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Abstract

Performance pay for most workers makes up only a small fraction of total pay. In this paper, we show that
performance pay is nevertheless important for the dynamics of wages over the life cycle because of the incentives it
provides for human capital acquisition. We argue so within a model that combines three key mechanisms for wage
growth and dispersion, namely, human capital accumulation on the job, employer learning about workers’ ability,
and performance incentives. We use this model to account for the experience profile of wages, their dispersion,
and their composition in terms of fixed and variable (performance) pay. Our model admits a decomposition of
performance pay over the life cycle into four terms that capture: i) the trade-off between risk and incentives
characteristic of moral-hazard situations; ii) the insurance that firms provide against uncertainty about ability; iii)
incentives for effort due to this uncertainty (career concerns); and iv) incentives for effort from human capital
acquisition. Despite its parsimony, the model fits the data very well, including the observation that performance
pay as a share of total pay, which measures the sensitivity of pay to performance, first increases and then declines
with experience after peaking at around 20 years, contrary to the prediction of standard models that this ratio
should be increasing especially at the end of the life cycle. Our estimates imply that human capital acquisition and
insurance against uncertainty about ability are quantitatively the most important determinants of the sensitivity
of pay to performance. Importantly, we also find that through the cumulative impact of effort on human capital
acquisition, incentives for performance are a critical source of wage growth and dispersion over the life cycle.
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1 Introduction

What accounts for the growth of wages over the life cycle? Why do differences in wages among workers increase

with experience in the labor market? Since Becker [1962] and Mincer [1974], economists have considered models

of investment in human capital to explain the dynamics of wages over the life cycle (Heckman et al. [1998]). Many

have also emphasized the role of uncertainty for wage inequality (Cunha et al. [2005], Cunha and Heckman [2016],

Lochner and Shin [2014] and Lochner et al. [2018]) and how wages and their dispersion grow with experience as

firms and workers learn about differences in ability among workers (Farber and Gibbons [1996]).

Another potential source of persistent variation in wages across workers and over time is variable or performance

pay (Lemieux et al. [2009], Bloom and Van Reenen [2010], Lazear and Shaw [2007, 2011, 2018], and Waldman

[2012]). Variable pay, though, typically amounts to less than 5% of overall pay and, for most workers, does not

represent a major component of pay at any point during the life cycle (Frederiksen et al. [2017]). Accordingly,

variable pay has received much less attention in the study of the dynamics of wages (Rubinstein and Weiss [2006]).

Acquiring human capital, however, often requires effort and investments in human capital can either substitute for

producing output, as in models of on-the-job training following Ben-Porath [1967], or be complementary to it, as in

learning-by-doing models. Hence, by influencing workers’ effort on the job, performance pay, although small, may

affect how rapidly wages grow with experience by affecting how much human capital workers acquire.

In this paper, we argue that performance incentives can be important for the growth and dispersion of wages over

the life cycle because they support the acquisition of human capital. To this purpose, we propose a tractable model

of the labor market that combines human capital accumulation, uncertainty and employer learning about workers’

ability, and incentives for performance. By so doing, we achieve four objectives. First, our model provides a unitary

framework to investigate how human capital acquisition, uncertainty and learning about ability, and performance

incentives jointly shape the profile of wages and their fixed and variable components over time. Specifically, the

model allows us to analytically decompose the ratio of performance pay to total pay at any experience into the

contribution of distinct terms that capture the basic forces we nest. Second, based on this decomposition, we show

that variable pay provides a rich source of information that can be used to identify our model, which integrates

common models of human capital investment, learning, and performance incentives. Third, our model resolves an

empirical failure that we document for existing “career-concerns” models of learning and performance incentives over

the life cycle: such models imply that relative to total pay, performance pay increases with labor market experience

whereas the data strongly suggest that it eventually decreases. Finally, using our estimated model, we demonstrate

that performance pay plays a critical role for the growth and dispersion of wages over the life cycle.

Our model builds on the literature on learning and incentives (Hölmstrom [1999]). In particular, we draw on

Gibbons and Murphy [1992], who characterize performance pay over the life cycle when firms are uncertain about
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workers’ ability and use performance pay to incentivize workers to expend effort on the job. The idea of these

so-called career-concerns models is simple. When ability is uncertain and firms gradually learn about workers’

unobserved ability based on their output, workers anticipate that a good performance favorably influences potential

employers’ perceptions about their ability and so positively affects their future wages. Accordingly, concerns about

the market expectation of their abilities—“career concerns”—stimulate workers to exert effort and so can substitute

for explicit performance incentives. We add to this framework another dimension of career concerns: by exerting

effort on the job, workers not only affect their output in a period but also their human capital. Hence, workers face

implicit incentives for effort arising both from their concerns about the market perceptions of their ability and from

a desire to invest in their human capital. These implicit incentives interact with explicit incentives from performance

pay to determine workers’ effort and thus the human capital that workers acquire with experience. Through this

mechanism, performance incentives then affect both the growth and dispersion of wages.

More formally, we model the labor market as consisting of homogeneous risk-neutral firms and heterogeneous

risk-averse workers of unknown ability, which is subject to persistent shocks. Employed workers exert effort, which

influences both a worker’s output and human capital. A worker’s effort and acquired human capital are observed only

by the worker. Instead, a worker’s output in a period or performance, a noisy measure of the worker’s ability, effort,

and human capital, is publicly observed and so provides a signal about the worker’s ability that firms and workers

can use to learn about it over time. Firms compete for workers by offering short-term employment contracts with

variable pay that depends on a worker’s output.1

We characterize equilibrium wages and, as mentioned, decompose the ratio of performance pay to total pay or

“piece rate” of the equilibrium contract, which measures the sensitivity of pay to performance, into four terms that

reflect fundamental life-cycle forces, are readily interpretable, and take the form of simple functions of the model

primitives.2 The first term of this decomposition captures the standard trade-off between risk and incentives familiar

from static moral-hazard models (Hölmstrom [1979]) and changes in this trade-off over time as uncertainty about a

worker’s ability varies over the life cycle. The remaining three terms capture how workers’ demand for insurance,

against the wage risk due to the uncertainty about ability, learning about ability, and human capital acquisition lead

to deviations between the statically optimally piece rate and the dynamically optimal one implied by our model.

To elaborate, the second and third terms negatively affect piece rates. The second term describes workers’ value

for the insurance that a wage contract provides, through lower piece rates, against the uncertainty workers face

because of the process of learning about ability and the shocks to ability. Intuitively, lower piece rates partially insure

workers against wage risk as they reduce the contemporaneous correlation between pay and performance. But as
1See Fox [2010] for evidence on the importance of outside offers for worker turnover even in highly regulated labor markets like the

Swedish ones, which supports our competitive setup.
2In our model, variable pay is proportional to performance. The factor of proportionality, namely, the contract piece rate, then equals both

the ratio of performance pay to total pay and the (marginal) sensitivity of pay to performance.
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workers accumulate experience and face a shorter time horizon, they naturally demand less insurance and so the size

of this term decreases in magnitude. This term then contributes to an increase in the importance of performance

pay over the life cycle. The third term corresponds to the career-concerns component identified by Gibbons and

Murphy [1992]. Career concerns substitute for explicit incentives, as discussed, but tend to become less important

over time as ability is revealed. Accordingly, this term is negative as well and eventually declines in absolute value

also contributing to an increase in the ratio of performance pay to total pay with experience.

The final term, which is positive, is proportional to the difference between the social and private marginal returns

to human capital acquisition. The private-returns component of this term is reminiscent of the career-concerns term

described in the previous paragraph, as it represents the incentive for effort a worker faces out of the desire to invest

in human capital. However, because of learning about ability and workers’ risk aversion, these private returns tend to

be smaller than the social returns at each point in time. When the difference between the social and private returns to

human capital is large, firms pay workers larger piece rates to encourage them to exert more effort. Thus, unlike the

previous two terms, this fourth term tends to positively contribute to piece rates. As experience accumulates, though,

this term declines in magnitude and adds progressively less to piece rates.

We show that the model is identified from panel data on wages and their fixed or variable components. In

particular, we establish that the model primitives can be recovered from the life-cycle profile of piece rates, mean

wages, and the covariance structure of wages up to usual level normalizations.3 The life-cycle profile of piece rates

itself can be recovered from the ratio of variable pay to total pay in each year of experience under the assumption

of free entry of firms in the labor market. We also show that these arguments extend to the case of observable and

unobservable heterogeneity in the model primitives, including in workers’ human capital process and degree of risk

aversion, and in the process that governs learning about workers’ ability. These identification results also apply

to the case of general (semi-parametric) human capital production functions provided that information on worker

performance is available in addition to information on wages, as is the case for many firm-level data sets.4

We estimate the model by minimum distance using the well-known Baker-Gibbs-Hölmstrom data (Baker et al.

[1994a] and Baker et al. [1994b], BGH hereafter) on supervisory workers (managers) of a large U.S. firm in a service

industry using information on wages and their variable component—performance pay. We document that in the

BGH data, performance pay as a fraction of total pay first increases and then declines with experience. We confirm

that this same hump-shaped pattern of performance pay is present in other firm-level data as well as in the Panel

Study of Income Dynamics (PSID). These findings directly contradict the prediction of career-concerns models that
3We normalize the mean of worker ability at entry in the labor market and the second derivative of the effort cost function. We rely on

outside information to pin down workers’ rate of time preference.
4For important related work on the identification and estimation of static and dynamic moral hazard models of executive compensation,

see Margiotta and Miller [2000], Gayle and Miller [2009, 2015], and Golan et al. [2015]. Differently from these authors, we consider a model
with uncertainty and learning about ability and persistent shocks to ability, and rely only on the experience profile of wages and their variable
component for its identification.
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performance pay relative to total pay becomes more important over time (Gibbons and Murphy [1992]). The data

thus reject the basic career-concerns model as a theory of performance pay over the life cycle. Our estimated model,

on the contrary, not only successfully matches the hump-shaped pattern of performance pay relative to total pay but

also the increase and curvature of average wages, as well as the profile of the variance of wages, with experience.

Our estimates suggest that individuals differ in their ability at entry in the labor market and that uncertainty about

it is present throughout the life cycle—in fact, it increases with experience due to accumulating shocks to ability,

despite firms and workers learning about ability over time. In fact, we estimate that the insurance against this un-

certainty that a wage contract provides through low piece rates is the major factor depressing performance pay. The

intuition for the relatively low level of performance pay in the data is simple from an asset pricing perspective. Since

performance pay, to reward effort, is high whenever output is high and so news about ability and future compensa-

tion are positive, workers employed under performance-pay contracts effectively hold a portfolio of state-contingent

claims to output, whose value increases with a worker’s ability. In particular, this portfolio pays out more in good

times—when output and so signals about ability are high—and less in bad times—when output and so signals about

ability are low. However, risk-averse investors prefer, and are willing to pay a premium for, assets that diversify their

risk and correspondingly demand contracts that reduce it. As a result, in equilibrium performance pay tends to be low

to hedge workers against the correlated risk in lifetime wages induced by the uncertainty about their ability. Note that

this argument confirms and extends the early intuition of Harris and Hölmstrom [1982] on the role of the dynamic

insurance provided by wage contracts for the evolution of wages with experience.5

Although variable pay represents a small fraction of total pay, we find that performance incentives play nonethe-

less a key role in shaping both the sensitivity of pay to performance and the growth and dispersion of wages over the

life cycle. In particular, by relying on our decomposition of piece rates, we show that insurance against uncertainty

about ability and human capital acquisition are quantitatively the most important determinants of the estimated sensi-

tivity of pay to performance. On the contrary, career-concerns incentives and the life-cycle variation in the strength of

the contemporaneous trade-off between risk and incentives—a key determinant of variable pay in static moral-hazard

models—are empirically much less relevant.

Importantly, we estimate that performance incentives are critical to life-cycle wage growth because they encour-

age workers to exert effort, which in turn contributes to output and to the accumulation of human capital. Our findings

imply that workers’ effort to produce output is complementary to that spent investing in human capital supporting

the notion that human capital is acquired through a learning-by-doing process. As the variance of performance pay

amounts to a large fraction of the variability of wages, especially over the first half of the life cycle, performance

incentives are also crucial for wage dispersion. Specifically, when we take into account the impact of effort on human
5Observe that our estimated degree of worker risk aversion falls within the range of existing estimates. See Section 7 for details.
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capital accumulation, we estimate that performance incentives provided through variable pay account for more than

30% of wage growth and for no less than 44% of the variability of wages over the first 30 years of labor market

experience in our data. Thus, by supporting effort and so indirectly the acquisition of human capital, performance

incentives are central to the life-cycle profile of wages and their dispersion. To the best of our knowledge, these

estimates are new to the literature.

An lesson from our work is that common statistical decompositions of wage dispersion among workers (as in

Abowd et al. [1999]) can be misleading. In particular, the variance of wages is often decomposed into that of

“worker” and “firm” effects and a residual. These terms are often interpreted to capture, respectively, differences in

ability among workers, in firm attributes including output risk, and in other unmeasured factors. In our framework,

such an exercise would attribute a large portion of the observed variation in wages to dispersion in workers’ ability.

But our model also predicts that performance pay declines with the uncertainty about ability. Indeed, if it were

possible to eliminate differences in ability among workers, then our model would imply that the variance of wages

would substantially increase. Intuitively, without uncertainty about ability, equilibrium contracts would feature much

higher piece rates, since workers would no longer demand insurance against this uncertainty. Higher piece rates, in

turn, would amplify any residual productivity risk, leading, on balance, to much greater wage dispersion. This simple

exercise thus illustrates the importance of accounting for the endogeneity of the wage structure to the degree of risk

and uncertainty in the labor market when assessing the role of different sources of wage dispersion.6

This result also provides a cautionary note for the debate on inequality, as it implies that a trade-off may exist

between ex-ante wage risk, due to the uncertainty about workers’ ability at entry in the labor market, and ex-post

wage risk, due to the variability in wages induced by performance pay. In particular, lower dispersion in initial ability,

for instance, through better schooling, may induce firms to offer wages more sensitive to performance. Then, more

homogeneous groups of workers in terms of skills might end up experiencing more, rather than less, wage inequality.

Related Literature and Outline. Our paper is related to multiple strands of literature, including papers on: i) the

importance of human capital acquisition with experience for wage growth (Heckman et al. [1998], Gladden and

Taber [2009], and Sanders and Taber [2012]); ii) distinguishing the impact of uncertainty and heterogeneity among

individuals on wage dispersion (Cunha et al. [2005] and Cunha and Heckman [2016]); iii) measuring the role of un-

certainty and learning about ability for wages and job choice (Miller [1984], Kahn and Lange [2014], and Pastorino

[2019]); and iv) estimating human capital functions (Cunha and Heckman [2008], Cunha [2011], and Cunha et al.

[2010]) and moral hazard models (Margiotta and Miller [2000], Gayle and Miller [2009, 2015], Perrigne and Vuong
6According to our model, small decreases in uncertainty for given piece rates lead to a lower variance of wages but large decreases in

uncertainty may well lead to a higher variance of wages. See Ackerberg and Botticini [2002] for evidence on the importance of unobserved
characteristics of the two sides of a market for the choice of contract form in the case of agricultural contracts between landlords and tenants.
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[2011], and Golan et al. [2015]).7 In related work, Golan et al. [2015] analyze how moral hazard and human capital

acquisition determine wages. While we focus on the life-cycle dynamics of wages and their components for (super-

visory) workers, those authors study the relationship between firm size and executive pay. In their work, executives

acquire general and firm-specific human capital, and choose among jobs and firms that differ in the pecuniary and

non-pecuniary benefits they offer. We refrain from studying the assignment of workers to jobs but we incorporate

in our framework unobserved worker ability, allow for persistent shocks to ability and so productivity, and consider

a richer agency problem with multiple possible effort levels for workers to capture workers’ varying labor supply

and investment choices over the life cycle. Also, Golan et al. [2015] rely on bond prices to recover executives’

preferences. In contrast, our model is identified just from data on wages and their fixed or variable components.8

Much work has emphasized the importance of unobserved heterogeneity, which is at the heart of our learning and

dynamic incentive mechanisms, for the wage process. For instance, Geweke and Keane [2000] provide evidence from

the PSID on the role of transitory shocks and individual heterogeneity for the dynamics of individual wages. Also

based on the PSID, Meghir and Pistaferri [2004] document the importance of idiosyncratic transitory and permanent

components of the wage process, in particular of unobserved heterogeneity for the variance of wages. For related

evidence on the role of returns to unobserved skills, their dispersion, and the dispersion of non-skill shocks for

wage inequality, see Lochner and Shin [2014] and Lochner et al. [2018].9 Dustmann and Meghir [2005] show the

importance of match-specific effects and heterogeneous returns to human capital, in the form of a correlated random-

coefficients model, for the impact of experience on wages. Adda and Dustmann [2020] estimate the contribution of

human capital and unobserved ability to wage growth using a rich dynamic model of workers’ occupational choice.

The paper proceeds as follows. We introduce our data in Section 2, where we document that the life-cycle

profile of performance pay relative to total pay is hump-shaped. Section 3 describes the model, Section 4 informally

discusses the equilibrium, and Section 5 contains our formal equilibrium analysis. Section 6 establishes the conditions

under which the model is identified, Section 7 presents the estimation results, and Section 8 explores the implications

for wage growth and dispersion. Section 9 concludes. The appendices contain all omitted details.
7Using information on wages and performance from the BGH data, Kahn and Lange [2014] document that learning and stochastic produc-

tivity changes are important for the variance of wages. They also provide evidence that learning continues throughout the life cycle. Pastorino
[2019] uses job, wage, and performance information from the BGH data to identify and estimate the relative contribution of learning and
human capital acquisition to the dynamics of workers’ jobs and wages.

8In their framework, only two effort levels are possible, “effort” or “shirking,” which simplifies issues of incentive compatibility of wage
contracts. Our model is identified up to the second derivative of the effort cost function and a level normalization. The model in Golan et al.
[2015] is identified up to the non-pecuniary utility and human capital acquired upon shirking.

9Lochner et al. [2018] identify the role of changes in the returns to unobserved skills, in the variance of unobserved skills, and in the
variance of transitory non-skill shocks for the increase in U.S. residual wage inequality from the 1980s onward. Lochner and Shin [2014]
similarly document the importance of unobserved skills for the evolution of log earnings residuals.
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2 Evidence on the Sensitivity of Pay to Performance

In this section, we provide evidence on the experience profile of the ratio of variable (or performance) pay to total pay

using public data from the PSID as well as proprietary data from the personnel records of two firms. These records

were first described in three influential studies in the literature on careers, namely, Baker et al. [1994a,b] and Gibbs

and Hendricks [2004]. Both the PSID and these firm-level data have the advantage that they contain information on

fixed pay fit and variable pay vit, which together account for the total compensation or wage of worker i in period t,

wit = fit + vit. In models with variable pay proportional to output, vit = biyit, and free entry of firms in the labor

market, such as ours, the ratio E[vit]/E[wit] of average variable pay to average total pay then measures the piece rate

bt, that is, the sensitivity of pay to performance.10 Based on these data spanning across multiple years, firms, and

industries, we document that the importance of performance pay relative to total pay eventually declines with labor

market experience, contrary to the prediction of career-concerns models with explicit performance incentives.

PSID. We focus on the main PSID sample, excluding the poverty, latino, and immigrant sub-samples, and consider

male heads of households aged 21 to 65 observed between 1993 and 2013 with valid education information, that

is, with more than 0 and up to 17 years of education (the largest value). We further restrict attention to those who

work more than 45 weeks each year in any industry except for the government and the military, have non-missing

positive total labor income, and are not self-employed. The resulting sample consists of more than 24,000 person-

year observations. We compute labor market experience as potential experience defined as the difference between an

individual’s age and years of education (minus six). We refer to an individual’s labor income as the individual’s wage.

We calculate performance pay as the sum of the three measures of variable pay that are available in the PSID from

1993 onward, namely, tips, bonuses, and commissions. Accordingly, we interpret individuals who do not report any

tip, bonus, or commission in a year as receiving a performance pay of zero—we exclude observations on performance

pay larger than total labor income. In this sample, the average salary is $60,000 (in 2009 dollars) with a standard

deviation of $41,000 and the average variable pay is $14,000 with a standard deviation of $46,000.

In Figure 1, we show how the sensitivity of pay to performance varies with experience by broad industry groups,

that is, in manufacturing, transport, services, and in the financial, insurance, and real estate (FIRE) industry for three

cohorts of individuals, respectively, with 10, 15, and 20 years of experience when first observed between 1993 and

1998—each experience profile is smoothed by taking a five-year moving average. Remarkably, all cohorts exhibit

a qualitatively and quantitatively similar hump-shaped pattern for the sensitivity of pay to performance. Analogous

profiles emerge if we divide the sample into workers with and without a college degree.11 The PSID data thus
10With linear incentive contracts, variable pay is given by btyit, where bt is the contract piece rate that measures the sensitivity of pay to a

worker’s output, yit. By the assumption of free entry of firms in the labor market, average wages equal average output at each t. Hence, we
can recover the piece rate in each t as the ratio E[vit]/E[wit].

11Not all individuals in the sample are employed in the four industry groups shown, but the sample size for the remaining industries is so
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suggest that the sensitivity of pay to performance increases early in the life cycle, peaks around its middle, and then

subsequently declines. This pattern is robust across cohorts, industries, and education groups.

Firm Personnel Records. We use firm-level data from two large U.S. firms studied in previous work and described

in detail by Frederiksen et al. [2017]. As the identities of these firms cannot be disclosed, we identify them by the

names of the authors who first analyzed these data and so refer to these firms as the Baker-Gibbs-Holmström (BGH)

firm and the Gibbs-Hendricks (GH) firm. For both firms, we only have information about white-collar workers—

managers in the case of the BGH data. The BGH firm operates in a service industry and the data from it cover the

period from 1969 to 1988. Our analysis, however, is limited to the period between 1981 and 1988 because bonus pay,

which is the only form of variable pay that managers receive, was not separately reported prior to 1981. The BGH

data contain 36,695 person-year observations and 9,800 unique individuals. Since we only have information about

managers at this firm, the average salary is fairly high, namely, $55,000 (in 1988 dollars) with a standard deviation of

$31,500. On average, bonus pay accounts for almost $2,000 with a standard deviation of about $7,600. Base salary

makes up the remaining $53,000 with a standard deviation of $27,700. The GH data instead cover the years from

1989 to 1993—we cannot reveal the industry the firm belongs to. For the GH firm, we have information about 15,648

individuals for a total of 47,715 person-year observations. As these data contain information about all white-collar

employees of the firm, the average salary is lower than in the BGH data and close to $40,000 (also in 1988 dollars)

with a standard deviation of $28,000. Bonus pay on average accounts for almost $2,000 with a standard deviation

of about $9,300. We estimate the model using the BGH data because its fairly long panel covering 8 years with

information on fixed and variable pay enables us to better trace life-cycle patterns. The BGH data also represents a

touchstone in the personnel literature and is therefore useful to connect our findings to extant papers, including some

of our own such as Kahn and Lange [2014] and Pastorino [2019].

The left panel of Figure 2 reports the experience profile of the sensitivity of pay to performance in the BGH data

for managers with 21 to 65 years of age. This profile is hump-shaped: it increases over the first 20 years of labor

market experience and then unambiguously decreases over the remaining 20 years. These data thus reject the basic

implication of the standard career-concerns model based on reputational concerns and explicit contracts developed

by Gibbons and Murphy [1992]. As shown in Figure 3, performance pay in the GH data is likewise hump-shaped

over the life cycle and therefore at odds with the standard career-concerns model. Analogous patterns arise if we

focus on skilled (college) or unskilled (no college) workers; see the center and right panels, respectively, of Figures 2

and 3. As we will discuss in Subsection 5.2, the location of the peak of these profiles will prove informative about the

relative importance of learning about ability and human capital acquisition as well as the speed of the two processes.

small that discernible patterns cannot be easily detected.
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3 Model

In this section, we describe the environment, define equilibrium, and discuss our main assumptions.

3.1 Environment

Consider a labor market populated by heterogeneous risk-averse workers and identical risk-neutral firms. Time is

discrete, ranges from 0 to T , and is denoted by t. Workers, denoted by i, differ in ability θit, which is unobserved

and subject to persistent shocks. When employed, workers exert effort eit and acquire human capital kit that depends

on their effort eit. Ability θit is not directly observed by any market participant, including workers. Workers, unlike

firms, directly observe their effort and human capital. Finally, all firms observe output yit as well as the terms of

wage contracts. Note that since a worker’s ability is unknown to all whereas output is observable to all, ours is a

model of symmetric learning about ability.

Production. The production technology is common to all potential producers and entry in this market is free.12

Worker i in period t produces output yit according to:13

yit = θit + kit + eit + εit. (1)

The shock to output εit can be interpreted as either true risk in the worker’s output or noise in its measurement.

Worker i’s ability evolves over time according to the process θit+1 = θit + ζit, where ζit is an unobserved shock to

the worker’s ability between periods t and t+ 1. A worker’s initial ability is normally distributed with mean mθ and

variance σ2θ . Similarly, output noise and shocks to ability are normally distributed with mean zero and variances σ2ε

and σ2ζ , respectively. When σ2ζ = 0, ability is fixed over time. Allowing for ability shocks implies that uncertainty

about ability need not decline over time and therefore implicit incentives from career concerns do not necessarily

decline with experience.

