

A Design-Based Perspective on Synthetic Control Methods

Lea Bottmer¹ Guido Imbens^{1,2,3}
Jann Spiess^{2,3} Merrill Warnick¹

¹Department of Economics
²Graduate School of Business
³SIEPR

Stanford University

NBER Summer Institute 2021

July 29, 2021

- Synthetic control (SC) estimator typically applied in observational data and justified using factor models
- Instead analyze SC-type estimators under randomization, propose modifications, compare to difference in means (DiM)
- Main results:
 - 1 Standard SC generically biased under randomization
 - 2 Bias can be fixed by adding a constraint on weights
 - 3 DiM variance estimator can be extended to SC-type estimators
- Main take-aways:
 - 1 For experiment: modified unbiased SC that improves over DiM
 - 2 For observational data: additional robustness, insights into inference that implicitly assumes randomization

Motivating example

- Setup: Three units $i \in \{\text{AZ, CA, NY}\}$ observed over two periods $t \in \{1, 2\}$, with one unit treated ($U_i = 1$) at $t = 2$ and two pure controls ($U_i = 0$)
- Goal: estimate treatment effect of treated unit in period 2,

$$\tau = \sum_i U_i \left(\overline{Y_{i2}(1)} - \overline{Y_{i2}(0)} \right)$$

$= Y_{i2}$, observed
not observed

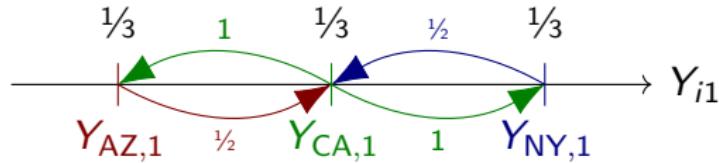
- Synthetic control: learn (positive) weights M_{ij} for $j \neq i$ from previous outcomes Y_{i1} to form

$$\hat{Y}_{i2}(0) = \sum_{j \neq i} M_{ij} Y_{j2}, \quad \hat{\tau} = \sum_i U_i (Y_{i2} - \hat{Y}_{i2}(0))$$

by minimizing error $(Y_{i1} - \sum_{j \neq i} M_{ij} Y_{j1})^2$

Motivating example

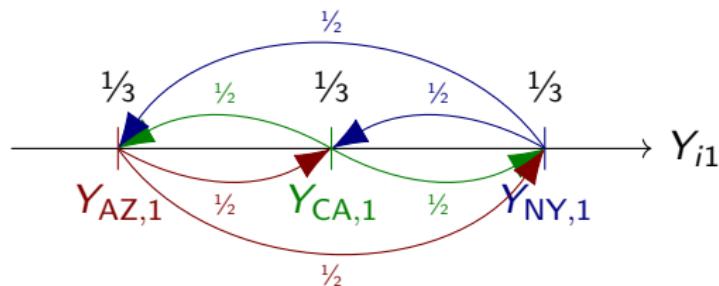
Motivating example



M_{ij}	$j =$	AZ	CA	NY
$i =$	AZ	—	1	0
	CA	1/2	—	1/2
	NY	0	1	—

$$\mathbb{E}[\hat{\tau} - \tau] = \frac{1}{3} \sum_i \hat{Y}_{i2}(0) - Y_{i2}(0) = \frac{1}{3} \sum_i \left(\sum_{j \neq i} M_{ji} - 1 \right) Y_{i2}(0)$$

Motivating example



M_{ij}	$j =$	AZ	CA	NY
$i =$	AZ	—	1	0
	CA	1/2	—	1/2
	NY	0	1	—

M_{ij}	$j =$	AZ	CA	NY
$i =$	AZ	—	1/2	1/2
	CA	1/2	—	1/2
	NY	1/2	1/2	—

$$\mathbb{E}[\hat{\tau} - \tau] = \frac{1}{3} \sum_i \hat{Y}_{i2}(0) - Y_{i2}(0) = \frac{1}{3} \sum_i \left(\sum_{j \neq i} M_{ji} - 1 \right) Y_{i2}(0)$$

