Bw2 + û′′(w)σ
2

2
+ ζu(w∗) for all w ∈ [−w, w̄]
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with boundary conditions:

û(w̄) = û(w) = û(w∗) + ψ and 0 = û′(w̄) = û′(w) = û′(w∗)

and its unique solution satisfies w∗ = 0 and w = −w > 0. The uniqueness of the solution

follows from the fact that we can find a symmetric solution, and that this solution achieved

the minimum of the control problem.

Given {w,w∗, w̄} the density m̂(w) is the unique solution

0 = m̂′′(w)σ
2

2
− ζm̂(w) for all w ∈ [w,w∗) ∪ (w∗, w̄]

with boundary conditions:

0 = m̂(w̄) = m̂(w), lim
w↑w∗

m̂(w) = lim
w↓w∗

m̂(w), and 1 =

∫ w̄

w

m̂(w)dw .

Note that since the solution for m̂ is symmetric, centered at w∗ = 0, and thus
∫ w̄
w
w m̂(w)dw =

0. Thus, a stationary equilibrium solution of the original problem requires:

x∗ss = w∗ + θXss, xss = w + θXss, x̄ss = w̄ + θXss,

Xss =

∫ w̄

w

m̂(w) (w − θXss) dw =

∫ w̄

w

m̂(w)wdw − θXss

∫ w̄

w

m̂(w)dw

and thus we can construct a stationary state if and only if:

Xss = −θXss

Hence, just as in the static case with no adjustment cost, if θ 6= −1, then Xss = 0 is the only

stationary state, and if θ = −1 one can construct a stationary state for any Xss.

11



Terminal and Initial conditions for MFG. We will use the stationary solution to define

the initial density m0 and the terminal value function uT . For the initial condition we will

consider an antisymmetric perturbation a of the stationary density m̃, where we let δ the

parameter that indexes the size perturbation, so:

m0(x) = m̃(x) + κ(x)δ, with κ(x) = −κ(−x) for all x ∈ [xss, x̄ss], x 6= x∗ss and

κ(xss) = 0, and |κ′(xss)| ≤ m̃(xss) (21)

Note that under this conditions, m0(x) is a valid density for values of δ near zero. Below we

will focus in a particular perturbation, that correspond to a small monetary shock.

For the terminal condition we set:

uT (x) = ũ(x) for all x ∈ [xss, x̄ss] and

uT (x) = ũ(x∗ss) + ψ for all x /∈ [xss, x̄ss] (22)

so that at time t = T . One interpretation of this terminal condition is that the firm problem

is infinite horizon, but that the “coupling” with the rest of the firms, i.e. the strategic

complementarity or substitutability, operates only until time t = T . In other words, after

t ≥ T the value of θ becomes zero, and then each firms decision rules depends exclusively on

its states.

Monetary Shock, Output IRF, and Initial Conditions. One can use the steady

state to define interesting initial conditions for the MFG. A particularly interesting initial

condition is the effect of an unanticipated aggregate nominal shock δ, which can be thought

as m0(x) = m̃(x+ δ). The interpretation of this initial condition is that, after the monetary

shock δ the nominal cost jumps immediately by this amount, and hence the value of state

x of each firms goes to x to x − δ, and hence the density before any decision is taken is

m0(x) = m̃(x + δ). We are particularly interested in the case where δ is small. Recall that
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the interpretation of x is the deviation of the optimal markup, i.e. it includes the difference

between the price of the firms good minus its cost, and thus an increase in the common

component of cost for al firms reduces the deviation of markup from its optimal value.

One of the most interesting features of the solution of the sS MFG interpreted as a

price setting problem is the interpretation of the path of X(t) after the small displacement

m0(x) = m̃(x + δ). In this case the resulting value of X(t) is inversely proportional to the

deviation from steady state output t periods after the a once and form all monetary shock

δ, or the impulse response function for output –IRF for short.

No first order Strategic Complementarity/Substitutability, or no coupling. Let’s

consider the case where F does not depend on X, i.e. when θ = 0. In this case, it is immediate

to see that the solution of the value function u and the polices x, x∗, x̄ for all times is the

stationary solution, i.e. u(x, t) = ũ(x) at all t and x, and x(t) = xss, x
∗(t) = x∗ss and

x̄(t) = x̄ss. Then we can use the stationary policies xss, x
∗
ss, x̄ss and solve for m(x, t), for a

given m0 at times t ∈ [0, T ], and obtain the implied behaviour X(t) during that time interval.

To be clear, this case assumes away the interesting coupling of a MFG between m and u.

But perhaps this case can serve as the point (the paths) over which an expansion is taken.

For the case in which F (x) is symmetric, which implies symmetric policies, one can further

simplify the solution to the path of X(t) by solving a related problem for m, where there is

no re-injection, so one can drop the condition equation (8), and assume that equation (2)

holds also at x(t) = x∗ss. This is due to the symmetry of the thresholds and the lack of

drift. In Alvarez and Lippi (2021) we describe this path for a general class of models, which

includes the simple sS model as a special case, and solving it by using the eigenfunctions of

the related self-adjoint operator.
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3 A small monetary shock in the sS MFG

In this section we set to analyze the effect of a monetary shock where the economy starts

from its stationary state. We study the evolution of the MFG where the initial condition is

given by small perturbation δ on the steady state distribution corresponding to a monetary

shock of that size.

Consider an equilibrium with {x̄(t, δ), x(t, δ), x∗(t, δ), X(t, δ), u(x, t, δ),m(x, t, δ)}. We

will linearize this equilibrium with respect to δ, and evaluate it at δ = 0.

Normalization. To simplify the exposition we normalize the parameters of the problem

so that at steady sate x̄ss = 1. In particular, given {σ2, B, ρ, ζ} we set the fixed cost ψ so

that x̄ss = 1. This amounts to measure the shock δ in units of standard deviation of steady

state price changes, i.e. in units of
√
V ar(∆p). Moreover

Notation. We also let

k ≡ σ2

2
, η ≡

√
ρ+ ζ

k
, ` ≡

√
ζ

k
and C ≡ 2Bθ .

For future reference the average number of price changes in steady state is given by

N =


ζ
(

cosh(`)
cosh(`)−1

)
for ζ > 0

σ2 = 2k for ζ = 0

The initial conditions are

m0(x) = m̃′(x) =


−1 if x ∈ [−1, 0)

1 if x ∈ (0, 1]

(23)
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for the case of ζ = 0 and

m0(x) = m̃′(x) =


`
(
L1e

`x − L2e
−`x) for x ∈ [0, 1]

−`
(
L1e

−`x + L2e
`x
)

for x ∈ [−1, 0]

for the case of ζ > 0.

Second, we will let for all t ∈ [0, T ]:

v(x, t) ≡ ∂

∂δ
u(x, t, δ)|δ=0 for all x ∈ [−1, 1]

n(x, t) ≡ ∂

∂δ
m(x, t, δ)|δ=0 for all x ∈ [−1, 1], x 6= 0

z̄(t) ≡ ∂

∂δ
x̄(t, δ)|δ=0 , z(t) ≡ ∂

∂δ
x(t, δ)|δ=0 , z

∗(t) ≡ ∂

∂δ
x∗(t, δ)|δ=0 and

Z(t) ≡ ∂

∂δ
X(t, δ)|δ=0

Interpretation of the discounted case ρ = η = 0 case. We will consider the case where

ρ = η = 0, which corresponds to the undiscounted case. The interpretation of such as is

a the limit of the discount rate ρ → 0, i.e. as the approximation for very small discount

rate. The advantage of this limit is some calculations are simplified. We will show below

that the expressions for different objects, in particular for z∗, z, z̄, as a function of ρ have a

well defined limit as ρ → 0. Technically, for some results –such as the compactness of the

operator when |θ| > 1, we will require that T <∞, but T can be arbitrarily large.

Linearization of the HBJ and its boundary conditions. We differentiate the HJB

equation for u(x, t, δ) with respect to δ at each (x, t) and use the boundary conditions to

obtain

0 = −(ρ+ ζ)v(x, t) + vt(x, t) + kvxx(x, t) + CxZ(t) in x ∈ [−1, 1], t ∈ (0, T ) (24)

Furthermore, differentiating the two value matching boundary conditions for u(x̄(t, δ), t, δ) =
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ψ + u(x∗(t, δ), t, δ) and u(x(t, δ), t, δ) = ψ + u(x∗(t, δ), t, δ) with respect to δ for each t and

evaluating them at δ = 0 we get for all t ∈ (0, T ):

v(−1, t) + ũx(−1)z(t) = v(0, t) + ũx(0)z∗(t) and v(1, t) + ũx(1)z̄(t) = v(0, t) + ũx(0)z∗(t)

(25)

where we use the steady state value function ũ(x). We prove the following:

Lemma 1. The function v(x, t) is antisymmetric in x for each t, i.e. v(x, t) = −v(−x, t) for

all x ∈ [−1, 1] and t ∈ [0, T ], and hence it satisfies the boundary condition:

0 = v(−1, t) = v(1, t) = v(0, t) all t ∈ (0, T ) (26)

We also use the boundary condition at t = T , which imposing we go to steady state, or

more generally to a function independent of δ, gives:

0 = v(x, T ) all x ∈ [−1, 1] (27)

3.1 Analysis of HBJ equation

We can solve the p.d.e. for v given by equation (24) for all t, x, which is the heat equation

with source CxZ(t), with a zero space boundary at t = T , and with the boundary conditions

implied by value matching. We summarize this in the following lemma.

Lemma 2. Given the source Z(t) for all t ∈ [0, T ], then the unique solution of the heat

equation (24) with the two Dirichlet boundary conditions and the condition at x = 0 in

equation (26) for all t ∈ [0, T ], and with the terminal space condition v(x, T ) = 0 for all

16



x ∈ [0, 1] is:

v(x, t) = −4Bθ

∫ T

t

∞∑
j=1

e(η2+(jπ)2) k(t−τ) Z(τ)
(−1)j

jπ
sin(jπx)dτ (28)

Given this lemma, the next proposition summarizes the nature of the optimal decision

rules for a firm facing a path of future values for the cross sectional average price gap or

markup:

Proposition 1. Taking as given a path Z(t) for t ∈ [0, T ] the solution to the firm’s

problem implies the following path for its optimal thresholds {z(t), z∗(t), z̄(t)}:

z̄(t) = T̄ (Z)(t) ≡ θĀ

∫ T

t

H̄(τ − t)Z(τ)dτ for all t ∈ [0, T ) (29)

z∗(t) = T ∗(Z)(t) ≡ θA∗
∫ T

t

H∗(τ − t)Z(τ)dτ for all t ∈ [0, T ) (30)

where z(t) = z̄(t) and where H̄ and H∗ are defined as:

H̄(s) ≡
∞∑
j=1

e−(η2+(jπ)2) k s ≥ 0 , H∗(s) ≡
∞∑
j=1

e−(η2+(jπ)2) k s(−1)j ≤ 0 for all s > 0 (31)

Ā ≡ 4B

ũxx(1)
= k 2η2

[1−η coth(η)]
< 0 , and A∗ ≡ 4B

ũxx(0)
= k 2η2

[1−η csch(η)]
> 0 (32)

The ratio A∗/|Ā| is strictly increasing in η, with η2

[1−η csch(η)]
→ 6, | η2

[1−η coth(η)]
| → 3 as η → 0.

Note that, given the sign of the expression above, if θ < 0, i.e. if there is strategic

complementarity, a firm facing higher values of Z(τ) for τ ≥ t, sets a higher value of the

optimal return z∗(t), and a larger value of both the upper and lower values of the inaction

band, z̄(t), z(t). If θ > 0 the result is the opposite. The strength of the result depends on θ

as well as on η =
√

2(ρ+ ζ)/σ2. Also, as expected, values of Z(τ) closer to t receive higher

weight on the firm’s decision for its optimal return point and width of the inaction band.
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Furthermore, since z̄(t) = z(t), the width of the inaction region is constant. The economics

of this result is that the width of the inaction region reflects the option value of waiting,

that is mainly affected by σ2 and that is unaffected by the monetary shock. The parameter

η also enters into the expressions for Ā and A∗, which reflect how the curvature of the value

function changes as η changes. Equation (32) shows that the curvature of the steady state

value function ũxx, characterized in Lemma 10, affects the speed of convergence.

Linearization of the KFE and its boundary conditions. We differentiate the KFE

for m(x, t, δ) with respect to δ at each (x, t) to obtain:

0 = −nt(x, t) + knxx(x, t)− ζn(x, t) in x ∈ [−1, 1], t ∈ (0, T ), x 6= 0 (33)

Differentiating with respect to δ the boundary conditions for each t for m(x̄(t, δ), t, δ) = 0

and m(x(t, δ), t, δ) = 0, and evaluating it at δ = 0 we obtain:

0 = n(1, t) + m̃x(1)z̄(t) and 0 = n(−1, t) + m̃x(−1)z(t) all t ∈ (0, T )

and using that m̃x(−1) = 1 and m̃x(1) = −1 from equation (23), we get for ζ = 0:

n(1, t) = z̄(t) and n(−1, t) = −z(t) = −z̄(t) all t ∈ (0, T ) (34)

and for ζ > 0:

n(1, t) =
`2

2

(
e`

(1− e`)2 +
e−`

(1− e−`)2

)
z̄(t) all t ∈ (0, T ) and

n(−1, t) = −z̄(t) all t ∈ (0, T ) (35)
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where we used that z̄(t) = z(t) from Proposition 1. Differentiating the mass preservation

equation with respect to δ at each t we obtain:

0 =

∫ 1

−1

n(x, t)dx all t ∈ (0, T ) (36)

Differentiating this equation with respect to time and using the KFE we have:

0 = nx(1, t)− nx(0+, t) + nx(0
−, t)− nx(−1, t) all t ∈ (0, T ) (37)

The initial condition for n comes from differentiating m(x, 0) = m̃(x + δ) with respect to δ,

using the triangular shape of m̃, and evaluating it at δ = 0

n(x, 0) =


+1 if x ∈ [−1, 0)

−1 if x ∈ (0, 1]

(38)

using that m̃x(x) = ±1 for the case of ζ = 0 or

n(x, 0) =


`L1e

`x − `L2e
−`x for x ∈ [0, 1]

−`L1e
−`x + `L2e

`x for x ∈ [−1, 0]

(39)

3.2 Analysis of the KF Equation

We develop an argument to determine the boundary of n(x, t) at x = 0 to solve the Kol-

mogorov forward equation. We then present the solution as a function of given paths for the

thresholds z∗(t), z̄(t).