Human Capital. The human capital of any worker i evolves with the worker’s effort according to the process

kit+1 = λkit + γteit + βt, (2)

12This market could be one of many markets segmented by location, occupation, or industry, in each of which the matching of workers
and firms is subject to informational frictions. In particular, a labor market is defined by the distribution of a single index of unknown worker
productivity as well as common learning and human capital processes across firms. What is important is that these markets are sufficiently
separate that employment opportunities in other markets are irrelevant for workers’ decisions in a given market. In our empirical application,
we focus on the market for managers in a service industry.

13Like Gibbons and Murphy [1992], p. 476, we allow effort to be negative and so workers to destroy output because positive effort might
not be optimal for a worker. We can then conveniently use first-order conditions to characterize the solution to a worker’s problem. We later
show that effort is positive if piece rates lie in the unit interval, which is the empirically relevant range, and derive conditions for equilibrium
piece rates to belong to this interval in the Appendix.
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where 1 − λ ∈ [0, 1] is the depreciation rate, γt ∈ R is the rate at which effort in period t changes the stock of

human capital in period t+ 1, and βt ≥ 0 is a deterministic term common to all workers.14 Workers have a common

stock of human capital at entry in the labor market, k0. By absorbing k0 into mθ, we let k0 = 0 without loss.15

This formulation of the human capital process encompasses both the situation in which human capital acquisition is

complementary to current production (γt > 0), as in standard learning-by-doing models, and the situation in which

human capital acquisition is rival to it (γt < 0), as in models à la Ben-Porath [1967]. Also note that this specification

of the amount of efficient labor that a worker supplies in a period as θit + git + eit + εit, where git = kit, extends that

of Bagger et al. [2014], who specify it as θi + git + εit. Differently from these authors, we allow: i) the individual

heterogeneity parameter θit to be unknown to workers and firms and vary over time; ii) the stock of human capital

acquired on the job git to evolve endogenously as a function of a worker’s past effort; and iii) effort in a period to

affect the amount of efficient labor provided. In Section 6, we consider more general formulations of the human

capital process including the case in which the law of motion of human capital depends nonparametrically on effort

and workers differ in terms of their ability distribution and human capital process.

Worker Preferences. In period t, the lifetime utility of a worker who receives wage wt+τ and exerts effort et+τ in

period t+ τ for each 0 ≤ τ ≤ T − t is

− exp

{
− r

[
T−t∑
τ=0

δτ
(
wt+τ − e2t+τ/2

)]}
,

where r > 0 is the coefficient of absolute risk aversion, δ ∈ (0, 1) is the discount factor, and e2/2 is the monetary

cost of effort e. See Gibbons and Murphy [1992] for a virtually identical specification.16

Contracts. In every period t, firms offer workers one-period contracts specifying their wage in t as a function of their

output in the period. Following Gibbons and Murphy [1992], we focus on linear contracts so that worker i’s wage in

period t is wit = ait + bityit, where ait is worker i’s fixed pay, bityit is worker i’s variable pay, and bit is worker i’s

piece rate. Note that the assumption of one-period contracts is equivalent to the assumption of renegotiation-proof

long-term contracts.17 We focus on linear contracts for three reasons. First, the assumption is standard so it makes

our framework comparable to those commonly studied. Second, incentive contracts are often linear in output, or

approximately so, in the data. Third, from a theoretical point of view, linear contracts allow us to summarize the
14Note that βt can capture additions to human capital from observable investment activities such as formal training or simply the feature

that eit is the effort expended in production and et− eit is the effort expended to acquire human capital with βt = −etγt when γt is negative.
15Our production function of skills hit+1 ≡ θit+1 +kit+1 with kit+1 = λkit+γteit+βt can be interpreted as a log form of the production

function h̃it+1 = ãt+1(θit, θit+1)β̃th̃
λ
itẽ

γt
it with hit = ln(h̃it), at+1(θit, θit+1) = ln(ãt+1(θit, θit+1)) = θit+1 − λθit, βt = ln(β̃t)

eit = ln(ẽit), and hi0 = θi0. We can allow for heterogeneous initial stocks of human capital by assuming that ki0 is known but random. We
can also let kit fluctuate stochastically over time, which is equivalent to σ2

ε increasing over time.
16It is straightforward to extend our equilibrium characterization to the case in which the cost of exerting effort e is g(e), where g is twice

continuously differentiable and strictly convex. By assuming that workers have constant absolute risk aversion (CARA) preferences, we
abstract from wealth effects. Because of its tractability, this assumption is ubiquitous in dynamic moral hazard models.

17See Gibbons and Murphy [1992] for a proof of this result. Their proof immediately extends to our environment.

10



strength of contractual incentives, which is a key feature of interest in our analysis, through a single one-dimensional

measure, namely, the piece rate bit.

Wages. Competition among firms implies that expected wages in every period equal expected output. Hence,

wit = (1− bit)E[yit|Iit] + bityit (3)

is worker i’s wage in period t, where E[yit|Iit] is worker i’s expected output in t conditional on the public information

Iit available about the worker in t, which consists of the worker’s output realizations before t. The term (1 −

bit)E[yit|Iit] is the fixed component of the wage in period t. This component depends on a worker’s conditional

expected output in t, which in turn is a function of the worker’s conditional expected ability in t.

Strategies and Equilibria. A worker’s history in period t consists of the worker’s effort and output histories in the

period. These are, respectively, the sequence of the worker’s private effort choices and public output realizations

up to period t − 1. A strategy for a firm specifies contract offers to workers conditional on the public portion of

their histories. A strategy for a worker specifies an effort choice after each history and contract offers by firms. We

consider pure-strategy sequential equilibria. An equilibrium specifies strategies for firms and workers such that for

each worker: i) after any public history for the worker, firms offer a linear contract satisfying (3) that maximizes

the worker’s expected lifetime utility given the firms’ and worker’s future behavior; and ii) the worker’s choice of

effort in each period is optimal given the worker’s history, the contracts firms offer to the worker, and the firms’ and

worker’s future behavior. Condition i) follows from the assumption of free entry of firms. Condition ii) is sequential

rationality. We assume that when indifferent between accepting two or more firms’ offers, a worker leaves the current

employer with probability equal to the corresponding empirical probability of separation of workers from the firm in

our data.18 Hence, the model is consistent with worker turnover in equilibrium.

3.2 Remarks

Our model nests a number of well-known models in the literature on learning about ability, human capital accumula-

tion, and performance incentives. For instance, when ability is known and effort is public, our model reduces to one

of human capital accumulation through either investments that are rival to output or learning-by-doing. When effort

is not a choice variable, the model further specializes to one of “passive” human capital acquisition with experience.

If, instead, effort does not contribute to human capital accumulation and ability is not subject to shocks (γt = 0 at

each t and σ2ζ = 0), then our model simplifies to the career-concerns model with explicit incentives of Gibbons and

Murphy [1992]. When contracts are restricted to fixed pay, the model further reduces to a finite-horizon version of
18As Baker et al. [1994a,b] remark, turnover in their data is largely independent of performance and approximately constant with tenure.

In particular, they find no evidence that separations mask a tendency for managers to be laid off or move to other firms in response to poor
evaluations. Hence, we find our approximation that turnover is random from the point of view of the mechanisms of our model not implausible.
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the standard career-concerns model of Hölmstrom [1999]. If, in addition, effort is fixed, our model is an instance of

a typical symmetric learning model with ability general across firms (Farber and Gibbons [1996]).

Our functional-form assumptions are common in the literature and allow us to completely characterize equilib-

rium. In particular, because output is linear in its components, contracts are linear in output, shocks to ability are

additive, and ability, ability shocks, and output are normally distributed, our model with CARA preferences admits

a mean-variance representation as in Gibbons and Murphy [1992]. This feature implies that a worker’s trade-off be-

tween consumption or wages and leisure does not depend on a worker’s history, which leads equilibrium to be unique

and symmetric with piece rates and effort only dependent on time. In Section 6 and the appendices, we consider more

general versions of the model that result from relaxing some of these assumptions, whose equilibria we characterize

and which we prove are identified by simple extensions of the arguments presented below.

4 Informal Equilibrium Derivation

We now informally discuss the equilibrium and its properties. We first describe the process of learning about abil-

ity. We then discuss how career concerns and human capital acquisition affect a worker’s incentives to exert effort

for a given life-cycle profile of piece rates. We conclude by deriving the equilibrium piece rates. A more formal

characterization of the equilibrium follows in Section 5.

4.1 Learning About Ability

Firms and workers learn about a worker’s ability by observing a worker’s output. Consider worker i in period twhose

equilibrium effort and human capital in t are e∗t and k∗t , respectively. Denote by zit = yit − e∗t − k∗t the portion of

the worker’s output in period t that cannot be explained by the worker’s effort or human capital. Then,

zit = θit + εit (4)

is the signal about a worker’s ability in period t that firms and workers extract from the worker’s output. Since

initial ability as well as shocks to ability and output are normally distributed, (4) implies that in equilibrium posterior

beliefs about a worker’s ability in any period are normally distributed and so fully described by their posterior mean

and variance, respectively, mit = E[θit|Iit] and σ2it = Var[θit|Iit] where mi0 = mθ and σ2i0 = σ2θ . We refer to mit as

worker i’s reputation in period t. By standard results,

mit+1 =
σ2ε

σ2it + σ2ε
mit +

σ2it
σ2it + σ2ε

zit and σ2it+1 =
σ2itσ

2
ε

σ2it + σ2ε
+ σ2ζ . (5)

The recursions for mit and σ2it in (5), respectively, describe how a worker’s reputation and the variance of pos-
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terior beliefs about a worker’s ability change over time.19 Observe that the variance σ2it evolves independently of

the realization of zit and so is common to all individuals in t. Thus, we can suppress the subscript i and simply

denote this variance by σ2t . Since signals do not perfectly reveal ability and ability is subject to shocks, uncertainty

about ability persists throughout a worker’s career and, as captured by σ2t , eventually reaches the nonnegative fixed

point σ2∞ by (5). The variance σ2t monotonically decreases to σ2∞ if σ2θ > σ2∞ and monotonically increases to σ2∞

if σ2θ < σ2∞. Note that σ2∞ > 0 if σ2ζ > 0, in which case ability is never fully learned.20 By iterating on the law

of motion for mit in (5), we can trace out the evolution of a worker’s reputation as signals about ability accumulate.

With µt ≡ σ2ε/(σ2t + σ2ε) and the convention that
∏0
k=1 ak = 1 for any numeric sequence {ak}, we then have:

Lemma 1. For each worker i and period t, the worker’s reputation in period t+ τ with 1 ≤ τ ≤ T − t is

mit+τ =

(∏τ−1

k=0
µt+k

)
mit +

∑τ−1

s=0

(∏τ−1−s

k=1
µt+τ−k

)
(1− µt+s)zit+s.

4.2 Dynamic Returns to Effort

We now discuss how workers’ desire to increase their reputation—the market expectation of their ability—and to

acquire human capital affect the returns to effort. As we show in Section 5, the expressions derived here apply

to the unique equilibrium of our model, which has the property that piece rates only depend on the time index t,

not on individual output histories. Consider then an individual who faces a sequence of piece rates {bt}Tt=0. Since

equilibrium piece rates do not depend on the worker’s identity, we suppress the index i to keep the notation simple.

In what follows, we first present the worker’s problem and derive the first-order conditions determining the worker’s

choice of effort in each period. We then show that we can decompose this first-order condition into distinct terms

that capture career-concerns incentives arising from workers’ desire to affect their reputation and human capital.

Worker Problem. Consider worker i’s choice of effort in period t. Let wit+τ be the worker’s wage in period t + τ

with 0 ≤ τ ≤ T − t and let Wit =
∑T−t

τ=0 δ
τwit+τ be the present-discounted value of the worker’s wages from period

t on. The worker chooses effort et to maximize the utility Uit(et) = E[− exp{−r
[
Wit − e2t /2]}|hti], where we omit

the dependence of et on i for ease of notation. The expectation in Uit(et) is conditional on worker i’s period-t history

hti. Yet, as we will show, the choice of et that maximizes Uit(et) is independent of hti. Since signals about ability

are normally distributed, it follows from (3) and Lemma 1 that wages, {wit+τ}T−tτ=0, are normally distributed, and

so is the present-discounted value Wit. Recall that if X is normally distributed with mean µ and variance σ2, then
19These expressions are valid even when workers’ effort choices deviate from the equilibrium path since a worker’s effort is private and

every output realization is possible for any choice of effort.
20See Hölmstrom [1999] for a proof of these facts. Straightforward algebra shows that σ2

∞ = [σ2
ζ + (σ4

ζ + 4σ2
ζσ

2
ε)1/2]/2. Kahn and Lange

[2014] refer to this process as “learning about a moving target” and find evidence for it from the correlation patterns between performance
ratings and total pay in the BGH data.
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E
[

exp{rX}
]

= exp
{
rµ− r2σ2/2

}
. Thus, et maximizes Uit(et) if, and only if, it maximizes

E[Wit|hti]− rVar[Wit|hti]/2− e2t /2 =
∑T−t

τ=0
δτE[wit+τ |hti]− rVar[Wit|hti]/2− e2t /2. (6)

First-Order Conditions for Effort. The wage contract in (3) implies that ∂E[wit|hti]/∂et = bt. Worker i’s effort in

t also influences wages in t + τ through its effect on the worker’s future reputation mit+τ , which impacts the fixed

component of future pay, and through its effect on the worker’s future human capital stock kit+τ , which impacts both

the fixed and variable components of future pay.21 The first-order condition for worker i’s effort in period t is then

et = bt +
∑T−t

τ=1
δτ
∂E[wit+τ |hti]

∂et
. (7)

The right side of (7), which describes the marginal benefit of effort in t, consists of two terms. The first term captures

the static marginal benefit of effort and is given by the piece rate bt. The second term captures the dynamic marginal

benefit of effort, which consists of the impact of effort on the present-discounted value of the worker’s expected

future wages and is different from zero as long as t < T .

Marginal Benefit of Effort. In the Appendix, we show that we can express the first-order condition in (7) as

et = bt +RCC,t +RLBD,t, (8)

where22

RCC,t =
∑T−t

τ=1
δτ (1− bt+τ )

(
τ−1∏
k=1

µt+τ−k

)
(1− µt) and RLBD,t = γt

∑T−t

τ=1
δτλτ−1

(
bt+τ +RCC,t+τ

)
. (9)

It follows from (8) and (9) that effort is positive if piece rates are in the unit interval, which is the empirically relevant

case.23 The terms RCC,t and RLBD,t describe a worker’s dynamic marginal benefit of effort that arises from the

impact of effort on the worker’s reputation and human capital, respectively. They capture the effect of effort in period

t on a worker’s future wages through its effect on their fixed and variable components.

To understand the term RCC,t, observe that higher effort in period t increases the period-t signal about worker i’s

ability, which raises the worker’s reputation in all future periods. By equation by (3), the fixed component of worker

i’s wages in all these periods also increases. The term RCC,t thus captures the standard career-concerns incentive

21Note that effort does not affect the variance of future wages. This standard feature (see Gibbons and Murphy [1992]) is implied by our
normal prior-signal information structure, the linearity of output in ability and effort, and the exponential-linear setup for preferences and
contracts. To see why effort does not affect the variance of future wages, recall that bt is taken as given by a worker. As the variance of the
signals about ability does not depend on effort, Lemma 1 implies that a worker’s effort in period t does not affect the variance of the worker’s
future reputation. Similarly, a worker’s stock of human capital has no impact on the variance of output or wages.

22The marginal benefit of effort in t does not vary with et since RCC,t and RLBD,t do not depend on et. So, (8) is sufficient for optimality.
Also note that (8) implies that effort choices depend only on time and are identical across workers if piece rates are the same. Hence, individuals
facing the same current and future piece rates, and choosing the same effort in the future, also behave identically at t. This feature is key to
establishing that the unique equilibrium is symmetric and that effort choices and piece rates depend only on time.

23Indeed, for 1 ≤ τ ≤ T − t, RCC,t+τ ≥ 0 if bt+τ+s ≤ 1 for all 1 ≤ s ≤ T − t− τ so that bt+τ +RCC,t+τ ≥ 0 if bt+τ ≥ 0.
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from Hölmstrom [1999]: even in the absence of any explicit link between pay and performance, workers have a desire

to exert effort to improve their performance in order to influence the market perception of their ability. Formally,

∂E[mit+τ |hti]
∂et

=

(
τ−1∏
k=1

µt+τ−k

)
(1− µt)

∂E[zit|hti]
∂et

=

(
τ−1∏
k=1

µt+τ−k

)
(1− µt)

for all 1 ≤ τ ≤ T − t by Lemma 1. Since the fixed component of worker i’s wage in period t + τ is (1 −

bt+τ )E[yit+τ |Iit+τ ] and E[yit+τ |Iit+τ ] changes one-for-one with the worker’s reputation in period t+ τ , a marginal

increase in worker i’s effort in period t increases the fixed component of the worker’s wage in t+ τ by

(1− bt+τ )

(
τ−1∏
k=1

µt+τ−k

)
(1− µt).

The term RCC,t is simply the present-discounted value of all these marginal increases.

To understand next the term RLDB,t, observe that worker i’s choice of effort in period t directly affects the

variable component of the worker’s wage in all subsequent periods by affecting the worker’s stock of human capital,

and thus output, in each such period. In addition, by changing the worker’s stock of human capital, effort in period t

affects future output signals about the worker’s ability, and so the worker’s future reputation and fixed pay.

To elaborate, a marginal increase in effort in period t leads to an increase in worker i’s undepreciated stock of

human capital and output in period t+τ by γtλτ−1. This increase in output, in turn, increases the variable component

of the worker’ wage in t+ τ by the amount bt+τγtλτ−1. But an increase in worker i’s human capital in period t+ τ ,

by increasing the worker’s output in t+ τ , also increases the magnitude of the signal zit+τ about the worker’s ability

observed at the end of t + τ . Then, by the same argument for the derivation of the term RCC,t, such an increase

in signals correspondingly increases worker i’s expected future reputation—larger signals induce the market to infer

that a worker is of higher ability. As a result, the increase in worker i’s output in period t+ τ by γtλτ−1 leads to an

increase in the fixed component of the worker’s wages from t + τ on equal to γtλτ−1RCC,t+τ . This term captures

the impact of human capital on future career-concerns incentives and so on future fixed pay. Thus, the total increase

in worker i’s expected value of wages from period t+ τ on resulting from a marginal increase in effort in period t is

γtλ
τ−1(bt+τ +RCC,t+τ ). The term RLBD,t is the present-discounted value of all these marginal increases.

4.3 Equilibrium Piece Rates

The first-order condition in (8) determines a worker’s choice of effort in any period t as a function of the piece rate in

t, when the future path of piece rates is taken as given. We now determine the last-period piece rate and then proceed

backwards to determine the remaining ones. With this characterization of equilibrium piece rates at hand, we can

rely on the results from the previous subsection to derive equilibrium effort choices provided that equilibrium piece

rates depend only on time, which will be the case.
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Last-Period Piece Rates. It is easy to show that equilibrium piece rates in period T are the same for all workers and

given by b∗T = 1/[1 + r(σ2T + σ2ε)]. Intuitively, since no dynamic considerations affect effort decisions in the last

period, uncertainty about ability plays the same role as noise in output. Thus, when t = T , our model is equivalent

to the canonical static linear-normal model of incentives with quadratic effort cost, in which output noise is normally

distributed with variance σ2T + σ2ε . Given that last-period piece rates are the same for all workers independently of

their output histories, (8) implies that the last-period equilibrium effort choices are the same for all workers as well.

Piece Rates in Previous Periods. In order to determine equilibrium piece rates in period t < T , suppose that

equilibrium efforts and piece rates from t + 1 on depend only on time, not on a worker’s history—we just showed

that this property holds when t = T − 1. For each 0 ≤ τ ≤ T − t, let b∗t+τ be the equilibrium piece rate in period

t+ τ and define R∗CC,t and R∗LBD,t as in (9) with bt+τ = b∗t+τ for each τ . Then, a worker’s choice of effort in period

t when the worker’s contract piece rate in t is b is

et = et(b) = b+R∗CC,t +R∗LBD,t. (10)

Let w∗t+τ = w∗t+τ (b) and W ∗t = W ∗t (b), respectively, be a worker’s wage in period t + τ with 0 ≤ τ ≤ T − t

and the present-discounted value of these wages from period t on as functions of b. Note that W ∗t depends on b

directly through the effect of b on the worker’s variable pay in t and indirectly through the effect of b on the worker’s

effort in t. Observe also that the competition among firms leads firms to offer a piece rate that maximizes a worker’s

expected lifetime payoff, conditional on the information that firms have about the worker. Then, by the mean-variance

representation of worker preferences in (6), a worker’s equilibrium piece rate in period t maximizes

E[W ∗t |It]− rVar[W ∗t |It]/2− e2t /2, (11)

where It is the public information about the worker in period t.

We now show that the problem of maximizing (11) admits a unique solution, that this solution is independent of

It and so the same for all workers, and characterize it. First, observe that

∂E[W ∗t |It]
∂b

=
∑T−t

τ=0
δτ
∂E[w∗t+τ |It]

∂b
= 1 + γt

∑T−t

τ=1
δτλτ−1. (12)

The first term on the right side of (12) captures the marginal impact of b on the expected wage in period t and equals

one since ∂et/∂b = 1 by (10). As for the second term, note that by increasing effort in period t by one unit, a worker

not only increases expected output in period t by one unit but also expected output in period t+τ with 1 ≤ τ ≤ T − t

by γtλτ−1 units, which amount to the increase in the worker’s stock of human capital in t+ τ . Then, the second term

on the right side of (12) is simply the present-discounted value of these expected output increases, as the competition

among firms yields that the worker fully captures this value.
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Consider now the derivative of the second term in (11) with respect to b. Since, as discussed, a worker’s effort

in period t does not affect the variance of wages, Var[W ∗t |It] depends on b only through the direct effect of b on the

variance of wages. Given that b affects the variance of w∗t+τ only when τ = 0, we can write

Var[W ∗t |It] = Var[w∗t |It] + 2
∑T−t

τ=1
δτCov[w∗t , w

∗
t+τ |It] + Var0,

where the last term is independent of b. Since Var[w∗t |It] = b2(σ2t + σ2ε) and the linearity of w∗t in b implies that

Cov[w∗t , w
∗
t+τ |It] is linear in b for all 1 ≤ τ ≤ T − t, it follows that

∂Var[W ∗t |It]
∂b

= 2b(σ2t + σ2ε) + 2
∑T−t

τ=1
δτ
∂

∂b
Cov[w∗t , w

∗
t+τ |It] = 2b(σ2t + σ2ε) + 2H∗t , (13)

where, as we show in the Appendix, H∗t = σ2t
∑T−t

τ=1 δ
τ . This term captures the fact that a worker’s output in period t

is correlated with the worker’s future output through the worker’s ability. Thus, by increasing b and so the correlation

between a worker’s wage and ability in period t, firms also increase the correlation between a worker’s wage in t and

in future periods, thereby increasing the variance of W ∗t .

Using once again the fact that ∂et/∂b = 1, it follows that the first-order condition for the problem of maximizing

(11) is given by 1 + γt
∑T−t

τ=1 δ
τλτ−1 − rb(σ2t + σ2ε)− rH∗t − et = 0. This equation admits the unique solution

b∗t =
1

1 + r(σ2t + σ2ε)

(
1 + γt

∑T−t

τ=1
δτλτ−1 −R∗LBD,t −R∗CC,t − rH∗t

)
(14)

by (10).24 Expression (14) is the equilibrium piece rate in period t, which is independent of a worker’s history in t

and thus is the same across workers.25 We provide a detailed analysis of b∗t next.

5 Equilibrium Characterization and Properties

Here we characterize the equilibrium and examine the implied pattern of equilibrium piece rates over the life cycle.

5.1 Recursive Formulation of Equilibrium

We first state and discuss our key characterization result. In order to do so, let (σ2t )
T
t=0 satisfy the difference equation

σ2t+1 =
σ2t σ

2
ε

σ2t + σ2ε
+ σ2ζ (15)

24That b∗t maximizes (11) follows from the fact that ∂E[W ∗t |It]/∂b, the marginal benefit to the worker of an increase in b, is constant,
whereas (r/2)∂Var[W ∗t |It]/∂b+ et, the marginal cost to the worker of an increase in b, increases with b.