Plan for the talk

- 1 Generalized Synthetic Control (GSC) estimators
- 2 Properties of GSC estimators under randomization
- 3 Unbiased and modified unbiased SC estimators
- 4 Variance estimation
- 5 Extensions
- 6 Take-aways for applying GSC estimators

Related literature

- Synthetic Control methodology [Abadie and Gardeazabal, 2003, Abadie et al., 2010, Abadie et al., 2015, Abadie, 2019]
- New estimators in a general SC class
[Doudchenko and Imbens, 2016, Abadie and L'Hour, 2017, Ferman and Pinto, 2017, Arkhangelsky et al., 2019, Li, 2020, Ben-Michael et al., 2020]
- Inference for SC estimators
[Abadie et al., 2010, Doudchenko and Imbens, 2016, Ferman and Pinto, 2017, Hahn and Shi, 2016, Lei and Candès, 2020, Chernozhukov et al., 2017]
- Randomization inference for causal effects
[Neyman, 1990, Imbens and Rubin, 2015, Abadie et al., 2020, Rambachan and Roth, 2020, Sekhon and Shem-Tov, 2020]

Plan for the talk

- 1 Generalized Synthetic Control (GSC) estimators
- 2 Properties of GSC estimators under randomization
- 3 Unbiased and modified unbiased SC estimators
- 4 Variance estimation
- 5 Extensions
- 6 Take-aways for applying GSC estimators

Panel data setup

- Outcomes Y_{it} :

$$\mathbf{Y} = \begin{pmatrix} Y_{11} & Y_{12} & Y_{13} & \dots & Y_{1T} \\ Y_{21} & Y_{22} & Y_{23} & \dots & Y_{2T} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ Y_{N1} & Y_{N2} & Y_{N3} & \dots & Y_{NT} \end{pmatrix}$$

- Binary treatment-unit and treatment-time vectors \mathbf{U} and \mathbf{V} :

$$\mathbf{U} = \begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_N \end{pmatrix}, \mathbf{V} = \begin{pmatrix} V_1 \\ V_2 \\ \vdots \\ V_T \end{pmatrix}$$

$U_i = 1$ and $V_t = 1$ correspond to i being treated in t

In this talk: assume treatment in last period, $V_t = 1_{t=T}$

Potential-outcomes setup

- Potential outcomes: $Y_{it}(0), Y_{it}(1)$
- Observed outcome: $Y_{it} = (1 - U_i V_t) Y_{it}(0) + (U_i V_t) Y_{it}(1)$
- Treatment effect on the treated:

$$\begin{aligned}\tau(\mathbf{U}, \mathbf{V}) &= \sum_{i=1}^N \sum_{t=1}^T U_i V_t (Y_{it}(1) - Y_{it}(0)) \\ &= \sum_{i=1}^N \sum_{t=1}^T U_i V_t Y_{it} - \sum_{i=1}^N \sum_{t=1}^T U_i V_t Y_{it}(0)\end{aligned}$$

Potential-outcomes setup, last-period treatment

- Potential outcomes: $Y_{iT}(0), Y_{iT}(1)$
- Observed outcome: $Y_{iT} = (1 - U_i)Y_{iT}(0) + U_i Y_{iT}(1)$
- Treatment effect on the treated:

$$\begin{aligned}\tau(\mathbf{U}) &= \sum_{i=1}^N U_i (Y_{iT}(1) - Y_{iT}(0)) \\ &= \sum_{i=1}^N U_i Y_{iT} - \sum_{i=1}^N U_i Y_{iT}(0)\end{aligned}$$

Generalized Synthetic Control (GSC) estimators

$$\hat{\tau}(\mathbf{U}, \mathbf{Y} | \mathcal{M}) = \sum_{i=1}^N U_i \left\{ \mathbf{M}_{i0} + \sum_{j=1}^N \mathbf{M}_{ij} Y_{jT} \right\}$$

$$\mathbf{M}(\mathbf{Y}, \mathcal{M}) \equiv \arg \min_{\mathbf{M} \in \mathcal{M}} \sum_{i=1}^N \sum_{t=1}^{T-1} \left(\mathbf{M}_{i0} + \sum_{j=1}^N \mathbf{M}_{ij} Y_{jt} \right)^2$$