Next we present two lemmas to establish that the function n(x, t) is antisymmetric. Con-
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sider two functions a(t) and b(t) satisfying:

n(0+, t) = b(t) all t ≥ 0 (40)

n(0−, t) = a(t) all t ≥ 0 . (41)

To determine a and b we study the following problem. Define n+, n− and n̂ with domain

in [0, 1]× R+ → R as

n+(x, t) = n(x, t) for x ≥ 0 all t

n−(x, t) = −n(−x, t) for x ≤ 0 all t

n̂(x, t) = n(x, t) + n(−x, t) for x ≤ 0 all t

Note that n+(0, t) = b(t) and n−(0, t) = −a(t). The function n̂ satisfies:

n̂t(x, t) = nt(x, t) + nt(−x, t) = k (nxx(x, t) + nxx(−x, t))− ζ (n(x, t) + n(−x, t))

= kn̂xx(x, t)− ζn̂(x, t) all x, t ≥ 0 (42)

n̂(1, t) = n(1, t) + n(−1, t) = − 1

mx(1)
(z̄(t)− z(t)) = 0 all t (43)

n̂(0, t) = n(0+, t) + n(0−, t) = b(t) + a(t) for all t (44)

n̂(x, 0) = n(x, 0) + n(−x, 0) = 0 for all x (45)

Note that the mass preservation in equation (36) is equivalent to:

0 =

∫ 1

0

n(x, t)dx+

∫ 1

0

n(−x, t)dx =

∫ 1

0

n̂(x, t)dx = 0 (46)

Lemma 3. (currently for ζ = 0, need to rewrite for ζ ≥ 0). Consider the KFE for n̂ given
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by:

n̂t(x, t) = kn̂xx(x, t) all x ∈ [0, 1] and t > 0

n̂(x, 0) = 0 all x ∈ [0, 1]

n̂(0, t) = (a+ b)(t) all t > 0 and

n̂(1, t) = 0 all t > 0

Its solution is given by

n̂(x, t) = r(x, t) +
∞∑
j=1

cj(t)ϕj(x) all x ∈ [0, 1] and t > 0 where

r(x, t) = (a+ b)(t)[1− x] all x ∈ [0, 1], t > 0

and where for all j = 1, 2, . . . we have:

ϕj(x) = sin(jπx) for all x ∈ [0, 1] , 〈ϕj, h〉 ≡
∫ 1

0

h(x)ϕj(x)dx

cj(t) = cj(0)e−λjt +

∫ t

0

qj(τ)eλj(τ−t)dτ all t > 0 , where cj(0) =
〈ϕj ,−r(·, 0)〉
〈ϕj, ϕj〉

and λj = (jπ)2k

qj(t) =
〈ϕj ,−rt(·, t)〉
〈ϕj, ϕj〉

= −2(a+ b)′(t)

jπ
all t > 0

We have the following

Lemma 4. Consider the p.d.e. in Lemma 3. Additionally, impose that n̂ satisfies mass

preservation, as given by equation (46). Then b(t) = −a(t) for all t ≥ 0.

Lemma 3 and Lemma 4 imply that n(x, t) = −n(−x, t), i.e. that the function n is

antisymmetric. We also have:

Lemma 5. Assume that m(x∗(t, δ), t, δ) is continuous, and right and left differentiable at
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δ = 0. Then z∗(t) = 1
−2 m̃′(0)

(b(t)− a(t)).

Lemma 4 and Lemma 5 have the important implication that:

n(0+, t) = −m̃′(0+) z∗(t) = −n(0−, t) for all t ≥ 0

So we have

n(1, t) = −m̃x(1)z̄(t) = −n(−1, t) all t ∈ (0, T )

We will now use these boundary conditions to obtain an explicit solution for n(x, t).

Lemma 6. The solution for the KFE for n:

nt(x, t) = knxx(x, t)− ζn(x, t) all x ∈ [0, 1] and t > 0

n(x, 0) = m̃′(x) = −`
2

2

(
e`x

(1− e`)2 +
e−`x

(1− e−`)2

)
all x ∈ [0, 1]

n(0, t) = w∗(t) all t > 0 and

n(1, t) = w̄(t) all t > 0

where

w∗(t) = −m̃′(0+) z∗(t) =
`2

2

(
1

(1− e`)2 +
1

(1− e−`)2

)
z∗(t) and

w̄(t) = −m̃′(1)z̄(t) =
`2

2

(
e`

(1− e`)2 +
e−`

(1− e−`)2

)
z̄(t)

is given by

n(x, t) = r(x, t) +
∞∑
j=1

cj(t)ϕj(x) all x ∈ [0, 1] and t > 0 where

r(x, t) = w∗(t) + x [w̄(t)− w∗(t)] all x ∈ [0, 1], t > 0
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and where for all j = 1, 2, . . . we have:

ϕj(x) = sin(jπx) for all x ∈ [0, 1] , 〈ϕj, h〉 ≡
∫ 1

0

h(x)ϕj(x)dx

cj(t) = cj(0)e−λjt +

∫ t

0

qj(τ)eλj(τ−t)dτ all t > 0 , where λj = (`2 + (jπ)2)k ,

qj(t) =
〈ϕj ,−rt(·, t)− ζr(·, t)〉

〈ϕj, ϕj〉
= 2

[
cos(jπ)− 1

jπ

]
w?′(t) + 2

(−1)j

jπ
[w̄′(t)− w?′(t)]

+ 2ζ

[
cos(jπ)− 1

jπ

]
w?(t) + 2ζ

(−1)j

jπ
[w̄(t)− w?(t)] all t > 0

cj(0) =
〈ϕj , m̃′ − r(·, 0)〉

〈ϕj, ϕj〉
=
〈ϕj , m̃′〉
〈ϕj, ϕj〉

+ 2

[
cos(jπ)− 1

jπ

]
w?(0) + 2

(−1)j

jπ
[w(0)− w?(0)]

Note that if ζ > 0:

〈ϕj , m̃′〉
〈ϕj, ϕj〉

=


− `2jπ
`2+(jπ)2

(
1+e`(−1)j+1

(1−e`)
2 + 1+e−`(−1)j+1

(1+e−`)
2

)
if ζ > 0

−2+(−1)j+1

(jπ)2
if ζ = 0

(47)

We use Lemma 6 to solve for the quantity of interest, the impulse response of the mean

Z(t) for given path of the thresholds {z̄(t), z∗(t)}, we have:

Z(t) =

∫ 1

−1

xn(x, t)dx = 2

∫ 1

0

xn(x, t)dx all t ∈ (0, T )

The next proposition summarizes our analysis of the KFE:

Proposition 2. Taking as given the paths of {z∗(t), z̄(t)}, the solution of the Kolmogorov

Forward equation implies the following path for the average value {Z(t)}:

Z(t) = TZ(z∗, z̄)(t) ≡ Z0(t) + 4k

∫ t

0

G∗(t− τ)z?(τ)dτ + 4k

∫ t

0

Ḡ(t− τ)z̄(τ)dτ (48)
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for all t ∈ [0, T ] and where Z0, Ḡ and G∗ are defined as

Ḡ(s) ≡ −m̃′(1)
∞∑
j=1

e−(`2+(jπ)2) k s and G∗(s) ≡ −m̃′(0+)
∞∑
j=1

(−1)j+1e−(`2+(jπ)2)k s

for all s ≥ 0, where

−m̃′(1; 0) = −m̃′(0+; 0) = 1 if ζ = 0 and otherwise

−m̃′(1; `) =
`2

2

(
e`

(1− e`)2 +
e−`

(1− e−`)2

)
and − m̃′(0+; `) =

`2

2

(
1

(1− e`)2 +
1

(1− e−`)2

)

and where

Z0(t) =


2
∑∞

j=1
`2

`2+(jπ)2

(
(−1)j−e`

(1−e`)
2 + (−1)j−e−`

(1+e−`)
2

)
e−(`2+(jπ)2)kt if ζ > 0

−4
∑∞

j=1
[1−cos(jπ)]

(jπ)2
e−(jπ)2 k t if ζ = 0

(49)

This proposition gives the evolution of the average price gap or markup, Z(t), as a function

of the path of decisions up to time t, summarized by the boundaries of the inaction and the

optimal return point, i.e. {z∗(τ), z̄(τ)} for 0 ≤ τ ≤ t. As expected the mapping is monotone,

in that larger values of past thresholds, lead to larger values of the current cross sectional

average markup Z(t). Moreover, its slope is bounded by one. Also as expected, the values

of the pairs (z∗(τ), z̄(τ)) for τ close to t have a higher weight than those further away in

time. Given our normalization, the mapping TZ depends only on k ≡ σ2/2. As in the case

of Proposition 1, note that the monotonicity and the bound of the slopes hold for any t.

For the case of ζ = 0, the value of Z0, which can be written as

Z0(t) = −8
∞∑
j=1

e−((2j−1)π)2kt

((2j − 1) π)2 ∼ Ẑ0(t) ≡ − 8

π2
e−π

2kt

is proportional to (minus) the impulse response of output keeping the decisions rules fixed,
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as studied in Alvarez and Lippi (2021). Indeed the impulse response can be accurately

summarized by the first term in the summation, i.e. Ẑ0(t) ≡ −8e−π
2kt/π2. This is a good

approximation in the sense that Z ′0(t) has the same sign as Ẑ ′0(t) for all t ≥ 0, they both decay

at the same rate for large t, and
(∫∞

0
Ẑ0(t)dt

)
/
(∫∞

0
Z0(t)dt

)
= 96/π4 ≈ 0.9855. In Alvarez,

Le Bihan, and Lippi (2016) it is shown that for ζ > 0 and T = ∞, the cumulative area∫∞
0
Z0(t)dt = −Kurt(`)/(6N) where Kurt(`) is the kurtosis of the stationary distribution of

price changes, which depends only on `, divided by (six times) the frequency of price changes.

In Alvarez and Lippi (2019) we analyzed the properties of Z0(t), not just its area, as function

of `.

A useful corollary of Lemma 6 is to extend the result of Proposition 2, from the analysis

of the benchmark case with initial condition given by n(x, 0) = −sign(x) to the more general

perturbation n(x, 0) = −a(x). This follows immediately from recomputing the projection for

cj(0) in Lemma 6 and using it in the expression for
∫ 1

0
n(x, t)dx.

Corollary 1. Assume that n(x, 0) = κ(x) where κ(x) = −κ(x) all x ∈ [−1, 0) ∪ (0, 1],

κ(−1) = 1 and κ′(−1) ≤ 1. Taking as given the paths of {z∗(t), z̄(t)}, the solution of the

Kolmogorov Forward equation implies the following path for the average value {Z(t)}:

Z(t) = TZ(z∗, z̄)(t) ≡ Zκ
0 (t) + 4k

∫ t

0

G∗(t− τ)z?(τ)dτ + 4k

∫ t

0

Ḡ(t− τ)z̄(τ)dτ (50)

for all t ∈ [0, T ] and where Ḡ and G∗ are defined as in Proposition 2 and where the only

difference is that

Zκ
0 (t) ≡ 4

∞∑
j=1

e−(`+(jπ)2) k t

jπ

∫ 1

0

sin(jxπ)κ(x)dx .
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3.3 Equilibrium Characterization for small shock

We characterize the linearized equilibrium as a path Z which is a fixed point of an operator

T that maps the set of bounded paths on [0, T ] onto itself. The mapping T takes a path

Z and produces a path T (Z) after applying the composition of the mappings described in

Proposition 1 and in Proposition 2. In particular, we start with a path Z = {Z(t)}t∈[0,T ], use

equation (29) and equation (30) to produce two paths for the thresholds {z̄(t), z∗(t)}t∈[0,T ],

and then use these two paths into equation (48) to produce a path which we label T (Z) =

{T (Z)(t)}t∈[0,T ]. The mapping T is simply the composition of TZ with T̄ and T ∗, i.e.

T (Z)(t) = Tz
(
T ∗(Z), T̄ (Z)

)
(t) for all t ∈ [0, T ] (51)

Given the linearity of the system we can explicitly write the kernel of T

Z(t) = T (Z)(t) ≡ Z0(t) + θ

∫ T

0

K(t, s)Z(s)ds all t ∈ [0, T ] (52)

where Z0 is the value in the case of no coupling, i.e. when θ = 0, and where the kernel K is

given by:

K(t, s) = 4k

∫ min {t,s}

0

[
Ā H̄(s− τ)Ḡ(t− τ) + A∗H∗(s− τ)G∗(t− τ)

]
dτ ≤ 0

for all (t, s) ∈ [0, T ]2. Indeed note that Ḡ, H̄ and G∗, H∗ satisfy:

H̄(s) = −m̃′(1)e−ρ s Ḡ(s) ≥ 0 and H∗(s) = m̃′(0+)e−ρ sG∗(s) ≤ 0 for all s > 0 (53)

Moreover, using the expressions for each of these functions we can write:

K(t, s) = 4 k

∫ min {t,s}

0

e−ρ (s−τ)
[
Ā Ḡ(s− τ)Ḡ(t− τ)− A∗G∗(s− τ)G∗(t− τ)

]
dτ ≤ 0 (54)
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The kernel can be explicitly written as K(t, s) as follows:

K(t, s) = 4
∞∑
j=1

∞∑
i=1

[
Ā` − A∗` (−1)j+i

] [e[(jπ)2+(iπ)2+η2+`2]k(t∧s) − 1
]
e−(jπ)2kt−`2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2 + `2

where Ā` ≡ −m̃′(1; `) Ā and A∗` ≡ −m̃′(0+; `)A∗ . (55)

In these models output is negatively proportional to price gaps, so that letting Yθ(t) the

impulse response of output to a small monetary shock we have Yθ(t) = −%Z(t) where % > 0

is a positive parameter and where we index the impulse response by the parameter θ. Note

that Y0(t) ≡ −%Z0(t). The impulse response function solves Yθ = T Yθ as follows:

Yθ(t) = (T Yθ) (t) ≡ Y0(t) + θ

∫ T

0

K(t, s)Yθ(s)ds all t ∈ [0, T ] where (56)

Y0(t) = −%Z0(t)

3.4 Equilibrium Characterization

In this section we characterize the equilibrium of the model for a small shock. We concentrate

most of the results into the more challenging case of ζ = 0, which corresponds to the ? model.

All the results extend to the case of ζ > 0, indeed under weaker conditions.