25Since the equilibrium piece rates in period t are the same for every worker, so are the equilibrium efforts in period t by (8). Thus, if
equilibrium efforts and piece rates are symmetric and depend only on time from period t + 1 on, then they have the same properties from
period t on. So, by induction, the equilibrium efforts and piece rates are symmetric and depend only on time.
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with initial condition σ20 = σ2θ . Recall that for each 0 ≤ t ≤ T

µt =
σ2ε

σ2t + σ2ε
(16)

and our convention that
∏0
k=1 ak = 1 for any numeric sequence {ak}.26

Proposition 1. The equilibrium is unique, symmetric, and such that effort choices and piece rates depend only on

time. Let e∗t and b∗t , respectively, be the equilibrium effort and piece rate in period 0 ≤ t ≤ T . For each t, define b0t ,

R∗CC,t, R
∗
LBD,t, and H∗t as

b0t =
1

1 + r(σ2t + σ2ε)
; (17)

R∗CC,t =
∑T−t

τ=1
δτ (1− b∗t+τ )

(∏τ−1

k=1
µt+τ−k

)
(1− µt); (18)

R∗LBD,t = γt
∑T−t

τ=1
δτλτ−1

(
b∗t+τ +R∗CC,t+τ

)
; (19)

H∗t = σ2t
∑T−t

τ=1
δτ . (20)

Then, b∗t and e∗t are given recursively by

b∗t = b0t

(
1 + γt

∑T−t

τ=1
δτλτ−1 −R∗LBD,t −R∗CC,t − rH∗t

)
(21)

and

e∗t = b∗t +R∗CC,t +R∗LBD,t. (22)

In the Appendix we state and prove the equilibrium characterization in the more general case in which the law

of motion of human capital is kit+1 = λkit + Ft(eit) with Ft strictly increasing and concave. There we also provide

simple conditions for equilibrium piece rates to lie in the unit interval. Since we have discussed expression (22)

for equilibrium effort choices in Section 4, in what follows we discuss expression (21) for equilibrium piece rates,

which consists of five terms. The first term b0t is the equilibrium piece rate in the static linear-normal model of

incentives with exponential utility and quadratic cost of effort when the variance of output is σ2t + σ2ε . The second

term 1 + γt
∑T−t

τ=1 δ
τλτ−1 is the social marginal return to effort in period t, which corresponds to the change in a

worker’s expected present-discounted value of lifetime output resulting from a marginal increase in effort in t. As

discussed, the third and fourth termsR∗CC,t+R
∗
LBD,t capture the dynamic marginal benefit of effort in period t, which

amounts to the increase in a worker’s expected present-discounted value of lifetime wages associated with a marginal

increase in effort in t. The fifth term H∗t = σ2t
∑T−t

τ=1 δ
τ is the increase in the variance of the present-discounted

value of lifetime wages following a marginal increase in the piece rate in t.
26As discussed in the previous section, (15) admits a unique nonnegative fixed point σ2

∞, which is positive if, and only if, σ2
ζ > 0. Also, σ2

t

strictly decreases to σ2
∞ when σ2

θ > σ2
∞ and strictly increases to σ2

∞ when σ2
θ < σ2

∞.
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One way to understand expression (21) is by comparing it to the piece rate that would induce workers to exert

the first-best level of effort. In the canonical static linear-normal model of incentives, a piece rate equal to one leads

a worker to choose the first-best level of effort, which, by definition, equates the marginal cost of effort, here e∗t , to

its social marginal return given by the corresponding marginal increase in output. In our setting, a piece rate equal to

χt = 1 + γt
∑T−t

τ=1 δ
τλτ−1−R∗CC,t−R∗LBD,t would lead a worker to exert the first-best level of effort by (22), since

b∗t = χt implies that e∗t = 1 + γt
∑T−t

τ=1 δ
τλτ−1. Note that χt = 1 only when t = T and no dynamic considerations

influence a worker’s choice of effort.

The equilibrium piece rate in (21) differs from χt in two ways. First, it subtracts from χt the term rH∗t , which

is positive if t < T . Intuitively, any variation in output in period t < T leads to variation not only in wages in t

but also in future wages, as firms learn about a worker’s ability based on realized output. The equilibrium contract

partially insures workers against this life-cycle wage risk by means of lower piece rates through rH∗t , which reduces

the correlation between a worker’s performance and pay. As long as σ2t declines or does not increase too fast with

t, the term rH∗t also declines with t: as the present-discounted value of the uncertainty about ability decreases over

time, so does the need to insure workers against the resulting variability in wages. Observe also that the magnitude

of rH∗t decreases with r—the less risk averse workers are, the lower the degree of insurance they desire against the

risk induced by the uncertainty about ability.

Second, the equilibrium piece rate scales the difference χt−rH∗t by the factor b0t <1.The term b0t adjusts the piece

rate to account for the trade-off between risk and incentives familiar from static models of moral hazard. Namely,

the equilibrium contract weighs the output gain from larger piece rates, which induce higher effort, against the cost

of increasing the variability in the compensation of a risk-averse worker. This scaling-down effect increases with a

worker’s risk aversion, r, and effective output risk, σ2t +σ2ε , due to the uncertainty about ability and output noise.27

Equation (21) also suggests an alternative decomposition of b∗t as

b∗t = b0t − b0tR∗CC,t − b0t rH∗t + b0t

(
γt
∑T−t

τ=1
δτλτ−1 −R∗LBD,t

)
. (23)

This decomposition, which separates the equilibrium piece rates into four components, differs from that in (21) as it

isolates the component of the returns to human capital accumulation that does not accrue to the worker, γt
∑T−1

τ=1 δ
τ -

λτ−1−R∗LBD,t, and is useful for three reasons. First, it helps illustrate how the economic forces at play in our model

shape the provision of incentives for effort over time. Second, based on this decomposition, we can analytically

determine conditions under which these forces give rise to alternative life-cycle profiles of piece rates depending on
27As in Gibbons and Murphy [1992], the inefficiency in the provision of incentives relative to the first-best is due risk aversion. Despite the

uncertainty about ability, if workers were risk neutral, then piece rates would be equal to one and so workers’ choices of effort would equate
the marginal cost to the social marginal return of effort in each period. Indeed, if r = 0, then b∗T = 1. This, in turn, implies thatR∗CC,T−1 = 0

and R∗LBD,T−1 = γT−1δ, so that b∗T−1 = 1. It follows by induction that b∗t = 1, R∗CC,t = 0, and R∗LBD,t = γt
∑T−t
τ=1 δ

τλτ−1 for all t. In
particular, with risk-neutral workers, implicit incentives for effort would only arise from human capital considerations.
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their relative strength, as we discuss in the next subsection. Finally, this decomposition will prove important for our

identification arguments, as we show in Section 6.

The first term in (23) is the equilibrium piece rate b0t in the static linear-normal model of incentives with expo-

nential utility and quadratic cost of effort when the variance of output is σ2t + σ2ε . Absent dynamic considerations,

firms would offer the piece rate b0t in each period. The difference between the static piece rate and the equilibrium

piece rate implied by our model reflects two forces: the implicit incentives for effort arising from workers’ desire to

affect the process of learning about their ability and to invest in human capital, and workers’ demand for insurance

against the wage risk due to the uncertainty about ability.

The second and third terms in (23) capture the contribution of uncertainty and learning about ability to the

equilibrium piece rate and are familiar from the work of Gibbons and Murphy [1992]. In particular, the second term

adjusts the explicit incentives provided by piece rates to account for the career-concerns incentives that arise from the

presence of uncertainty about ability whenever t < T . As in Gibbons and Murphy [1992], these implicit incentives

induce workers to exert effort even in the absence of any explicit link between performance and pay: by partially

substituting for explicit incentives, they lead to lower piece rates.28 The third term in (23) discounts the piece rate so

as to provide workers with insurance against the risk in life-cycle wages generated by the uncertainty about ability.

The last term in (23), which is novel, captures the contribution of human capital acquisition to the explicit in-

centives for effort and consists of two parts. The first part is proportional to γt
∑T−t

τ=1 δ
τλτ−1, which is the present-

discounted increase in lifetime output that results from the increase in a worker’s human capital following a marginal

increase in the effort investent in it in period t. The second part, which is proportional to R∗LBD,t, reflects the implicit

incentives for effort arising from the prospect of human capital acquisition, which substitute for explicit incentives

and so lower piece rates. This last term adjusts piece rates so as to better align the private marginal returns to effort

with the corresponding social marginal returns, which vary over the life cycle because of discounting and the vari-

ation in the rates of human capital accumulation {γt}. When γt is greater than zero, and human capital and output

production are complements, this term, unlike the previous two, contributes positively to equilibrium piece rates.29

5.2 Piece Rates Over the Life Cycle

We now discuss how learning about ability and human capital acquisition affect the life-cycle profile of piece rates.

We first consider the cases in which only learning about ability or human capital acquisition are present, as these two

forces can lead to opposite patterns for piece rates. This discussion sets the stage for the general case that follows.
28Here we assume that R∗CC,t is positive when t < T . This result holds when piece rates belong to the unit interval.
29We implicitly maintain that R∗LDB,t is positive when t < T , which holds when piece rates are in the unit interval.
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Pure Learning-About-Ability Case. If we mute human capital acquisition with γt = 0 each t, then (21) reduces to

b∗t = b0t (1−R∗CC,t − rH∗t ).

The next result describes the evolution of piece rates in this case.

Lemma 2. Let γt = 0 for each t. There exists T0 > 0 such that if T > T0, then b∗t is strictly increasing with t for all

T0 ≤ t ≤ T . Moreover, b∗t is strictly increasing with t for all t if σ2θ > σ2∞.

When ability is not subject to shocks, our model specializes to that in Gibbons and Murphy [1992] under the

assumption of a quadratic cost of effort. Lemma 2 thus extends the characterization of the life-cycle profile of piece

rates in Gibbons and Murphy [1992] to the case in which ability is subject to shocks. For the first part of the lemma,

note that since σ2t converges to σ2∞, the degree of uncertainty about ability eventually becomes constant. At this

stage, the only force governing how piece rates evolve over time is the reduction of an individual’s working horizon

as experience accumulates. Naturally, a shorter working horizon weakens the implicit incentives for effort provided

by career concerns, since workers can benefit from a higher reputation only for a shorter period of time. Firms then

optimally compensate for weaker career-concerns incentives by increasing explicit incentives through higher piece

rates. When σ2θ > σ2∞, uncertainty about ability decreases monotonically over time as in Gibbons and Murphy

[1992]. In this case, the two forces shaping the provision of explicit incentives—uncertainty about ability and the

length of the working horizon—work in the same direction leading pieces to strictly increase with experience.30

Pure Human-Capital-Acquisition Case. By setting σ2θ = σ2ζ = 0, we eliminate uncertainty, and thus learning about

ability, from the model. When this is the case, the equilibrium piece rate in (21) becomes

b∗t = b0
[
1 + γt

∑T−t

τ=1
δτλτ−1(1− b∗t+τ )

]
, (24)

where b0 = 1/(1 + rσ2ε). In this case, piece rates are solely governed by human capital acquisition through the

difference between γt
∑T−t

τ=1 δ
τλτ−1, the dynamic social marginal benefit of effort, and γt

∑T−t
τ=1 δ

τλτ−1b∗t+τ , the

dynamic private marginal benefit of effort. Note that the contribution of human capital acquisition to piece rates is

positive when t < T whenever γt > 0 and piece rates are smaller than one, which is intuitive. Indeed, if efforts

to produce output and to acquire human capital are complements, then workers do not fully capture the returns to

their investments in human capital when future piece rates are smaller than one, which reduces their willingness to

exert effort. Current piece rates help offset this undersupply of effort but they do so imperfectly because of the risk-

incentives trade-off. More generally, it is possible to show that piece rates are nonnegative as long as γt > λ−1/δ for

30Piece rates can be initially decreasing when σ2
θ < σ2

∞. Indeed, a straightforward backward induction argument shows that piece rates in
the pure learning case are always smaller than one so thatR∗CC,t is positive if σ2

t > 0. Hence, if σ2
θ = 0 and σ2

ζ > 0, then b∗0 = b00 > b10 > b∗1.
By continuity, the same result holds when σ2

θ is positive but small.
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all t. That is, even when efforts to produce output and to acquire human capital are rival, it is still optimal to induce

workers to exert effort provided that the trade-off between output and human capital production is not too severe.

The variation of the rate γt of human capital accumulation over the life cycle clearly affects the experience

profile of piece rates. Here we state and discuss three results—their proofs are in the Appendix—that illustrate how

for alternative life-cycle profiles of the rates {γt}, the model can generate increasing or decreasing life-cycle profiles

of piece-rates in the pure human-capital-acquisition case. The first result shows that if the rates of human capital

accumulation eventually (weakly) decrease over time and are not too large, piece rates eventually decline.31

Lemma 3. Suppose γt is positive and nonincreasing with t for all T0 ≤ t≤ T−1 for some 0≤ T0 <T . Then, b∗t is

bounded above by one and strictly decreasing with t for all T0≤ t≤T if 0<γT0≤(1−δλ)(1+rσ2ε)/δ[1−(δλ)T−T0 ].

An immediate corollary of Lemma 3 is that piece rates are bounded above by one and globally strictly decreasing

if the rates γt are constant, positive, and bounded above by (1 − δλ)(1 + rσ2ε)/δ[1 − (δλ)T ]. Piece rates can also

be initially increasing. This will be the case, for instance, when the rates of human capital accumulation are initially

small but increase rapidly over time, as we prove next.

Lemma 4. Suppose there exists 0 < T0 < T such that b∗t < 1 for all T0 ≤ t ≤ T . There exists ξ ≥ 1 such that if

γt > 0 and γt > ξγt−1 for all 0 < t ≤ T0, then b∗t is strictly increasing with t for all 0 ≤ t ≤ T0.

By Lemma 3, we can ensure that piece rates from period T0 on are bounded above by one and strictly decreasing

over time. Therefore, combining Lemmas 3 and 4, we obtain that piece rates in the pure human-capital-acquisition

case can be hump-shaped if the rates of human capital accumulation first increase and then decrease with experience.

Corollary 1. Piece rates can be hump-shaped if the rates of human capital accumulation are initially increasing and

then decreasing with experience.

General Case. Suppose now that both learning about ability and human capital acquisition are present. In this case,

naturally, the stronger force shapes the experience profile of piece rates. For instance, when σ2ζ is small so that

ability is effectively known in the long run, human capital acquisition eventually prevails if workers are sufficiently

long-lived. Intuitively, at some point, the residual uncertainty about ability becomes small enough that learning about

ability no longer matters for the evolution of piece rates. As a result, piece rates are strictly decreasing over time in the

long run if the conditions of Lemma 3 hold. In contrast, when the importance of human capital acquisition declines

sufficiently fast over time, learning about ability governs the profile of piece rates in the long run, thus leading piece

rates to be eventually strictly increasing with experience. The next result confirms these intuitions.
31To understand why the rates of human capital accumulation cannot be too large for Lemma 3 to hold, first note that since b∗T is smaller

than one, b∗T−1 = b0[1 + γT−1δ(1 − b∗T )] is greater than b∗T . But since b∗T−1 is linearly increasing with γT−1, b∗T−2 is smaller than b∗T−1

when γT−1 is sufficiently large. More generally, if b∗t+1 to b∗T are smaller than one, then b∗t is strictly increasing with γ∗t and unbounded above
by (24), in which case b∗t−1 can be smaller than b∗t by the same equation.
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Proposition 2. When σ2ζ is small, there exists T0 ≥ 0 such that if T > T0, γt is nonincreasing with t for all

T0 ≤ t ≤ T − 1, and 0 < γT−1 ≤ γT0 ≤ (1 − δλ)(1 + rσ2ε)/δ[1 − (δλ)T−T0 ], then b∗t is strictly decreasing with

t for all T0 ≤ t ≤ T . On the other hand, there exists T0 ≥ 0 and γ > 0 such that if T > T0 and |γt| < γ for all

T0 ≤ t ≤ T − 1, then b∗t is strictly increasing with t for all T0 ≤ t ≤ T .

As discussed, piece rates can be hump-shaped in the pure human-capital-acquisition case if the rates of human

capital accumulation are positive and initially increasing and then decreasing. By continuity, the same result holds if

σ2θ and σ2ζ are small so that uncertainty about ability is initially low and remains so throughout the life cycle. Piece

rates can also be hump-shaped when the rates of human capital accumulation are positive and constant over time if σ2θ

is large and σ2ε and σ2ζ are small, so that uncertainty about ability is initially large but learning about it occurs rapidly

over time. However, Proposition 2 shows that in the presence of learning about ability, if the rates of human capital

accumulation become small in absolute value rapidly enough, then piece rates eventually became strictly increasing

with experience. This result suggests that piece rates can be U-shaped if human capital accumulation is important

early on but its importance decreases over time sufficiently fast. We establish this result next.

Proposition 3. Piece rates can be hump-shaped if one of the two conditions hold: (i) σ2θ and σ2ζ are small and the

rates of human capital accumulation are positive and initially increasing and then decreasing; (ii) the rates of human

capital accumulation are positive and constant over time, σ2θ is large, and σ2ε and σ2ζ are small. Piece-rates can be

U-shaped if the rates of human capital accumulation are initially positive and large but decrease rapidly over time.

The last two results show that the interplay between learning about ability and human capital acquisition gives

rise to complex patterns of explicit incentives, which can lead to opposite experience profiles for piece rates over the

life cycle. Yet, Proposition 2 implies that the profile of piece rates at the end of the life cycle transparently reflects

the relative importance of learning about ability and human capital acquisition at those levels of experience. This

result thus suggests that the profile of piece rates towards the end of the life cycle is especially informative about the

primitives of our model. The picture is more nuanced earlier in the life cycle, as the same pattern of piece rates is

consistent with varying degrees of importance of learning about ability. Indeed, as Proposition 3 shows, piece rates

can be initially increasing both when learning about ability is unimportant throughout the life cycle and when, instead,

learning about ability matters early on. However, a consequence of Lemma 3 and the logic leading to Proposition 2

is that if the rates of human capital accumulation are constant (and not large), then piece rates are hump-shaped only

if learning about ability is important early on. Intuitively, then, once the process of learning about ability is known,

the observed pattern of piece rates allows to pin down the process of human capital acquisition. We show that this is

indeed the case in the next section. Since, as we also show in the next section, our model has differing implications

for the experience profile of the second moments of the distribution of wages depending on the characteristics of the

learning process about ability, we can recover the relative importance of learning about ability and human capital
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acquisition at different stages of a worker’s career by combining information on the life-cycle profile of piece rates

and the covariance structure of wages. We make this point formal in the next section.

6 Identification

We start by establishing simple conditions under which the model is identified from panel data on wages and their

fixed or variable components in Section 6.1.32 In sum, the identification of our model relies on combining information

on the level of wages, their covariance structure, and the ratio of variable to total pay over the life cycle. Intuitively,

from this latter ratio, as discussed, we can recover the experience profile of piece rates. Conditional on the profile

of piece rates, the second moments of the distribution of wages allow us to identify the process of learning about

ability and the distribution of ability shocks. Once these primitives are identified, we can recover the remaining ones

by exploiting our characterization of equilibrium piece rates, which, given knowledge of the learning process, maps

piece rates into worker risk preferences and the parameters governing the human capital process. In particular, the

time variation of piece rates is informative about workers’ evolving productivity as measured by {γt} so it allows us

to recover a worker’s rates of human capital accumulation and depreciation without the need for any instruments.

In Section 6.2, we show that our identification results extend to the case in which unobserved heterogeneity

exists among workers, even when wages are measured with error. We further show that, provided information about

worker performance is available, our identification results can be adapted to the case in which human capital evolves

nonparametrically with effort according to the law of motion kit+1 = λkit + Ft(eit).

In these identification arguments, we treat the worker time discount factor δ as known and impose that the drift

terms β0 to βT−1 are zero to simplify the exposition. In the Appendix, we discuss the identification of the more

general case in which β0 to βT−1 are unknown.33

6.1 Identification of the Baseline Model

We show that piece rates b∗0 to b∗T , the variance of the initial distribution of ability σ2θ , of the output noise σ2ε , and of the

ability shocks σ2ζ , the risk aversion coefficient r, and the rates of human capital depreciation 1− λ and accumulation

γ0 to γT−1 are identified from a panel of wages and their variable components, up to the mean initial ability mθ.

Proposition 4. The piece rates {b∗t }Tt=0 and the variances (σ2θ , σ
2
ε , σ

2
ζ ) are identified from a panel of wages and

their variable components. The risk aversion parameter r is identified from the piece rate b∗T and the variances

32We have normalized the second derivative of the effort cost function to one. In the more general case in which this derivative is c, one
can show that c and the risk aversion parameter r are separately identified if the rate of human capital depreciation is known and the rates of
human capital accumulation in two different periods are the same. Alternatively, one can show that r and c are separately identified if γT−1 is
known. Both arguments rely on the fact that whereas the product rc appears at the denominator of the static piece rate b0t , only r multiplies
the term H∗t in the expression of the equilibrium piece rate.

33The proof of Proposition 4 below only relies on information on piece rates, the second moments of wages, and the change in average
wages between T−1 and T so we can use the remaining T−1 moments from the profile of average wages and piece rates to identify {βt}T−1

t=0 .

24



(σ2θ , σ
2
ε , σ

2
ζ ). The human capital depreciation rate 1 − λ and accumulation rates {γt}T−1t=0 are identified from the

piece rates {b∗t }Tt=0, the variances (σ2θ , σ
2
ε , σ

2
ζ ), and average wages in T − 1 and T up to mean ability mθ.

We divide the proof of Proposition 4 into two parts. First, we show how piece rates and the variances (σ2θ , σ
2
ε , σ

2
ζ )

are identified. Then, we show how the risk aversion and human capital parameters are identified—in the Appendix,

we argue how to dispense with the normalization of mθ. The structure of the argument is simple. Piece rates in

each period are identified by the ratio of average variable pay to average total pay. The variances (σ2θ , σ
2
ε , σ

2
ζ ) are

identified from the second moments of the distribution of wages in the first two years of experience. Given these, we

can identify the coefficient of absolute risk aversion r from the piece rate in the last period. The depreciation rate of

human capital is identified from the difference in average wages between experiences T − 1 and T and piece rates in

these last two experience years. The rest of the human capital parameters are identified from the time profile of piece

rates in the remaining years of experience. We now show in more detail the proof of Proposition 4.

Part I: Piece Rates and Variances of Unobservables. The wage of worker i in period t can be expressed as wit =

fit + vit, where fit and vit are the fixed and variable components, respectively. Since contracts are linear in output,

variable pay is vit = b∗t yit and E[wit] = (1 − b∗t )E[E[yit|It]] + b∗tE[yit] = E[yit] by (3). Thus, the piece rate in t is

identified as b∗t = E[vit]/E[wit]. Once piece rates are recovered, the variances (σ2θ , σ
2
ε , σ

2
ζ ) are identified from the

second moments of the distributions of wages in the first and second years of experience as follows. We show in the

Appendix that Var[wi0] = (b∗0)
2(σ2θ +σ2ε), Cov[wi0, wi1] = b∗0σ

2
θ , and Var[wi1] = σ2θ +σ2ζ −σ21 + (b∗1)

2(σ21 +σ2ε).34

Hence, σ2θ and σ2ε are identified from the variance of wages in the first year and the covariance of wages in the first

two years. Then, σ2ζ is identified from the variance of wages in the second year since σ21 = σ2ζ + σ2θσ
2
ε/(σ

2
θ + σ2ε).35

Part II: Risk Aversion and Human Capital Parameters. We now establish that the parameters r, λ, and γ0 to

γT−1 are identified from average wages and the identified vector (b∗0, . . . , b
∗
T , σ

2
θ , σ

2
ε , σ

2
ζ ) up to mθ. First, note that

once (b∗0, . . . , b
∗
T , σ

2
θ , σ

2
ε , σ

2
ζ ) is identified, so are the terms σ2t , R∗CC,t, and H∗t for all t by (15) to (18) and (20) in

Proposition 1. Therefore, r is identified from b∗T , σ2T , and σ2ε given that b∗T = 1/[1 + r(σ2T + σ2ε)]. Likewise, γT−1 is

identified from b∗T−1, b0T−1, b∗T ,R∗CC,T−1, r, andH∗T−1 since b∗T−1 = b0T−1[1+γT−1δ(1−b∗T )−R∗CC,T−1−rH∗T−1].

As for the depreciation rate, we know from the characterization of equilibrium effort in Proposition 1 that e∗T

equals b∗T and e∗T−1 equals b∗T−1 +R∗CC,T−1 + γT−1δb
∗
T . Thus, effort choices in the last two periods are known from

b∗T−1, R∗CC,T−1, γT−1, and b∗T . Since E[wit] = mθ + e∗t + k∗t and human capital evolves as k∗t = λk∗t−1 + γt−1e
∗
t−1

for all t ≥ 1, it follows that E[wiT ]− λE[wiT−1] = e∗T + (γT−1 − λ)e∗T−1 + (1− λ)mθ when βT−1 is zero. Hence,

λ is identified from average wages in the last two years, e∗T , γT−1, and e∗T−1 up to mθ.

34There we show that Var[wit] = Var[E[θit|It]] + (b∗t )
2(σ2

t + σ2
ε) and Cov[wit, wit+s] = Var[E[θit|It]] + b∗tσ

2
t for all 0 ≤ t ≤ T and

1 ≤ s ≤ T − t, where Var[E[θit|It]] = σ2
θ + tσ2

ζ − σ2
t and σ2

0 = σ2
θ . Thus, Var[wit] = σ2

θ + tσ2
ζ − σ2

t + (b∗t )
2(σ2

t + σ2
ε).

