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m Synthetic control (SC) estimator typically applied in
observational data and justified using factor models

m Instead analyze SC-type estimators under randomization,
propose modifications, compare to difference in means (DiM)

m Main results:
Standard SC generically biased under randomization
Bias can be fixed by adding a constraint on weights
DiM variance estimator can be extended to SC-type estimators

m Main take-aways:

For experiment: modified unbiased SC that improves over DiM
For observational data: additional robustness, insights into
inference that implicitly assumes randomization



Motivating example

m Setup: Three units i € {AZ,CA,NY} observed over two
periods t € {1,2}, with one unit treated (U; =1) at t =2
and two pure controls (U; = 0)

m Goal: estimate treatment effect of treated unit in period 2,

= ,2 observed

T—ZU 12(1)_ Yi2(0 ))

not observed

m Synthetic control: learn (positive) weights Mj; for j # i from
previous outcomes Yj; to form

Via(0) = 3 MYy, T_ZU<,2— ¥i2(0))

J#i

by minimizing error (Yj1 — 3, ; M;;Yi1)?



Motivating example




Motivating example

EEIE S S (R

Yazi % Year 1 Yhva

M; j=AZ CA NY

i=AZ - 1 0
CA 1o - 1p
NY 0 1

E[%—T]:%ZVQ(O) Yia(0) = Z<Z - >

i J#i



Motivating example

M; j=AZ CA NY Mj J=Az CA NY
i=AZ - 1 0 i=AZ - 1 1P
CA 1 - 1p CA 1o = 1

NY 0 1 - NY 12 1o -

E[%—T]:%ZVQ(O) Yia(0) = Z<Z - >

i J#i



Plan for the talk

Generalized Synthetic Control (GSC) estimators
Properties of GSC estimators under randomization
Unbiased and modified unbiased SC estimators
Variance estimation

Extensions

[@ Take-aways for applying GSC estimators



Related literature

m Synthetic Control methodology [Abadie and Gardeazabal, 2003,
Abadie et al., 2010, Abadie et al., 2015, Abadie, 2019]

m New estimators in a general SC class
[Doudchenko and Imbens, 2016, Abadie and L'Hour, 2017,
Ferman and Pinto, 2017, Arkhangelsky et al., 2019, Li, 2020,
Ben-Michael et al., 2020]

m Inference for SC estimators
[Abadie et al., 2010, Doudchenko and Imbens, 2016,
Ferman and Pinto, 2017, Hahn and Shi, 2016,
Lei and Candeés, 2020, Chernozhukov et al., 2017]

m Randomization inference for causal effects
[Neyman, 1990, Imbens and Rubin, 2015, Abadie et al., 2020,
Rambachan and Roth, 2020, Sekhon and Shem-Tov, 2020]
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Generalized Synthetic Control (GSC) estimators



Panel data setup

m Outcomes Yi;:

Yl]. Y12 Y13 e YlT

Yor Yo Yoz ... Yor
Y = . . ) . .

Yvi Ynz2 Yaz ... Yar

m Binary treatment-unit and treatment-time vectors U and V:

U Vi

Us Vs
u=| . |,v=1] .

Un Vr

U; =1 and V; = 1 correspond to i being treated in t

In this talk: assume treatment in last period, Vi = 1,—7




Potential-outcomes setup

m Potential outcomes: Yj:(0), Yit(1)
m Observed outcome: Yj = (1 — U;V;) Yi(0) + (U; Vi) Yie(1)
m Treatment effect on the treated:

N T
(U V) = 30 UiV (Ye(1) - Yi(0))

i=1 t=1

=Zzuvf it — Zzuvt Yie(0)

i=1 t=1 i=1 t=1



Potential-outcomes setup, last-period treatment

m Potential outcomes: Y;7(0), Yir(1)
m Observed outcome: Y+ = (1 — U;)Y;7(0) + U;Yir(1)

m Treatment effect on the treated:



Generalized Synthetic Control (GSC) estimators

2

N
Mio +ZMinjt

T-1
i=1 t=1 j=1

m M;; gives weight for control unit j given treated unit /
m Mjg is the intercept

m M is the set of possible weight matrices



Synthetic Control (SC) estimator [Abadie et al., 2010]

M€ = {M‘M,-; =1Vj > 1L, M; <OVi > 1,/ #i;

N
ZMU:OVIZLM,-O:OW}
j=1

Example:
0 1 —0.00 —-1.00 -—-0.00
M — 0 —0.00 1 —0.00 -1.00
|0 —-045 -0.40 1 —0.15
0 —0.03 —-0.74 —-0.24 1



General restrictions, Modified Synthetic Control (MSC) estimator

[Doudchenko and Imbens, 2016, Ferman and Pinto, 2017]

MO:{M

N
M,,:lezl;M,,-govl'z1,j7éi;ZM,-j=ovl'z1}
j=1

Example:
-0.17 1 —0.00 —1.00 -0.00
M — 0.10 —0.03 1 —0.27 —-0.70
—0.00 —0.44 —-0.42 1 —0.14

—-0.06 —-0.00 —-1.00 —-0.00 1



Difference-in-means (DiM) estimator

WPN:{MMM:PWZLMU:—N

11W21J¢hMm:OW}

Example:
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Properties of GSC estimators under randomization



Treatment assignment

Last-period assignment

Random treatment assignment

1 : N
oo v i wef{01bvi, Y ui=1,
pr(U =u) { 0 otherwise.