We gather several properties of the kernel K in the next lemma. When ζ = 0, the kernel

K is given by:

K(t, s) =4
∞∑
j=1

∞∑
i=1

[
Ā− A∗ (−1)j+i

] [e[(jπ)2+(iπ)2+η2]k(t∧s) − 1
]
e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
(57)

We have the following characterization:

27



Lemma 7. Assume ζ = 0. Define

LipK ≡ sup
t∈[0,T ]

∫ T

0

|K(t, s)|ds and LipK> ≡ sup
s∈[0,T ]

∫ T

0

|K(t, s)|dt (58)

Then

1. K is negative, i.e. K(t, s) < 0 for all (t, s) ∈ (0, T )2.

2. K is symmetric for the undiscounted case, i.e if η = 0, then K(t, s) = K(s, t) for all

(t, s) ∈ [0, T ]2,

3. K(t, s) vanishes at t = 0, i.e. K(0, s) = 0 for all s ∈ [0, T ),

4. K is singular, diverging at the diagonal, lims→tK(t, s) = −∞ for all t ∈ (0, T ),

5. K(t, ·) has a uniform L1 bound: LipK < η2

18

(
1

1−η csch(η)
− 4

1−η coth(η)

)
,

6. L1 bound K(t, ·) for large discount: limη2→∞ LipK = 0,

7. L1 bound K(t, ·) for small discount: LipK < 1− 7
180
η2 + o(η2),

8. K(·, s) has a uniform L1 bound: LipK> <
η2

18

(
1

1−η csch(η)
− 4

1−η coth(η)

)
,

9. L2 bound:
∫ T

0

∫ T
0
K2(t, s) ds dt < c0 T

(
η2

[1−η csch(η)]
− η2

[1−η coth(η)]

)
for a constant c0 > 0

independent of any other parameters.

Figure 1 illustrates several of the the properties of the Kernel established in Lemma 7.

This figures displays K(t, ·) for s ∈ [0, T ], for several values of t. This figures uses a finite

value of T , and some chosen values of k and ρ.

Characterization of the IRF Yθ. Now we characterize the impulse response function

Yθ as the solution to the integral equation (56). We study the existence and uniqueness of

Yθ, for different cases, depending on the value of θ. Depending of the case we have more

or less complete characterization. Our main result consists, roughly speaking, on showing
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Figure 1: Kernel K(t, s)
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that equilibrium exists, it is unique and well posed provided that the strength of strategic

complementarity is smaller than some critical value. On the other hand, equilibrium is unique

and exists for any level of strategic substitutability. Finally, the size of the response to a

monetary shock is higher, the larger the strength of strategic complementarity.

Our first, very simple result, shows that all IRF start at the same point.

Proposition 3. Let Yθ be the solution of equation (60). Then its value at t = 0 is the

same as Yθ(0) = Y0(0) = %.

The proof of Proposition 3 is immediate, since by Lemma 7, K(0, s) = 0 for all s ∈ [0, T ]

hence Yθ(0) = Y0(0) + θ
∫ T

0
K(0, s)Yθ(s)ds = Y0(0).

We define K as

(K) (V )(t) ≡
∫ T

0

K(t, s)V (s)ds for all t ∈ [0, T ] (59)
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for any function V : [0, T ]→ R, and Kr are defined recursively:

(K)r+1 (V ) (t) ≡
∫ T

0

K(t, s) (K)r (V ) (s)ds

For future reference K we define the series

Sθ(t) =
∞∑
r=0

θr (K)r (Y0) (t) for all t ∈ [0, T ] (60)

Our next result is an existence and uniqueness result for the undiscounted case. It provides

a closed form expression of the IRF Yθ in terms of the projections to an orthonormal base of

L2([0, T ]).

Proposition 4. Assume that T <∞ and ρ = 0. In this case the operator K is self-adjoint

and compact, and thus it has eigenvalues and eigenfunctions which we denote by {µj, φj}∞j=1.

Then, if 1/θ 6= µj for all j, then unique solution of equation (56) given by

Yθ(t) =
∞∑
j=1

〈Y0, φj〉
1− θµj

φj(t) =
∑
j:µj<0

〈Y0, φj〉
1− θµj

φj(t) for almost all t ∈ (0, T ]

since 〈Y0, φj〉 = 0 if µj > 0, where the equalities are in the L2([0, T ]) sense, and where 〈·, ·〉

is the corresponding L2 inner product.

The next proposition uses the characterization in Lemma 7 to verify the conditions for the

Banach contraction fixed point theorem to establish existence and uniqueness of the solution

of equation (56) for a range of θ including positive and negative values, roughly speaking

values |θ| ≤ 1.

Proposition 5. Assume that B > 0, k > 0, ζ = 0, and T <∞ if ρ = 0, but otherwise these

parameters take arbitrary values. A sufficient condition for the existence and uniqueness of

the equilibrium IRF, i.e. of the uniqueness and existence of a solution to equation (56) is
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that |θ|LipK < 1 or

|θ| η
2

18

(
1

1− η csch(η)
− 4

1− η coth(η)

)
< 1 (61)

For small η2 we have a simpler sufficient condition:

|θ|
(

1− 7

180
η2

)
< 1 (62)

The proof of this proposition is immediate from the computations on bounds for LipK

items 5 to 7 in Lemma 7. Note that since η =
√

2ρ/σ2, since at steady state we have σ2 =

N V ar(∆p), and since for the purpose of computing the impulse response of output to a small

monetary shock we have, without loss of generality, normalized x̄ss so that V ar(∆p) = 1,

then we can set η =
√

2ρ/N . Thus η can be taken to be the square root of twice the discount

factor 2ρ divided by the number of price changes per unit of time N . Note that the series

expansions of the upper bound of |θ| in equation (62) gives

1

|θ|
> 1− 7

90

ρ

N

Thus for practical purposes we can take the sufficient conditions for contraction can be taken

to be |θ| ≤ 1. The previous proposition shows that under the stated conditions the fixed

point satisfies Yθ = Sθ.

The next proposition shows how the equilibrium behaves in the case of strategic comple-

mentarity, i.e negative θ. It shows that the higher the degree of strategic complementarity

is, i.e. the higher values of −θ is, the higher is the impulse response of output Yθ(t) to the

same shock, at every horizon t ∈ (0, T ]. The effect on Yθ(t) is convex in θ, so for large enough

value of −θ the value of Yθ is arbitrarily large.

Proposition 6. Let θ ∈ (θ, 0], where θ be the lower value for radius of convergence of the

the series in equation (60). The unique solution of equation (56) has the following properties:
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1. For each t ∈ (0, T ) the fixed point is positive, i.e. Yθ(t) > 0,

2. For each t ∈ (0, T ), the fixed point Yθ(t) is (strictly) monotone decreasing in θ,

3. For each t ∈ (0, T ), the fixed point Yθ(t) is (strictly) convex in θ.

While Proposition 6 is shown only for an interval of strictly negative values of θ. Never-

theless, the same properties holds in a neighborhood of at θ = 0. In particular, we have:

∂

∂θ
Yθ(t)|θ=0 = (K) (Y0)(t) < 0 and

∂2

∂θ2
Yθ(t)|θ=0 = 2 (K)2 (Y0)(t) > 0

and thus the monotonicity and convexity holds also at least in an interval of positive values.

Indeed, numerically, we find all the properties in Proposition 6 hold for positive values of θ.

The next proposition shows that when strategic complementarities are large enough, i.e.

large enough value of −θ, then Yθ must become negative for some t. Moreover, for the

undiscounted case, i.e. when ρ = 0, we have a more precise characterization. As θ ↓ θ

the solution Yθ goes from diverging to +∞ to nonexistence, and to diverging to −∞. These

results, together with the previous proposition, is a sign that the problem is not well posed as

−θ is large enough, since Yθ goes from being positive and arbitrarily large, to being negative.

Proposition 7. Assume that T <∞. In the undiscounted case, i.e. when ρ = 0, then

1. limθ↓θ Yθ(t) = +∞ for t > 0,

2. There is no solution in Yθ ∈ L2([0, T ]) of equation (56) for θ = θ,

3. limθ↑θ Yθ(t) = −∞ for t > 0,

where −∞ < θ = 1/µ1 < 0 is the reciprocal dominant eigenvalue of the K. In general, i.e.

for any η if θ is negative and large enough in absolute value such that:

θ

∫ T

0

K(t, s)ds > 1 for all t ∈ (0, T )
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and if Yθ is a fixed point in equation (56) for such θ, then inft∈(0,T ) Yθ(t) < 0. Moreover,

inft∈(0,T ) Yθ(t)→ −∞ as θ →∞.

We turn next to the uniqueness and existence for the case where θ > 0, i.e. the case

of strategic substitutability. We first establish a bound on the norm for any solution, by

using a Lasry-Lions type of argument for the perturbed system. Then we use this bound

and the Leray-Schauder fixed point theorem to establish existence. Uniqueness follows also

from an application the Lasry-Lions argument for the perturbed system. For this purposes

we establish two results. The first one is the compactness of the linear operator defined by

K, which follows from 9 in Lemma 7. The second is a bound on the norm of the solutions.

For the second result we define the following Lq norm:

||Y ||Lq(ρ,T ) ≡
(

ρ

1− e−ρT

∫ T

0

e−ρt|Y (t)|qdt
)1/q

. (63)

which we use in the following lemma. We show that the norm of Y is bounded in an

equilibrium. For future reference we show this for a slightly more general initial condition.

Lemma 8. Assume that ζ = 0. Let Y be a solution of Y = T Y as in equation (52),

with initial condition n(x, 0) = −κ̄ sign(x) for κ̄ ∈ (0, 1]. Assume that θ > 0. Then

||Y ||L2(ρ,T ) < κ̄|%| .

Now we use the previous lemma for the following result.

Proposition 8. Assume that θ > 0. Then there exists a unique solution of equation (56).

We define the cumulative impulse response function as

CIRθ ≡
∫ T

0

Yθ(t)dt (64)

The cumulative IRF is of economic interest, allowing to summarize the effect of the shock.
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We use in Figure 4 to illustrate how θ affect Yθ(t) in a simple way.

In Figure 2 we display the approximation to the equilibrium thresholds x̄(t), x∗(t) and

x(t). The figure consider the case of δ = 0.05 and θ = −.8. The black thin lines are the

steady sate values of the thresholds, and the color solid lines are the linear approximation to

the equilibrium thresholds. The thresholds start just hedge of the initial distribution, and

then they evolve according to the equilibrium. As shown above, the path for both boundaries

of the range of inaction x̄(t) and (t), as well as the optimal return path x∗(t) depart from the

steady state with the same sign as θ. The fact with strategic complementarity the thresholds

decrease is what it makes the impulse response larger, since fewer firms increase prices, and

also when they do so, they do so, they return to a lower value of the price gap.

Figure 2: Equilibrium path of thresholds
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In Figure 3 we display the IRF Yθ for five different values of θ. It can be seen, as shown

above, that Yθ(t) is decreasing in θ for each t.

Figure 3: Impulse response of Monetary Shock
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We have an explicit solution of for the undiscounted case where ρ = 0 and T <∞ written

in terms of the eigenvalues and eigenfunctions of K.

Proposition 9. Assume that ρ = 0, T <∞ and that θ < −1. Let {µj} be the countably

many real eigenvalues of the compact operator K, and let {φj} be the associated set of

eigenfunctions, which form an orthonormal base of L2([0, T ]). Then the solution Yθ satisfies
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Figure 4: Cumulative Impulse response of Monetary Shock
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1. The square cumulative IRF, given by CIR2
θ ≡

∫ T
0
Yθ(t)

2dt decreases with θ, i.e.

CIR2
θ =

∑
j:µj<0

〈φj, Y0〉2

(1− θµj)2
and

∂

∂θ
CIR2

θ < 0

2. As θ →∞ then Yθ(t)→ 0 for almost all t.

The next proposition shows the effect on the cumulative response function CIRθ of small

value of the coupling parameter θ. The approximation is based by differentiating Yθ(t) =

Y0(t) + θ
∫ T

0
K(t, s)Yθ(s)ds with respect to θ and evaluating at θ = 0 obtaining ∂

∂θ
Yθ(t)|θ=0 =∫ T

0
K(t, s)Y0(s)ds.

Proposition 10. Consider the limit as T →∞ and ρ→ 0 of the CIRθ. Then

lim
ρ↓0

lim
T→∞

1

CIRθ

dCIRθ

dθ
|θ=0 = 192

∑
m=1,3,5,...

(
1

mπ

)5

[csch(mπ)− coth(mπ)] ≈ −0.578 (65)

Figure 4 display the CIRθ relative to CIR0 for a range of θ. In particular it plots

CIRθ − CIR0)/CIR0 for a range of θ that includes both strategic substitutes (θ > 0) and

complements (θ < 0). It can be seen that the relative slope around θ is indeed approximately

0.578. Also we can see that as θ becomes more negative, and gets closer to the reciprocal of

the dominant eigenvalue, then CIRθ diverges towards +∞.

3.5 Calvo+ model

In this section we return to the analysis of the Calvo+ model where we let ζ > 0.

Pure Calvo Model. In this section we compare the results of the sS model obtained above

with the results for a very simple time dependent pricing model.

In this simple time dependent model a can only change prices at exogenously randomly

distributed times, independently of their state. In particular in each period a firm can change
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its price with probability ζ > 0 per unit of time. The simple case of a time dependent model

with a constant hazard rate is the most common case analyzed in the literature, due to its

tractability, introduced by Calvo. The analysis we use here can be found in ? obtain a very

simple closed form expression in the presence of strategic complementarity/substitutability.

We can recast the problem as a Mean Field Game, where the firm’s problem becomes

ρu(x, t) = B(x+ θX(t))2 + ut(x, t) + σ2

2
uxx(x, t) + ζ (u(x∗(t), t)− u(x, t)) for all x, and t ∈ [0, T ]

x∗(t) = min
x
u(x, t) for all t ∈ [0, T ]

and final boundary condition u(x, T ) = ũ(x), where ũ is the stationary solution which cor-

responds to the problem with θ = 0. The parameter ζ > 0 is the exogenously given rate at

which the firm can change its price.

The corresponding KFE for the measure m(x, t) is:

0 = σ2

2
mxx(x, t)− λm(x, t)−mt(x, t) for all x 6= x∗(t), and t ∈ [0, T ]

1 =

∫ ∞
−∞

m(x, t)dx for all t ∈ [0, T ]

with initial condition m(x, 0) = m̃(x+ δ), where m̃ is the stationary density of the problem

with θ = 0.