- \mathbf{M}_{ij} gives weight for control unit j given treated unit i
- \mathbf{M}_{i0} is the intercept
- \mathcal{M} is the set of possible weight matrices

Synthetic Control (SC) estimator [Abadie et al., 2010]

$$\mathcal{M}^{SC} = \left\{ \mathbf{M} \middle| \mathbf{M}_{ii} = 1 \forall i \geq 1; \mathbf{M}_{ij} \leq 0 \forall i \geq 1, j \neq i; \sum_{j=1}^N \mathbf{M}_{ij} = 0 \forall i \geq 1; \mathbf{M}_{i0} = 0 \forall i \right\}$$

Example:

$$\mathbf{M} = \begin{pmatrix} 0 & 1 & -0.00 & -1.00 & -0.00 \\ 0 & -0.00 & 1 & -0.00 & -1.00 \\ 0 & -0.45 & -0.40 & 1 & -0.15 \\ 0 & -0.03 & -0.74 & -0.24 & 1 \end{pmatrix}$$

General restrictions, Modified Synthetic Control (MSC) estimator
[Doudchenko and Imbens, 2016, Ferman and Pinto, 2017]

$$\mathcal{M}^0 = \left\{ \mathbf{M} \middle| \mathbf{M}_{ii} = 1 \forall j \geq 1; \mathbf{M}_{ij} \leq 0 \forall i \geq 1, j \neq i; \sum_{j=1}^N \mathbf{M}_{ij} = 0 \forall i \geq 1 \right\}$$

Example:

$$\mathbf{M} = \begin{pmatrix} -0.17 & 1 & -0.00 & -1.00 & -0.00 \\ 0.10 & -0.03 & 1 & -0.27 & -0.70 \\ -0.00 & -0.44 & -0.42 & 1 & -0.14 \\ -0.06 & -0.00 & -1.00 & -0.00 & 1 \end{pmatrix}$$

Difference-in-means (DiM) estimator

$$\mathcal{M}^{\text{DiM}} = \left\{ \mathbf{M} \left| \mathbf{M}_{ii} = 1 \forall i \geq 1; \mathbf{M}_{ij} = -\frac{1}{N-1} \forall i \geq 1, j \neq i; \mathbf{M}_{i0} = 0 \forall i \right. \right\}$$

Example:

$$\mathbf{M} = \begin{pmatrix} 0 & 1 & -1/3 & -1/3 & -1/3 \\ 0 & -1/3 & 1 & -1/3 & -1/3 \\ 0 & -1/3 & -1/3 & 1 & -1/3 \\ 0 & -1/3 & -1/3 & -1/3 & 1 \end{pmatrix}$$

Plan for the talk

- 1 Generalized Synthetic Control (GSC) estimators
- 2 Properties of GSC estimators under randomization
- 3 Unbiased and modified unbiased SC estimators
- 4 Variance estimation
- 5 Extensions
- 6 Take-aways for applying GSC estimators

Treatment assignment

Last-period assignment

$$V_t = 1_{t=T}$$

Random treatment assignment

$$\text{pr}(\mathbf{U} = \mathbf{u}) = \begin{cases} \frac{1}{N} & \text{if } u_i \in \{0, 1\} \forall i, \quad \sum_{i=1}^N u_i = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Bias of GSC estimators

$$\text{Bias} = \mathbb{E} [\hat{\tau} - \tau] = \frac{1}{N} \sum_{i=1}^N \left(\sum_{j=1}^N \mathbf{M}_{ji} \right) Y_{iT}(0)$$

- SC (and MSC) generally biased under unit randomization

$$\mathbf{M} = \left(\begin{array}{ccccc} 0 & 1 & -0.00 & -1.00 & -0.00 \\ 0 & -0.00 & 1 & -0.00 & -1.00 \\ 0 & -0.45 & -0.40 & 1 & -0.15 \\ 0 & -0.03 & -0.74 & -0.24 & 1 \end{array} \right) \left| \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array} \right. \quad \begin{array}{c} 0.53 \\ -0.14 \\ -0.24 \\ -0.15 \end{array}$$

Plan for the talk

- 1 Generalized Synthetic Control (GSC) estimators
- 2 Properties of GSC estimators under randomization
- 3 Unbiased and modified unbiased SC estimators
- 4 Variance estimation
- 5 Extensions
- 6 Take-aways for applying GSC estimators