Bias of GSC estimators

Bias = E[f — 7] = — Zil;<

Mji) YiT(0)

=

Jj=1

m SC (and MSC) generally biased under unit randomization

1 —-0.00 —-1.00 -0.00
—0.00 1 —0.00 -1.00
—0.45 -0.40 1 —0.15
—-0.03 —-0.74 -0.24 1

I
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0.53 -0.14 -0.24 —-0.15
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Unbiased and modified unbiased SC estimators



Unbiased Synthetic Control (USC) estimator

MU = {M e M°

M;0:0VI,ZM,-J-:0W21}

Example:
0 1 —0.00 —-1.00 -—0.00 0
M — 0 —0.08 1 —0.00 —-0.92 0
|0 —-0.62 -0.30 1 —0.08 0
0 —-0.30 -0.70 —0.00 1 0

0 0 0 0



Modified Unbiased Synthetic Control (MUSC) estimator

MMUSE — {MEMO > M;=0V,> 1}
Example:
—-0.17 1 —0.00 —-1.00 —0.00 0
M — 0.14 —0.30 1 —0.00 -0.70 0
| 0,07 -063 -0.07 1 —0.30 0
—0.04 -0.07 —-0.93 —-0.00 1 0

0 0 0 0



California smoking study [Abadie et al., 2010]

California: Smoking per capita
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Data set: Current Population Survey (CPS)

Outcome variables: log wages (sd = 0.44), unemployment
rate (sd = 0.02), hours (sd = 1.34)

m N = 50 states
m T =21---40 years

m Since there is no actual treatment, Y;7(0) = Yir(1),so 7 =0
and we can calculate bias and RMSE



Simulation results: bias (at T = 40)

Outcome DiM SC MSC uUsC MuUSC
Log Wages 0 —0.0067 —0.0025 0 0
Hours 0 0.1128 0.0188 0 0
Unemp. Rate 0 —0.0010 —0.0006 0 0

m DiM, USC and MUSC are indeed unbiased

m SC and MSC are biased



Simulation results: RMSE (averaged over T = 21---40)

Outcome DiM SC MSC uscC MUSC

Log Wages 0.1047 0.0510 0.0533 0.0516 0.0530
Hours 1.1974 0.9180 0.8658 0.9136 0.9031
Unemp. Rate 0.0150 0.0130 0.0129 0.0131 0.0129

m Large RMSE improvement over DiM for all other estimators
for log wages and hours

m Smaller RMSE improvement over DiM for unemploment rate

m SC, MSC, USC and MUSC all have similar RMSE
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Variance estimation



Variance of unbiased GSC estimators

N N
V(M) = Z 10+ZMUYJT(0)
j=1

i=1

m Depends on realized weights and untreated potential outcomes

m Also the mean-squared error for biased GSC estimators



Unbiased variance estimator

VU, Y,M)=>" {Nl_3 > (Z My (Yir—YiT)

1 N N ) )
" W) & 2 Mi(Yir=Yim)

N N N
2 1
+ jZMko ZMkj(YjT—YkT) +NZM%<0}
k=1 =1 k=1
ki i#i

m Finite-sample unbiased for V(V, M)
m Variance estimator can be negative

m Reduces to standard DiM var estimator with equal weights



Performance of variance estimators for N = 10 subset and log wages

DiM SC MUSC

VvV 0.1031 0.0494 0.0475
VEV gsc 0.1031 0.0494 0.0475
VEVpacebo  0.1038  0.0500 0.0481

m Placebo variance upward biased for these estimators but may
be downward biased
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Extensions

Time randomization
m Provides a justification for GSC optimization problem

Multiple treated units

m Extends MUSC to many treated units for estimation of average
treatment effect on the treated

Propensity scores
m Allows application if propensity scores vary
m Allows for optimization of propensity scores when GSC used
m In observational data provides alternative to binary inclusion
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Take-aways

m Analyze SC-type estimators under randomization

m Main results:
Standard SC generically biased under randomization
Bias can be fixed by adding a constraint on weights
DiM variance estimator can be extended to SC-type estimators

m Main take-aways:
For experiment:

m MUSC as practical alternative to DiM
m Variance estimation and multiple units extend
m Reduces RMSE without sacrificing bias

For observational data:

m Additional robustness at small or no cost in RMSE
m Alternative (view on) variance estimation
m Propensity scores as alternatives to binary inclusion
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