Since firms can only change prices at times independent to their state x, writing the

control problem of the firm we obtain that the solution for x∗(t) is:

x∗(t) = arg min
x

∫ ∞
t

e−(ρ+ζ)sE
[(
x+ σW (s) + θX(t+ s)1{t+s≤T}

)2 |W (t) = 0
]
ds

= −θ(ζ + ρ)

∫ T−t

0

e−(ζ+ρ)τX(t+ τ)dτ

= −θ(ζ + ρ)

∫ T

t

e−(ζ+ρ)(s−t)X(s)ds for all t ≥ 0
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and thus we get the o.d.e.:

d

dt
x∗(t) ≡ ẋ∗(t) = θ(ζ + ρ)X(t) + (ζ + ρ)x∗(t) for all t ≥ 0

In this simple case we can solve for the dynamics of the cross-sectional average evolves

X(t) directly, without solving for the entire density. At time t a fraction ζe−ζτdτ of firms

have prices that have change at time t− τ . At this times, they set the price to be x∗(t− τ).

We also use that before the initial period, i.e. t ≤ 0, the optimal reset price x∗(t) = −0, so

boundary condition right after the shock is X(0) = −1, using the normalization δ = 1. We

thus have

X(t) = ζ

∫ t

0

e−ζτx∗(t− τ)dτ − e−ζt for all t ≥ 0

which implies

d

dt
X(t) ≡ Ẋ(t) = ζ (x∗(t)−X(t)) for all t ≥ 0

We can write a simple constant coefficient o.d.e. for the vector (X(t), x∗(t)) as

ẋ∗(t)
Ẋ(t)

 =

ρ+ ζ θ(ρ+ ζ)

ζ −ζ


x∗(t)
X(t)


Letting µ the eigenvalues of the matrix, we have (µ − ρ − ζ)(ζ + µ) − θ(ρ + ζ)ζ = 0. For

instance if ρ = 0 we get (µ+ζ)(µ−ζ) = θζ2, with solution µ = ±ζa, so that (a+1)(a−1) = θ

or a2 − 1 = θ, so µ = ±
√

1 + θ. In the case of ρ = 0 and T =∞ we get

lim
ρ↓0

lim
T→∞

Y Calvo
θ (t) = −X(t) = e−ζ

√
1+θ t for all t ≥ 0 and thus (66)

lim
ρ↓0

lim
T→∞

CIRCalvo
θ =

1

ζ
√

1 + θ
, and lim

ρ↓0
lim
T→∞

1

CIRCalvo
θ

dCIRCalvo
θ

dθ
|θ=0 = −1

2
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Note that in the Calvo model the proportional effect of θ in the cumulative impulse

response CIRθ for small values of θ is smaller, but very similar to the values we obtain in

our baseline sS model. In particular, in the Calvo model this elasticity is −0.5, as shown in

equation (66), where in the baseline sS model the elasticity is about −0.578 –see equation (65)

in Proposition 10. It is intuitive that the elasticity will be higher in the baseline sS model,

since the firm can also change when prices are changed. Note that while the elasticities

are similar, the level of the CIR0 are very different between the baseline sS model and the

Calvo model, i,.e CIRCalvo
0 = 6 × CIRsS

0 , provided that both models have the same steady

state frequency of price changes –as can be seen in Alvarez, Le Bihan, and Lippi (2016).

Interestingly, in Figure 6 we compare the cumulative impulse function, CIR for two models,

our baseline sS model with the Calvo model. For both models we compute the CIR for a

range of values of θ, and in each type of model we express the CIR as a ratio of the value for

that model evaluated at θ = 0. From our analysis of the baseline model and the expression

for the Calvo model, in both cases the CIRθ is decreasing and convex in θ, diverges towards

+∞ at a critical (negative) value of θ, and converges to zero as θ →∞. What is remarkable

is that the effect of θ in both models is very similar, as both curves are very close in the

range of values of θ.

Calvo Plus model. In this section we display the results for the Calvo+ model, where

ζ > 0 and x̄ss <∞. As background, we first comment on known properties for the case of no

strategic complementarity of substitutability. In the case of θ = 0, Alvarez, Le Bihan, and

Lippi (2016) showed that the scaled cumulative response function CIR0/N ≡
∫∞

0
Y (t)dt/N

depends only on `2 = ζx̄2ss
σ2/2

. Indeed, in that paper it is shown that CIR0 = Kurt(`)/(6N),

where Kurt(`) is the kurtosis of the price changes using the stationary distribution m̃, and

statistic that depends only on `. We keep the normalization that x̄ss = 1. We display the

impulse response for different values of ` where for each ζ we adjust σ2 so that we keep

constant the steady state number of price changes N .

In this section we display impulse responses for several values of `, going from the pure sS
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(` = 0), i.e. Golosov-Lucas model, to the pure time dependent, i.e. Calvo model (`→∞). As

expected given the results from θ = 0, the impulse response Yθ(t) for a given θ, is increasing

in ` at each t. Also, as indicated by the results below, for a given `, impulse responses are

decreasing in θ. This can be seen in Figure 5

Figure 5: IRF to a Monetary Shock, Calvo+ model (N = 2)
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In Figure 6 and Figure 7 we compute the cumulative impulse response CIRθ for a range

of values of θ for different models, each of them characterized by a different value of `.

For each one of the five values of `, we compare the cumulative IRF for each value of θ

with its value at θ = 0. The lines for each ` are very similar, even though, as explained

above, the values for CIR0 varies by six times as ` goes from 0 to ` → ∞, or equivalently,

as Kurt(`) goes from 1 to 6. What it can be seen from this figures is that the effect of

strategic complementarity/substitutability, while in principle very large is approximately
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multiplicative. This extend the results shown in Proposition 10 for ` = 0 and for the case of

`→∞ in equation (66), to the intermediate cases for `.

Figure 6: Cumulative Impulse response of Monetary Shock
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Figure 7: Cumulative IRF as function of θ for selected `
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A Proofs

Proof. (of Lemma 1). First we show that v is antisymmetric. For that we use that the source
CZ(t)x is antisymmetric as a function of x. To see this, define w : [0, 1]× [0, T ] as w(x, t) =
v(x, t)+v(−x, t), which is identically zero and solves 0 = wt(x, t)+kwxx(x, t)−ρw(x, t) with
boundary conditions w(1, t) = v(1, t) + v(−1, t) = 2v(0, t) and w(0, t) = 2v(0, t) all t and
w(x, T ) = 0 all x.

We can use the maximum principle that shows that the maximum and minimum of w
has to occur at the given boundaries, i.e. at either x ∈ {0, 1} and any t ∈ [0, T ) or at any
x ∈ [0, 1] and t = T . To see this, notice that since w(x, T ) = 0 for all x ∈ [0, 1], then if a
minimum will be interior, i.e. if it will occur at 0 < x̃ < 1 and 0 ≤ t̃ < T , then w(x̃, t̃) < 0.
Hence, wt(x̃, t̃) = −kwxx(x̃, t̃) + ρw(x̃, t̃) < 0 since wxx(x̃, t̃) ≤ 0 because (x̃, t̃) is an interior
minimum and k > 0, and since w(x̃, t̃) < 0. Hence w(x̃, t′) < w(x̃, t̃) for t′ close to t̃, a
contradiction with (x̃, t̃) being an interior minimum. A similar argument shows that there
can’t be an interior maximum.

Now we show that the maximum and minimum has to occur at t = T . For this we use
that w(x, t) = v(x, t) + v(−x, t) implies wx(0, t) = vx(0, t)− vx(0, t) = 0 for all t < T . Thus,
suppose that the minimum occurs at (x, t) = (0, t1) where t1 < T . Then w(0, t1) = 2v(0, t1)
and wt(0, t1) = 2vt(0, t1), so 2ρv(0, t1) = kwxx(0, t1)+2vt(0, t1). Since (0, t1) is a minimum, we
have vt(0, t1) ≥ 0 and since the minimum occurs at t1 < T , then v(0, t1) < 0, so wxx(0, t1) < 0.
But since wx(0, t1) = 0, then we obtain a contradiction with (0, t1) being a minimum. A
similar argument shows that the maximum cannot occur at (x, t) = (0, t2) where t2 < T .
Thus the minimum and maximum occur at t = T , where w(x, T ) = 0.

So we have shown that w(x, t) = 0 for all (x, t), and hence v(x, t) = −v(−x, t) all (x, t).
Since v is antisymmetric we have v(0, t) = −v(−0, t) and hence v(0, t) = 0.

Second, using smooth pasting at the boundaries ( ũx(−1) = ũx(1) = 0) and optimality at
x∗ = 0 (ũx(0) = 0) in equation (25), we can write the boundary conditions as

v(−1, t) = v(0, t) = v(1, t) = 0 all t ∈ (0, T )

which gives the desired result. �

Lemma 9. Let f be the solution of the heat equation

0 = ft(x, t) + kfxx(x, t)− ρf(x, t) + s(x, t) for all x ∈ [−1, 1] and t ∈ [0, T ) (67)

and boundaries
f(1, t) = φ̄(t) and f(−1, t) = φ(t) for all t ∈ (0, T ) (68)

and
f(x, T ) = Φ(x) for all x ∈ [−1, 1] (69)

for functions φ̄, φ,Φ and s. Assume that ρ ≥ 0 and k > 0. The solution is unique.

Proof. Assume that there are two solutions f 1 and f 2. Let F (x, t) ≡ f 2(x, t) − f 1(x, t).
Note that the p.d.e. in equation (67) is linear, so that F must satisfy

0 = Ft(x, t) + kFxx(x, t)− ρF (x, t) for all x ∈ [−1, 1] and t ∈ (0, T ) (70)
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with boundaries:

F (1, t) = 0 and F (−1, t) = 0 for all t ∈ (0, T ) and (71)

F (x, T ) = 0 for all x ∈ [−1, 1] (72)

Define I(t) ≡
∫ 1

−1
(F (x, t))2dx ≥ 0 for t ∈ [0, T ]. Then use the boundary condition I(T ) = 0

to write 0 = I(T ) = I(0) +
∫ T

0
I ′(t)dt. Next compute:

I ′(t) =

∫ 1

−1

d
dt

(F (x, t))2dx = 2

∫ 1

−1

F (x, t)Ft(x, t)dx = 2

∫ 1

−1

F (x, t)[ρF (x, t)− kFxx(x, t)]dx

= 2ρ

∫ 1

−1

F (x, t)2dx+ 2k

(∫ 1

−1

Fx(x, t)
2dx− F (x, t)Fx(x, t)

∣∣∣1
−1

)
where we have substituted the p.d.e. and integrated by parts. Using the boundary conditions
in equation (71) we have:

I ′(t) = 2ρ

∫ 1

−1

F (x, t)2dx+ 2k

∫ 1

−1

Fx(x, t)
2dx ≥ 0

Thus I(T ) = 0 only if I is zero for almost all t, and hence F (x, t) = 0 for almost all x, which
in turns implies that f 1 = f 2. �
Proof. (of Lemma 2) Uniqueness follows from the argument given in Lemma 9.

That equation (28) satisfies the zero boundary condition at t = T follows immediately
since at t = T equation (28) becomes an integral with zero length. That the Dirichlet
boundary condition holds at x = 1 and x = −1 follows since sin(xjπ) = 0 for all integers j.
Note also that the v(0, t) = 0 since sin(0) = 0. It only remains to show that equation (28)
satisfies the heat equation with source CxZ(t). Direct computation gives

vt(x, t) = CZ(t) 2
∞∑
j=1

(−1)j

jπ
sin(jπx)

− 2C

∫ T

t

∞∑
j=1

e(ρ+k(jπ)2)(t−τ)(ρ+ k(jπ)2)Z(τ)
(−1)j

jπ
sin(jπx)dτ

vxx(x, t) = 2C

∫ T

t

∞∑
j=1

e(ρ+k(jπ)2)(t−τ)Z(τ)
(−1)j

jπ
(jπ)2 sin(jπx)dτ

and notice that the Fourier series for x in the interval [0, 1] is x = −2
∑∞

j=1
(−1)j

jπ
sin(jπx),

since
∫ 1

0
x sin(jπx)dx/

∫ 1

0
sin2(jπx)dx = −2 (−1)j

jπ
. Replacing these expressions in the equation

for vt(x, t) we can verify that 0 = vt(x, t) + kvxx(x, t)− ρv(x, t) + CxZ(t) for all x ∈ (−1, 1)
and t ∈ [0, T ). �

For use in Proposition 1 we compute the expressions for the second derivative of ũ when
we use the normalization x̄ss = 1, i.e. the choice of ψ so that is attained.
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Lemma 10. Fix the parameters σ,B and ρ and let ψ be such that x̄ss = 1. For such case
the second derivatives of ũ evaluated at the thresholds are given by:

0 < ũxx(0) =
2B

ρ
[1− η csch(η)] , and 0 > ũxx(1) =

2B

ρ
[1− η coth(η)] (73)

where η ≡
√
ρ/k. Moreover |ũxx(0)| < |ũxx(1)|.

Proof. (of Lemma 10). The solution for ũ is of the form of a sum of the particular solution
a0 + a2x

2 and the two homogenous solutions, which given the symmetry can be written as
A cosh(ηx), so that ũ(x) = a0 + a2x

2 + A cosh(ηx). From the o.d.e. of ũ we obtain that
η =

√
ρ/k. To determine the coefficients a0, a2 note the particular solution must satisfy:

ρ(a0 + a2x
2) = Bx2 + k2a2

and hence a2 = B/ρ and a0 = 2kB/ρ2. It remains to find the value of A. For this we use
smooth pasting at x̄ = 1. We have:

ũx(x̄) = 0 =
2B

ρ
x̄+ Aη sinh(ηx̄)

and using x̄ = 1 we get

A = − 2B

ρη sinh(η)
=

2Bk1/2

ρ3/2 sinh
(√

ρ/k
)

Since ũxx(x) = 2B
ρ

+ Aη2 cosh(ηx) then the second derivatives are:

ũxx(0) =
2B

ρ
+ Aη2 =

2B

ρ
− 2Bη2

ρη sinh(η)
=

2B

ρ
[1− η csch(η)]

ũxx(1) =
2B

ρ
+ Aη2 cosh(η) =

2B

ρ
− 2Bη2 cosh(η)

ρη sinh(η)
=

2B

ρ
[1− η coth(η)]

The inequality is equivalent to:

1− η

sinh(η)
< −1 +

η cosh(η)

sinh(η)
or 2 < η

1 + cosh(η)

sinh(η)
or 2 sinh(η) < η(1 + cosh(η))

�
Proof. (of Proposition 1). Consider the smooth pasting and optimal return conditions from
the original problem, i.e.