Unbiased Synthetic Control (USC) estimator

$$\mathcal{M}^{USC} = \left\{ \mathbf{M} \in \mathcal{M}^0 \middle| M_{i0} = 0 \ \forall i, \sum_i \mathbf{M}_{ij} = 0 \ \forall j \geq 1 \right\}$$

Example:

$$\mathbf{M} = \left(\begin{array}{ccccc|c} 0 & 1 & -0.00 & -1.00 & -0.00 & 0 \\ 0 & -0.08 & 1 & -0.00 & -0.92 & 0 \\ 0 & -0.62 & -0.30 & 1 & -0.08 & 0 \\ 0 & -0.30 & -0.70 & -0.00 & 1 & 0 \end{array} \right)$$

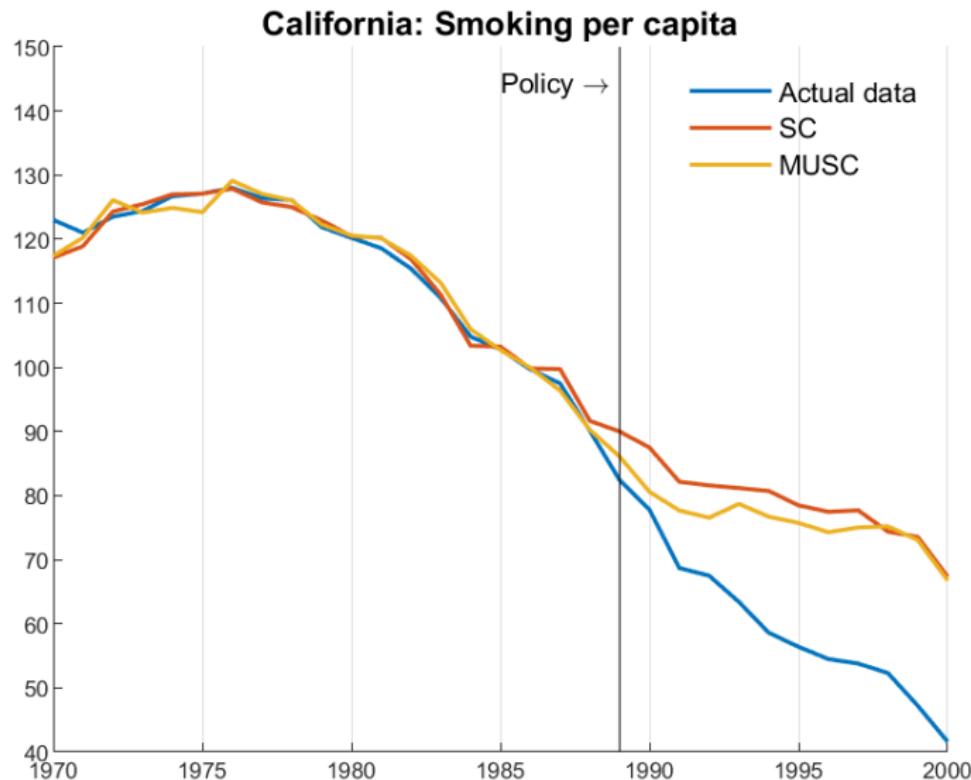
Modified Unbiased Synthetic Control (MUSC) estimator

$$\mathcal{M}^{MUSC} = \left\{ \mathbf{M} \in \mathcal{M}^0 \middle| \sum_i \mathbf{M}_{ij} = 0 \ \forall j \geq 1 \right\}$$

Example:

$$\mathbf{M} = \left(\begin{array}{ccccc|c} -0.17 & 1 & -0.00 & -1.00 & -0.00 & 0 \\ 0.14 & -0.30 & 1 & -0.00 & -0.70 & 0 \\ 0.07 & -0.63 & -0.07 & 1 & -0.30 & 0 \\ -0.04 & -0.07 & -0.93 & -0.00 & 1 & 0 \end{array} \right)$$

California smoking study [Abadie et al., 2010]