35Note that the parameters of the learning process are identified independently of the parameters of the human capital process. Thus,
the parameters of the learning process can be identified and estimators of them can be constructed on the basis of the above identification
arguments regardless of the specification of the human capital process.
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We conclude by showing that γ0 to γT−2 are identified from the vector (b∗0, . . . , b
∗
T , σ

2
θ , σ

2
ε , σ

2
ζ , r, λ). Note that

b∗t − b0t
(
1−R∗CC,t − rH∗t

)
= b0tγt

∑T−t

τ=1
δτλτ−1

(
1− b∗t+τ −R∗CC,t+τ

)
(25)

for all 0 ≤ t ≤ T −2 by (19) and (21). Since all the terms in (25) but γt are known from (b∗0, . . . , b
∗
T , σ

2
θ , σ

2
ε , σ

2
ζ , r, λ)

in each 0 ≤ t ≤ T − 2, the parameters γ0 to γT−2 are identified from this vector by (25). Intuitively, the right side of

(25) is the portion of piece rates that cannot be explained by learning about ability alone and so is informative about

the degree of human capital accumulation over a worker’s career.36

Remark. In these arguments, we have assumed that the coefficient of absolute risk aversion is constant whereas the

rates of human capital accumulation change over time. Alternatively, we could have specified γt ≡ γ and allowed

r to vary with experience. In this latter case, the identification argument would be virtually identical, provided, say,

that the risk aversion parameters satisfy rT−1 = rT . The parameter rT would then be identified from the last-period

piece rate. Once γ is identified from the piece rate in T−1 and λ is recovered as argued above, piece rates in previous

periods would be sufficient to identify the coefficients of risk aversion in periods 0 to T − 2 by (25).37

6.2 Identification of the Augmented Model

We now extend our identification argument to the case in which there exists unobserved heterogeneity among workers

in any of the primitive parameters of the model, even when wages are measured with error, and to the case in which

the law of motion of human capital depends nonparametrically on effort.

Unobserved Heterogeneity and Measurement Error. Suppose there exist J groups or types of workers who differ

in their initial distributions of ability, output noise, and shocks to ability, degree of risk aversion, and human capital

process. Mirroring the identification argument of the baseline model, assume that the drift terms β0 to βT−1 in the

human capital process are zero for all J groups—this assumption can be relaxed. Each group is observable to model

agents but not to the econometrician. Denote a generic group by j and the probability that a worker is of type j by πj .

Let σ2θj , σ
2
εj , σ

2
ζj , rj , 1− λj , and γjt be, respectively, the variance of the initial distribution of ability, the variance of

the output noise, the variance of shocks to ability, the risk aversion parameter, the depreciation rate of human capital,

and the period-t rate of accumulation of human capital for type-j workers.38 The equilibrium characterization of

Proposition 1 holds for each type. Let then e∗jt, k
∗
jt, and b∗jt be, respectively, the equilibrium effort, stock of human

36Alternative normalizations are possible. For instance, the parameters λ, γ0 to γT−1, and mθ are all identified from the piece rates b∗0 to
b∗T and the variances (σ2

θ , σ
2
ε , σ

2
ζ , r) if γT−2 = γT−1. As for βt, only the assumption that βT−1 = 0 is used in the identification argument.

37When the rates of human capital acquisition vary over time, we do not need to impose any additional condition such as rT−1 = rT , since
a natural exclusionary restriction arises from T being the last experience year so the rate γT does not appear in any expression.

38We abstract from heterogeneity in δ or mθ since they were fixed in the argument in the previous subsection. As discussed, alternative
normalizations in lieu of that of mθ are possible.
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capital, and piece rate in period 0 ≤ t ≤ T for type-j workers. By (3), the wage of worker i of type j in t is

wijt = (1− b∗jt)E[θit + k∗jt + e∗jt|It] + b∗jt(θit + k∗jt + e∗jt + εijt),

which is normally distributed. Thus, the distribution of wages in each period is a finite mixture of normal distributions.

Since these mixtures are identifiable (Teicher [1963]), both the mixture weights (πj) and the component distributions

are identified in each period, and so are their component means (Ej [wijt]). Likewise, the variable component of pay

of worker i of type j in t, vijt = b∗jt(θit + k∗jt + e∗jt + εijt), is normally distributed. Then, its distribution in each

period is also a finite mixture of normal distributions with the same component weights as the corresponding mixture

distribution of wages. Thus, for each worker type j and period t, mean variable pay Ej [vijt] is identified so that, as

in the baseline model, the piece rate of type-j workers in t is identified as b∗jt = Ej [vijt]/Ej [wijt].39

The rest of the argument proceeds as in the baseline case. First, for each type j, the variances (σ2θj , σ
2
εj , σ

2
ζj)

are identified from the piece rates {b∗jt}Tt=0 and the second moments of the distributions of wages in the first two

years of experience. Then, for each type j, the preference and human capital parameters (rj , λj , γj0, . . . , γjT−1) are

identified from the vector (b∗j0, . . . , b
∗
jT , σ

2
θj , σ

2
εj , σ

2
ζj) up to mean initial ability mjθ. We have thus established:

Proposition 5. Suppose that each worker is one of J types. For each type j, the piece rates {b∗jt}Tt=0 and the variances

(σ2θj , σ
2
εj , σ

2
ζj) are identified from a panel of wages and their variable components. The risk aversion parameter rj is

identified from the piece rate b∗jT and the variances (σ2θj , σ
2
εj , σ

2
ζj). The human capital depreciation rate 1− λj and

accumulation rates {γjt}T−1t=0 are identified from the piece rates {b∗jt}Tt=0, the variances (σ2θj , σ
2
εj , σ

2
ζj), and average

type-specific wages in T − 1 and T up to mean ability mθj .

Proposition 5 immediately extends to the case in which wages and their fixed and variable components are

measured with error, provided this error is additive and normally distributed. Through this latent-type formulation

in which workers differ in their ability distribution and human capital process in an unrestricted way, the model is

capable of accommodating alternative scenarios in which workers of higher ability may be more or less efficient at

acquiring new skills. This more general setup thus relaxes the impact of our functional-form assumptions by leading

to a flexible dependence of wages on ability, human capital, uncertainty, risk, and workers’ risk attitudes.40

More General Human Capital Process. Consider now the case in which the law of motion of human capital is

kit+1 = λkit + Ft(eit). We show that this version of the model is also identified if information on workers’ per-

formance is available in addition to information on wages. This information is present in all firm-level data sets

we examine and in many others commonly used (Frederiksen et al. [2017]). For ease of exposition, we start by
39The correct pairing of the components of the mixtures of total and variable pay in each t is possible by their mixing weights, since these

weights are identical type by type. Then, simply imposing the constraint that types be ordered, say, by the size of their mixing weights not
only resolves the usual label ambiguity of finite mixture models but also allows for such pairings.

40We do not estimate this more general version of the model since our baseline model already fits the data quite well. See Section 7.
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assuming that the performance measure is a noisy measure of a worker’s effort; we later discuss the case in which

the performance measure provides a noisy signal of a worker’s effort and human capital.41 Let pit = eit + ηit be the

performance measure of worker i in period t observed by the econometrician, where ηit is a continuously distributed

noise term independent across workers and over time with cumulative distribution function G with known mean.

Suppose the equilibrium is unique, symmetric, and such that effort choices and piece rates depend only on time,

and let e∗t and k∗t be, respectively, the worker’s equilibrium effort and stock of human capital in period t—we present

conditions under which this is the case in the Appendix. It follows again from (3) that E[wit] = k∗t + e∗t + mθ.

Since E[pit] = e∗t +E[ηit] with E[ηit] known, both e∗t and k∗t in each t are identified from average wages and average

performance in t up to mθ. Observe next that E[wiT ] − λE[wiT−1] = k∗T + e∗T − λ(k∗T−1 + e∗T−1) + (1 − λ)mθ.

Hence, λ is identified from the vector (k∗T−1, e
∗
T−1, k

∗
T , e
∗
T ) up to mθ. To conclude the identification of the human

capital process, note that since k∗t+1 = λk∗t + Ft(e
∗
t ) for each t, we can identify (F0(e

∗
0), . . . , FT−1(e

∗
T−1)) from

λ and the sequence of equilibrium efforts and human capital from 0 to T . Thus, if the investment functions Ft do

not depend on experience or, alternatively, if they do and any of the parameters σ2θ , σ2ε , σ2ζ , r, and γt vary across

observable groups of individuals, so as to induce different choices of effort among workers of different groups at

each t, then these functions are identified from (F0(e
∗
0), . . . , FT−1(e

∗
T−1)) and (e∗0, . . . , e

∗
T−1).42 The identification

of piece rates and the remaining parameters follows by the same argument as in the proof of Proposition 4. See the

Appendix for the case in which the econometrician observes only a discrete version of pit.

The argument so far has relied on a specific functional form for the performance measure pit. In the Appendix, we

show that we can extend this argument to the more general case in which pit = f(eit, kit)+ηit, where f : R2 7→ R is a

known differentiable function nondecreasing in each of its arguments such that f(·, kit) is surjective for each kit ∈ R

and ∂f(eit, kit)/∂eit 6= ∂f(eit, kit)/∂kit for all (eit, kit) ∈ R2. These assumptions, which are trivially satisfied in

the case just discussed, imply that on average: higher effort or human capital cannot lead to lower performance; any

performance measure is possible for any value of a worker’s human capital; and the performance measure is more or

less sensitive to changes in effort than to changes in the stock of human capital.43

41That this additional outcome measure is informative about effort or human capital is a key step to separately recover the evolution of effort
and human capital over time in this more general case. Like in a standard factor model, the path of effort and human capital can be identified
provided that the signals about effort and human capital observed by the econometrician—wages and performance in our case—are common
to multiple measurements but the noise in these measurements is not (see Cunha et al. [2010]). This is the case here since observed wages and
performance depend on effort and human capital up to independent measurement errors.

42Our identification argument works regardless of the time interval between two consecutive periods in our model. So when the functions
Ft are the same in every period, an increase in the frequency of the data allows us to identify the common function F at a greater number of
points in its support. When the functions Ft depend on t, it is easy to see from the first-order conditions for effort that variation in σ2

θ , σ2
ε , σ2

ζ ,
r, or γt among workers, say, with different age at entry or year of entry in the firm would induce variation in effort in each t that would allow
us to identify Ft at every possible equilibrium choice of effort in t.

43We can extend the analysis to the case in which the performance measure provides information about worker ability by noting that if
pit = ft(eit, kit, θit) + ηit, then p̂it = Eθ[ft(eit, kit, θit)] + ηit, where Eθ[f(e, k, θ)] is the expectation of f(e, k, θ) with respect to θ, plays
the role of the performance measure considered so far. Indeed, since we can identify the distribution of workers’ abilities in any period t from
the information on wages and their variable component up to mθ , we can treat f̂t(eit, kit) = Eθ[f(eit, kit, θit)] as a known function. It is
easy to provide conditions on the functions ft under which the functions f̂t satisfy the conditions for identification.
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The availability of an additional performance measure prompts the question of why firms would not offer con-

tracts in which they condition wages not only on output but also on the realization of this measure—as argued by

Hölmstrom [1979], firms should do so as long as output is not a sufficient statistic for the performance measure.

A sizable literature, though, has documented that firms tend to have more information about workers’ performance

than the information contracts are conditioned on; see the discussion and references, for instance, in Baker [1992].

A common explanation for this feature of contracts is that although observable, these performance measures are not

verifiable or are manipulable by workers. However, in the presence of learning about ability, although firms cannot

or may not want to explicitly link wages to performance measures, they can still use them to form expectations about

workers’ ability, which influence offered contracts even if contracts do not explicitly depend on these measures. In

the Supplementary Appendix, we account for this effect of additional performance measures on the inference process

about ability and show that our characterization and identification results extend to this case as well.

7 Estimation

In this section, we discuss the estimation of the model, the fit of the estimated model to the data, and compare our

parameter estimates to analogous ones in the literature.

Estimation Sample. We estimate the model using the well-known BGH data discussed in Section 2. This firm-level

data set has been extensively studied in the literature and, as such, provides a natural starting point for investigating

how wages and, in particular, performance pay vary over the life cycle.44 Being of administrative nature and high

quality (Baker et al. [1994a]), the BGH data are less likely to be contaminated by measurement error than commonly

used survey data such as the PSID. Crucially, the rich panel dimension of the data, coupled with their coverage of

individuals across all experience years, permits a meaningful life-cycle analysis, which is the focus of our exercise.

Indeed, in the BGH data, experience reaches 47 years. However, since sample size declines rapidly after 40 years of

experience, we exclude observations above this 40-year cutoff. The resulting sample consists of more than 22,000

person-year observations on male managers whose average age is 40 years with a standard deviation of 9 years. The

modal employee in our data holds a college degree. At entry in the firm, on average, managers are 33 years of age

with a standard deviation of 7 years and have 11 years of labor market experience with a standard deviation of 8

years. Their average tenure at the firm is of 5 years with a standard deviation of 4 years and a maximum of 18 years.

Wage profiles in our data are comparable with those documented in the literature. For instance, we find that the

log wages of male college-educated workers, who are the majority of workers in our sample, increase by 0.67 log
44Frederiksen et al. [2017] report several regularities in terms of the distribution of wages and performance management systems across

BGH and five other firm-level data sets, which suggests that the BGH data provide a sample of standard compensation and performance
management practices. Indeed, many features of the BGH data, which have been replicated by other studies, are now considered stylized facts
about careers in firms. See, for instance, Waldman [2012] on this point.
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points during the first 30 years of labor market experience. This estimate is consistent with that of an average wage

growth of about 1 log point reported on the basis of cross-sectional census data between 1960 and 2000 by Elsby

and Shapiro [2012]. Rubinstein and Weiss [2006] find estimates of similar magnitude using both the PSID and the

National Longitudinal Survery of Youth.

Parameterization. In estimation, we fix workers’ discount factor δ at 0.95 and let t range from 1 to 40. Recall that we

have specified the effort cost function as g(e) = e2/2. To keep our specification parsimonious, we specify the rates of

human capital accumulation according to a polynomial of degree two in experience γt = ψ0+ψ1(t−1)+ψ2(t−1)2.

In this baseline exercise, we assume that the drift terms β0 to βT−1 are zero.45 Then, we estimate eight parameters:

the parameters σ2θ , σ2ε , and σ2ζ of the learning process about ability, those governing the human capital acquisition

process, namely, the coefficients ψ0, ψ1, and ψ2 and the human capital depreciation rate 1− λ, and the coefficient of

absolute risk aversion r. We estimate these parameters by equally-weighted minimum distance targeting one hundred

and twenty moments: the piece rate of the wage contract measured by the ratio of average variable pay to average

total pay, the variance of wages, and cumulative wage growth, computed as the difference E[wit]−E[wi1] in average

wages between experience t and experience 1, for each of the first 40 years of labor market experience.46

Table 1: Estimates of Model Parameters

Parameters Estimates Standard Errors
σ2
θ , variance of initial ability 2,024.099 0.0009736
σ2
ε , variance of noise in output 267,019.845 0.0638429
σ2
ζ , variance of shock to ability 29.458 0.0000632
ψ0, coefficient of degree 0 of γt 0.892 1.68E-07
ψ1, coefficient of degree 1 of γt 0.035 6.10E-08
ψ2, coefficient of degree 2 of γt -0.001 1.25E-09
λ, fraction of undepreciated human capital 0.955 3.48E-08
r, coefficient of relative risk aversion 0.0002 9.75E-13

Parameter Estimates. Table 1 reports the estimates of the model parameters together with their asymptotic stan-

dard errors. All parameters are precisely estimated and statistically different from zero at conventional significance

levels—for a sense of magnitudes, note that wages are measured in thousands of 1988 dollars. The estimates reveal

key properties of the process of learning about ability and human capital acquisition at the firm. Consider first the

parameters related to the uncertainty about workers’ ability and the process of learning about it. We estimate that the

standard deviation of the distribution of initial ability among workers σθ is 44.99 thousand dollars and the standard

deviation of the distribution of shocks to ability σζ is 5.43 thousand dollars. Together, these estimates imply that after

45See below the discussion of the estimates for the case in which g(e) = c2/2 with c a free parameter. In the Supplementary Appendix, we
provide the estimates of a more general version of the model in which the law of motion of human capital is kit+1 = λkit + γteit + βιit,
where ιit represents a standard learning-by-doing investment in human capital that accrues for any period of employment and so equals 1 in t
if worker i is employed and 0 otherwise. We find estimates very close to those reported here for the parameters that are common across these
different versions of the model and model fit only slightly improved, given the high quality of the fit of the baseline model.

46We compute these statistics after winsorizing top and bottom 1% of the distribution of wages at each level of experience and controlling
for year, education, race, and individual-specific unobserved effects. All targeted moments are scaled in estimation to be of comparable
magnitude. For the properties of the minimum distance estimator, see Newey and McFadden [1994].
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40 years of labor market experience, the standard deviation of the distribution of ability is 56.33 thousand dollars,

that is, about 25% larger than when workers enter the labor market. The estimate of the standard deviation of the

noise in output σε of 516.74 thousand dollars is an order of magnitude larger than the estimate of σθ. Thus, learning

would occur very slowly even in the absence of shocks to ability.47 In particular, without shocks to ability (σζ = 0),

uncertainty about it as measured by the variance of posterior beliefs σ2t would monotonically decline over time but

decrease only by 23% over 40 years of experience. Our estimates, however, imply that uncertainty about ability actu-

ally increases with labor market experience due to the shocks to ability and the slow speed of learning. Indeed, after

40 years of experience, the variance of posterior beliefs is more than 20% higher than when workers enter the labor

market. Since we estimate σ2θ to be smaller than the limiting value of σ2t given by σ2∞ = [σ2ζ +(σ4ζ +4σ2ζσ
2
ε)

1/2]/2 =

2,819.38 reached as experience becomes (arbitrarily) large, uncertainty about ability eventually becomes 1.4 times

larger than at entry in the labor market.

Consider next the parameters that govern the process of human capital acquisition, that is, the parameters ψ0,

ψ1, and ψ2 of the marginal human capital product of effort γt and the depreciation rate of human capital 1− λ. The

positive estimates of ψ0 and ψ1 and the negative estimate of ψ2 imply a path of human capital accumulation that is

concave in experience, as apparent from the solid blue line in panel (f) of Figure 5. The implied estimate of γt, which

is positive and sizable, suggests two important features of the process of human capital acquisition at the firm: this

process is of the learning-by-doing type, so efforts to produce output and human capital are complements, and the

return to effort in terms of additional human capital is fairly large. Specifically, at the margin, an increase in effort

that increases current output by 1 dollar raises the stock of human capital by 89 cents at experience 1, 1.12 dollars

at experience 10, 1.17 dollars at experience 20, 1.01 dollars at experience 30, and 63 cents at experience 40. At all

levels of experience, the contribution of effort to human capital acquisition is therefore substantial—it increases with

experience for younger workers but decreases with experience for older workers after peaking at a marginal return of

1.18 dollars at experience 17.48 We estimate that the depreciation rate of human capital 1 − λ equals 4.5%, which

implies that it takes about 15 years for a unit of human capital to depreciate by half.

Our estimate of the coefficient of absolute risk aversion r as equal to 2 × 10−4 is consistent with the estimates

in Handel [2013] of the coefficient of absolute risk aversion in the interval [1.9, 3.25] × 10−4 from data on health

insurance and medical utilization choices, as well as the estimates in Barseghyan et al. [2016] from data on home

and automobile choices. Since estimates of risk aversion may be difficult to compare across different settings as
47To see what pins down these variances, note that for T large enough, Var[wiT ] ≈ (σ2

θ + Tσ2
ζ) − [1 − (b∗T )2]σ2

∞ + (b∗T )2σ2
ε . Since

∆iT −∆iT−1 ≈ [(b∗T )2 − 2(b∗T−1)2 + (b∗T−2)2](σ2
∞ + σ2

ε) with ∆it ≡ Var[wit] − Var[wit−1] and σ2
∞ is independent of σ2

θ , changes in
the variance of wages late in the life cycle are informative about σ2

ε given σ2
ζ . As we argued, the variance of wages and its increase early in

the life cycle, by contrast, are informative about σ2
θ and σ2

ζ . The literature offers a range of estimates of the speed of learning. Ours suggest
that learning occurs more slowly than found in Lange [2007] or Kahn and Lange [2014] but are comparable to those in Pastorino [2019].

48These calculations rely on marginal increases in effort. Based on equilibrium effort levels, we find that human capital increases by nearly
the same amount as output, for instance, roughly by more than 20 thousand dollars by experience 20.
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preferences and choice problems may vary, we follow Cohen and Einav [2007] and assess the degree of risk aversion

by calculating the hypothetical amount X that would make an individual indifferent between accepting or rejecting a

lottery with a 50 percent chance of gaining 100 dollars and a 50 percent chance of losingX dollars. For a risk-neutral

individual, X is 100 dollars, whereas for an infinitely risk-averse individual, X is zero. According to our estimate of

r, X is 49 dollars so we estimate an intermediate degree of risk aversion.

Another way to interpret our estimate of workers’ absolute risk aversion is to convert it to an estimate of relative

risk aversion (RRA) using the result that the coefficient of absolute risk aversion A(w) evaluated at the wage w is

related to the coefficient of relative risk aversion R(w) evaluated at w by R(w) = wA(w). Then, our estimate of r

corresponds to a coefficient of relative risk aversion of approximately 0.5 at the present-discounted value of average

yearly earnings in our sample (in thousands of dollars) over the 40 years of experience we consider. This estimate

of workers’ relative risk aversion is consistent with the range of estimates in the literature; see, for instance, Chetty

[2006], who documents an upper bound of 2.49

Decomposing Piece Rates. Expression (23) in Section 5 decomposes piece rates into five terms, each of which

captures a distinct economic force that determines how performance pay evolves over the life cycle relative to total

pay. This decomposition, shown in panel (a) of Figure 5 at the estimated parameter values, provides a useful lens

through which to interpret our estimates. Consider each component starting with the static piece rate b0t = 1/[1 +

r(σ2t + σ2ε)] given by the dashed red line in the panel. That this term is small and marginally increases over the life

cycle, as apparent from the figure, reflects the large estimated variance of the noise in output σ2ε and the estimated

degree of uncertainty about ability, as captured by the variance of posterior beliefs σ2t , which increases over time.

The second term of the decomposition that is relatively small is−b0tR∗CC,t given by the dashed green line in panel

(a) of Figure 5. Recall that R∗CC,t =
∑T−t

τ=1 δ
τ (1 − b∗t+τ )(

∏τ−1
s=1 µt+τ−s)(1 − µt) is the dynamic marginal benefit of

effort due career concerns: this term adjusts piece rates for the career-concerns incentives due to uncertainty and

learning about ability. Intuitively, the large estimate of σ2ε implies not only that the static piece rate b0t is small, as

noted, but also that the signal-to-noise ratio governing the speed of learning about ability is low. In particular, as the

weights 1−µt = σ2t /(σ
2
t +σ2ε) on output signals in the belief updating equation in (5) are small, the learning process

is not very sensitive to new observations about a worker’s output and, as a result, effort has a small effect on beliefs

about ability. Thus, career-concerns incentives are small and so have a limited impact on piece rates.

The third term of the piece-rate decomposition that is relatively small is −b0tR∗LBD,t given by the dash-dotted

teal line in panel (a) of Figure 5. Recall that R∗LBD,t = γt
∑T−t

τ=1 δ
τλτ−1(b∗t+τ + R∗CC,t+τ ) is the dynamic marginal

49As a robustness exercise, we also estimated a version of the model with r fixed at the value of 0.00085, which corresponds to an RRA
coefficient of 2 at the present-discounted value of average yearly earnings in our sample, but allowing the effort cost function to be ce2/2.
Since in this exercise risk aversion is set to be four times larger than estimated for our baseline model, this estimated model implies a lower
degree of uncertainty about ability, consistent with intuition. However, the estimates of the parameters of the law of motion of human capital
are very similar to those for the baseline model.
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benefit of effort due to the impact of effort on a worker’s human capital process. This term adjusts piece rates for

the incentives for effort that arise from human capital acquisition, but it is a relatively minor contributor to piece

rates because the estimated piece rates b∗t+τ and, as just discussed, career-concerns incentives R∗CC,t+τ are small

due to the estimated level of noise in output and degree of uncertainty about ability. Intuitively, the private returns

to accumulating human capital are relatively small because the slow speed of the learning process about ability

combined with workers’ risk aversion implies that acquired human capital has a small impact on future pay. Indeed,

if workers were risk neutral (r = 0), then b∗t+τ would be equal to one and R∗CC,t+τ would be equal to zero in each

period. In this case, the private marginal returns to acquiring human capital would equal the corresponding social

marginal returns at eachexperience, γt
∑T−t

τ=1 δ
τλτ−1, and the last two terms of the decomposition would cancel out.

The remaining two terms of the piece-rate decomposition are quantitatively important. The term −b0t rH∗t with

H∗t = σ2t
∑T−t

τ=1 δ
τ , given by the dashed orange line in panel (a) of Figure 5, represents the degree of insurance that

the equilibrium contract provides against uncertainty about ability. This term is negative and explains the relatively

low level of piece rates throughout the life cycle. As apparent from its form, this term is proportional to the level of

uncertainty about ability measured by the dispersion in posterior beliefs σ2t , which we estimate to be substantial, since

variability in beliefs leads to variability in wages that workers dislike. Workers therefore face a large degree of risk

resulting from the variation in performance pay induced by the variation in beliefs about their ability, as this ability

risk translates into performance risk each period. In order to reduce the lifetime risk in compensation associated with

the variability of performance due to uncertainty about ability, piece rates are correspondingly lowered for insurance

reasons by an amount proportional to H∗t —the more so the more risk-averse workers are. Over the life cycle, this

insurance motive tends to weaken as the working horizon shortens, despite the increase in uncertainty about ability

over time. These observations then explain why the dashed orange line in panel (a) of Figure 5, which represents this

term, eventually declines in absolute value with experience.