0 = ux(x(t, δ), t, δ) , 0 = ux(x̄(t, δ), t, δ), and 0 = ux(x
∗(t, δ), t, δ)
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Differentiate them w.r.t. δ to find z̄, z and z∗:

z̄(t) = −vx(1, t)
ũxx(1)

for all t ∈ [0, T )

z(t) = −vx(−1, t)

ũxx(−1)
= z̄(t) for all t ∈ [0, T )

z∗(t) = −vx(0, t)
ũxx(0)

for all t ∈ [0, T ) .

Differentiating equation (28) obtained in Lemma 2 we obtain:

vx(1, t) = −2C

∫ T

t

∞∑
j=1

e−(ρ+k(jπ)2)(τ−t)Z(τ)dτ

vx(0, t) = −2C

∫ T

t

∞∑
j=1

e−(ρ+k(jπ)2)(τ−t)Z(τ)(−1)jdτ

The equality of z̄ = z follows from the antisymmetry of v established in Lemma 1 and from
z̄(t) = −vx(1,t)

ũxx(1)
and z(t) = −vx(−1,t)

ũxx(−1)
since ũ is symmetric, and hence ũxx(−1) = ũxx(1).

The expressions for Ā and A∗ in equation (32) follow from Lemma 10.
That H̄(s) > 0 is immediate using that k and s are positive. That H∗(s) < 0 follows

from grouping each pair of consecutive terms as in

H∗(s) = −
∑

j=1,3,5,...

e−(η2+(jπ)2) k s
[
1− e−(η2+((j+1)2−j2)π2) k s

]
< 0

where the inequality follows because k and s are strictly positive.
�

Proof. (of Lemma 3) The proof can be done by verifying that, given the expressions for r
and ϕ, the conditions at the boundaries hold for all t > 0. To see that the p.d.e. holds in
the interior, use that

c′j(t) = −λjcj(t) + qj(t) for all t > 0 and j = 1, 2, . . .

so replacing this into the expression for proposed solution for n̂t and n̂xx, and using expression
for λj and the second derivative of ϕj we end up with

(a+ b)′(t)[1− x] +
∑
j

qj(t)ϕj(x) = 0

must hold for all x and t. But since {ϕj} is an orthogonal base, qj(t) are the projections of
−(a+ b)′(t)[1− x], this equation hold for all x and t.

�
Proof. (of Lemma 4) We first show that a(t) + b(t) = 0 for all t. Start by noticing using
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that a(0) + b(0) = 0, implies c0(j) = 0. Then

cj(t) = −2e−λjt

jπ

∫ t

0

(a+ b)′(τ)eλjτdτ

=
2

jπ

[
λj

∫ t

0

(a+ b)(τ)eλj(τ−t)dτ − (a+ b)(t)

]
We can then write:

n̂(x, t) = (a+ b)(t)[1− x] +
∞∑
j=1

cj(t) sin(πjx) all x ∈ [0, 1] and t > 0 where

cj(t) =
2

jπ

[
λj

∫ t

0

(a+ b)(τ)eλj(τ−t)dτ − (a+ b)(t)

]
Now we integrate ĥ using mass preservation, obtaining:

0 =

∫ 1

0

n̂(x, t)dt =
1

2
(a+ b)(t) +

∞∑
j=1

cj(t)
1− cos(πj)

πj

which can be written as:

(a+ b)(t) = −2
∞∑
j=1

cj(t)
1− cos(πj)

πj

= −
∞∑
j=1

4

jπ

[
λj

∫ t

0

(a+ b)(τ)eλj(τ−t)dτ − (a+ b)(t)

]
1− cos(πj)

πj

since the sum
∑∞

j=1 4(1− cos(jπ))/(jπ)2 = 1 we can write:

0 =
∞∑
j=1

[
λj

∫ t

0

(a+ b)(τ)eλj(τ−t)dτ

]
4[1− cos(πj)]

(πj)2

= e−λjt
∫ t

0

∞∑
j=1

(a+ b)(τ)eλjτ
λj4[1− cos(πj)]

(πj)2
dτ for all t ≥ 0

Hence

0 =

∫ t

0

∞∑
j=1

(a+ b)(τ)eλjτ
λj4[1− cos(πj)]

(πj)2
dτ for all t ≥ 0

and differentiating with respect to time:

0 = (a+ b)(t)
∞∑
j=1

eλjt
λj4[1− cos(πj)]

(πj)2
dτ for all t ≥ 0
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which requires that (a+ b)(t) = 0 for all t ≥ 0.
�

Proof. (of Lemma 5) In this lemma we use the requirement that m(x, t, δ) is continuous
around x = x∗(t, δ) for all t and δ. Under the assumption that m(x, t, δ) is right and left
differentiable at x = x∗(t, δ), we have

m(x, t, δ) =

{
m(0, t, 0) +mx(0

−, t, 0) ∂
∂δ
x∗(0, 0)δ + ∂

∂δ
m(0−, t, 0)δ + o(δ) if x < x∗(t, δ)

m(0, t, 0) +mx(0
+, t, 0) ∂

∂δ
x∗(0, 0)δ + ∂

∂δ
m(0+, t, 0)δ + o(δ) if x > x∗(t, δ)

We can write these expressions in the notation developed above:

m(x, t, δ) =

{
m̃(0) + m̃x(0

−)z∗(t)δ + n(0−, t)δ + o(δ) if x < x∗(t, δ)

m̃(0) + m̃x(0
+)z∗(t)δ + n(0+, t)δ + o(δ) if x > x∗(t, δ)

Using the continuity of m, we equate both expansions to obtain:

m̃(0) + m̃x(0
−)z∗(t)δ + n(0−, t)δ + o(δ) = m̃(0) + m̃x(0

+)z∗(t)δ + n(0+, t)δ + o(δ)

using that m̃x(0
−) = 1 and m̃x(0

+) = −1, and the notation n(0+, t) = b(t) and a(t) = n(0−, t)
we have: z∗(t) + a(t) + o(δ)/δ = −z∗(t) + b(t) or taking δ → 0:

z∗(t) = (b(t)− a(t)) /2

�
Proof. (of Lemma 6) It is analogous to the proof of Lemma 3 with only minor modifications
due to the difference in the boundary conditions. �
Proof. (of Proposition 2) We replace the expression from Lemma 6 for n into the integral
for Z obtaining:

Z(t) = 2

∫ 1

0

xn(x, t)dx = z∗(t)
2

2
+ [z̄(t)− z∗(t)]2

3
+ 2

∞∑
j=1

cj(t)

∫ 1

0

x sin(jπx)dx

= z∗(t) + [z̄(t)− z∗(t)]2
3
− 2

∞∑
j=1

cj(t)
(−1)j

jπ

Note that using the expression in Lemma 6 we can write

cj(t) = 2

[
cos(jπ)− 1

jπ

]
(1 + z?(0)) e−k(jπ)2t + 2

(−1)j

jπ
[z̄(0)− z?(0)]e−k(jπ)2t

+ 2

[
cos(jπ)− 1

jπ

] ∫ t

0

z?′(τ)ek(jπ)2(τ−t)dτ + 2
(−1)j

jπ

∫ t

0

[z̄′(τ)− z?′(τ)]ek(jπ)2(τ−t)dτ
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Replacing the expression for cj(t):

Z(t) = z∗(t) + [z̄(t)− z∗(t)]2
3

− 2
∞∑
j=1

(−1)j

jπ
2

[
cos(jπ)− 1

jπ

]
(1 + z?(0)) e−λjt

− 2
∞∑
j=1

(−1)j

jπ
2

(−1)j

jπ
[z̄(0)− z?(0)]e−λjt

− 2
∞∑
j=1

(−1)j

jπ
2

[
cos(jπ)− 1

jπ

] ∫ t

0

z?′(τ)eλj(τ−t)dτ

− 2
∞∑
j=1

(−1)j

jπ
2

(−1)j

jπ

∫ t

0

[z̄′(τ)− z?′(τ)]eλj(τ−t)dτ

or

Z(t) = z∗(t) + [z̄(t)− z∗(t)]2
3

− 4 (1 + z?(0))
∞∑
j=1

(−1)j
[cos(jπ)− 1]

(jπ)2
e−λjt − 4[z̄(0)− z?(0)]

∞∑
j=1

1

(jπ)2
e−λjt

− 4
∞∑
j=1

(−1)j
[cos(jπ)− 1]

(jπ)2

∫ t

0

z?′(τ)eλj(τ−t)dτ − 4
∞∑
j=1

∫ t

0

[z̄′(τ)− z?′(τ)]
1

(jπ)2
eλj(τ−t)dτ

or

Z(t) = z∗(t) + [z̄(t)− z∗(t)]2
3

− 4 (1 + z?(0))
∞∑
j=1

(−1)j
[cos(jπ)− 1]

(jπ)2
e−k(jπ)2t − 4[z̄(0)− z?(0)]

∞∑
j=1

1

(jπ)2
e−k(jπ)2t

− 4
∞∑
j=1

(−1)j
[cos(jπ)− 1]

(jπ)2

∫ t

0

z?′(τ)ek(jπ)2(τ−t)dτ − 4
∞∑
j=1

1

(jπ)2

∫ t

0

[z̄′(τ)− z?′(τ)]ek(jπ)2(τ−t)dτ

Integrating by parts we have:∫ t

0

z?′(τ)ek(jπ)2(τ−t)dτ = z?(t)− z?(0)e−k(jπ)2t − k(jπ)2

∫ t

0

z?(τ)ek(jπ)2(τ−t)dτ∫ t

0

[z̄′(τ)− z?′(τ)]ek(jπ)2(τ−t)dτ = [z̄(t)− z?(t)]− [z̄(0)− z?(0)]e−k(jπ)2t

− k(jπ)2

∫ t

0

[z̄(τ)− z?(τ)]ek(jπ)2(τ−t)dτ
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and using that
∞∑
j=1

(−1)j
[cos(jπ)− 1]

(jπ)2
=

1

4
and

∞∑
j=1

1

(jπ)2
=

1

6

then

Z(t) = z∗(t) + [z̄(t)− z∗(t)]2
3

− 4 (1 + z?(0))
∞∑
j=1

(−1)j
[cos(jπ)− 1]

(jπ)2
e−k(jπ)2t − 4[z̄(0)− z?(0)]

∞∑
j=1

1

(jπ)2
e−k(jπ)2t

− z∗(t)− 2

3
[z̄(t)− z?(t)]

+ 4
∞∑
j=1

(−1)j
[cos(jπ)− 1]

(jπ)2
k(jπ)2

∫ t

0

z?(τ)ek(jπ)2(τ−t)dτ

+ 4
∞∑
j=1

1

(jπ)2
k(jπ)2

∫ t

0

[z̄(τ)− z?(τ)]ek(jπ)2(τ−t)dτ

+ 4
∞∑
j=1

(−1)j
[cos(jπ)− 1]

(jπ)2
z?(0)e−k(jπ)2t + 4

∞∑
j=1

1

(jπ)2

∫ t

0

[z̄(0)− z?(0)]e−k(jπ)2t

or

Z(t) = −4
∞∑
j=1

(−1)j
[cos(jπ)− 1]

(jπ)2
e−k(jπ)2t

− 4z?(0)
∞∑
j=1

(−1)j
[cos(jπ)− 1]

(jπ)2
e−k(jπ)2t

− 4[z̄(0)− z?(0)]
∞∑
j=1

1

(jπ)2
e−k(jπ)2t

+ 4k
∞∑
j=1

(−1)j [cos(jπ)− 1]

∫ t

0

z?(τ)ek(jπ)2(τ−t)dτ

+ 4k
∞∑
j=1

∫ t

0

[z̄(τ)− z?(τ)]ek(jπ)2(τ−t)dτ

+ 4
∞∑
j=1

(−1)j
[cos(jπ)− 1]

(jπ)2
z?(0)e−k(jπ)2t

+ 4
∞∑
j=1

1

(jπ)2

∫ t

0

[z̄(0)− z?(0)]e−k(jπ)2t
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or

Z(t) = −4
∞∑
j=1

[1− cos(jπ)]

(jπ)2
e−k(jπ)2t

+ 4k
∞∑
j=1

[1− cos(jπ)]

∫ t

0

z?(τ)ek(jπ)2(τ−t)dτ

+ 4k
∞∑
j=1

∫ t

0

[z̄(τ)− z?(τ)]ek(jπ)2(τ−t)dτ

which gives the expression for TZ given the definitions of Ḡ, G∗ and Z0.
That Ḡ(s) > 0 is immediate. That G∗(s) ≥ 0 follows by noticing that we can write:

G∗(s) =
∑

j=1,3,5,...

e−(jπ)2k s
[
1− e−((j+1)2−j2)π2k s

]

and each term
[
1− e−((j+1)2−j2)π2k s

]
> 0 since k and s are positive.

�
Proof. (of Lemma 7.)

That K ≤ 0 as in 1 uses the expression equation (54) and that G∗ ≥ 0, A∗ > 0, Ḡ ≥ 0,
and Ā < 0.

The symmetry of K when η = 0 in 2 follows directly from its definition in equation (54).
That K(0, s) = 0 for all s as in 3 follows directly from its definition as an integral in

equation (54).
The limit in 4 follows from evaluating equation (57) at 0 < t = s < ∞, which for each

j, i pair which gives

|K(t, t)| =

∣∣∣∣∣4
∞∑
j=1

∞∑
i=1

[
Ā − A∗ (−1)j+i

] 1− e−(jπ)2kt−(iπ)2kt−η2kt

(jπ)2 + (iπ)2 + η2

∣∣∣∣∣
≥ 4|Ā|

∞∑
j=1

∞∑
i=1

1− e−(jπ)2kt−(iπ)2kt−η2kt

(jπ)2 + (iπ)2 + η2

= −4|Ā|
∞∑
j=1

∞∑
i=1

e−(jπ)2kt−(iπ)2kt−η2kt

(jπ)2 + (iπ)2 + η2
+ 4|Ā|

∞∑
j=1

∞∑
i=1

1

(jπ)2 + (iπ)2 + η2

The firs term of the last equality converges for t > 0, and j integer since

e−(jπ)2kt−(iπ)2kt−η2kt

(jπ)2 + (iπ)2 + η2
<
e−π

2ktj

(iπ)2

and so
∞∑
j=1

∞∑
i=1

e−(jπ)2kt−(iπ)2kt−η2kt

(jπ)2 + (iπ)2 + η2
<

∞∑
j=1

e−π
2ktj

∞∑
i=1

1

(iπ)2
=

1

1− e−π2kt

1

6
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The second term of the last equality diverges since the
∑∞

j=1

∑∞
i=1

1
(jπ)2+(iπ)2+η2

diverges to
+∞.