Simulation

- Data set: Current Population Survey (CPS)
- Outcome variables: log wages ($sd = 0.44$), unemployment rate ($sd = 0.02$), hours ($sd = 1.34$)
- $N = 50$ states
- $T = 21 \dots 40$ years
- Since there is no actual treatment, $Y_{iT}(0) = Y_{iT}(1)$, so $\tau = 0$ and we can calculate bias and RMSE

Simulation results: bias (at $T = 40$)

Outcome	DiM	SC	MSC	USC	MUSC
Log Wages	0	-0.0067	-0.0025	0	0
Hours	0	0.1128	0.0188	0	0
Unemp. Rate	0	-0.0010	-0.0006	0	0

- DiM, USC and MUSC are indeed unbiased
- SC and MSC are biased

Simulation results: RMSE (averaged over $T = 21 \dots 40$)

Outcome	DiM	SC	MSC	USC	MUSC
Log Wages	0.1047	0.0510	0.0533	0.0516	0.0530
Hours	1.1974	0.9180	0.8658	0.9136	0.9031
Unemp. Rate	0.0150	0.0130	0.0129	0.0131	0.0129

- Large RMSE improvement over DiM for all other estimators for log wages and hours
- Smaller RMSE improvement over DiM for unemployment rate
- SC, MSC, USC and MUSC all have similar RMSE

Plan for the talk

- 1 Generalized Synthetic Control (GSC) estimators
- 2 Properties of GSC estimators under randomization
- 3 Unbiased and modified unbiased SC estimators
- 4 Variance estimation
- 5 Extensions
- 6 Take-aways for applying GSC estimators

Variance of unbiased GSC estimators

$$\mathbb{V}(\mathbf{M}) = \frac{1}{N} \sum_{i=1}^N \left(\mathbf{M}_{i0} + \sum_{j=1}^N \mathbf{M}_{ij} Y_{jT}(0) \right)^2$$

- Depends on realized weights and untreated potential outcomes
- Also the mean-squared error for biased GSC estimators

Unbiased variance estimator

$$\begin{aligned}\hat{\mathbb{V}}(\mathbf{U}, \mathbf{Y}, \mathbf{M}) = & \sum_i U_i \left\{ \frac{1}{N-3} \sum_{\substack{k=1 \\ k \neq i}}^N \left(\sum_{\substack{j=1 \\ j \neq i}}^N \mathbf{M}_{kj} (Y_{kT} - Y_{jT}) \right)^2 \right. \\ & - \frac{1}{(N-2)(N-3)} \sum_{\substack{k=1 \\ k \neq i}}^N \sum_{\substack{j=1 \\ j \neq i}}^N \mathbf{M}_{kj}^2 (Y_{kT} - Y_{jT})^2 \\ & \left. + \frac{2}{N-2} \sum_{\substack{k=1 \\ k \neq i}}^N \mathbf{M}_{k0} \left(\sum_{\substack{j=1 \\ j \neq i}}^N \mathbf{M}_{kj} (Y_{jT} - Y_{kT}) \right) + \frac{1}{N} \sum_{k=1}^N \mathbf{M}_{k0}^2 \right\}\end{aligned}$$

- Finite-sample unbiased for $\mathbb{V}(\mathbf{V}, \mathbf{M})$
- Variance estimator can be negative
- Reduces to standard DiM var estimator with equal weights

Performance of variance estimators for $N = 10$ subset and log wages

	DiM	SC	MUSC
\sqrt{V}	0.1031	0.0494	0.0475
$\sqrt{\mathbb{E}\hat{V}}_{GSC}$	0.1031	0.0494	0.0475
$\sqrt{\mathbb{E}\hat{V}}_{placebo}$	0.1038	0.0500	0.0481

- Placebo variance upward biased for these estimators but may be downward biased

Plan for the talk

- 1 Generalized Synthetic Control (GSC) estimators
- 2 Properties of GSC estimators under randomization
- 3 Unbiased and modified unbiased SC estimators
- 4 Variance estimation
- 5 Extensions
- 6 Take-aways for applying GSC estimators