Another way to understand why the insurance component of piece rates is large is by reference to basic ideas in

asset pricing. A central insight of this literature is that risk-averse investors expect to be rewarded for holding assets

whose payouts are high when investors value consumption relatively less and whose payouts are instead low when

investors value consumption relatively more. Namely, assets whose payouts positively correlate with the market

portfolio are less desirable. In our framework, performance pay in any period is positively correlated with output

in the period and, through the process of learning about ability, with compensation in subsequent periods as high

performance pay is positive news about future compensation and low performance pay is negative news. As a result,

contracts that specify a large pay in periods with high performance realizations and a small pay in periods with low

performance realizations are less attractive to workers, who are akin to risk-averse investors, since performance pay

amplifies the variability of wages. Thus, equilibrium contracts will tend to have relatively low performance-pay

33



components. Empirically, it turns out that this effect is strong, which confirms the intuition in Harris and Hölmstrom

[1982] on the importance of the dynamic insurance provided by wage contracts for the evolution of wages and

provides an explanation for the low level of performance pay relative to total pay in the data. But, as we discuss in

the next section, this result does not imply that performance incentives have a small impact on wages.

The remaining term of the decomposition represents the social marginal return to human capital acquisition

b0tγt
∑T−t

τ=1 δ
τλτ−1 in period t, given by the dashed lavender line in panel (a) of Figure 5, which amounts to the

increase in lifetime human capital and output resulting from a marginal increase in effort. This positive term is rela-

tively large because the estimated human capital accumulation rates γt are substantial and the estimated depreciation

rate 1 − λ is small, as noted above. This term therefore outweighs the negative insurance term just discussed in

determining piece rates at each level of experience and imparts to piece rates their characteristic hump-shape. As

workers accumulate experience, though, this term eventually declines imparting to piece rates their characteristic

hump-shape, as apparent from panel (a) of Figure 5. As workers accumulate experience, though, this term eventually

declines imparting to piece rates their characteristic hump-shape, as apparent from panel (a) of Figure 5.

The estimates of the components of piece rates are consistent with our characterization of the life-cycle profile of

piece rates in Section 5.2. Indeed, according to Proposition 3, when initial uncertainty about ability is small and the

variance of shocks to ability is not too large, piece rates are hump-shaped if the rates of human capital accumulation

are initially increasing and then decreasing. Our estimates satisfy these conditions, thus confirming these intuitions.

Estimated Piece Rates, Wage Dispersion, and Wage Growth. Figure 4 shows how our estimated model fits the

Estimated Piece Rates, Wage Dispersion, and Wage Growth. Figure 4 shows how our estimated model fits the

targeted moments. As apparent from the figure, the model successfully reproduces the experience profile of the ratio

of performance pay to total pay (left panel), the variance of wages (middle panel), and cumulative wage growth (right

panel) at each level of experience. Having discussed the implications of our estimates for the pattern of piece rates,

we now turn to discuss their implications for the life-cycle profiles of the variance of wages and wage growth.

Our model implies that the variance of wages, Var[wit] = (σ2θ + tσ2ζ ) − σ2t + (b∗t )
2(σ2t + σ2ε), is the sum of

three terms. The first term σ2θ + tσ2ζ is the variance of worker ability, which increases over the life cycle because

of the accumulating shocks to ability. The second term −σ2t accounts for the fact that learning about ability occurs

gradually over time over time. That is, in the absence of shocks to ability (σ2ζ = 0), the first two terms sum to

σ2θ − σ2t , which increases to σ2θ in the long run as the dispersion in wages increasingly reflects the dispersion in

worker abilities. In the presence of shocks to ability (σ2ζ > 0), as supported by our estimates, the law of motion for

σ2t in (5) implies that σ2θ + tσ2ζ − σ2t increases without bound because the ability shocks progressively increase the

dispersion of worker abilities. The final term (b∗t )
2(σ2t + σ2ε) describes the impact on the variance of wages of the

variability of performance pay due to the dispersion of worker abilities and the variability of the noise in (or shocks
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to) output. Since uncertainty about ability σ2t eventually stops changing, the large estimated value of σ2ε and the

declining portion of the profile of piece rates towards the end of the life cycle imply that this third term is eventually

decreasing. All together, these terms allow the model to reproduce the first increasing and then decreasing pattern of

the variance of wages in the data, as shown in the middle panel of Figure 4.

Consider now wage growth. As each period firms make zero profits in expectation, wages on average equal out-

put, which varies over time, on average, because effort or human capital vary—see the next section for details. Hence,

the growth in average wages stems from the growth in either effort or human capital. Human capital accumulation

rates {γt}, as discussed, peak in the middle of the life cycle and subsequently decline, whereas effort is relatively

more constant. So early in a worker’s career, the accumulation of human capital is rapid. However, the depreciation

of the stock of human capital, together with the decline in γt over the second half of the life cycle, reduces and even-

tually reverses the growth in human capital. The result is a concave experience profile for mean wages, reproduced

in the right panel of Figure 4, which eventually plateaus as consistent with much evidence in the literature.

8 Performance Incentives and Wages

Our estimated model provides a laboratory we can use to perform counterfactual exercises and explore how perfor-

mance pay affects the distribution of wages over the life cycle. Based on these exercises, we illustrate the importance

of performance incentives for human capital acquisition and for the dynamics of wages and their components.

8.1 Performance Incentives and Wage Growth

In our model, average wages are given by E[wit] = mθ + e∗t + k∗t in any period t so their cumulative growth,

E[wt] − E[w1], can be decomposed into the growth of effort and the stock of human capital. In panel (b) of Figure

5, we show how the evolution of effort as measured by e∗t − e∗1 (the dot-dashed green line) and of human capital

as measured by k∗t − k∗1 (the dashed red line) contribute to wage growth over the life cycle (the solid blue line). A

comparison of the dashed red line to the solid blue line illustrates how closely the profile of human capital tracks the

profile of wages. By contrast, changes in effort do not appear to substantially contribute to the growth in wages.

Such a decomposition, however, only measures the direct effect of effort on wages. In particular, it does not

account for the indirect effect of effort on the dynamics of wages through its impact on the process of human capital

acquisition. Panel (c) of Figure 5 demonstrates the importance of this indirect channel by comparing the estimated

wage growth implied by our model (the solid blue line) with the counterfactual wage growth that would result if

we held effort constant over the life cycle at the average level implied by our estimates (the dashed red line). As

apparent from panel (c), wages would grow much less during the first 30 years of labor market experience in this

counterfactual case than in the baseline model. Intuitively, in the baseline model, workers exert greater effort early
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in the life cycle because both career concerns and the returns to human capital acquisition are largest over those

experience years. Only later in the life cycle, when piece rates, career concerns, and the returns to human capital

acquisition decline, effort in the counterfactual scenario exceeds that in the baseline. Panel (c) thus illustrates that the

variation in incentives and effort over the life cycle is central to observed wage growth.

This counterfactual exercise has further implications for understanding the determinants of the human capital

process. Specifically, it implies that standard models of human capital acquisition that do not allow for an intensive

margin of investment—effort here—may be misspecified. The human capital process in these “passive” human-

capital-acquisition models is usually just a function of the number of periods of employment and so conflates variation

in investment, et, and variation in its marginal product, γt. But panel (c) shows that it is important to account for

variation in et to correctly infer the impact of human capital acquisition on wage growth.50

Another way to assess the importance of effort for wages is to explore the effect of performance pay on their

dynamics. Specifically, suppose that firms were restricted, say, for administrative or regulatory reasons, to offer

contracts without variable pay (b∗t ≡ 0) at each experience t as in the original career-concerns model of Hölmstrom

[1999]. In this case, firms would lack an important instrument to reward performance and thereby encourage workers

to exert effort and acquire human capital. Panels (e) and (f) of Figure 5 indeed show that the resulting equilibrium

profiles of effort and human capital accumulation (the dashed red lines in both panels) would be much lower relative

to their profiles in the baseline model (the solid blue lines in both panels), especially early in workers’ careers. In

turn, lower effort and human capital would lead to a much lower wage growth over the life cycle as shown in panel

(d) of Figure 5, namely, 30% lower by the twentieth year of labor market experience (see the dashed red line relative

to the solid blue line in the panel). Hence, although performance pay is small relative to total pay, it has a substantial

impact on wage growth through its impact on workers’ effort and human capital acquisition.

8.2 Performance Incentives and Wage Inequality

To explore the impact of performance incentives on the dispersion of wages across workers over the life cycle, we start

by decomposing the variance of wages into the variance of fixed and variable pay. By performing this decomposition

at the estimated parameter values, we find that the variance of variable pay accounts for 44% to 100% of the variance

of wages over the first 30 years of experience; see panel (a) of Figure 6.51 Thus, even though performance pay

represents only a small fraction of total pay at each experience, it is highly variable and so responsible for a large

fraction of the variance of wages over the life cycle.
50This logic applies to other counterfactual settings that have implications for workers’ effort over the life cycle, for instance, when changes

in a firm’s production or organizational structure induce a different exposure of a worker’s output to firm risk, which in our framework would
lead to a different degree of output variability as measured by σ2

ε , different piece rates, and so different profiles of effort and human capital.
51See the related findings by Lemieux et al. [2009] on the importance of the incidence of performance pay for wage inequality. Using PSID

data, these authors estimate that the increased prevalence of performance pay between the late 1970s and the early 1990s accounts for about
21% of the increase in the variance of (log) wages over this period.
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Panel (b) of Figure 6 further shows that uncertainty about ability is a major source of the variance of wages.

In this panel, we compare the variance of wages implied by the model (the solid blue line) with the counterfactual

variance of wages that would result at the estimated piece rates if ability was identical across individuals and over

time, that is, when σ2θ = σ2ζ = 0 (the dashed lavender line). Note that the difference between the solid and the

dashed line significantly increases over the life cycle because shocks to ability accumulate with experience thereby

contributing to the increase in the variance of wages over time, according to our model.

This decomposition, however, ignores the possibility that wage contracts may be very different in the absence

of heterogeneity in ability among workers. To measure the variance of wages that would result if workers were

homogeneous in their ability, we need to take into account how equilibrium wage contracts would change in response

to the new distribution of workers’ abilities. Intuitively, if workers experienced neither uncertainty about ability nor

shocks to it, they would face much less risk so wage contracts would naturally feature higher-powered incentives

in the form of higher piece rates, which could lead to an overall increase, rather than a decrease, in the variance of

wages. That is, a potential tension exists between ex-ante wage risk, which arises because of the initial dispersion in

ability among workers, and ex-post wage risk, which arises because of the variability of performance pay. Indeed,

when ability differences among workers are erased, lifetime uncertainty declines so that the trade-off between risk

and incentives becomes less severe, piece rates increase, and so the variance of wages may increase.

This is precisely what we find when we mute uncertainty about ability altogether by setting σ2θ = σ2ζ = 0. The

resulting variance of wages is shown by the dashed lavender line in panel (c) of Figure 6, which exceeds the variance

of wages in the baseline model, represented by the solid blue line, by up to six times. Panel (d) of Figure 6 reports

the profile of equilibrium piece rates in the absence of uncertainty about ability (the dashed lavender line), which are

up to three times as large as those in the baseline model (the solid blue line). These much higher piece rates, in turn,

amplify any residual productivity risk faced by workers leading overall to a much larger wage dispersion. Hence,

compressing the dispersion in ability among workers induces firms to offer contracts with a higher sensitivity of pay

to performance, which more than compensates for the lower dispersion in ability giving rise, on balance, to a higher

life-cycle variability of wages.

Although stylized, this exercise illustrates the importance of accounting for the endogeneity of the wage structure,

as defined by the composition of wages in terms of fixed and variable pay, when assessing the role of alternative

sources of wage dispersion among workers, in particular heterogeneity in ability. Specifically, this result implies that

popular reduced-form linear decompositions of the variance of wages can be misleading as they implicitly assume

that the degree to which firms’ attributes, including firm-level or “output” shocks, are reflected in wages does not

vary with the degree of heterogeneity in workers’ ability or, more generally, the level of uncertainty and risk in the

labor market (see, for instance, Abowd et al. [1999], Card et al. [2013], and specifically Guiso et al. [2005] on the
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importance of the pass-through of firm-level shocks to wages). Here we have shown that this premise may not always

be warranted, since the wage structure is a key endogenous dimension through which firms’ shocks are transmitted

to wages, which depends on the distribution of workers’ abilities. In particular, measuring the contribution to wage

inequality of “worker” and “firm” heterogeneity as separate primitive components linearly affecting wages may

be inaccurate when performance incentives matter. In fact, our analysis implies that these components are highly

interdependent and their impact on wages is subtly mediated by their dispersion once incentive effects are accounted

for. Specifically, once firms’ incentives to offer contracts with different sensitivities of wages to performance, in

response to different levels of uncertainty or output risk, are taken into account, lower dispersion in ability (or output

risk) can be associated with greater wage dispersion—although small such decreases, for given piece rates, do lead

to lower wage dispersion. Since the variance of wages is Var[wit] = σ2θ + tσ2ζ −σ2t + (b∗t )
2(σ2t +σ2ε) in our model, it

is easy to show that this result holds at any level of experience for a given dispersion in initial ability σ2θ , variance of

ability shocks σ2ζ , and degree of workers’ risk aversion r, if the variance of the noise in output σ2ε is large enough.52

9 Conclusion

Workers tend to acquire more skills that are valuable in the labor market while working. That is, by exerting effort

on the job, workers may not only produce more output in a period but also eventually become more productive.

This simple insight is the starting point for our exploration of how performance incentives influence the dynamics

of wages with labor market experience both directly, through the impact of current effort on current output, and

indirectly, through the impact of effort on the human capital process. Our goal is to examine theoretically and

empirically how incentives for effort are affected by human capital considerations, including the uncertainty about

individual productivity, and, in turn, shape the structure and evolution of wages over the life cycle.

To this purpose, we develop and estimate a tractable model of the labor market that integrates three key sources

of the dynamics of wages, namely, human capital acquisition, uncertainty and learning about individual ability, and

performance incentives, in order to account for the life-cycle profile of wages, their dispersion across individuals, and

their composition in terms of fixed and variable pay. This framework nests several known models, including standard

models of investment in human capital, models of dynamic moral hazard, and so-called career-concerns models of

learning about ability and performance incentives. We characterize the optimal wage contract in this framework

and analytically decompose the implied sensitivity of pay to performance into the relative contribution of the basic

forces we incorporate: the trade-off between output risk and incentives for effort characteristic of moral hazard, the

insurance that firms provide to workers against output risk and uncertainty ability through wage contracts, and the
52Namely, when σ2

θ and σ2
ζ are lowered to zero, the variance of wages becomes −σ2

t,n + (b∗t,n)2(σ2
t,n + σ2

ε), where the subscript n stands
for “no uncertainty,” with b∗t,n > b∗t and σ2

t,n < σ2
t . Then, a sufficient condition for the variance of wages to be higher in the absence of

uncertainty about ability is that [(b∗t,n)2 − (b∗t )
2]σ2

ε exceeds the initial value of σ2
θ + tσ2

ς , which can be guaranteed when σ2
ε is large enough.
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career-concerns incentives arising the workers’ desire to affect the market assessment of their ability and accumulate

human capital. Based on this characterization, we prove that the model is identified just from panel data on wages

and their components, and obtain simple estimators of the model primitives.

Although performance pay accounts for a small fraction of total pay, the estimates of the model illustrate the

centrality of performance pay to the dynamics of wages and their components. In particular, we find that through the

cumulative impact of effort on human capital acquisition, incentives for performance are a critical source of wage

growth and dispersion over the life cycle. We also show the importance of the wage structure as an endogenous

mechanism for the transmission of output risk to wages. That is, although lower dispersion in ability decreases wage

dispersion for a given combination of fixed and variable pay, lower dispersion in ability may lead firms to offer

contracts with higher-powered incentives, in the form of a higher fraction of performance pay to total pay, and so

may give rise to a greater variability of wages across individuals and over time.

Our augmented model further allows us to rationalize a novel empirical finding on the life-cycle profile of variable

pay. Namely, we document that the ratio of variable pay to total pay for most U.S. workers tends to decline over the

second half of their careers, precisely when standard models of career concerns predict that variable pay should

become more and more important. Our estimates suggest that two motives, namely, a desire for insurance against

uncertainty about ability and considerations of human capital acquisition, are especially important in determining

performance pay over the life cycle and have effects of opposite sign on the experience profile of performance

pay relative to total pay, which explains its peculiar hump-shaped pattern. The role of insurance emerges from the

substantial wage risk arising from the uncertainty about ability that workers face, due to the combination of dispersion

in ability at entry in the labor market and persistent shocks to ability that accumulate with experience. Furthermore, in

order to reward effort, performance pay is by design high precisely when output is high and workers receive positive

news about their ability and so future compensation, and is correspondingly low when output is low and workers

receive negative news. Then, wage contracts that specify large performance-pay components are unattractive to

workers because their payouts are positively correlated with lifetime income, that is, performance pay amplifies the

risk due to the uncertainty about ability. Accordingly, we find that the insurance component of wage contracts is

quantitatively large and depresses performance pay relative to total pay throughout the life cycle, especially early

in workers’ careers. We believe this rationale to be a leading explanation for why performance pay tends to be

empirically small for most workers. As for the role of human capital, note that, at the same time, performance

incentives provided through variable pay promote workers’ investments in human capital by encouraging effort on

the job. This force tends to increase performance pay relative to total pay but naturally becomes less relevant with

experience. This balance between the insurance and human capital determinants of performance pay rationalizes

the observed hump-shaped pattern of the ratio of performance pay to total pay over the life cycle, according to our
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model. Compared to insurance and human capital motives, career-concerns incentives and the life-cycle variation

in the strength of the static trade-off between risk and incentives—a key component of variable pay in static moral-

hazard models—are empirically much less important.

Our analysis has sidestepped questions related to how individuals sort, for instance, into distinct markets so as to

transparently integrate the alternative mechanisms of wage growth and dispersion we study within a framework that

can be analytically characterized and has empirical content.53 Such an approach naturally suggests avenues to enrich

our analysis and obtain a more complete picture of the forces shaping the structure and dynamics of wages. We hope

nonetheless that our results offer a promising first step toward richer models of incentives that can help interpret the

sources of the variability of wages across individuals and over time.
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Figure 5: Piece Rates, Wage Growth, Effort, and Human Capital

(a) Piece Rate Decomposition (b) Wage Growth Decomposition

(c) Wage Growth with Constant Effort (d) Wage Growth Without Piece Rates

(e) Effort Without Piece Rates (f) Human Capital Without Piece Rates



Figure 6: Variance of Wages, Piece Rates, and Role of Ability Uncertainty

(a) Wage Variance Decomposition (b) Wage Variance Contribution of Ability Uncertainty

(c) Wage Variance Without Ability Uncertainty (d) Piece Rates Without Ability Uncertainty



A Appendix: Equilibrium Derivation

Here we construct the equilibrium. We work with the more general case in which the law of motion for human
capital is

kit+1 = λkit + Ft(eit), (A1)

where the functionsFt : R→ R are thrice differentiable, strictly increasing, and weakly concave with supe∈R F
′
t(e) <

∞, F ′′′t nonpositive and nondecreasing, and F ′′t (∞) = infe∈R F
′′
t (e) > −∞. This case reduces to the case consid-

ered in the main text when Ft(e) = γte, with γt ≥ 0, for all t.
We first derive the first-order conditions for the optimal choices of effort when piece rates are noncontingent and

future effort choices are noncontingent as well. We then determine the equilibrium piece rates and show that they are
symmetric, noncontingent, and uniquely defined. We conclude by presenting our equilibrium characterization and
discussing conditions under which equilibrium piece rates are in the unit interval. Our equilibrium characterization
includes Proposition 1 as a special case.

A.1 First-Order Conditions for Effort

We first show that if the piece rates for a worker are noncontingent and given by {bt}Tt=0, then the first-order condition
for the worker’s optimal choice of effort in period 0 ≤ t ≤ T when the worker’s future behavior is noncontingent is

et = bt +RCC,t +RLBD,t(et), (A2)

where

RCC,t =

T−t∑
τ=1

δτ (1− bt+τ )

(
τ−1∏
k=1

µt+τ−k

)
(1− µt) and RLBD,t(e) = F ′t(e)

T−t∑
τ=1

δτλτ−1
(
bt+τ +RCC,t+τ

)
. (A3)

Note that (A2) reduces to (8) when Ft(e) = γte. The assumption that supe∈R F
′
t(e) < ∞ ensures that (A2) always

has a solution. This solution need not be an optimal choice of effort for the worker, though. Additional assumptions,
which we will discuss, are necessary for this to be the case. We start with the following auxiliary result.

Lemma 5. Fix {ξt}Tt=1. For each 0 ≤ t ≤ T − 1, we have that

T−t∑
τ=1

δτ (1− bt+τ )

τ−1∑
s=1

(
τ−1−s∏
k=1

µt+τ−k

)
(1− µt+s)ξs =

T−t∑
τ=1

δτξτRCC,t+τ .

Proof. The result is trivially true when t = T − 1 as RCC,T = 0. Fix 0 ≤ t ≤ T − 2 and let u, v ∈ RT−t−1 be such
that u = (ξt, . . . , ξT−t−1) and v =

(
δ2(1− bt+2), . . . , δ

T−t(1− bT )
)
. Moreover, let A be the square matrix of order

T − t− 1 such that Aij = 0 if i < j and Aij =
(∏i−j

k=1 µt+i+1−k
)
(1− µt+j) if i ≥ j. If we let 〈v,Au〉 denote the

scalar product of the vectors v and Au, then

〈v,Au〉 =
T−t−1∑
i=1

δi+1(1− bt+1+i)
i∑

j=1

(
i−j∏
k=1

µt+i+1−k

)
(1− µt+j)ξj

=
T−t∑
i=1

δi(1− bt+i)
i−1∑
j=1

(
i−1−j∏
k=1

µt+i−k

)
(1− µt+j)ξj ;

the second equality follows from the change of variables i 7→ i− 1 and the fact that the term corresponding to i = 1
in the sum is zero.

Now let D be the diagonal matrix of order T − t− 1 such that Dii = δi and denote the transpose of a matrix M
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by M ′. Then, since 〈v,Au〉 = v′Au = 〈A′v, u〉, it follows that

〈v,Au〉 = 〈v,AD−1Du〉 = 〈(AD−1)′v,Du〉 = 〈(D−1)′A′v,Du〉 = 〈D−1A′v,Du〉. (A4)

On the other hand, since (D−1A′v)i = δ−i(A′v)i, it follows that

(D−1A′v)i = δ−i
T−t−1∑
j=1

Ajivj = δ−i
T−t−1∑
j=i

(
j−i∏
k=1

µt+j+1−k

)
(1− µt+i)δj+1(1− bt+1+j)

=
T−t−i∑
j=1

(
j−1∏
k=1

µt+i−k

)
(1− µt+i)δj(1− bt+i+j) = RCC,t+i

for each 1 ≤ i ≤ T − t− 1. Therefore, (A4) implies that

〈v,Au〉 =
T−t−1∑
i=1

δiξiRCC,t+i =
T−t∑
i=1

δiξiRCC,t+i,

where we used the fact that RCC,T = 0 a second time. This establishes the desired result.

Suppose piece rates for a worker are noncontingent and given by {bt}Tt=0. The argument in the main text—
whether the functions {Ft}Tt=0 are linear or not does not matter for the argument—shows that the first-order condition
for the worker’s choice of effort in period 0 ≤ t ≤ T when the worker’s future behavior is noncontingent is

et = bt +
T−t∑
τ=1

δτ
∂E[wt+τ |ht]

∂et
, (A5)

where ht and wt+τ are, respectively, the worker’s history in period t and wage in period t + τ . In what follows we
show that (A5) reduces to (A2). In particular, the worker’s optimal choice of effort is independent of the worker’s
history in period t.

First recall from (3) that wt+τ = (1 − bt+τ )E[yt+τ |It+τ ] + bt+τyt+τ for all τ ≥ 1, where yt+τ is the worker’s
output in period t+ τ and It+τ is the public information about the worker that is available in the same period (which
depends on ht). Let mt+τ be the worker’s reputation in period t + τ ; note that mt+τ depends on It+τ . Since for
each τ ≥ 1 the worker’s (private) choice of effort in period t affects E[yt+τ |It+τ ] only through its impact on mt+τ ,
as the other terms in the conditional expectation depend on the worker’s conjectured effort and stock human capital
in period t + τ , it follows that ∂E[yt+τ |It+τ ] = ∂mt+τ/∂et. Given the non-contingency of piece rates from period
t+ 1 on, it then follows that

∂E[wt+τ |ht]
∂et

= (1− bt+τ )
∂E[mt+τ |ht]

∂et
+ bt+τ

∂E[yt+τ |ht]
∂et

for all τ ≥ 1. Now note from the law of motion (A1) and the non-contingency of behavior from period t+ 1 on that

∂E[yt+τ |ht]
∂et

= λτ−1F ′t(et)

for all τ ≥ 1. Finally, note from Lemma 1 that

∂E[mt+τ |ht]
∂et

=
τ−1∑
s=0

(
τ−1−s∏
k=1

µt+τ−k

)
(1− µt+s)

∂E[zt+s|ht]
∂et

=

(
τ−1∏
k=1

µt+τ−k

)
(1− µt)

∂E[zt|ht]
∂et

+
τ−1∑
s=1

(
τ−1−s∏
k=1

µt+τ−k

)
(1− µt+s)

∂E[zt+s|ht]
∂et

,
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where zt+s is the signal about the worker’s ability in period t + s. Given that ∂E[zt|ht]/∂et = 1, and the non-
contingency of behavior from period t+ 1 on implies that

∂E[zt+s|ht]
∂et

=
∂E[yt+s|ht]

∂et
= λs−1F ′t(et)

for all s ≥ 1, we can rewrite (A5) as

et = bt + F ′t(et)

T−t∑
τ=1

δτ

{
(1− bt+τ )

τ−1∑
s=1

(
τ−1−s∏
k=1

µt+τ−k

)
(1− µt+s)λs−1 + bt+τλ

τ−1

}

+
T−t∑
τ=1

δτ (1− bt+τ )

(
τ−1∏
k=1

µt+τ−k

)
(1− µt).