The last part of the proof is to establish the bounds for the integral
∫ T

0
|K(t, s)|ds.

As a preliminary step we write
∫ T

0
|K(t, s)|ds ≤

∫∞
0
|K(t, s)|ds as:∫ ∞

0

|K(t, s)|ds = 4
∞∑
j=1

∞∑
i=1

[
Ā − A∗ (−1)j+i

]
κi,k where

κi,j(t) ≡
∫ ∞

0

[
e[(jπ)2+(iπ)2+η2]k(t∧s) − 1

]
e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds

Direct computation gives

κi,j(t) =

∫ t

0

e[(jπ)2+(iπ)2+η2]k(t∧s)e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds+

∫ ∞
t

e[(jπ)2+(iπ)2+η2ks]k(t∧s)e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds

−
∫ ∞

0

e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds

=

∫ t

0

e[(jπ)2+(iπ)2+η2]kse−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds+

∫ ∞
t

e[(jπ)2+(iπ)2+η2]kte−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds

− e−(jπ)2kt

∫ ∞
0

e−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds

= e−(jπ)2kt

∫ t

0

e(jπ)2ks

(jπ)2 + (iπ)2 + η2
ds+ e(iπ)2kt+η2kt

∫ ∞
t

e−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
ds

− 1

(jπ)2 + (iπ)2 + η2

e−(jπ)2kt

k(iπ)2 + kη2

=

(
1− e−(jπ)2kt

)
(jπ)2 + (iπ)2 + η2

1

(jπ)2k
+

1

(jπ)2 + (iπ)2 + η2

1

(iπ)2k + η2k
− 1

(jπ)2 + (iπ)2 + η2

e−(jπ)2kt

k(iπ)2 + η2k

=

(
1− e−(jπ)2kt

)
(jπ)2 + (iπ)2 + η2

(
1

(jπ)2k
+

1

(iπ)2k + η2k

)

=

(
1− e−(jπ)2kt

)
(jπ)2 + (iπ)2 + η2

1

k

(
(jπ)2 + (iπ)2 + η2

((jπ)2) ((iπ)2 + η2)

)
=

1− e−(jπ)2kt

k ((jπ)2) ((iπ)2 + η2)

Thus we get:

κi,j(t) =
1− e−(jπ)2kt

k (jπ)2 ((iπ)2 + η2)
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We expand κij around η = 0 to obtain:

κi,j(t) =
1− e−(jπ)2kt

k ((jπ)2) ((iπ)2 + η2)
=

1− e−(jπ)2kt

k ((jπ)2) ((iπ)2)

(iπ)2

((iπ)2 + η2)

=
1− e−(jπ)2kt

k (jπ)2 (iπ)2

(
1− η2

(iπ)2
+ o(η2)

)
Thus∫ T

0

|K(t, s)|ds ≤ −
∫ ∞

0

K(t, s)ds

= 4
∞∑
j=1

∞∑
i=1

[
−Ā+ A∗ (−1)j+i

](1− e−(jπ)2kt

k

)
1

(jπ)2(iπ)2

(
1− η2

(iπ)2

)
+ o(η2)

≤ 4
−Ā
k

 ∞∑
j=1

∞∑
i=1

1

(iπ)2

(
1− e−(jπ)2kt

)
(jπ)2

(1− η2

(iπ)2

)

+ 4
A∗

k

 ∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

(
1− e−(jπ)2kt

)
(jπ)2

(1− η2

(iπ)2

)
+ o(η2)

< 4
−Ā
k

[
∞∑
j=1

∞∑
i=1

1

(iπ)2

1

(jπ)2

](
1− η2

(iπ)2

)

+ 4
A∗

k

[
∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

1

(jπ)2

](
1− η2

(iπ)2

)
+ o(η2)

were we use that 1− e−(jπ2)kt < 1 and that :

−Ā
k

= − 2η2

1− η coth(η)
= 6 +

2

5
η2 + o(η2)

A∗

k
=

2η2

1− η csch(η)
= 12 +

7

5
η2 + o(η2)
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to write:∫ T

0

|K(t, s)|ds ≤ −
∫ ∞

0

K(t, s)ds

< 4
−Ā
k

[
∞∑
j=1

∞∑
i=1

1

(iπ)2

1

(jπ)2

](
1− η2

(iπ)2

)

+ 4
A∗

k

[
∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

1

(jπ)2

](
1− η2

(iπ)2

)
+ o(η2)

= 4

(
6 +

2

5
η2

)[ ∞∑
j=1

∞∑
i=1

1

(iπ)2

1

(jπ)2

](
1− η2

(iπ)2

)

+ 4

(
12 +

7

5
η2

)[ ∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

1

(jπ)2

](
1− η2

(iπ)2

)
+ o(η2)

= 4× 6

[
∞∑
j=1

∞∑
i=1

1

(iπ)2

1

(jπ)2

]
+ 4× 12

[
∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

1

(jπ)2

]

+ 4

[
∞∑
j=1

∞∑
i=1

1

(iπ)2

1

(jπ)2

](
2

5
− 6

(iπ)2

)
η2

+ 4

[
∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

1

(jπ)2

](
7

5
− 12

(iπ)2

)
η2 + o(η2)

Using the values for the following series into the the previous expression

∞∑
j=1

1

(jπ)2
=

1

6
,
∞∑
j=1

(−1)j+1

(jπ)2
=

1

12
,
∞∑
j=1

1

(jπ)4
=

1

90
=

1

6

1

15
and

∞∑
j=1

(−1)j+1

(jπ)4
=

7

720
=

1

12

7

60

we obtain:∫ T

0

|K(t, s)|ds ≤ −
∫ ∞

0

K(t, s)ds

< 4× 6
1

62
+ 4× 12

1

62

1

4
+ 4

(
1

62

2

5
− 1

6

6

90

)
η2 + 4

(
7

5

1

62

1

4
− 1

6

12

12

7

60

)
η2 + o(η2)

= 1− 7

180
η2 + o(η2)

which is the expression for 7.
To obtain the bound in 5 for any η and t ≥ 0 we note we note that

κi,j(t) =
1− e−(jπ)2kt

k ((jπ)2) ((iπ)2 + η2)
< κ̂i,t ≡

1

k (jπ)2 (iπ)2
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hence∫ ∞
0

|K(t, s)|dt = 4
∞∑
j=1

∞∑
i=1

[
Ā − A∗ (−1)j+i

]
κi,k(t) ≤ 4

∞∑
j=1

∞∑
i=1

[
Ā − A∗ (−1)j+i

]
κ̂i,k

Again, following the same steps as above we get:∫ T

0

|K(t, s)|ds ≤ −
∫ ∞

0

K(t, s)ds ≤ 4
−Ā
k

[
∞∑
j=1

∞∑
i=1

1

(iπ)2

1

(jπ)2

]

+ 4
A∗

k

[
∞∑
j=1

∞∑
i=1

(−1)j+i
1

(iπ)2

1

(jπ)2

]

Using the series obtained above we have:∫ T

0

|K(t, s)|ds < 4

62

(
−Ā
k

+
A∗

k

1

4

)
Using the expressions for −Ā/k and A∗/k we have:∫ T

0

|K(t, s)|ds < η2

18

(
1

1− η csch(η)
− 4

1− η coth(η)

)
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To establish the bound in 8 we start with the direct of

κ>i,j(s) =

∫ s

0

e[(jπ)2+(iπ)2+η2]k(t∧s)e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
dt+

∫ ∞
s

e[(jπ)2+(iπ)2+η2ks]k(t∧s)e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
dt

−
∫ ∞

0

e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
dt

=

∫ s

0

e[(jπ)2+(iπ)2+η2]kte−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
dt+

∫ ∞
s

e[(jπ)2+(iπ)2+η2]kse−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2
dt

− e−(iπ)2ks−η2ks
∫ ∞

0

e−(jπ)2kt

(jπ)2 + (iπ)2 + η2
dt

= e−(iπ)2ks−η2ks
∫ s

0

e(iπ)2kt+η2kt

(jπ)2 + (iπ)2 + η2
dt+ e(jπ)2ks

∫ ∞
s

e−(jπ)2kt

(jπ)2 + (iπ)2 + η2
dt

− 1

(jπ)2 + (iπ)2 + η2

e−(iπ)2ks−η2ks

k(jπ)2

=

(
1− e−(iπ)2ks−η2ks

)
(jπ)2 + (iπ)2 + η2

1

(iπ)2k + η2k
+

1

(jπ)2 + (iπ)2 + η2

1

(jπ)2k

− 1

(jπ)2 + (iπ)2 + η2

e−(iπ)2ks−η2ks

k(jπ)2

=

(
1− e−(iπ)2ks−η2ks

)
(jπ)2 + (iπ)2 + η2

1

(iπ)2k + η2k
+

1− e−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2

1

k(jπ)2

=

(
1− e−(iπ)2ks−η2ks

)
(jπ)2 + (iπ)2 + η2

(
1

(iπ)2k + η2k
+

1

k(jπ)2

)
Thus we get:

κ>i,j(s) =
1− e−(iπ)2ks−η2ks

k (jπ)2 ((iπ)2 + η2)

For future reference, note that for all s ≥ 0 and η ≥ 0

κ>i,j(s) =
1− e−(iπ)2ks−η2ks

k (jπ)2 ((iπ)2 + η2)
≤ κ̂i,j ≡

1

k (jπ)2 (iπ)2

Hence∫ ∞
0

|K(t, s)|dt = 4
∞∑
j=1

∞∑
i=1

[
Ā − A∗ (−1)j+i

]
κ>i,k(s) ≤ 4

∞∑
j=1

∞∑
i=1

[
Ā − A∗ (−1)j+i

]
κ̂i,k

The last expression is the same as the bound for
∫∞

0
|K(t, s)|ds, and hence the bound is the
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same, i.e. ∫ T

0

|K(t, s)|dt < η2

18

(
1

1− η csch(η)
− 4

1− η coth(η)

)
Our proof that K2 as a finite integral as in 9 consists on a long computation of the double

integral. Moreover, for each t we can decompose K into the sum of a continuous function on
s and one that is discontinuous at s = t.

Note that

|K(t, s)| ≤ 4
∞∑
j=1

∞∑
i=1

|
[
Ā − A∗ (−1)j+i

]
|

∣∣∣∣∣∣
[
e[(jπ)2+(iπ)2+η2]k(t∧s) − 1

]
e−(jπ)2kt−(iπ)2ks−η2ks

(jπ)2 + (iπ)2 + η2

∣∣∣∣∣∣
Thus using a change on variables we have:∫ T

0

∫ T

0

K2(t, s)dtds ≤
[
|Ā|+ |A∗|

] 4

k2π6

∫ Q

0

∫ Q

0

K̃2(t, s)dtds

where

K̃(t, s) ≡
∞∑
j=1

∞∑
i=1

[
e[j2+i2+d](t∧s) − 1

]
e−j

2t−i2s−ds

j2 + i2 + d
with d ≡ η2

π2
and Q ≡ Tkπ2

We define
f(τ) ≡

(
e(j2+i2+d)τ − 1

)(
e(l2+m2+d)τ − 1

)
and then write:

K̃2(t, s) =
∑
j

∑
i

∑
l

∑
m

f(t ∧ s)e−(j2+l2)t−(i2+d+m2+d)s

(j2 + i2 + d)(m2 + l2 + d)

Fix j, i,m, l, and consider the double integral in s and t:∫ Q

0

∫ Q

0

f(t ∧ s)e−(j2+l2)t−(i2+d+m2+d)sdsdt = A+ B

≡
∫ Q

0

∫ t

0

f(t ∧ s)e−(j2+l2)t−(i2+d+m2+d)sdsdt+

∫ Q

0

∫ Q

t

f(t ∧ s)e−(j2+l2)t−(i2+d+m2+d)sdsdt
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where A and B were implicitly defined. Solving the integral for A by parts we have:

A =

∫ Q

0

(∫ t

0

f(s)e−(i2+d+m2+d)sds

)
e−(j2+l2)tdt

=

(∫ t′

0

f(s)e−(i2+d+m2+d)sds

) (
e−(j2+l2)t′

−(l2 + j2)

)∣∣Q
0
−
∫ Q

0

f(t)e−(i2+d+m2+d)t e
−(j2+l2)t

−(l2 + j2)
dt

= −e
−(j2+l2)Q

(l2 + j2)

∫ Q

0

f(s)e−(i2+d+m2+d)sds+
1

(l2 + j2)

∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt

We also have:

B =

∫ Q

0

f(t)e−(j2+l2)t

(∫ Q

t

e−(i2+d+m2+d)sds

)
dt

=

∫ Q

0

f(t)e−(j2+l2)t

(
e−(i2+d+m2+d)Q − e−(i2+d+m2+d)t

−(i2 + d+m2 + d)

)
dt

=
1

(i2 + d+m2 + d)

∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt

− 1

(i2 + d+m2 + d)

∫ Q

0

f(t)e−(j2+l2)te−(i2+d+m2+d)Qdt

Since f(s) ≥ 0 we can write:

A = −e
−(j2+l2)Q

(l2 + j2)

∫ Q

0

f(s)e−(i2+d+m2+d)sds+
1

(l2 + j2)

∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt

≤ 1

(l2 + j2)

∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt

and

B =
1

(i2 + d+m2 + d)

∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt

− 1

(i2 + d+m2 + d)

∫ Q

0

f(t)e−(j2+l2)te−(i2+d+m2+d)Qdt

≤ 1

(i2 + d+m2 + d)

∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt

Thus

A+ B ≤ C(j, i, l,m) ≡
(

1

(l2 + j2)
+

1

(i2 + d+m2 + d)

)∫ Q

0

f(t)e−(j2+i2+d+l2+m2+d)tdt
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Thus we want to compute the upper bound:∫ Q

0

∫ Q

0

K̃2(t, s)dsdt ≤
∑
j

∑
i

∑
l

∑
m

C(j, i, l,m)

(j2 + i2 + d)(l2 +m2 + d)