- 1 Time randomization
 - Provides a justification for GSC optimization problem
- 2 Multiple treated units
 - Extends MUSC to many treated units for estimation of average treatment effect on the treated
- 3 Propensity scores
 - Allows application if propensity scores vary
 - Allows for optimization of propensity scores when GSC used
 - In observational data provides alternative to binary inclusion

Plan for the talk

- 1 Generalized Synthetic Control (GSC) estimators
- 2 Properties of GSC estimators under randomization
- 3 Unbiased and modified unbiased SC estimators
- 4 Variance estimation
- 5 Extensions
- 6 Take-aways for applying GSC estimators

Take-aways

- Analyze SC-type estimators under randomization
- Main results:
 - 1 Standard SC generically biased under randomization
 - 2 Bias can be fixed by adding a constraint on weights
 - 3 DiM variance estimator can be extended to SC-type estimators
- Main take-aways:
 - 1 For experiment:
 - MUSC as practical alternative to DiM
 - Variance estimation and multiple units extend
 - Reduces RMSE without sacrificing bias
 - 2 For observational data:
 - Additional robustness at small or no cost in RMSE
 - Alternative (view on) variance estimation
 - Propensity scores as alternatives to binary inclusion

References |

- **Abadie, A. (2019).**
Using synthetic controls: Feasibility, data requirements, and methodological aspects.
Journal of Economic Literature.
- **Abadie, A., Athey, S., Imbens, G. W., and Wooldridge, J. M. (2020).**
Sampling-based versus design-based uncertainty in regression analysis.
Econometrica, 88(1):265–296.
- **Abadie, A., Diamond, A., and Hainmueller, J. (2010).**
Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program.
Journal of the American Statistical Association, 105(490):493–505.
- **Abadie, A., Diamond, A., and Hainmueller, J. (2015).**
Comparative politics and the synthetic control method.
American Journal of Political Science, pages 495–510.
- **Abadie, A. and Gardeazabal, J. (2003).**
The economic costs of conflict: A case study of the Basque Country.
American Economic Review, 93(-):113–132.
- **Abadie, A. and L'Hour, J. (2017).**
A penalized synthetic control estimator for disaggregated data.
Work. Pap. Mass. Inst. Technol., Cambridge, MA.
- **Arkhangelsky, D., Athey, S., Hirshberg, D. A., Imbens, G. W., and Wager, S. (2019).**
Synthetic difference in differences.
Technical report, National Bureau of Economic Research.

References II

- Ben-Michael, E., Feller, A., and Rothstein, J. (2020).
The augmented synthetic control method.
[arXiv preprint arXiv:1811.04170](https://arxiv.org/abs/1811.04170).
- Chernozhukov, V., Wuthrich, K., and Zhu, Y. (2017).
An exact and robust conformal inference method for counterfactual and synthetic controls.
[arXiv preprint arXiv:1712.09089](https://arxiv.org/abs/1712.09089).
- Doudchenko, N. and Imbens, G. W. (2016).
Balancing, regression, difference-in-differences and synthetic control methods: A synthesis.
Technical report, National Bureau of Economic Research.
- Ferman, B. and Pinto, C. (2017).
Placebo tests for synthetic controls.
- Hahn, J. and Shi, R. (2016).
Synthetic control and inference.
[Available at UCLA](https://escholarship.org/uc/item/2244t34t).
- Imbens, G. W. and Rubin, D. B. (2015).
Causal Inference in Statistics, Social, and Biomedical Sciences.
Cambridge University Press.
- Lei, L. and Candès, E. J. (2020).
Conformal inference of counterfactuals and individual treatment effects.
[arXiv preprint arXiv:2006.06138](https://arxiv.org/abs/2006.06138).

References III

- Li, K. T. (2020).
Statistical inference for average treatment effects estimated by synthetic control methods.
Journal of the American Statistical Association, 115(532):2068–2083.
- Neyman, J. (1923/1990).
On the application of probability theory to agricultural experiments. essay on principles. section 9.
Statistical Science, 5(4):465–472.
- Rambachan, A. and Roth, J. (2020).
Design-Based Uncertainty for Quasi-Experiments.
arXiv preprint arXiv:2008.00602.
- Sekhon, J. S. and Shem-Tov, Y. (2020).
Inference on a new class of sample average treatment effects.
Journal of the American Statistical Association, pages 1–7.