The desired result follows from Lemma 5 with ξτ = λτ−1.
The first-order condition (A2) is necessary of optimality. In the benchmark case in which the functions {Ft}Tt=0

are linear, this first-order condition is also sufficient for optimality. Indeed, the marginal benefit of effort to the
worker, which is the right-hand side of (A2), is independent of the worker’s effort, whereas the marginal cost of
effort to the worker, the left-hand side of (A2), is increasing in effort. When the functions {Ft}Tt=0 are nonlinear,
(A2) need not be sufficient for optimality, though. A sufficient condition for (A2) to be sufficient for optimality is

T−t∑
τ=1

δτλτ−1
(
bt+τ +RCC,t+τ

)
≥ 0. (A6)

Indeed, in this case RLBD,t(e) is nonincreasing in e, so that the marginal benefit of effort is nonincreasing in effort.
Condition (A6) holds if piece rates are in the unit interval. To see why, note that RCC,t+τ ≥ 0 if bt+τ+s ≤ 1 for all
1 ≤ s ≤ T − t− τ , in which case bt+τ +RCC,t+τ ≥ 0 if bt+τ ≥ 0.

A.2 Equilibrium Piece Rates

We now derive the equilibrium piece rates and show that they are symmetric, noncontingent, and uniquely defined.
We consider the linear and nonlinear cases separately. We will see that whereas the characterization of the equilib-
rium piece rates in the first case is valid in general, the characterization of the equilibrium piece rates in the second
case requires some restrictions on the model’s primitives.

A.2.1 Linear Case

Suppose that Ft(e) = γte, with γt > 0, for all t. We first derive the last-period equilibrium piece rates and then
derive the equilibrium piece rates in previous periods under the assumption that future equilibrium piece rates and
effort choices are symmetric and noncontingent. We conclude the linear case by showing that equilibrium piece
rates are symmetric and noncontingent in every period, and using this fact to derive a recursive characterization of
the equilibrium piece rates. The uniqueness of the equilibrium piece rates follows immediately from this recursive
characterization.

Last-Period Piece Rates. A standard argument shows that the period-T equilibrium piece rates are symmetric, a

b∗T =
1

1 + r(σ2T + σ2ε)
,

and so are noncontingent. Since it follows from the previous part that the period-T effort choice of a worker with
piece rate b is eT = b no matter the worker’s history, the period-T equilibrium effort choices are symmetric and
noncontingent as well.
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Piece Rates in Previous Periods. Let 0 ≤ t ≤ T − 1 and suppose the equilibrium piece rates and effort choices
from period t + 1 on are symmetric and noncontingent; this is true for t = T − 1. We show that the equilibrium
piece rates and effort choices in period t are also symmetric and noncontingent, and derive an expression for the
equilibrium piece rates in this period. For the argument that follows, let b∗t+τ be the equilibrium piece rate in period
t + τ , with 1 ≤ τ ≤ T − t, and define R∗CC,t and R∗LBD,t(e) to be given by (A3) with bt+τ = b∗t+τ for all τ . Note
that R∗LBD,t(e) is independent of e, that is, R∗LBD,t(e) ≡ R∗LBD,t.

Consider first a worker’s optimal choice of effort in period t. We know from the previous subsection that if the
worker’s piece rate is b, then the worker’s optimal choice of effort is

et = b+R∗CC,t +R∗LBD,t. (A7)

In particular, given that (A7) does not depend on the worker’s history, the worker’s equilibrium choice of effort in
period t is symmetric and noncontingent if the same is true for worker’s equilibrium piece rate in the same period. It
follows immediately from (A7) that et = et(b) is strictly increasing in b and such that ∂et(b)/∂b = 1.

Now let wt+τ (b) be the worker’s wage in period t+ τ with 0 ≤ τ ≤ T − t when the worker’s piece rate in period
t is b and define Wt(b) to be such that Wt(b) =

∑T−t
τ=0 δ

τwt+τ (b). The argument in the main text shows that the
worker’s equilibrium piece rate in period t is the choice of b that maximizes

E[Wt(b)|It]− (r/2)Var[Wt(b)|It]− et(b)2/2, (A8)

where It is the information firms have about the worker in period t. In what follows, we establish that there exists a
unique value of b that maximizes (A8) and that this value of b is independent of It. Thus, the equilibrium piece rates
in period t are the same for all workers and noncontingent.

We start by deriving the first-order condition for the problem of maximizing (A8). Let yt+τ (e) be the worker’s
output in period t + τ as a function of the worker’s effort in period t. It follows from (3) that E[wt+τ (b)|It] =
E[yt+τ (et(b))|It]. Given that ∂E[yt(et)|It]/∂et = 1 and ∂E[yt+τ (et)|It]/∂et = F ′t(et)λ

τ−1 for all τ ≥ 1, we then
have that

∂E[Wt(b)|It]
∂b

=

(
1 + F ′t(et(b))

T−t∑
τ=1

δτλτ−1

)
∂et(b)

∂b
= 1 + γt

T−t∑
τ=1

δτλτ−1. (A9)

We show in the next paragraph that

∂Var[Wt(b)|It]
∂b

= 2
[
b(σ2t + σ2ε) +H∗t

]
, (A10)

where H∗t = σ2t
∑T−t

τ=1 δ
τ−1. From (A7), it then follows that we can write the first-order condition for the problem

of maximizing (A8) as

1 + γt

T∑
τ−1

δτλτ−1 −R∗LBD,t −R∗CC,t − rH∗t − b
[
1 + r(σ2t + σ2ε)

]
= 0. (A11)

We now establish (A10). We know from the main text that

Var[Wt(b)|It] = b2(σ2t + σ2ε) + 2
T−t∑
τ=1

δτ−1Cov[wt(b), wt+τ (b)|It] + Var0,

where Var0 is independent of b. We claim that Cov[wt(b), wt+τ (b)|It] = bσ2t for all τ ≥ 1, from which (A10)
follows immediately. Given that the worker’s reputation in period t is nonrandom conditional on It, it follows that

Cov[wt(b), wt+τ (b)|It] = bCov[yt(et(b)), wt+τ (b)|It]
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for all τ ≥ 1 from (3). Now observe, once again from (3), that

Cov[yt(et(b)), wt+τ (b)|It] = bt+τCov[yt(et(b)), yt+τ (et(b))|It] + (1− bt+τ )Cov[yt(et(b)),mt+τ (et(b))|It]

for all τ ≥ 1, where mt+τ (et) is the worker’s reputation in period t+ τ as a function of the worker’s effort in period
t. Hence, if zt+s(et) with s ≥ 0 is the signal about the worker’s ability in period t+ s as a function of the worker’s
effort in period t, then Lemma 1 implies that

Cov[yt(et(b)), wt+τ (b)|It] = bt+τCov[yt(et(b)), yt+τ (et(b))|It]

+ (1− bt+τ )
τ−1∑
s=0

(
τ−1−s∏
k=1

µt+τ−k

)
(1− µt+s)Cov[yt(et(b)), zt+s(et(b))|It]

for all τ ≥ 1. Since Cov[yt(et(b)), yt+τ (et(b))|It] = σ2t for all τ ≥ 1 and

Cov[yt(et(b)), zt+s(et(b))|It] =

{
σ2t + σ2ε if s = 0

σ2t if s ≥ 1
,

we then have that

Cov[yt(et(b)), wt+τ (b)|It] = σ2t

(
(1− bt+τ )

τ−1∑
s=0

(
τ−1−s∏
k=1

µt+τ−k

)
(1− µt+s) + bt+τ

)

+ σ2ε(1− bt+τ )

(
τ−1∏
k=1

µt+τ−k

)
(1− µt).

To conclude, observe that σ2ε(1 − µt) = σ2t µt and µt
∏τ−1
k=1 µt+τ−k =

∏τ
k=1 µt+τ−k together imply that we can

rewrite the above expression for Cov[yt(et(b)), wt+τ (b)|It] as

Cov[yt(et(b)), wt+τ (b)|It] = σ2t

(
(1− bt+τ )

[
τ−1∑
s=0

(
τ−1−s∏
k=1

µt+τ−k

)
(1− µt+s) +

τ∏
k=1

µt+τ−k

]
+ bt+τ

)
.

The desired result follows from the fact that the term in square brackets equals one.
The first-order condition (A11) has a unique solution,

b∗t =
1

1 + r(σ2t + σ2ε)

[
1 + γt

T−t∑
τ=1

δτλτ−1 −R∗CC,t −R∗LBD,t − rH∗t

]
, (A12)

which is noncontingent, and thus the same for all workers; note that b∗T = 1/[1 + r(σ2T + σ2ε)]. That b∗t maximizes
(A8), and so is the equilibrium piece rate in period t, follows from the fact that ∂E[Wt(b)|It]/∂b, the marginal benefit
to a worker of an increase in b, is constant in b, while

r

2

∂Var[Wt(b)|It]
∂b

+ et(b) = r
[
b(σ2t + σ2ε)

]
+ et(b),

the marginal cost to a worker of an increase in b, is strictly increasing in b. So, the first-order condition (A11) is
necessary and sufficient for optimality.

Recursive Characterization of Equilibrium Piece Rates. The above argument shows that if there exists 0 ≤ t ≤
T −1 such that from period t+ 1 on the equilibrium piece rates and effort choices are symmetric and noncontingent,
then the equilibrium piece rates and effort choices in period t are symmetric and noncontingent as well. Since the
last-period equilibrium piece rates and effort choices are symmetric and noncontingent, it follows by induction that
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the equilibrium piece rates are symmetric and noncontingent in every period. From this it further follows, once
again by the above argument, that for each 0 ≤ t ≤ T the equilibrium piece rate in period t is determined by the
equilibrium piece rates in subsequent periods through equation (A12).

A.2.2 Nonlinear Case

Suppose now that the functions {Ft}Tt=0 are nonlinear for at least one t ≤ T − 1 and such that

σ2t
σ2ε

< F ′t(e) <
σ2t
σ2ε

[
1 + r(σ2t + σ2ε)

]
for all e ∈ R and 0 ≤ t ≤ T − 1.

We first derive the last-period equilibrium piece rates. We then derive a necessary and sufficient condition for the
equilibrium piece rates in previous periods when: (i) future equilibrium piece rates and effort choices are symmetric
and noncontingent; and (ii) future equilibrium piece rates are in the interval (0, 1). Following that we show that the
equilibrium piece rates and effort choices are symmetric and noncontingent and the equilibrium piece rates are in the
interval (0, 1) if r is small enough, and use this fact to derive a recursive characterization of the equilibrium piece
rates. As in the linear case, the uniqueness of the equilibrium piece rates follows from this recursive characterization.
For simplicity, we assume that λ = 1 in the final step of the equilibrium derivation. We conclude the nonlinear case
by showing how to extend the argument in the final step to the case in which λ is smaller than but close to one and
discussing the role of the restrictions on the model’s parameters in the equilibrium derivation.

Last-Period Piece Rates. Since only static considerations matter when t = T , the last-period equilibrium piece
rates and effort choices are the same in the nonlinear case as in the linear case. In particular, they are symmetric and
noncontingent.

Piece Rates in Previous Periods. Let 0 ≤ t ≤ T − 1 and suppose the equilibrium piece rates and effort choices
from period t+ 1 on are symmetric and noncontingent, and piece rates belong to the interval (0, 1); this is true when
t = T − 1. We show that the equilibrium piece rates in period t are also symmetric and noncontingent, and derive an
expression for the equilibrium piece rates in this period. Once again, let b∗t+τ be the equilibrium piece rate in period
t+ τ with 1 ≤ τ ≤ T − t and define R∗CC,t and R∗LBD,t(e) to be given by (A3) with bt+τ = b∗t+τ for all τ .

Consider first a worker’s optimal choice of effort in period t. Since
∑T−t

τ=1 δ
τλτ−1

(
b∗t+τ + R∗CC,t+τ

)
≥ 0 when

b∗t+τ ∈ (0, 1) for all 1 ≤ τ ≤ T − t, we have that if the worker’s piece rate in period t is b, then the worker’s optimal
choice of effort is the unique solution to the necessary and sufficient first-order condition

et = b+R∗CC,t +R∗LBD,t(et); (A13)

recall that
∑T−t

τ=1 δ
τλτ−1

(
b∗t+τ +R∗CC,t+τ

)
≥ 0 implies thatR∗LBD,t(e) is monotone decreasing in e. As in the linear

case, given that (A13) does not depend on the worker’s history, the worker’s equilibrium choice of effort in period t
is noncontingent, and so independent of the worker’s identity, if the same holds for worker’s equilibrium piece rate
in period t.

Equation (A13) implicitly defines the worker’s optimal choice of effort in period t as a function of the worker’s
piece rate in period t. Denote this function by et(b). The implicit function theorem implies that et(b) is continuously
differentiable, with

∂et(b)

∂b
=

1

1− F ′′t (et(b))
∑T−t

τ=1 δ
τλτ−1

(
b∗t+τ +R∗CC,t+τ

) . (A14)

Given that F ′′′t (e) ≤ 0 for all e ∈ R and
∑T−t

τ=1 δ
τλτ−1

(
b∗t+τ +R∗CC,t+τ

)
≥ 0, it follows from (A14) that ∂et(b)/∂b

is positive, bounded above by one, and nonincreasing in b.
Once again, let Wt(b) be the present-discounted value of the wage payments to the worker when the worker’s

piece rate in period t is b. Competition among firms and the mean-variance representation of worker preferences
imply that the worker’s equilibrium piece rate in period t is the choice of b maximizing (A8). In what follows,
we first derive the (necessary) first-order condition for this problem. We then show that this first-order condition is
sufficient for optimality and has a unique and noncontingent solution.
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We know from (A9) that

∂E[Wt(b)|It]
∂b

=

(
1 + F ′t(et(b))

T−t∑
τ=1

δτλτ−1

)
∂et(b)

∂b
.

Since the functions {Ft}Tt=0 do not matter for the derivation of Var[Wt(b)|It], it follows from (A10) that

∂Var[Wt(b)|It]
∂b

= 2
[
b(σ2t + σ2ε) +H∗t

]
;

recall that H∗t = σ2t
∑T−t

τ=1 δ
τ−1. So, the first-order condition for the problem of maximizing (A8) is(

1 + F ′t(et(b))
T−t∑
τ=1

δτλτ−1 − et(b)

)
∂et(b)

∂b
− r
[
b(σ2t + σ2ε) +H∗t

]
= 0. (A15)

Using the first-order condition for effort (A13) and the definition of R∗LBD,t(e), we can rewrite (A15) as

b =

(
1 +

r(σ2t + σ2ε)

∂et(b)/∂b

)−1[
1 + F ′t(et(b))

T−t∑
τ=1

δτλτ−1(1− b∗t+τ −R∗CC,t+τ )−R∗CC,t −
rH∗t

∂et(b)/∂b

]
. (A16)

Note that the solutions to (A16), if they exist, are noncontingent, and so are the same for every worker.
In order to establish that (A15) is sufficient for optimality, let

MBt(b) =

(
1 + F ′t(et(b))

T−t∑
τ=1

δτλτ−1

)
∂et(b)

∂b

be the marginal benefit to the worker of an increase in b and

MCt(b) = r
[
b(σ2t + σ2ε) +H∗t ] + et(b)

∂et(b)

∂b

be the marginal cost to the worker of an increase in b. Given that et(b) is nondecreasing in b and ∂et(b)/∂b is
nonincreasing in b, it follows thatMBt is nonincreasing in b. Now note that since F ′′′t nonpositive and nondecreasing
implies that F ′′′t (e)e ≥ F ′′t (e) for all e ∈ R, we then have from (A14) that54

d

db

(
et(b)

∂et(b)

∂b

)
=

(
∂et(b)

∂b

)2

+ et(b)
∂2et(b)

∂b2

=

(
∂et(b)

∂b

)2

1 +

et(b)F
′′′
t (et(b))

T−t∑
τ=1

δτλτ−1(b∗t+τ +R∗CC,t+τ )

1− F ′′t (et(b))
T−t∑
τ=1

δτλτ−1(b∗t+τ +R∗CC,t+τ )


≥
(
∂et(b)

∂b

)2 1

1− F ′′t (et(b))
T−t∑
τ=1

δτ (b∗t+τ +R∗CC,t+τ )

> 0.

54The desired inequality is immediately true if e ≤ 0. Suppose then that e > 0. Then F ′′t (e) = F ′′t (0) +
∫ e
0
F ′′′t (s)ds implies that

F ′′t (e) ≤
∫ e
0
F ′′′t (s)ds ≤

∫ e
0
F ′′′(e)ds = eF ′′′t (e), where the first inequality holds since F ′′t (0) ≤ 0, the second inequality holds since

F ′′′t (s) ≤ F ′′′t (e) for all s ≤ e, and the last equality holds since e > 0.
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Thus, MCt is strictly increasing in b, which establishes the sufficiency of (A15).
We conclude this step by showing that (A15), and so (A16), has a unique solution b∗t , which we know is noncon-

tingent. First note that MBt is bounded given that supe∈R F
′
t(e) < ∞ and ∂et(b)/∂b belongs to the unit interval.

On the other hand, since et(b)∂et(b)/∂b is strictly increasing in b, it follows from the expression for MCt that
limb→−∞MCt(b) = −∞ and limb→+∞MCt(b) = +∞. So, (A15) has a solution, which is unique given the
properties of MBt and MCt established above. Note that b∗T = 1/[1 + r(σ2T + σ2ε)] since ∂eT (b)/∂b = 1.

Recursive Characterization of Equilibrium Piece Rates. The above argument shows that if there exists 0 ≤ t ≤
T −1 such that from period t+ 1 on the equilibrium piece rates and effort choices are symmetric and noncontingent,
and the equilibrium piece rates are in the unit interval, then the equilibrium piece rates and effort choices in period
t are symmetric and noncontingent. We now show that if λ = 1, then the equilibrium piece rates in period t are
also in the interval (0, 1) if r is sufficient small. From this we are able to show that when λ = 1 in every period
the equilibrium piece rates are symmetric, noncontingent, and belong to the interval (0, 1) as long as r is sufficiently
small. We conclude by using this last fact to derive a recursive characterization of the equilibrium piece rates when
λ = 1 and r is small enough.

Suppose that λ = 1. We first show that F ′t(e) < (σ2t /σ
2
ε)[1 + r(σ2t + σ2ε)] for all e ∈ R implies that b∗t < 1.

Observe from Lemma 5 that

T−t∑
τ=1

δτ (1− b∗t+τ −R∗CC,t+τ ) =

T−t∑
τ=1

δτ (1− b∗t+τ )

(
1−

τ−1∑
s=1

(
τ−1−s∏
k=1

µt+τ−k

)
(1− µt+s)

)
.

Since
τ−1∑
s=1

(
τ−1−s∏
k=1

µt+τ−k

)
(1− µt+s) +

τ−1∏
k=1

µt+τ−k = 1, (A17)

we then have that

T−t∑
τ=1

δτ (1− b∗t+τ −R∗CC,t+τ ) =
T−t∑
τ=1

δτ (1− b∗t+τ )
τ−1∏
k=1

µt+τ−k =
σ2ε
σ2t
R∗CC,t; (A18)

the second equality follows from (A3) and µt/(1 − µt) = σ2ε/σ
2
t . Now observe that the right-hand side of (A16),

and so b∗t , is smaller than one if, and only if,

F ′t(et(b))
T−t∑
τ=1

δτ (1− b∗t+τ −R∗CC,t+τ )−R∗CC,t <
r

∂et(b)/∂b

[
σ2ε + σ2t

T−t∑
τ=0

δτ

]
; (A19)

recall that H∗t = σ2t
∑T−t

τ=1 δ
τ−1. Since ∂et(b)/∂b ≤ 1, (A18) implies that a sufficient condition for (A19) is

R∗CC,t

(
σ2ε
σ2t
F ′t(et(b))− 1

)
< r

[
σ2ε + σ2t

T−t∑
τ=0

δτ

]
.

The above inequality holds since F ′t(e) < (σ2t /σ
2
ε)
[
1 + r(σ2t + σ2ε)

]
for all e ∈ R and, by (A3),

R∗CC,t ≤ (1− µt)
T−t∑
τ=1

δτ =
σ2t

σ2t + σ2ε

T−t∑
τ=1

δτ <
1

σ2t + σ2ε

[
σ2ε + σ2t

T−t∑
τ=0

δτ

]
.

We now show that F ′t(e) > σ2t /σ
2
ε for all e ∈ R implies that there exists r > 0 such that b∗t > 0 for all r ∈ (0, r).
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For this, observe, again using Lemma 5, that

T−t∑
τ=1

δτ (bt+τ∗ +R∗CC,t+τ ) =

T−t∑
τ=1

δτ

(
b∗t+τ + (1− b∗t+τ )

τ−1∑
s=1

(
τ−1−s∏
k=1

µt+τ−k

)
(1− µt+s)

)

=
T−t∑
τ=1

δτ

(
1− (1− b∗t+τ )

τ−1∏
k=1

µt+τ−k

)
<

δ

1− δ
;

the second equality follows from (A17) and the inequality follows since b∗t+τ < 1 for all 1 ≤ τ ≤ T − t. Therefore,

rH∗t
∂et(b)/∂b

= r

[
1− F ′′t (et(b))

T−t∑
τ=1

δτ (b∗t+τ +R∗CC,t+τ )

]
σ2t

T−t∑
τ=1

δτ < rσ2t

(
1− F ′′t (∞)

δ

1− δ

)
δ

1− δ
. (A20)

Now note that F ′t(e) > σ2t /σ
2
ε for all e ∈ R and the argument leading to (A18) together imply that

F ′t(et(b))

T−t∑
τ=1

δτ (1− b∗t+τ −R∗CC,t+τ )−R∗CC,t = R∗CC,t

(
σ2ε
σ2t
F ′t(et(b))− 1

)
> 0;

since b∗t+τ < 1 for all 1 ≤ τ ≤ T − t, we have that R∗CC,t > 0. It then follows from (A20) that there exists r > 0
such that

1 + F ′t(et(b))
T−t∑
τ=1

δτ (1− b∗t+τ −R∗CC,t+τ )−R∗CC,t −
rH∗t

∂et(b)/∂b
> 0 (A21)

if r ∈ (0, r). This, in turn, implies that the right-hand side of (A16) is positive, and so is b∗t .
Summing up the argument so far, there exists r > 0 such that b∗t ∈ (0, 1) provided r ∈ (0, r). Note that since σ2t

is monotonically decreasing if σ2θ > σ2ζ and monotonically increasing if σ2θ < σ2ζ , it follows that σ2t ≤ max{σ2θ , σ2ζ}.
Thus, from (A20), we can take the upper bound r on the worker’s risk aversion to be independent of t. This fact is
useful below.

We established that if there exists 0 ≤ t ≤ T − 1 such that from period t + 1 on the equilibrium piece rates
and effort choices are symmetric and noncontingent and the equilibrium piece rates are in the interval (0, 1), then
there exists r > 0 independent of t such that the equilibrium piece rates and effort choices in period t have the
same properties provided r ∈ (0, r) and λ = 1. Since the last-period equilibrium piece rates and effort choices are
symmetric and noncontingent and the last-period equilibrium piece rates are in the interval (0, 1), a straightforward
induction argument shows that if λ = 1 and r ∈ (0, r), then in every period the equilibrium piece rates and effort
choices are symmetric and noncontingent and the equilibrium piece rates are in the interval (0, 1). Moreover, as

∂et(b)

∂b
=

(
1− F ′′t (et(b))

F ′t(et(b))
R∗LBD,t(et(b))

)−1
by (A3) and (A14), equations (A13) and (A16) imply that the equilibrium piece rate in t is defined recursively as

b∗t =
1

1 + r(σ2t + σ2ε)

[
1− F ′′t (e∗t )

F ′t(e
∗
t )
R∗LBD,t(e

∗
t )

]{1 + F ′t(e
∗
t )

T−t∑
τ=1

δτλτ−1 −R∗LBD,t(e∗t )−R∗CC,t

−r
[
1− F ′′t (e∗t )

F ′t(e
∗
t )
R∗LBD,t(e

∗
t )

]
H∗t

}
,

where e∗t is the unique solution to e∗t = b∗t + R∗CC,t + R∗LBD,t(e
∗
t ) and λ = 1. This concludes the equilibrium

derivation in the nonlinear case.
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Discussion. We can relax the assumption that λ = 1 in the final step of the equilibrium derivation. First note that
(A13), (A14), and (A16) define the equilibrium piece rates continuously as a function of λ.55 So, for each 0 ≤ t ≤ T ,
the map λ 7→

∑T−t
τ=1 δ

τλτ−1(1− b∗t+1 − R∗CC,t+τ ) is continuous. From this, it follows that if we take λ sufficiently
close to one, then the inequalities (A19) and (A21) will continue to hold when r ∈ (0, r), where r is the upper bound
on r in the case in which λ = 1.