The next step is to compute the integral
∫ Q

0
f(t)e−(j2+i2+d+l2+m2+d)tdt. We have

f(t)e−(j2+i2+d+l2+m2+d)t

≡
(
e(j2+i2+d)t − 1

)(
e(l2+m2+d)t − 1

)
e−(j2+i2+d+l2+m2+d)t

=
[
e(j2+i2+d+l2+m2+d)t + 1− e(j2+i2+d)t − e(l2+m2+d)t

]
e−(j2+i2+d+l2+m2+d)t

= 1 + e−(j2+i2+d+l2+m2+d)t − e−(l2+m2+d)t − e−(j2+i2+d)t

Now we compute the time integral:∫ Q

0

(
1 + e−(j2+i2+d+l2+m2+d)t − e−(l2+m2+d)t − e−(j2+i2+d)t

)
dt

= Q+
1− e−(j2+i2+d+l2+m2+d)Q

(j2 + i2 + d+ l2 +m2 + d)
− 1− e−(l2+m2+d)Q

(l2 +m2 + d)
− 1− e−(j2+i2+d)Q

(j2 + i2 + d)

≤ Q+
1

(j2 + i2 + d+ l2 +m2 + d)
+

1

(l2 +m2 + d)
+

1

(j2 + i2 + d)

Hence

C(j, i, l,m) ≤
(

1

(l2 + j2)
+

1

(i2 + d+m2 + d)

)
×
(
Q+

1

(j2 + i2 + d+ l2 +m2 + d)
+

1

(l2 +m2 + d)
+

1

(j2 + i2 + d)

)
and thus we have:∫ Q

0

∫ Q

0

K̃2(t, s)dsdt

≤
∞∑
j=1

∞∑
i=1

∞∑
l=1

∞∑
m=1

(
1

(j2 + i2 + d)(l2 +m2 + d)

)(
1

(l2 + j2)
+

1

(i2 + d+m2 + d)

)
×
(
Q+

1

(j2 + i2 + d+ l2 +m2 + d)
+

1

(l2 +m2 + d)
+

1

(j2 + i2 + d)

)
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We have∫ Q

0

∫ Q

0

K̃2(t, s)dsdt ≤ 4QD

D ≡
∞∑
j=1

∞∑
i=1

∞∑
l=1

∞∑
m=1

(
1

(j2 + i2 + d)(l2 +m2 + d)

)(
1

(l2 + j2)
+

1

(i2 + d+m2 + d)

)
In turn, it suffices to show that

E ≡
∞∑
j=1

∞∑
i=1

∞∑
l=1

∞∑
m=1

1

(j2 + i2 + d)(l2 +m2 + d)

1

(l2 + j2)
<∞

To find a bound for this series we use the following integral:

F ≡
∫ ∞

1

∫ ∞
1

∫ ∞
1

∫ ∞
1

1

(x2
1 + x2

2 + d)

1

(y2
1 + y2

2 + d)

1

(x2
1 + y2

1)
dx1dx2dy1dy2

Thus using
∫∞

1
1/(z2 + a2)dz = tan−1(a)/a we have:

F =

∫ ∞
1

dx1

∫ ∞
1

dy1
1

(x2
1 + y2

1)

∫ ∞
1

1

(x2
1 + x2

2 + d)
dx2

∫ ∞
1

1

y2
1 + y2

2

dy2

=

∫ ∞
1

dx1

∫ ∞
1

dy1
1

(x2
1 + y2

1)

∫ ∞
1

1

(x2
1 + x2

2 + d)
dx2

tan−1(y1)

y2
1

≤
∫ ∞

1

dx1

∫ ∞
1

dy1
1

(x2
1 + y2

1)

∫ ∞
1

1

(x2
1 + x2

2)
dx2

tan−1(y1)

y2
1

=

∫ ∞
1

dx1

∫ ∞
1

dy1
1

(x2
1 + y2

1)

tan−1(x1)

x1

tan−1(y1)

y1

Using that tan−1(z) ≤ π/2 for z ≥ 1 we have

F ≤ π2

4

∫ ∞
1

∫ ∞
1

1

(x2
1 + y2

1)

1

x1

1

y1

dx1dy1

Using that
∫∞

1
1

(z2+a2)
1
z
dz = log(a2 + 2)/(2a) we have

F ≤ π2

4

∫ ∞
1

log(y2
1 + 2)

2y1

1

y1

dy1 =
π2

8

∫ ∞
1

log(y2
1 + 2)

y2
1

dy1

≤ π2

8

∫ ∞
1

log(y2
1)

y2
1

dy1 =
π2

4

∫ ∞
1

log(y1)

y2
1

dy1 =
π2

4
<∞

since
∫∞

1
log(z)
z2

dz = 1.
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Combining all the inequalities obtained above we have:∫ T

0

∫ T

0

K2(t, s)dsdt ≤ 4Q
π2

4

4

k2π6

(
A∗ − Ā

)
. = Tkπ2 4

k2π4

(
A∗ − Ā

)
= T

4

kπ2

(
A∗ − Ā

)
Since

Ā = k 2η2

[1−η coth(η)]
< 0 and A∗ = k 2η2

[1−η csch(η)]
> 0

We have: ∫ T

0

∫ T

0

K2(t, s)dsdt ≤ 8

π2
T
(

η2

[1−η csch(η)]
− η2

[1−η coth(η)]

)
�

Proof. (of Proposition 4). We order the eigenvalues a |µj| ≥ |µj + 1| for all j. Since K < 0,
from Perron-Frobenious we know that µ1 < 0 and that |µ1| > |µj| for j > 1. Moreover, we
have that |µ1| = LipK , since:

||K(Y )||22 ≡
∫ T

0

(∫ T

0

K(t, s)Y (s)ds

)2

dt ≤
√

LipK LipK> ||Y ||22

≤ LipK ||Y ||22

and LipK ≥ 1 by Lemma 7.
By a combination of Proposition 5 when θ ∈ [−1, 0) and of Proposition 8 when θ ≥ 0, we

know that there exists a solution for all θ satisfying θ ≥ −1.
Assume that for some j > 1, we have µj > 0. We know that µj < |µ1|. Since |µ1| ≥ 1 and

we set θ = 1/µj for which we have a solution Yθ of the integral equation. By the Fredholm
alternative, it must the the case that 〈φj, Y0〉 = 0 for any of the eigenfunctions associated
with any positive eigenvalue. Hence, either the eigenvalues are negative, or the corresponding
eigenfunctions are orthogonal to Y0. The solution is thus given by:

Yθ(t) =
∑
j∈J

〈φj, Y0〉
1− θµj

φj(t)

where J ≡ {j : µj < 0 or 〈φ, Y0〉 6= 0 for any of the eigenfunctions φ of µj}. obtaining the
desired result.

�
Proof. (of Proposition 7) To show that when θ = θ with µ

1
= 1 then, assume that that

there is a solution of equation (56) in this case. Then we have

Y (t) = Y0(t) + θK(Y )(t)
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where Y ∈ L2([0, T ]). Then form the inner product of Y with φ1 to get:

〈Y, φ1〉 = 〈Y0, φ1〉+ θ〈KY, φ1〉 = 〈Y0, φ1〉+ θ〈Y,Kφ1〉
= 〈Y0, φ1〉+ θ〈Y, µ1φ1〉 = 〈Y0, φ1〉+ θµ1〈Y, φ1〉
= 〈Y0, φ1〉+ 〈Y, φ1〉

where we have used that K is self-adjoint, that φ1 is an eigenfunction of K, and that θµ1 =
1. The last equality implies that 〈Y0, φ1〉 = 0. But since Y0 > 0, and since −K is a
positive operator, then by the Perron-Frobenious theorem the eigenfunction φ1 associated
with the dominant eigenvalue µ1 does not change sign, and thus 〈Y0, φ1〉 6= 0, arriving to a
contradiction. Hence, there is no solution when θ = θ = 1/µ1.

�
Proof. (of Lemma 8) Recall that Y (t) = −%Z(t), so we write the problem in terms of Z ′s.
We take the system of coupled p.d.e’s and boundary conditions:

0 = −ρv(x, t) + vt(x, t) + kvxx(x, t) + 2BθxZ(t) for all x ∈ [−1, 1] and t

0 = v(−1, t) = v(1, t) = 0 , v(x, t) = −v(−x, t) all t, and v(x, T ) = 0 all x

0 = vx(1, t) + ũxx(1)z̄(t) = vx(0, t) + ũxx(0)z∗(t) all t

0 = −nt(x, t) + knxx(x, t) for all x ∈ [−1, 1], x 6= 0, and t

0 = n(1, t) = z̄(t) , n(x, t) = −n(−x, t) all t, and n(x, 0) = −κ̄ sign(x) all x

0 = n(0+, t)− n(0−, t) = 2z∗(t) all t

To obtain the bound, we compute the Lasry-Lions energy type of integral, by multiplying
the p.d.e for v times n and integrating in [−1, 1], and adding it to the product of the the
p.d.e for n times v integrated in [−1, 1]:

0 =

∫ 1

−1

[
− ρn(x, t)v(x, t) + n(x, t)vt(x, t) + kn(x, t)vxx(x, t)

+ 2BθZ(t)xn(x, t) + nt(x, t)v(x, t)− knxx(x, t)v(x, t)
]
dx

= D1(t) +D2(t) +D3(t)

We analyze several terms separately. First,

D1(t) ≡
∫ 1

−1

2BθZ(t)xn(x, t)dx = 2Bθ(Z(t))2 > 0

since we are assuming θ > 0. Second

D2(t) ≡
∫ 1

−1

[
− ρn(x, t)v(x, t) + n(x, t)vt(x, t) + nt(x, t)v(x, t)

]
dx

= eρt
d

dt

∫ 1

−1

e−ρtn(x, t)v(x, t)dx
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Third, we write the last group of terms as

D3(t) ≡
∫ 1

−1

(n(x, t)vxx(x, t)− nxx(x, t)v(x, t)) dx

=

∫ 0

−1

(n(x, t)vxx(x, t)− nxx(x, t)v(x, t)) dx+

∫ 0

−1

(n(x, t)vxx(x, t)− nxx(x, t)v(x, t)) dx

We use integration by parts to obtain:

D3(t) = n(x, t)vx(x, t)|0
−

−1 − nx(x, t)v(x, t)|0−−1 + n(x, t)vx(x, t)|10+ − nx(x, t)v(x, t)|10+

To evaluate D3 we use the boundary conditions. In particular, since v(1, t) = v(−1, t) =
v(0, t) = 0 thus:

D3(t) = n(x, t)vx(x, t)|0
−

−1 + n(x, t)vx(x, t)|10+
= n(0−, t)vx(0

−, t)− n(−1, t)vx(−1, t) + n(1, t)vx(1, t)− n(0+, t)vx(0
+, t)

=
(
n(0−, t)− n(0+, t)

)
vx(0, t) + (n(1, t)− n(−1, t)) vx(1, t)

where we use that vx is continuous and that vx(1, t) = vx(−1, t). Using the expression for
these functions on the boundaries:

D3(t) = −2z∗t(t)vx(0, t) + 2z̄(t)vx(1, t) = 2 (z∗(t))2 ũxx(0)− 2 (z̄(t))2 ũxx(1)

Recall that 0 is a minimum of ũ and that ±1 is ( are) maximum of ũ ∈ [−1, 1], thus ũxx(0) > 0
and ũxx < 0.

D3(t) = 2 (z∗(t))2 ũxx(0)− 2 (z̄(t))2 ũxx(1) > 0.

Hence we can write

0 = D3(t) +D2(t) +D1(t)

= 2Bθ(Z(t))2 + eρt
d

dt
e−ρt

∫ 1

−1

n(x, t)v(x, t)dx+ 2 (z∗(t))2 ũxx(0)− 2 (z̄(t))2 ũxx(1)

or

d

dt
e−ρt

∫ 1

−1

n(x, t)v(x, t)dx = −e−ρt
(
2Bθ(Z(t))2 +

[
2 (z∗(t))2 ũxx(0)− 2 (z̄(t))2 ũxx(1)

])
Integrating with respect to t this expression in [0, T ] we get:∫ T

0

d

dt
e−ρt

∫ 1

−1

n(x, t)v(x, t)dxdt = e−ρT
∫ 1

−1

n(x, T )v(x, T )dx−
∫ 1

−1

n(x, 0)v(x, 0)dx

= −
∫ T

0

e−ρt2Bθ(Z(t))2dt−
∫ T

0

e−ρt
[
2 (z∗(t))2 ũxx(0)− 2 (z̄(t))2 ũxx(1)

]
dt
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Using the boundary condition n(x, T ) = 0 for all x we have:∫ 1

−1

n(x, 0)v(x, 0)dx

=

∫ T

0

e−ρt2Bθ(Z(t))2dt+

∫ T

0

e−ρt
[
2 (z∗(t))2 ũxx(0)− 2 (z̄(t))2 ũxx(1)

]
dt

We use equation (28) from Lemma 2 to evaluate v(x, t) at t = 0 obtaining:

v(x, 0) = −4Bθ

∫ T

0

∞∑
j=1

e−(η2+(jπ)2) kτ Z(τ)
(−1)n

jπ
sin(jπx)dτ

that n(·, t) and v(·, t) are antisymmetric, and that n(0, x) = −κ̄ for x ∈ (0, 1] so that∫ 1

−1

n(x, 0)v(x, 0)dx = 2

∫ 1

0

n(x, 0)v(x, 0)dx = −2κ̄

∫ 1

0

v(x, 0)dx

= 8Bθκ̄

∫ T

0

∞∑
j=1

e−(η2+(jπ)2) kτ Z(τ)
(−1)n

jπ

∫ 1

0

sin(jπx)dxdτ

Using that ∫ 1

0

sin(jπx)dx =
1− cos(πj)

nπ
=

{
2
πj

if j = 1, 3, . . .

0 if n = 2, 4, . . .

Thus we can write:∫ 1

−1

n(x, 0)v(x, 0)dx = 8Bθκ̄
∞∑

j=1,3,5

∫ T

0

e−(jπ)2 kτ e−ρτZ(τ)
−2

(jπ)2
dτ

Replacing this expression we have:

8κ̄
∞∑

j=1,3,5

∫ T

0

e−(jπ)2 kt e−ρtZ(t)
−1

(jπ)2
dt

=

∫ T

0

e−ρtZ(t)2dt+

∫ T

0

e−ρt
[
z∗(t)2 2ũxx(0)

Bθ
− z̄(t)2 2ũxx(1)

θB

]
dt
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Under the assumption that θ > 0 and z∗ 6= 0 or z̄ 6= 0 then∫ T

0

e−ρtZ(t)2dt < 8κ̄
∞∑

j=1,3,5

∫ T

0

e−(jπ)2 kt e−ρtZ(t)
−1

(jπ)2
dt

≤ 8κ̄
∞∑

j=1,3,5

∫ T

0

e−(jπ)2 kt e−ρt|Z(t)| 1

(jπ)2
dt

< 8κ̄
∞∑

j=1,3,5

∫ T

0

e−ρt|Z(t)| 1

(jπ)2
dt = 8κ̄

∞∑
j=1,3,5

1

(jπ)2

∫ T

0

e−ρt|Z(t)|dt

where we used that k > 0. Using that
∑∞

j=1,3,5
1

(jπ)2
= 1

8
so that∫ T

0

e−ρtZ(t)2dt < κ̄

∫ T

0

e−ρt|Z(t)|dt

Multiplying both sides by ρ
1−e−ρT

(
||Z||L2(ρ,T )

)2 ≡ ρ

1− e−ρT

∫ T

0

e−ρtZ(t)2dt < κ̄
ρ

1− e−ρT

∫ T

0

e−ρt |Z(t)|dt ≡ κ̄||Z||L1(ρ,T )

Using the relationship between L1 and L2 norms, i..e. that ||Z||L1(ρ,T ) ≤ ||Z||L2(ρ,T ), then(
||Z||L2(ρ,T )

)2
< κ̄||Z||L1(ρ,T ) ≤ κ̄||Z||L2(ρ,T )

or dividing on both sides by ||Z||L2(ρ,T ), we get ||Z||L2(ρ,T ) < κ̄ or ||Y ||L2(ρ,T ) < κ̄|%|.
Proof. (of Proposition 8)

Uniqueness follow from more general case in Proposition ??. Existence follows from using
Leray-Schauder fixed point. To apply this fixed point we define T (κ̄, Z) as:

T (κ̄, Z) = κ̄Z0(t) + κ̄θ′
∫ T

0

K(t, s)Z(s)ds for all t ∈ [0, T ]

for any Z with ||Z||L2(ρ,T ) <∞ and κ̄ ∈ [0, 1]. The operator T is compact, as required in the
Leray-Schauder theorem. The compactness follows from bound on

∫ ∫
K2dsdt established in

part 9 in Lemma 7. Next, using Corollary 1 the integral equation above corresponds to the
case of Zκ

0 = κ̄Z0 and of θ = θ′κ̄.
Finally, to apply the Leray-Schauder fixed point theorem we need to show that there is

bound C <∞ so that any fixed point Z = T (κ̄, Z) satisfies ||Z||L2(ρ,T ) < C. This is done in
Lemma 8 letting θ = θ′κ̄ > 0.

�
Proof. (of Proposition 6 )

That the series in equation (60), whenever it converges, is the solution of equation (56)
follows from replacing the series into the integral equation.

That Yθ(0) = 1 follows from the fact that Y0(0) = 1 and that K(0, s) = 0 for all s ∈ (0, T ).
To establish that Yθ(t) > 0 and θ < 0, so we have θK(t, s) > 0 for all (t, s) ∈ (0, T )2
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and hence (θK)r(Y0) > 0 for t ∈ (0, T ). Note that, for each t, the sequence Sn(θ, t) ≡∑n
r=0 θ

r(K)r(Y0)(t) is monotone increasing in n, and, by assumption converges. Hence,
Yθ(t) > 0. Moreover if θ′ < θ < 0 we have Sn(θ′, t) > Sn(θ, t). Thus, the limit preserves this
inequality.

To establish that Yθ(t) is convex, we differentiate twice the series with respect to θ,
obtaining:

∂2

∂θ2
Yθ(t) =

∞∑
r=2

r(r − 1)θr−2 (K)r (Y0)(t)

for t ∈ (0, T ). If r is even we have θr−2 > 0 and (K)r (Y0)(t) > 0. If r is odd we have
θr−2 < 0 and (K)r (Y0)(t) < 0, hence all the terms in the sum are strictly positive, and thus
∂2

∂θ2
Yθ(t) > 0.
�

Proof. (of Proposition 10) We set T =∞. For this value we want to compute

d
dθ
CIRθ|θ=0 =

∫ ∞
0

d
dθ
Yθ(t)|θ=0dt =

∫ ∞
0

∫ ∞
0

K(t, s)Y0(t) ds dt

which can be written as

Q ≡
∫ ∞

0

∫ ∞
0

K(t, s)Y0(s)ds dt =
∞∑
m=1

Qm where Qm = 4

∫ ∞
0

∫ ∞
0

K(t, s)
1− cos(mπ)

(mπ)2
ds dt

where we have replaced the expression for Y0

Replacing the expression for K we get that for each m

Qm =
∞∑
i=1

∞∑
j=1

16 (1− cos(mπ))
(
Ā− A∗(−1)i+j

)
ω̃i,j,m

where ω̃i,j,m is defined as

ω̃i,j,m =
1

k2π8

1

(i2 + j2 + r2)m2
ωi,j,m and

ωi,j,m =

∫ ∞
0

∫ ∞
0

(
e(j2+i2+r2)s∧t − 1

)
e−j

2t−i2s−r2s−m2sds dt

were we have used a change on variables for t, and where we use r ≡ η2/π2.
Now we compute ωi,j,m letting ρ ↓ 0, or equivalently r → 0. For this note that we can
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write the inner integral in ωi,j,m as follows:∫ t

0

e−j
2te−(m2−j2)sds+

∫ ∞
t

ei
2te−(i2+m2)sds−

∫ ∞
0

e−j
2te−(i2+m2)sds

= ej
2t

[
1− e−(m2−j2)t

]
(m2 − j2)

+
ei

2te−(i2+m2)t

(i2 +m2)
− e−j

2t

(i2 +m2)

=
e−j

2t − em2t

(m2 − j2))
+
e−m

2t − e−j2t

(i2 +m2)

Then, integrating the resulting expression with respect to t between 0 and ∞ we get:

ωi,j,m =
1

(m2 − j2)

[
1

j2
− 1

m2

]
+

1

(i2 +m2)

[
1

m2
− 1

j2

]
=

1

m2j2
+

1

(i2 +m2)

(j2 −m2)

m2j2

=
1

m2j2

(
i2 + j2

i2 +m2

)
Now we replace this expression into ω̃i,j,m

ωi,j,m =
1

k2π8

1

m2

1

(j2 + i2)
ωi,j,m =

1

k2π8

1

m2

1

(j2 + i2)

1

m2j2

(
i2 + j2

i2 +m2

)
=

1

k2π8

1

m2

1

m2j2

(
1

i2 +m2

)
=

1

k2

1

(mπ)4

1

(jπ)2

1

(i2π2 +m2π2)

Finally we want to compute the infinite sums of the expression for ωi,j,m over i, j,m. For this
we will use that when m is odd:

∞∑
i=1

1

i2π2 +m2π2
=
mπ coth(mπ)− 1

2m2π2

∞∑
i=1

(−1)i

i2π2 +m2π2
=
mπ csch(mπ)− 1

2m2π2

∞∑
i=1

(−1)i+1

i2π2 +m2π2
=

1−mπ csch(mπ)

2m2π2

and we will also use that

∞∑
j=1

1
(jπ)2

=
1

6
and

∞∑
j=0

1

π2(j + 1)2
=

1

8
.
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We write Q = QI −QII :

QI =
∑

m=1,3,5,...

2× 16 Ā
∞∑
i=1

∞∑
j=1

ω̃i,j,m =
∑

m=1,3,5,...

32
Ā

k

1

k

1

(mπ)4

∞∑
j=1

1

(jπ)2

∞∑
i=1

1

(i2π2 +m2π2)

=
∑

m=1,3,5,...

32

6

Ā

k

1

k

1

(mπ)4

∞∑
i=1

1

(i2π2 +m2π2)

=
∑

m=1,3,5,...

32

12

Ā

k

1

k

1

(mπ)6
(mπ coth(mπ)− 1)

Now we write the second term of Q:

QII =
32

k

A∗

k

∑
1,3,5,...

1

(mπ)4

∞∑
j=1

1

j2π2

∞∑
i=1

(−1)i+1

π2i2 + π2m2
=

32

k

A∗

k

∑
m=1,3,5,...

1

(mπ)4
(O + E) where

O =
∑

j=1,3,5,...

1

(πj)2

∞∑
i=1

(−1)i+1

(i2π2 +m2π2))
=
∞∑
j=0

1

π2(j + 1)2

(1−mπ csch(mπ))

2m2π2

=
1

8

(1−mπ csch(mπ))

2m2π2
and

E =
∑

j=2,4,6,...

1

(πj)2

∞∑
i=1

(−1)i

(i2π2 +m2π2))
=

[
1

6
− 1

8

] ∞∑
i=1

(−1)i

(i2π2 +m2π2))

=
1

8

1

3

(mπ csch(mπ)− 1)

2m2π2

Thus

QII =
32

k

A∗

k

∑
m=1,3,5,...

1

(mπ)4
(O + E) =

32

k

A∗

k

1

8

(
1

3
− 1

) ∑
m=1,3,5,...

1

(mπ)4

(mπ csch(mπ)− 1)

2m2π2

=
32

k

A∗

k

1

8

1

3

∑
m=1,3,5,...

1−mπ csch(mπ)

(mπ)6

Recall that as ρ→ 0 then Ā/k → −6 and A∗/k → 12, and thus

Q = QI −QII =
∑

m=1,3,5,...

32

12

Ā

k

1

k

1

(mπ)6
(mπ coth(mπ)− 1)− 32

k

A∗

k

1

8

1

3

∑
m=1,3,5,...

1−mπ csch(mπ)

(mπ)6

=
∑

m=1,3,5,...

32

12
6

1

k

1

(mπ)6
(1−mπ coth(mπ))− 32

k
12

1

8

1

3

∑
m=1,3,5,...

1−mπ csch(mπ)

(mπ)6

=
16

k

∑
1,3,5,...

(
1−mπ coth(mπ)

(mπ)6
− 1−mπ csch(mπ)

(mπ)6

)
=

16

k

∑
m=1,3,5,...

csch(mπ)− coth(mπ)

(mπ)5
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Finally we have:

CIR0 =

∫ ∞
0

Y0(t)dt =
∑

1,3,5,...

8

∫ ∞
0

e−π
2m2kt

(mπ)2
dt

=
8

k

∑
1,3,5,...

1

(mπ)4
=

8

k

1

96
=

1

12 k

Thus

1

CIRθ

dCIRθ

dθ
|θ=0 =

Q

CIR0

= 16× 12
∑

m=1,3,5,...

csch(mπ)− coth(mπ)

(mπ)5

and using 16× 12 = 192 we get our final result.
�
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Online Appendix:

Price Setting with Strategic Complementarities
as a Mean Field Game

Fernando Alvarez, Panagiotis Souganidis, Francesco Lippi

It turns out that, after some derivations, both propositions boils down to solve the heat
equation in the domain (x, t) ∈ [0, 1]×R+, with a source s, and with time boundaries given by
the time varying functions A,B. In particular to solve for w : [0, 1]×R+ → R given parameter
k > 0, ν ≥ 0, source s : [0, 1] × R+ → R, space boundary at time zero f : [0, 1] × R, and
value at the boundaries given by a, b : R+ → R satisfying:

0 = −wt(x, t)− νw(x, t) + kwxx(x, t) + s(x, t) all x ∈ [0, 1] and t > 0

w(x, 0) = f(x) all x ∈ [0, 1]

w(0, t) = A(t) all t > 0 and

w(1, t) = B(t) all t > 0

Lemma 11. The solution for the KFE equation for w is given by:

w(x, t) = r(x, t) +
∞∑
j=1

aj(t)ϕj(x) all x ∈ [0, 1] and t > 0 where

r(x, t) = A(t) + x[B(t)− A(t)] all x ∈ [0, 1], t > 0

and where for all j = 1, 2, . . . we have:

ϕj(x) = sin(jπx) for all x ∈ [0, 1] , 〈ϕj, h〉 ≡
∫ 1

0

h(x)ϕj(x)dx

aj(t) = aj(0)e−λjt +

∫ t

0

qj(τ)eλj(τ−t)dτ all t > 0 ,

qj(t) =
〈ϕj , s(·, t)− rt(·, t)− νr(·, t)〉

〈ϕj, ϕj〉
all t > 0

λj = ν + (jπ)2k and aj(0) =
〈ϕj , f − r(·, 0)〉
〈ϕj, ϕj〉

.

i



The proof can be done by verifying that the equation hold at the boundaries, that for
t > 0 the p.d.e. holds in the interior since

a′j(t) = −λjaj(t) + qj(t) for all t > 0 and j = 1, 2, . . .

and since {ϕj(x)} form an orthogonal bases for functions on {h : [0, 1] → R}, and finally
that the boundary holds at t = 0 for all x.

Consider now the KBE equation, which only changes the sign of the time derivative, the
range of time, and the time at which the space boundary condition holds, so w : [0, 1] ×
[0, T ]→ R, where:

0 = wt(x, t)− νw(x, t) + kwxx(x, t) + s(x, t) all x ∈ [0, 1] and t > 0

w(x, T ) = f(x) all x ∈ [0, 1],

w(0, t) = A(t) all t ∈ [0, T ], and

w(1, t) = B(t) all t ∈ [0, T ]

Lemma 12. The solution for the KBE for w is given by:

w(x, t) = r(x, t) +
∞∑
j=1

aj(t)ϕj(x) all x ∈ [0, 1] and t ∈ [0, T ] where

r(x, t) = A(t) + x[B(t)− A(t)] all x ∈ [0, 1], t ∈ [0, T ]

and where for all j = 1, 2, . . . we have:

ϕj(x) = sin(jπx) for all x ∈ [0, 1] , 〈ϕj, h〉 ≡
∫ 1

0

h(x)ϕj(x)dx

aj(t) = aj(T )e−λj(T−t) +

∫ T

t

qj(τ)eλj(t−τ)dτ all t ∈ [0, T ) ,

qj(t) =
〈ϕj , s(·, t) + rt(·, t)− νr(·, t)〉

〈ϕj, ϕj〉
all t ∈ [0, T )

λj = ν + (jπ)2k and aj(T ) =
〈ϕj , f − r(·, T )〉
〈ϕj, ϕj〉

.

As in the previous case the proof can be done by verifying that the equation hold at the
boundaries, that for t ∈ [0, T ] the p.d.e. holds in the interior since

−a′j(t) = −λjaj(t) + qj(t) for all t ∈ [0, T ) and j = 1, 2, . . .

Note that qj(t) and aj(t) are also defined differently than for the KFE.
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