The restrictions on the marginal rates of human capital accumulation are natural. The marginal rates of human
capital accumulation cannot be too large, otherwise piece rates can be greater than one. Likewise, the marginal
rates of human capital accumulation cannot be too small, otherwise the learning-about-ability motive dominates,
and we know from Gibbons and Murphy [1992] that it can lead to negative piece rates. Workers cannot be too risk
averse as well, otherwise the demand for insurance against the lifetime risk in compensation due to uncertainty about
ability overwhelms all other factors determining equilibrium piece rates. Finally, since human capital depreciation
effectively acts to reduce the rates of human capital accumulation, it cannot be too large.

A.3 Equilibrium Characterization

We can now state our equilibrium characterization. It includes Proposition 1 as a special case.

Proposition 6. For each 0 ≤ t ≤ T , let H∗t = σ2t
∑T−t

τ=1 δ
τ and define R∗CC,t, R

∗
LBD,t(e), b∗t , and e∗t recursively as:

R∗CC,t =
T−t∑
τ=1

δτ (1− b∗t+τ )

(
τ−1∏
k=1

µt+τ−k

)
(1− µt);

R∗LBD,t(e) = F ′t(e)

T−t∑
τ=1

δτλτ−1
(
b∗t+τ +R∗CC,t+τ

)
;

b∗t =
1

1 + r(σ2t + σ2ε)

[
1− F ′′t (e∗t )

F ′t(e
∗
t )
R∗LBD,t(e

∗
t )

]{1 + F ′t(e
∗
t )
T−t∑
τ=1

δτλτ−1 −R∗LBD,t(e∗t )−R∗CC,t

− r
[
1− F ′′t (e∗t )

F ′t(e
∗
t )
R∗LBD,t(e

∗
t )

]
H∗t

}
;

e∗t = b∗t +R∗CC,t +R∗LBD,t(e
∗
t ).

1. Suppose that Ft(e) = γte, with γt > 0, for all 0 ≤ t ≤ T . The equilibrium is unique, symmetric, and
noncontingent, with the equilibrium piece rate and effort choice in period t given by b∗t and e∗t , respectively.
2. Suppose the functions {Ft}Tt=0 are nonlinear for at least one t ≤ T − 1 and satisfy

σ2t
σ2ε

< F ′t(e) <
σ2t
σ2ε

[
1 + r(σ2t + σ2ε)

]
for all e ∈ R and 0 ≤ t ≤ T − 1.

There exist λ ∈ (0, 1) and r > 0 such that if λ ∈ (λ, 1] and r ∈ (0, r), then the equilibrium is unique, symmetric,
and noncontingent, with the equilibrium piece rate and effort choice in period t given by b∗t and e∗t , respectively.
Moreover, the equilibrium piece rates are in the interval (0, 1).

Clearly, the conditions under which equilibrium piece rates in the nonlinear case are in the unit interval also
apply in the linear case with γt in place of F ′t(e). We conclude this part by providing an alternative set of conditions
under which equilibrium piece rates in the linear case are in the unit interval. Unlike the conditions of Proposition 6,
they apply even in the absence of learning about ability.56 It is easy to extend Corollary 2 to the nonlinear case, thus
obtaining alternative sets of conditions under which the equilibrium characterization of Proposition 6 holds.

55The recursive structure of the equilibrium piece rates implies that if future pieces rates depend continuously on λ, then current piece rates
are also continuous functions of λ. Since the last-period piece rate is continuous in λ, so are the equilibrium piece rates in all previous periods.

56The upper bound for γt in Corollary 2 is tighter than the upper bound for γt provided by Proposition 6 when σ2
t is large.
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Corollary 2. Consider the linear case and suppose that

σ2t
σ2ε

< γt <
1− δλ
δ

r(σ2t + σ2ε) for all 0 ≤ t ≤ T − 1.

There exists λ ∈ (0, 1) and r > 0 such that if λ ∈ (λ, 1] and r ∈ (0, r), then b∗t ∈ (0, 1) for all 0 ≤ t ≤ T .

Proof. We only need to prove that piece rates are bounded above by one if γt < δ−1(1 − δλ)r(σ2t + σ2ε) for all
0 ≤ t ≤ t ≤ T − 1. Recall that

b∗t =
1

1 + r(σ2t + σ2ε)

[
1 + γt

T−t∑
τ=1

δτλτ−1 −R∗CC,t −R∗LBD,t − rH∗t

]

=
1

1 + r(σ2t + σ2ε)

[
1 + γt

T−t∑
τ=1

δτλτ−1(1− b∗t+τ −R∗CC,t+τ )−R∗CC,t − rH∗t

]

for all 0 ≤ t ≤ T . First note that b∗T = 1/[1 + r(σ2T + σ2ε)] < 1. Suppose then, by induction, that there exists
1 ≤ t ≤ T such that b∗t+τ < 1 for all 0 ≤ τ ≤ T − t. Let s = t − 1. We are done if we show that b∗s < 1. Since
R∗CC,s+τ > 0 for all 0 ≤ τ ≤ T − s by the induction hypothesis and H∗s > 0, it follows from the equation for the
equilibrium piece rates that b∗s < 1 if

γs

T−s∑
τ=1

δτλτ−1(1− b∗s+τ ) < r(σ2s + σ2ε).

Using the induction hypothesis one more time, we have that the left-hand side of the above inequality is bounded
above by γs

∑T−s
τ=1 δ

τλτ−1 < γsδ(1− δλ)−1. This implies the desired result.

B Appendix: Equilibrium Properties

B.1 Proof of Lemma 2

Consider first the case in which σ2θ ≥ σ2∞, so that σ2t is nonincreasing in t. Note that H∗T−1 > H∗T = 0 and, since
b∗T ∈ (0, 1) and µT−1 ∈ (0, 1), that R∗CC,T−1 = δ(1− b∗T )(1− µT−1) > R∗CC,T = 0. Thus,

b∗T−1 = b0T−1
(
1−R∗CC,T−1 − rH∗T−1

)
< b0T−1 ≤ b0T = b∗T ,

where the weak inequality follows since σ2t is nonincreasing in t, and so b0t is nondecreasing in t. Now suppose, by
induction, that there exists 1 ≤ t ≤ T − 1 such that R∗CC,t+τ > R∗CC,t+τ+1 and b∗t+τ < b∗t+τ+1 for all 0 ≤ τ ≤
T − t− 1. We are done if we show that R∗CC,t−1 > R∗CC,t and b∗t−1 < b∗t .

Let s = t− 1. Then

R∗CC,s =
T−s∑
τ=1

δτ (1− b∗s+τ )

(
τ−1∏
k=1

µs+τ−k

)
(1− µs) >

T−s−1∑
τ=1

δτ (1− b∗s+τ )

(
τ−1∏
k=1

µs+τ−k

)
(1− µs)

>

T−s−1∑
τ=1

δτ (1− b∗s+1+τ )

(
τ−1∏
k=1

µs+τ−k

)
(1− µs);

the first inequality follows from the fact that b∗T ∈ (0, 1) and µt ∈ (0, 1) for 0 ≤ t ≤ T whereas the second inequality
follows since b∗s+1+τ > b∗s+τ for all 1 ≤ τ ≤ T − s − 1 by the induction hypothesis. Hölmstrom [1999] shows
that (1 − µs)

∏τ−1
k=1 µs+τ−k = (1 − µs)

∏τ−1
k=1 µs+τ is strictly increasing in µs for all τ ≥ 1. So, given that σ2t
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nonincreasing in t implies that µt is nondecreasing in t, we then have that

R∗CC,s >

T−s−1∑
τ=1

δτ (1− b∗s+1+τ )

(
τ−1∏
k=1

µs+1+τ−k

)
(1− µs+1) = R∗CC,s+1 = R∗CC,t.

To conclude the argument, observe that if b ≥ b∗t , then

1−R∗CC,t − rH∗t − b
[
1 + r(σ2t + σ2ε)

]
≤ 0.

Thus, given that R∗CC,s > R∗CC,t, H
∗
s ≥ H∗t , and σ2s ≥ σ2t , it follows that b ≥ b∗t implies that

1−R∗CC,s − rH∗s − b
[
1 + r(σ2s + σ2ε)] < 0.

We know from the proof of Proposition 6 that the first-order condition (A11) is necessary and sufficient for the
equilibrium piece rates. Thus, b∗s = b∗t−1 < b∗t . This concludes the case in which σ2θ ≥ σ2∞.

Now consider the case in which σ2θ < σ2∞. Fix T0 > 0 and K > 0 and let T = T0 +K; we pin down T0 below.
Moreover, let µ∞ = σ2ε/(σ

2
∞ + σ2ε) and consider the difference equation

b̂t =
1

1 + r(σ2∞ + σ2ε)

(
1−

T−t∑
τ=1

δτ (1− b̂t+τ )µτ−1∞ (1− µ∞)− rσ2∞
T−1∑
τ=1

δτ

)

for T0 ≤ t ≤ T . By construction, b̂t is the equilibrium piece that would prevail in period t if uncertainty about
ability from period T0 on were constant and equal to σ2∞. We claim that limσ2

T0
→σ2
∞
b∗t = b̂t for all T0 ≤ t ≤ T .

First note that σ2T0 < σ2T < σ2∞ implies that limσ2
T0
→σ2
∞
b∗T = b̂T . Now suppose, by induction, that there exists

T0 < t ≤ T such that limσ2
T0
→σ2
∞
b∗t+τ = b̂t+τ for all 0 ≤ τ ≤ T − t. Let s = t− 1. We obtain the desired result if

limσ2
T0
→σ2
∞
b∗s = b̂s. For this, note that

b∗s =
1

1 + r(σ2s + σ2ε)

(
1−

T−s∑
τ=1

δτ (1− b∗s+τ )

( τ−1∏
k=1

µs+τ−k

)
(1− µs)− rσ2s

T−1∑
τ=1

δτ

)
.

Since σ2T0 ≤ σ2s+τ < σ2∞ for all 0 ≤ τ ≤ T − s, it follows that limσ2
T0
→σ2
∞
σ2s+τ = σ2∞ for all 0 ≤ τ ≤ T − s, and

so limσ2
T0
→σ2
∞
µ2s+τ = µ2∞ for all 0 ≤ τ ≤ T − s as well. This, in turn, implies that

lim
σ2
T0
→σ2
∞

b∗s =
1

1 + r(σ2∞ + σ2ε)

(
1−

T−s∑
τ=1

δτ (1− b̂s+τ )µτ−1∞ (1− µ∞)− rσ2∞
T−1∑
τ=1

δτ

)
= b̂s

by the induction hypothesis and the fact that b∗s is jointly continuous in (b∗s+1, . . . , b
∗
T , σ

2
s , µs, . . . , µT ).

To conclude, note from the first part of the proof that b̂t is strictly increasing in t for all T0 ≤ t ≤ T . So, there
exists η > 0 such that if |b∗t − b̂t| ≤ η for all T0 ≤ t ≤ T , then b∗t is strictly increasing in t for all T0 ≤ t ≤ T as
well. Since limT0→∞ σ

2
T0

= σ2∞, it follows from the argument in the previous paragraph that there exists T0 ≥ 0

such |b∗t − b̂t| ≤ η for all T0 ≤ t ≤ T . This concludes the proof.

B.2 Proof of Lemma 3

Fix 0 ≤ T0 ≤ T − 1. We first show that γt ≤ (1− δλ)(1 + rσ2ε)/δ(1− (δλ)T−T0) for all T0 ≤ t ≤ T − 1 implies
that b∗t ∈ [0, 1] for T0 ≤ t ≤ T . Note that b∗T ∈ [b0, 1]. Now suppose, by induction, that there exists T0 + 1 ≤ t ≤ T
such that b∗t+τ ∈ [b0, 1] for all 0 ≤ τ ≤ T − t. Let s = t − 1. The desired result follows if b∗s ∈ [b0, 1]. First note
that b∗s+τ ≤ 1 for all 1 ≤ τ ≤ T − s, which holds by the induction hypothesis, implies that b∗s ≥ b0. Now note that
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b∗s+τ ≥ b0 for all 1 ≤ τ ≤ T − s, which also holds by the induction hypothesis, implies that

b∗s = b0

[
]1 + γs

T−s∑
τ=1

δτλτ−1(1− b∗s+τ )

]
≤ b0

[
]1 + γs

T−s∑
τ=1

δτλτ−1(1− b0)

]
= b0

[
]1 + γsrσ

2
εb

0
T−s∑
τ=1

δτλτ−1

]
.

Thus, a sufficient condition for b∗s ≤ 1 is that

1 + γsrσ
2
εb

0
T−s∑
τ=1

δτλτ−1 ≤ (b0)−1 = 1 + rσ2ε ,

which holds if γs ≤ (1− δλ)(1 + rσ2ε)/δ(1− (δλ)T−T0).
We now show that γt nonincreasing in t for all T0 ≤ t ≤ T − 1 implies that b∗t is strictly decreasing in t for all

T0 ≤ t ≤ T . We known from the main text that b∗T−1 > b∗T . So, assume that T0 < T − 1 and suppose, by induction,
that there exists T0 + 1 ≤ t ≤ T − 1 such that b∗t+τ > b∗t+1+τ for all 0 ≤ τ ≤ T − t− 1. Let s = t− 1. Then

b∗s > b0

(
1 + γs

T−s−1∑
τ=1

δτλτ−1(1− b∗s+τ )

)
> b0

(
1 + γs

T−s−1∑
τ=1

δτλτ−1(1− b∗s+1+τ )

)

≥ b0

(
1 + γs+1

T−s−1∑
τ=1

δτλτ−1(1− b∗s+1+τ )

)
= b∗s+1;

the first inequality follows since b∗T ∈ (0, 1), the second inequality follows from the induction hypothesis, and the
third inequality follows since piece rates are in [0, 1] and γs ≥ γs+1. This concludes the proof.

B.3 Proof of Lemma 4

Suppose there exists 0 < T0 < T such that b∗t < 1 for all T0 ≤ t ≤ T and set γT0 > 0; the assumption that
γT0 is positive is consistent with the assumption on the equilibrium piece rates from period T0 on. Since both∑T−T0

τ=1 δτλτ−1(1− b∗T0+τ ) and
∑T−T0+1

τ=1 δτλτ−1(1− b∗T0−1+τ ) are positive by assumption, there exists γT0−1 > 0
such that

γT0−1

T−T0∑
τ=1

δτλτ−1(1− b∗T0+τ ) < γT0

T−T0−1∑
τ=1

δτλτ−1(1− b∗T0+1+τ ).

By reducing γT0−1 if necessary, we can ensure that γT0 > γT0−1. From (24) it follows that b∗T0−1 ∈ (b0, b∗T0).
Since b∗T0−1 < 1, we can repeat the step for t = T0 − 1 to show that there exists γT0−2 ∈ (0, γT0−1) such that
b∗T0−2 ∈ (b0, b∗T0−1). Continuing backwards we obtain the desired result.

B.4 Proof of Proposition 2

We first show that when σ2ζ is small, there exists T0 ≥ 0 such that if T > T0, γt is nonincreasing in t for all
T0 ≤ t ≤ T − 1, and 0 < γT−1 ≤ γT0 ≤ (1 − δλ)(1 + rσ2ε)/δ(1 − (δλ)T−T0), then b∗t is strictly decreasing in t
for all T0 ≤ t ≤ T . For simplicity, assume that σ2ζ = 0. Since the equations for the equilibrium piece rates depend
continuously on σ2ζ and limt→∞ σ

2
t ≈ 0 when σ2ζ ≈ 0, we can extend the argument to the case in which σ2ζ is positive

but small. Fix T0 > 0 and K > 0 and let T = T0 +K; we pin down T0 below. Consider the difference equation

b̂t =
1

1 + rσ2ε

[
1 + γt

T−t∑
τ=1

δτλτ−1(1− b̂t+1)

]

for T0 ≤ t ≤ T . By definition, b̂t is the piece rate that would prevail in period T0 ≤ t ≤ T if only learning by doing
were present. The same argument as in the proof of Lemma 2 shows that limσ2

T0
→0 b

∗
t = b̂t for all T0 ≤ t ≤ T .
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Since, by Lemma 3, b̂t is strictly increasing in t for all T0 ≤ t ≤ T and limT0→∞ σ
2
T0

= 0, it then follows that there
exists T0 ≥ 0 such that b∗t is strictly decreasing in t for all T0 ≤ t ≤ T .

We now show that there exists T0 ≥ 0 and γ > 0 such that if T > T0 and γt < γ for all T0 ≤ t ≤ T − 1, then b∗t
is strictly increasing in t for all T0 ≤ t ≤ T . Fix T0 ≥ 0, let T > T0, and assume that γt = 0 for all T0 ≤ t ≤ T − 1;
since the equations for the equilibrium piece rates depend continuously on the rates of human capital accumulation,
we can extend the argument to the case in which γT0 to γT−1 are positive but small. Given that from period T0 on the
equilibrium piece rates coincide with the equilibrium piece rates in the pure learning-about-ability case, it follows
from Lemma 2 that b∗t is strictly increasing in t for all T0 ≤ t ≤ T if T0 is sufficiently large.

B.5 Proof of Proposition 3

The first part of the proposition follows immediately by continuity and Corollary 1. We now show that equilibrium
piece rates can be u-shaped if human capital accumulation is important early on but its importance decreases quickly
enough over time. Suppose that λ = 1. It follows from the proof of Proposition 6, see (A18), that

b∗t =
1

1 + r(σ2t + σ2ε)

[
1 +R∗CC,t

(
γt
σ2ε
σ2t
− 1

)
− rσ2t

T−t∑
τ=1

δτ

]
(B22)

for all 0 ≤ t ≤ T . Fix 0 < T0 < T and suppose that γt = 0 for all T0 ≤ t ≤ T . Moreover, assume that
σ2θ > σ2∞; we know from the proofs of Lemma 2 and Proposition 2 that both assumptions can be relaxed. Then b∗t
is strictly increasing in t for all T0 ≤ t ≤ T . Since it is also the case that b∗t < 1 for all T0 ≤ t ≤ T , we have that
R∗CC,T0−1 > 0. From (B22) we can choose γT0−1 > 0 so that b∗T0−1 > b∗T0 . Since b∗T0 < 1, we can ensure that
b∗T0−1 < 1 as well. Since b∗T0−1 < 1, we can repeat the step for t = T0 − 1 to show that there exists a value of γT0−2
for which b∗T0−1 < b∗T0−2 < 1. Continuing backwards we obtain the desired result.

B.6 Initially Increasing Piece Rates

Here we show that equilibrium piece rates are initially increasing when σ2θ is large and σ2ε and σ2ζ are small. For
simplicity, assume that σ2ε = 0. Since the equations for the equilibrium piece rates are continuous in σ2ε , the results
extend to the case in which σ2ε is positive but small. Note that σ2ε = 0 implies that σ2t = σ2ζ for all 1 ≤ 1 ≤ T and,
since µt ≡ 0, that R∗CC,t = δ(1− b∗t+1) for all 0 ≤ t ≤ T − 1. So,

b∗t =
1

1 + rσ2ζ

(
1 + γt

T−t∑
τ=1

δτ (1− b∗t+τ −R∗CC,t+τ )−R∗CC,t+1 − rσ2ζ
T−1∑
τ=1

δτ

)

=
1

1 + rσ2ζ

(
1 + γt

T−t∑
τ=1

δτ (1− b∗t+τ )− γt
T−t−1∑
τ=1

δτ+1(1− b∗t+1+τ )− δ(1− b∗t+1)− rσ2ζ
T−t∑
τ=1

δτ

)

=
1

1 + rσ2ζ

(
1− δ + γtδ + (1− γt)δb∗t+1 − rσ2ζ

T−t∑
τ=1

δτ

)

for all 1 ≤ t ≤ T − 1 with b∗T = 1/(1 + rσ2ζ ); the second equation follows from the fact that R∗CC,T = 0. We
claim that there exists η > 0 such that b∗t > η for all 1 ≤ t ≤ T if σ2ζ is sufficiently small. Indeed, in the limit as σ2ζ
converges to zero the above equations for b∗t reduce to b∗t = 1− δ + γtδ + (1− γt)δb∗t+1 for all 1 ≤ t ≤ T − 1 with
b∗T = 1. In this limiting case it follows immediately that b∗t = 1 for all t ≥ 1. The desired result follows since the
equations for b∗t depend continuously on σ2ζ . Now note that

b∗0 =
1

1 + rσ2θ

(
1− δ + γ0δ + (1− γ0)δb∗1 − rσ2θ

T∑
τ=1

δτ

)
,
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and so b∗0 is smaller than η if σ2θ is sufficiently large. Since b∗1 does not depend on σ2θ , it then follows that b∗0 < b∗1 if
σ2θ is sufficiently large and σ2ζ is sufficiently small.

C Appendix: Identification

C.1 Second Moments of the Wage Distribution

Here we compute the second moments of the wage distribution. From (3), we can write worker i’s wage in period
t as wit = wit + rit, where rit = (1 − b∗t )E[θit|It] + b∗t (θit + εit). By construction, rit is the random part of wit.
Assume without loss that mθ = 0, in which case E[θit] = 0, and so E[rit] = 0. In what follows we use repeatedly
the fact that E[θit|It] ⊥ θit − E[θit|It].57

Variances of Wage Residuals. We claim that

Var[rit] = Var[wit] = σ2θ + tσ2ζ − σ2t + (b∗t )
2(σ2t + σ2ε).

Since
rit = E[θit|It] + b∗t

(
θit − E[θit|It] + εit

)
, (C23)

we have that
Var[rit] = Var[E[θit|It]] + (b∗t )

2Var[θit − E[θit|It]] + (b∗t )
2σ2ε . (C24)

Now observe that Var[θit − E[θit|It]] = Var[θit] − Var[E[θit|It]].58 Moreover, given that θit|It = ιt is normally
distributed with mean E[θit|It = ιt] and variance σ2t , the random variable (θit − E[θit|It])|It = ιt is normally
distributed with mean zero and variance σ2t . Therefore, Var[θit−E[θit|It]] = σ2t , and so, since Var[θit] = σ2θ + tσ2ζ ,
it follows that Var[E[θit|It]] = σ2θ + tσ2ζ − σ2t .59 The desired result follows from (C24).

Covariances of Wage Residuals. We claim that

Cov[rit, rit+s] = σ2θ + tσ2ζ − σ2t + b∗tσ
2
t

for all 1 ≤ s ≤ T − t. Let ηsit = E[θit+s|It+s] − E[θit|It]. We claim that E[ηsit|It] = 0.60 Indeed, given that
E[θit+s|It] = E[θit|It], the law of iterated expectations for conditional expectations implies that

E[ηsit|It] = E[E[θit+s|It+s]|It]− E[θit|It] = E[θit+s|It]− E[θit|It] = 0.

Since
rit+s = E[θit|It] + b∗t+s(θit + ζit + · · ·+ ζit+s−1 − E[θit|It] + εit+s) + (1− b∗t+s)ηsit,

we then have that

E[ritrit+s]

= Var[E[θit|It]] + b∗t b
∗
t+sVar[θit − E[θit|It]] + (1− b∗t+s)

{
(1− b∗t )E[E[θit|It]ηsit] + b∗tE[(θit + εit)η

s
it]
}

= σ2θ + tσ2ζ − σ2t + b∗t b
∗
t+sσ

2
t + (1− b∗t+s)b∗tE[(θit + εit)η

s
it] + (1− b∗t+s)(1− b∗t )E[E[θit|It]ηsit].

57This is a consequence of the fact that the conditional expectation is an orthogonal projection.
58Indeed, Var[A−B] = Var[A] + Var[B]− 2Cov[A,B] and Cov[θit,E[θit|It]] = Var[E[θit|It]].
59Notice that Var[θit − E[θit|It]] = E[(θit − E[θit|It])2] = E[E[(θit − E[θit|It])2|It]] = E[E[σ2

t |It]] = σ2
t .

60This result is intuitive. By definition, ηsit is the change in the conditional expectation about worker i’s ability from period t to period
t+ s. Since shocks to ability have zero mean and the information about the worker’s ability learned in period t and after is “orthogonal,” that
is new, to the information contained in It, Bayes’ rule implies that ηsit has mean zero conditional on It.
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We now show that E[ηsitE[θit|It]]=0 and E[(θit + εit)η
s
it]=σ2t , which implies the desired result. First, note that

ηsit =
s−1∑
k=0

(
s−1−k∏
j=1

µt+s−j

)
(1− µt+k)(θit+k + εit+k − E[θit|It])

by Lemma 1. Since θit+k = θit + ζit + · · ·+ ζit+k−1, it easily follows that E[ηsitE[θit|It]] = 0. Moreover,

(θit + εit)η
s
it = (θit + εit)

(
θit + εit − E[θit|It]

)( s−1∏
j=1

µt+s−j

)
(1− µt)

+θit
(
θit − E[θit|It]

) s−1∑
k=1

(
s−1−k∏
j=1

µt+s−j

)
(1− µt+k) + Λst ,

where Λst is a zero-mean random variable. Thus, given that E[(θit + εit)
(
θit + εit − E[θit|It]] = σ2t + σ2ε and

E[θit(θit − E[θit|It])] = σ2t , it follows that

E[(θit + εit)η
s
it] = (σ2t + σ2ε)(1− µt)

(
s−1∏
j=1

µt+s−j

)
+ σ2t

s−1∑
k=1

(
s−1−k∏
j=1

µt+(s−j

)
(1− µt+k) = σ2t ;

the second equality follows from (A17) and the fact that (σ2t + σ2ε)(1− µt) = σ2t .

Summing Up. The following lemma summarizes the results we obtained. It provides a complete characterization of
the second moments of the wage distribution.

Lemma 6. For all 0 ≤ t ≤ T and 1 ≤ s ≤ T − t, we have that:

(i) Var[rit] = σ2θ + tσ2ζ − σ2t + (b∗t )
2(σ2t + σ2ε);

(ii) Cov[rit, rit+s] = σ2θ + tσ2ζ − σ2t + b∗tσ
2
t .

C.2 More General Human-Capital Process

Here we consider first the case in which the econometrician observes a discrete version of the continuous performance
measure pit discussed in Section 6 and then the case in which the performance measure pit is a general function of a
worker’s effort and human capital.

The Case of Discrete Performance. Consider now the case in which the econometrician observes only a discrete
version of pit. Namely, assume that for each 0 ≤ t ≤ T , there exist thresholds p1t < . . . < pKt and that the
econometrician observes the performance measure poit given by

poit =


0 if pit ≤ p1t
k if pkt < pit ≤ pk+1t for k ∈ {1, . . . ,K − 1}
K if pit > pKt

.

Note that this is a plausible representation of performance scales in firms; see, for instance, the discussion in Baker
et al. [1994a]. Since P{poit =K}= 1 − P{pit ≤ pKt} and P{poit = k}= P{pit ≤ pk+1t} − P{pit ≤ pkt} for all
k ∈ {1, . . . ,K − 1} by definition of poit, it is immediate that the probabilities P{pit ≤ p1t} to P{pit ≤ pKt} are
identified from the probabilities P{poit= 1} to P{poit=K}, that is, from the distribution of the discrete performance
measure in period t.

Once again, it is easy to show that the equilibrium is unique, symmetric, and noncontingent; see the Appendix
for details. Let k∗t and e∗t be, respectively, a worker’s equilibrium stock of human capital and effort in t. Then, using
E[wit] = mθ+k∗t +e∗t and that P{pit ≤ pkt}=P{ηit ≤ pkt−e∗t }=G(pkt−e∗t ) for each k withG strictly increasing
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and so invertible, we obtain a linear system of K + 1 equations

k∗t + e∗t = E[wit]−mθ

p1t − e∗t = G−1(P{pit ≤ p1t})
...

pKt − e∗t = G−1(P{pit ≤ pKt})

in theK+3 unknowns (e∗t , k
∗
t , p1t, . . . , pKt) for each t. This system has a unique solution up tomθ and p1t. Indeed,

given that P{pit ≤ p1t} is identified from the distribution of the discrete performance measure in t, the sub-system
that consists of the first two equations of the system admits a unique solution for e∗t and k∗t if mθ and p1t are known.
We can then recover pkt for each k ≥ 2 as pkt = e∗t + G−1(P{pit ≤ pkt}), since the probabilities P{pit ≤ pk} for
k ≥ 2 are identified as discussed. Hence, the vector (e∗t , k

∗
t , p2t, . . . , pKt) is identified from the mean wage and the

distribution of workers’ performance up to mθ and p1t in each period t. The rest of the argument proceeds as in the
case of continuous performance in the main text.

General Performance Function. Here we consider the case in which

pit = ft(eit, kit) + ηit,

where the noise in performance has the same properties as in the main text and for each 0 ≤ t ≤ T the function
ft : R2 → R is known and continuously differentiable. We only consider the case in which the econometrician
observes pit, as it is clear that we can extend the analysis to the case in which the econometrician observes the
truncated version p0it by following the same approach used in the main text. Suppose that the equilibrium is unique,
symmetric, and noncontingent and let e∗t and k∗t be, respectively, the workers’ equilibrium effort and stock of human
capital in period t. For each 0 ≤ t ≤ T we have the following system of equations:

e∗t + k∗t = E[wit]−mθ

ft(e
∗
t , k
∗
t ) = E[pit]− E[ηit]

, (C25)

where E[wit] and E[pit] are observed by the econometrician and E[ηit] is known. We claim that (C25) has a unique
solution if e 7→ ft(e, α− e) is surjective for all α ∈ R and ∂ft(e, k)/∂e 6= ∂ft(e, k)/∂k for all (e, k) ∈ R2. Indeed,
using the first equation in (C25) to solve for k∗t , we can rewrite the second equation in (C25) as

ft(e
∗
t ,E[wit]−mθ − e∗t ) = E[pit]− E[ηit]. (C26)

First notice that since e 7→ ft(e, α − e) is surjective for all α ∈ R, equation (C26) has a solution regardless of
mθ, E[wit], E[pit], and E[ηit]. Now let h(e) = ft(e,E[wit] −mθ − e). Since ∂ft(e, k)/∂e 6= ∂ft(e, k)/∂k for all
(e, k) ∈ R2 implies that h′(e) 6= 0 for all e ∈ R, the solution to (C26) is unique.61

We have thus established that if the functions f1 to fT have the properties described in the previous paragraph,
then the workers’ effort and stock of human capital in each period 0 ≤ t ≤ T are identified from mean wages and
mean performance measures in this period up to mθ. The remainder of the identification argument is identical to the
argument in the main text.

We conclude by proving that ∂ft(e, k)/∂e 6= ∂ft(e, k)/∂k for all (e, k) ∈ R2 and 0 ≤ t ≤ T and e 7→ ft(e, α−
e) surjective for all α ∈ R and 0 ≤ t ≤ T are necessary for identification. Fix 0 ≤ t ≤ T and let Ft : R2 → R2

be such that Ft(e, k) = (e+ k, ft(e, k)). A necessary condition for identification is that Ft(e, k) = v has a solution
for any v ∈ R2. Given that Ft is continuously differentiable, it follows from Haddamard’s global inverse function
theorem, see, e.g., Gordon [1972], that Ft is a (C1) diffeomorphism if, and only if, DFt(e, k), the Jacobian matrix
of Ft evaluated at (e, k), has non-zero determinant for all (e, k) ∈ R2 and lim||(e,k)||→∞ ||Ft(e, k)|| =∞, where || ||
is the Euclidian norm.62 So, a necessary condition for identification is that detDFt(e, k) 6= 0 for all (e, k) ∈ R2 and

61If there exist e1<e2 with h(e1)=h(e2), then the intermediate value theorem implies that there exists e∗ ∈ [e1, e2] such that h′t(e∗) = 0.
62A continuously differentiable function G : Rn → Rn with n ≥ 1 is a diffeomorphism if G is invertible and both G and G−1 are
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lim||(e,k)||→∞ ||Ft(e, k)|| =∞.
Since detDFt(e, k) = ∂ft(e, k)/∂k − ∂ft(e, k)/∂e, it then follows that ∂ft(e, k)/∂k 6= ∂ft(e, k)/∂e for

all (e, k) ∈ R2 is necessary for identification. Now note that ft continuously differentiable implies that either
∂ft(e, k)/∂k > ∂ft(e, k)/∂e for all (e, k) ∈ R2 or ∂ft(e, k)/∂k < ∂ft(e, k)/∂e for all (e, k) ∈ R2. Assume
that the latter condition holds; the argument is the same when the former condition holds. Hence, f(e, α − e) is
strictly increasing in e for all α ∈ R. Given that ||Ft(e, α− e)|| =

√
α2 + ft(e, α− e)2 and for all α ∈ R we have

that ||(e, α − e)|| → ∞ if, and only if, |e| → ∞, a necessary condition for lim||(e,k)||→∞ ||Ft(e, k)|| = ∞ is that
lim|e|→∞ |ft(e, α − e)| = ∞ for all α ∈ R. Since ft(e, α − e) is strictly increasing in e for all α ∈ R, this last
condition is then equivalent to lime→∞ ft(e, α− e) =∞ and lime→−∞ ft(e, α− e) = −∞. Thus, e 7→ ft(e, α− e)
surjective for all α ∈ R is also necessary for identification. This concludes the argument.

D Supplementary Appendix

We provide here omitted model and estimation details.

D.1 Equilibrium Contracts in the Presence of Performance Measures

Here we extend our analysis to the case in which there exists an observable but unverifiable performance measure
for the workers. Since the derivations in this case follow many of the steps of the corresponding derivations in the
case without a performance measure, the exposition will be terse. The environment is the same as in the case with
the general human capital process except that now for each worker i and in every period t the firms observe a noisy
measure of the workers’ performance, pit. Assume that

pit = γet eit + γkt kit + θit + ηit,

where γet and γkt are known constants and ηit is an unobserved idiosyncratic shock to worker i’s performance measure
in period t that is normally distributed with mean zero and variance σ2η and is orthogonal to all other shocks in the
environment. For ease of exposition, assume that γet ≡ 1 and γkt ≡ 0; our analysis extends to the more general case
if, and only if, γet 6= γkt for all 0 ≤ t ≤ T .

Since the performance measure is unverifiable, firms still offer linear one-period output-contingent contracts to
workers. So, worker i’s wage in period t is again given by wit = (1− bit)E[yit|It] + bityit, where bit is the worker’s
piece rate in period t and It is the public information about the worker that is available in period t. However, unlike
the case without the performance measure, It not only contains the worker’s output realizations before period t but
also contains the realizations of the worker’s performance measure before period t. The definition of an equilibrium is
the same as before and so is the definition of a noncontingent equilibrium. We still consider pure-strategy equilibria.

Learning About Ability. We first discuss how the presence of the performance measure affects learning about the
workers’ ability in equilibrium. Consider worker i in period t and let e∗it and k∗it be the worker’s equilibrium effort
and stock of human capital in period t, respectively.63 Let zyit = yit − e∗it − k∗it and zpit = pit − e∗it be, respectively,
the part of worker i’s output and performance measure in period t that cannot be explained by the worker’s effort
and stock of human capital in the period. Since in equilibrium agents correctly anticipate a worker’s effort and stock
of human capital at any point in time, the same argument as in the main text shows that the posterior belief about
worker i’s ability in period t is normally distributed with some mean mit and variance σ2it. In an abuse of notation,
let σ2it+1/2 = σ2itσ

2
ε/(σ

2
it + σ2ε). By standard results, mit and σ2it evolve over time according to

mit+1 =
σ2η

σ2it+1/2 + σ2η

(
σ2ε

σ2t + σ2ε
mit +

σ2t
σ2t + σ2ε

zyit

)
+

σ2it+1/2

σ2it+1/2 + σ2η
zpit and σ2it+1 =

σ2it+1/2σ
2
η

σ2it+1/2 + σ2η
+ σ2ζ ;

continuously differentiable.
63As in the main text, e∗it and k∗it can depend on the worker’s history in period t.
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the equations for the evolution of mit and σ2it follow from a belief-updating process in which in each period agents
first update their beliefs about a worker’s ability based on the worker’s output and then update their beliefs based on
the realization of the worker’s performance measure.64

Now let σ2εη = σ2εσ
2
η/(σε + σ2η) and

zit =
σ2η

σ2η + σ2ε
zyit +

σ2ε
σ2η + σ2ε

zpit. (D27)

Straightforward algebra shows that mit and σ2it ≡ σ2t evolve over time according to

mit+1 =
σ2εη

σ2t + σ2εη
mt +

σ2t
σ2t + σ2εη

zit and σ2t+1 =
σ2t σ

2
εη

σ2t + σ2εη
+ σ2ζ .

So, the evolution of the posterior means and variances of the workers’ abilities follow the same laws of motion as in
the case without the performance measure, except that σ2εη plays the role of the variance of the noise in output and
zit given by (D27) plays the role of the signal about worker i’s ability in period t.65 If we let µt = σ2εη/(σ

2
t + σ2εη),

it then follows that the law of motion for a workers’ reputation is still given by the expression in Lemma 1 with zit
now given by (D27).

Dynamic Returns to Effort. We now consider the first-order conditions for worker effort when piece rates and
future behavior are noncontingent. Since ∂E[zit|ht]/∂et = 1 for any period t and any period-t private history ht for
a worker, it follows that the expressions for RCC,t and RLBD,t are the same as in the case with the general human
capital process without the performance measure, and so are the first-order conditions for worker effort when piece
rates and future behavior are noncontingent.66

Equilibrium Piece Rates. Since the first-order conditions for worker effort when piece rates and future behavior are
noncontingent are the same as in the case with the general human capital process without the performance measure,
the derivation of the equilibrium piece rates follows exactly the same steps as in Appendix A. The only step in which
the presence of the performance measure can alter the derivation of equilibrium piece rates is in the computation of
the derivative ∂Var[Wt(b)It]/∂b, as the presence of the performance measure potentially affects the covariance of
wage payments across periods. We claim that ∂Var[Wt(b)It]/∂b has the same expression as in the case without the
performance measure, so that the expression for equilibrium piece rates remains unchanged; the only change relative
to the case without the performance measure is in the evolution of the posterior variance of the workers’ ability.

It still follows that

Var[Wt(b)|It] = b2(σ2t + σ2ε) + 2

T−t∑
τ=1

δτ−1Cov[wt(b), wt+τ (b)|It] + Var0,

where Var0 does not depend on b; recall that wt+τ (b) with 0 ≤ τ ≤ T − t is a worker’s wage in period t+ τ when
the piece rate in period t is b. We claim that Cov[wt(b), wt+τ (b)|It] = bσ2t for all τ ≥ 1, which implies the desired

64The order in which agents use the information about a worker to update their beliefs about the worker is clearly irrelevant.
65When σ2

η = ∞ and the performance measure is uninformative, the laws of motion for mit and σ2
t reduce to the laws of motion in the

absence of the performance measure.
66More generally, ∂E[zit|ht]/∂et = (σ2

η + σ2
ε)−1(σ2

η + γyt σ
2
ε), in which case

RCC,t =

T−t∑
τ=1

δτ (1− bt+τ )

(
τ−1∏
k=1

µt+τ−k

)
(1− µt)(σ2

η + σ2
ε)−1(σ2

η + γyt σ
2
ε).

The expression for RLBD,t remains the same. Since, as we show below, we can identify the vector of variances (σ2
θ , σ

2
ε , σ

2
η, σ

2
ζ) from a panel

of wages by experience with information on their fixed and variable components and pit = f̂(eit, kit)+ηit, where f̂t(e, k) = γet e+γkt k+mθ

is known up to mθ and satisfies the conditions for identification in the case with the more general human capital process if, and only if,
γet 6= γkt , we can adapt the identification argument below to this more general case.

19



result. As in Appendix A, Cov[wt(b), wt+τ (b)|It] = bCov[yt(et(b)), wt+τ (b)|It] and

Cov[yt(et(b)), wt+τ (b)|It] = bt+τCov[yt(et(b)), yt+τ (et(b))|It] + (1− bt+τ )Cov[yt(et(b)),mt+τ (et(b))|It]

for all τ ≥ 1, where yt+τ (et) and mt+τ (et) still respectively denote a worker’s output and reputation in period t+ τ
as a function of effort in period t. Hence, if zt+s(et) with s ≥ 0 is once again the signal about a worker’s ability in
period t+ s as a function of effort in period t, then Lemma 1 implies that for all τ ≥ 1,

Cov[yt(et(b)), wt+τ (b)|It] = bt+τCov[yt(et(b)), yt+τ (et(b))|It]

+ (1− bt+τ )
τ−1∑
s=0

(
τ−1−s∏
k=1

µt+τ−k

)
(1− µt+s)Cov[yt(et(b)), zt+s(et(b))|It].

The presence of the performance measure does not change the fact that Cov[yt(et(b)), yt+τ (et(b))|It] = σ2t for all
τ ≥ 1. Now observe that

Cov[yt(et(b)), zt+s(et(b))|It] =
σ2η

σ2η + σ2ε
Cov[yt(et(b)), z

y
t+s(et(b))|It] +

σ2ε
σ2η + σ2ε

Cov[yt(et(b)), z
p
t+s(et(b))|It].

Since Cov[yt(et(b)), z
p
t+s(et(b))|It] ≡ σ2t and

Cov[yt(et(b)), z
y
t+s(et(b))|It] =

{
σ2t + σ2ε if s = 0

σ2t if s ≥ 1
,

we then have that

Cov[yt(et(b)), wt+τ (b)|It] = σ2t

(
(1− bt+τ )

τ−1∑
s=0

(
τ−1−s∏
k=1

µt+τ−k

)
(1− µt+s) + bt+τ

)

+ σ2εη(1− bt+τ )

(
τ−1∏
k=1

µt+τ−k

)
(1− µt).

The desired result follows from the fact that σ2εη(1− µt) = σ2εησ
2
t /(σ

2
εη + σ2t ) = σ2t µt.

Identification. As before, we can identify the equilibrium piece rates from a panel of wages by experience with in-
formation on their fixed and variable components. Now notice that since Var[wi0] = (b∗0)

2(σ2θ+σ2ε), Cov[wi0, wi1] =
b∗0σ

2
θ , and Var[pi0] = σ2θ + σ2η , the vector of variances (σ2θ , σ

2
η, σ

2
ε) is identified from Var[wi0], Cov[wi0, wi1], and

Var[pi0]; in particular, we do not need to assume that the distribution of the shock terms ηit is known in order to ob-
tain identification. The variance σ2ζ is then identified from Var[wi1] since Var[wi1] = σ2θ +σ2ζ −σ21 +(b∗1)

2(σ21 +σ2ε)

and σ21 is known given the vector (σ2θ , σ
2
η, σ

2
ε). Finally, given that pit = f̂(eit, kit) + ηit, where f̂t(e, k) = e + mθ

is known up to mθ and satisfies the conditions for identification in the case with the more general human capital
process, the rest of the identification argument proceeds as in the main text.

D.2 Additional Estimation Results

Here we present and discuss the estimates of two augmented versions of our model in which we allow, respectively,
for a more flexible human capital process and for measurement error in wages.

Augmented Human Capital Function. We report in Table 2 the estimates of the parameters of a more general
version of our model in which the law of motion of human capital is kit+1 = λkit+γteit+βιit, where ιit represents
a pure learning-by-doing investment in human capital that accrues for any period a worker spends in the labor market
in that ιit equals 1 in t if worker i is employed and equals 0 otherwise. As apparent from Table 2, the estimates of
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the parameters of this version of the model are very similar to those of the baseline version—and the fit of the model
is virtually unchanged. For instance, the estimated standard deviation of the initial distribution of ability σθ, the
noise in output σε, and ability shocks σζ are, respectively, 44.99, 516.74, and 5.43 for the baseline and are 48.15,
529.50, and 5.77 for the augmented model, whereas the estimates of γ1, γ2, and r are virtually identical across the
two models. The estimate of γ0 is somewhat lower for the augmented model, 0.739, than for the baseline model,
0.892, much like the estimate of λ, which is also slightly lower for the augmented model, 0.932, than for the baseline
model, 0.955. Intuitively, since in the augmented model we allow for an additional channel through which workers
acquire human capital—and they do so costlessly—it is not surprising that the marginal product of effort in the
production of human capital is lower. Interestingly, though, this reduction in the marginal contribution of effort to
human capital is very small, thus confirming qualitatively and quantitatively the implications of the baseline model.
That is, although workers now can also acquire new skills simply by working, effort still plays a key role in the
human capital accumulation process and so is central to wage growth.

Table 2: Estimates of Augmented Model Parameters

Parameters Estimates Standard Errors
σ2
θ , variance of initial ability 2,318.081 0.0013288
σ2
ε , variance of noise in output 280,372.479 0.1114008
σ2
ζ , variance of shock to ability 33.286 0.0000792
ψ0, coefficient of degree 0 of γt 0.739 0.0000006
ψ1, coefficient of degree 1 of γt 0.035 0.0000001
ψ2, coefficient of degree 2 of γt -0.001 1.45E-09
λ, fraction of undepreciated human capital 0.932 0.0000001
r, coefficient of relative risk aversion 0.0002 1.52E-10
β, coefficient on experience investment 0.844 0.0000025

For a sense of magnitudes, at the margin, an increase in effort that increases current output by 1 dollar raises the
stock of human capital by 74 cents (89 cents in the baseline) at experience 1, 96 cents (1.12 dollars in the baseline)
at experience 10, 1 dollar (1.17 dollars in the baseline) at experience 20, 81 cents (1.01 dollars in the baseline) at
experience 30, and 39 cents (63 cents in the baseline) at experience 40. Like in the baseline model, the contribution
of effort to human capital acquisition is sizable in all years, increasing with experience for younger workers and
declining with experience for older workers after peaking at a marginal return of 1.01 dollars at experience 17.

In terms of identification, the variance and risk aversion parameters are identified as before. As for the remaining
parameters, consider first the case in which the rate of human capital depreciation 1−λ is known. By the argument in
the main text, e∗T−1 and γT−1 are identified. As a result, k∗T−1 and k∗T are identified from k∗T−1 = E[wiT−1]− e∗T−1
and k∗T = E[wiT ]−e∗T , respectively. Hence, the law of motion of human capital in T , k∗T = λk∗T−1 +β+γT−1e

∗
T−1,

identifies β as β = k∗T −λk∗T−1−γT−1e∗T−1. Consider now the case in which the rate of human capital depreciation
1− λ is unknown. To see how the parameters λ and β can be separately identified, note first that E[wi0] = e0 since
we have normalized k0 to zero. Then, from the first-order condition for effort in t = 0, it follows that

E[wi0]− b∗0 −R∗CC,0︸ ︷︷ ︸
A0

= R∗LBD,0 =
γ0
δ

∑T

τ=1
(δλ)τ−1

(
b∗τ +R∗CC,τ

)
. (D28)

The expression of the equilibrium piece rate in t = 0 implies

b∗0
b00
−
(
1−R∗CC,0 − rH∗0

)
︸ ︷︷ ︸

B0

=
γ0
δ

∑T

τ=1
(δλ)τ−1

(
1− b∗τ −R∗CC,τ

)
. (D29)

Denote the left side of (D28) by A0 > 0 and that of (D29) by B0. Both A0 and B0 are known once the variance and
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risk aversion parameters are identified. Taking the ratio of (D28) and (D29) side by side yields∑T
τ=1(δλ)τ−1

(
1− b∗τ −R∗CC,τ

)∑T
τ=1(δλ)τ−1

(
b∗τ +R∗CC,τ

) =
B0

A0
,

which can be further manipulated to obtain∑T

τ=1
(δλ)τ−1

[
A0(1−b∗τ−R∗CC,τ )−B0(b

∗
τ+R∗CC,τ )

]
=
∑T

τ=1
(δλ)τ−1

[
A0−(A0+B0)(b

∗
τ+R∗CC,τ )

]
=0. (D30)

By Descartes’ rule of signs, it is possible to determine the number of positive roots of this polynomial equation for
δλ by counting the number of sign changes in the coefficients of the polynomial proceeding from lower to higher
powers, n. Then, n is the maximum number of positive roots, which in our case is one as apparent from the inspection
of (D30), sinceA0 +B0 and b∗τ +R∗CC,τ at each τ are positive andA0 and (A0 +B0)(b

∗
τ +R∗CC,τ ) cross only once if

T is not too large. Hence, δλ is identified and so is λ since δ is assumed to be known. Once λ is identified, the same
argument as the one for the case in which λ is known establishes that β is identified. The rest of the identification
argument proceeds as in the main text.

Measurement Error in Wages. We now consider a more general version of the model in which we allow for mea-
surement error in wages. Specifically, we assume that wages are observed with additive and orthogonal measurement
error that follows an AR(1) process. Using the notation of Appendix C, we express the random component of the
wage as rit and assume that r̃it = rit + uit, where

uit+1 = ρuit + νit+1, νit i.i.d. with variance σ2ν , and Var(uit) =
σ2ν

1− ρ2
.

The identification of this version of the model proceeds as follows. We need to identify the covariance matrix of
rit as well as the parameters (ρ, σ2ν) in addition to the other parameters of the model. It is easy to verify that the
covariance matrix of rit is identified from the covariance matrix of r̃it once (ρ, σ2ν) are identified. Our task is thus to
show how we can recover (ρ, σ2ν) from the covariance matrix of observed wages. Once this is established, we can
recover the covariance matrix of “true” wages and proceed with the identification arguments presented in Section 6.
To this purpose, consider

Cov(r̃it, r̃it+s) = Cov(rit, rit+s) + Cov(uit, uit+s) = Cov(rit, rit+s) + ρsVar(uit).

Using the fact that Cov(rit, rit+s) = Cov(rit, rit+k) for all k and s, we obtain that

Cov(r̃it, r̃it+2 − r̃it+1) = ρ(ρ− 1)Var(uit) and Cov(r̃it, r̃it+3 − r̃it+1) = ρ(ρ2 − 1)Var(uit),

which implies that

Cov(r̃it, r̃it+3 − r̃it+1)

Cov(r̃it, r̃it+2 − r̃it+1)
=
ρ2 − 1

ρ− 1
= 1 + ρ. (D31)

This ratio identifies ρ. To recover σ2ν , we can use

Cov(r̃it, r̃it+2 − r̃it+1) = −ρσ2ν/(1 + ρ). (D32)

The estimates of the parameters of this version of the model are available upon request.
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